
Auto-tuning Matrix Multiplication and Convolution
for Deep Learning on CPUs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Deep learning (DL) compilers have emerged aiming to reduce the gap between1

abundant, fast-growing DL models and the lag of high performance implemen-2

tations of these models on diverse hardware devices. In this work, we introduce3

several optimization strategies, combining analytic ideal cache models with ma-4

chine learning models trained with real hardware measures, and integrate them into5

a unified auto-tuning framework, called AutoMCL, to improve the performance6

of DL compilers on both the operation level and the end-to-end model inference.7

We evaluate AutoMCL and compare it with state-of-the-art on multiple CPUs.8

End-to-end evaluations show that AutoMCL outperforms TensforFlow on fully9

connected and convolutional neural networks with respectively a geometric mean10

of 9.29× and 1.54× speedup. Over the baseline AutoTVM, on average, AutoMCL11

achieves respectively 1.37× and 2.16× speedup in inference and optimization time12

for fully connected neural networks and gains 2.55% performance improvement in13

inference for convolutional neural networks with 1.91% more optimization cost.14

1 Introduction15

Deep learning models have found wide applications in image and sound recognition, natural language16

translation, game playing, etc. The success of deep learning benefits greatly from the accessibility17

of DL frameworks, such as TensforFlow [4], PyTorch [19] and MXNet [8], which not only ease the18

burden of coding but also provide high performance supports through efficient low-level libraries,19

such as Intel oneMKL [2] or NVIDIA cuDNN [3]. However, it is difficult to make the library20

development, which requires tremendous manual engineering effort entangled with hardwares and21

often takes months or even years to finish, keep pace with the rapid innovation of DL models. As22

a result, many newly introduced neural networks or operators may lack optimal implementation23

support on the target hardwares, thus hindering the further innovation of DL models. To address24

this challenge, DL compilers (e.g. TVM [9] and TensorComprehensions [25]) emerged [16], whose25

goal is to automatically compile high-level declarations of DL operators into efficient low-level code26

across various hardware devices, including CPUs, GPUs, FPGAs, and ASICs.27

To make the DL compilers appealing, it is essential to keep their performance competitive or even28

superior to that of DL frameworks or hand-optimized libraries. To achieve this, state-of-the-art DL29

compilers, such as TVM and its successor AutoTVM [10], extend the decoupled compute/schedule30

principle of Halide [20] to separate target hardware intrinsics from computation description and31

optimization sequence specification composed of transform primitives to ease the process of high-32

level optimization, and leverage machine learning to automate low-level optimizations. The success33

of DL compilers relies on high-quality schedules as well as effective searching and learning strategies34

to find optimal parameters. Recently, new progress have been made on automating the design of35

schedule primitives, enlarging the parameter space to expose more tuning opportunities and utilizing36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

heuristic and learning approaches, in particular reinforcement learning, to explore the parameter37

space more effectively to find optimal candidates. Among these work, AdaTune [15], Ansor [29],38

CHAMELEON [5], FlexTensor [30] and Cortex [11] are built on top of TVM while the value function39

method [23] and TIRAMISU [6] are respectively based on Halide and the polyhedral model.40

Most of these optimizations have been focusing on the loop level optimizations, such as loop tiling,41

loop split and fuse, loop unroll, loop reordering, vectorization, etc. The algorithm level optimization,42

on the other hand, is hard to automate and still requires human’s expertise. Moreover, while enlarging43

the tuning space may potentially include better candidates, it also calls more effort to find the optimal44

solution and often leads to getting suboptimal solution in limited budget. Thus, it remains a great45

challenge to prune the parameter space efficiently to avoid unnecessary exploration, which may also46

help increase the chance of optimal solutions to be picked earlier. A purely analytical modeling47

approach for optimizing convolutions [17] was recently proposed towards this direction.48

In this work, we propose several new strategies aiming to leverage both analytic model and machine49

learning to generate more efficient code in shorter compilation time targeting on the CPU platforms,50

the ubiquity of which implies that a great number of users can benefit from such improvement. Our51

main contributions are three-fold:52

• We introduce new strategies for initializing and filtering the tiling size space for matrix53

multiplication and convolution based on analytic models.54

• We introduce several new competitive schedules for matrix multiplication and convolution55

in both algorithm and loop level to enlarge the schedule space.56

• We integrate the proposed strategies into a new auto-tuning framework called AutoMCL,57

which leverages TVM’s frontend computational graph optimization and backend code58

generation functionalities. We conduct operator level and end-to-end evaluations showing59

that the overall performance of AutoMCL is superior to AutoTVM in both inference and60

optimization time on typical fully connected or convolutional neural networks.61

2 Background62

The operations matrix multiplication and convolution appear widely in many deep neural networks63

and improving their performance is critical to speed up the the training and inference. Matrix multi-64

plication has been implemented on CPU in many basic linear algebra libraries, such as ATLAS [27],65

GotoBLAS [13] and Intel oneMKL [2]. The convolution operation was also implemented on CPU in66

several standalone libraries, such as Intel oneDNN [1]. In the context of deep learning, there is a a67

strong demand to deploy a well-trained model to a great variety and amount of devices such that the68

model can infer in real time on the target hardwares. This offers new challenges and opportunities for69

auto-tuning the performance of these two operations for fixed size input tensors [28, 18].70

Matrix multiplication and 2D-convolution operators. Mathematically, the matrix multiplica-71

tion operator matmul takes two matrices AM×K and BK×N as input and computes their prod-72

uct matrix CM×N . In this paper, we would assume that the operator takes two matrices DM×K73

and WN×K and computes a new matrix CM×N by Cij :=
∑K−1

k=0 AikBjk. The 2D-convolution74

operator conv2d, in its simplest form, takes a tensor D of dimensions B × IC × DH × DW ,75

a tensor W of dimensions OC × IC × KH × KW , two stride sizes s1, s2, and produces76

a tensor C of dimensions B × OC × OH × OW , where OH = (DH − KH)/s1 + 177

and OW = (DW − KW)/s2 + 1. Each element of C is computed according to the rule78

Cb,o,y,x :=
∑IC−1

i=0

∑KH−1
ky=0

∑KW−1
kx=0 Db,i,s1y+ky,s2x+kxWo,i,ky,kx . In general, it may also takes79

two padding sizes PH , PW and two dilation sizes d1, d2 and produces a tensor of dimen-80

sions B × OC × OH × OW , where OH = (DH + 2PH − (KH − 1)d1 − 1)/s1 + 1 and81

OW = (DW + 2PW − (KW − 1)d2 − 1)/s2 + 1.82

Ideal cache model. The ideal cache model was introduced in [12] for studying the cache complexity83

of algorithms. It assumes that the computer has a two-level memory hierarchy consisting of an ideal84

cache of Z words with cache line size C, where Z � C, and an arbitrarily large main memory. To85

access a word in main memory, it first searches it in cache. If the word does not reside in the cache,86

a cache miss occurs and a cache line containing the word is loaded into the cache from the main87

memory. It assumes that the cache is fully associative and the line with furthest access in the future88

2

will be replaced if new data is loaded into a full cache. The cache complexity counts the number of89

cache misses. For instance, the (worst) cache complexity for scanning n words continuously stored in90

an array is dn/Ce+ 1. In general, the cache complexity of an algorithm operating on a tensor largely91

depends on the layout of the tensor and the ordering for visiting the dimensions of the tensor.92

3 Components of AutoMCL93

We design a few optimization passes and evaluate the effectiveness of each optimization strategy94

individually and only append experimentally proven working optimizations to our framework. Fig. 195

provides an overview of the framework, named AutoMCL.

Figure 1: Flow of AutoMCL with the new strategies introduced in this work highlighted.
96

Enlarging the space of schedules. The DL compiler TVM provides two default computes for the97

matrix multiplication operator, namely DNMM and RPMM and one default compute CONV for gen-98

eral 2D-convolution. We introduce another four alternative computes TMM, TTMM, DPMM, LPMM99

for matrix multiplication and two alternative computes Im2colDNMM332 and Im2colRPMMV for100

convolution by converting convolution to matrix multiplication in an im2col manner. Table 1 summa-101

rizes the specification of each compute for matrix multiplication. The computes for convolution can102

be found in the supplemental material. We manually write schedule template for each new compute103

and improve the default schedule templates for DNMM, RPMM, CONV respectively as DNMM332104

(single-level tiling to double-level tiling), RPMMV (adding missing vectorization for some loop) and105

CONVOpt (loop reordering according to the cache complexity analysis in Theorem 2 and its remark).106

Table 1: Compute specification for matrix multiplication
Name Specification (Mt,Kt, Nt are parameters.)

TMM Cy,x :=
∑K−1

k=0 Dy,kWx,k

TTMM W ′k,x := Wx,k; Cy,x :=
∑K−1

k=0 Dy,k ∗W ′k,x
DNMM CCy,x,ki

:=
∑K/Kt−1

ko=0 Dy,ko∗Kt+ki
∗Wx,ko∗Kt+ki

; Cy,x :=
∑Kt−1

ki=0 CCy,x,ki

LPMM PDyo,k,yi
:= Dyo∗Mt+yi,k; Cy,x :=

∑K−1
k=0 PDy/Mt,k,y mod Mt

∗Wx,k

RPMM PWxo,k,xi
:= Wxo∗Nt+xi,k; Cy,x :=

∑K−1
k=0 Dy,k ∗ PWx/Nt,k,x mod Nt

DPMM PDyo,k,yi
:= Dyo∗Mt+yi,k; PWxo,k,xi

:= Wxo∗Nt+xi,k

Cy,x :=
∑K−1

k=0 PDy/Mt,k,y mod Mt
∗ PWx/Nt,k,x mod Nt

We analyze the cache complexity with the ideal cache model for each schedule template, stated as107

Theorem 1 and Theorem 2, whose detailed proof can be found in the supplemental material. Note108

that all the nested loops will be tiled in the schedules. This would lead to a better cache complexity if109

the data required for computing a tile all fit in cache. This assumption depends both on the tile and110

cache size but should not depend on the input tensor size (with the kernel sizes as an exception since111

they are usually small). Table 2 and Table 3 summarize the assumptions.112

Let V` be the length of vectorization, C` be the cache line size, Z be the cache size, and D` be the113

size of tensor data type in bytes. Let Vw := V`/D`, Cw := C`/D`, Zw := Z/D`.114

3

Theorem 1. Assume that Tm(Mt,Kt, Nt) <
Zw

Cw
and Mt|M,Kt|K,Nt|N , the cache complexity115

Cm(M,K,N,Mt,Kt, Nt) for each schedule is listed as below:116

TMM : M
Mt

N
Nt

(
Mt

(
dKt

Cw
e+ 1

)
K
Kt

+Nt

(
dKt

Cw
e+ 1

)
K
Kt

+Mt

(
d Nt

Cw
e+ 1

))
TTMM : K

Kt

N
Nt

(
Kt

(
d Nt

Cw
e+ 1

)
+Nt

(
dKt

Cw
e+ 1

))
+ M

Mt

N
Nt

(
Mt

(
dKt

Cw
e+ 1

)
K
Kt

+Kt

(
d Nt

Cw
e+ 1

)
K
Kt

+Mt

(
d Nt

Cw
e+ 1

))
DNMM : M

Mt

N
Nt

(
d K
Kt
e(Mt +Nt)

(
dKt

Cw
e+ 1

)
+Mt

(
dNtKt

Cw
e+ 1

)
+Mt

(
d Nt

Cw
e+ 1

))
LPMM : M

Mt
(dKMt

Cw
e+ 1) +M(d K

Cw
e+ 1) + dMtNt

Cw
e+ 1

+ M
Mt

N
Nt

(
Mt

(
d Nt

Cw
e+ 1

)
+ K

Kt

(
Nt

(
dKt

Cw
e+ 1

)
+ dKtMt

Cw
e+ 1

))
RPMM : N

Nt
(dKNt

Cw
e+ 1) +N(d K

Cw
e+ 1)) + dMtNt

Cw
e+ 1

+ M
Mt

N
Nt

(
Mt

(
d Nt

Cw
e+ 1

)
+ K

Kt

(
Mt

(
dKt

Cw
e+ 1

)
+ dKtNt

Cw
e+ 1

))
DPMM : M

Mt

(
dKMt

Cw
e+ 1

)
+M

(
d K
Cw
e+ 1

)
+ N

Nt

(
dKNt

Cw
e+ 1

)
+N

(
d K
Cw
e+ 1

)
+dMtNt

Cw
e+ 1 + M

Mt

N
Nt

(
Mt

(
d Nt

Cw
e+ 1

)
+ d K

Kt
e
(
dKtMt

Cw
e+ 1 + dKtNt

Cw
e+ 1

))
.

Theorem 2. Assume that Tc(Mt,Kt, Nt) <
Zw

Cw
and OWt|OW, ICt|IC,OCt|OC, the cache com-117

plexity for CONVOpt is:118

dB ∗ (DH + 2PH) ∗ IC ∗ (DW + 2PW)

Cw
e+ 1 +

(
B ∗DH ∗ IC ∗ (dDW

Cw
e+ 1)

)
+OC ∗ IC

ICt
∗ (dKH ∗KW ∗ ICt

Cw
e+ 1) (1)

+IC ∗KH ∗KW ∗ OC

OCt
∗ (dOCt

Cw
e+ 1) +

(
B ∗ OC

OCt
∗OH ∗ OW

OWt
∗ (dOWt ∗OCt

Cw
e+ 1)

)
+B ∗ OC

OCt
∗OH ∗ OW

OWt
∗ IC ∗KH ∗KW ∗ (dOCt

Cw
e+ 1)

+B ∗ OC

OCt
∗ IC ∗OH ∗ OW

OWt
∗KH ∗ (d (s2 ∗ (OWt − 1) + (KW − 1) ∗ d2 + 1)

Cw
e+ 1)

+B ∗ OC

OCt
∗OH ∗OW ∗ (dOCt

Cw
e+ 1) +

(
B ∗OH ∗OW ∗ OC

OCt
∗ (dOCt

Cw
e+ 1)

)
+B ∗OC ∗OH ∗ OW

OWt
∗ (dOWt

Cw
e+ 1),

and the cache complexity of Im2col-CONV is:119

dB ∗ IC ∗ (DH + 2PH) ∗ (DW + 2PW)

Cw
e+ 1 +

(
dB ∗ IC ∗DH ∗DW

Cw
e+ 1

)
+
B ∗OH ∗OW ∗ IC

ICt
∗ (dICt ∗KH ∗KW

Cw
e+ 1) +

(
2 ∗OC ∗ IC

ICt
∗ (dKH ∗KW ∗ ICt

Cw
e+ 1)

)
+B ∗OH ∗OW ∗ IC ∗KH ∗ (d (OWt − 1) ∗ s2 + (KW − 1) ∗ d2 + 1

Cw
e+ 1)

+Cm(B ∗OH ∗OW, IC ∗KH ∗KW,OC,OWt, ICt ∗KH ∗KW,OCt)

+B ∗OC ∗OH ∗ d OW

OWt
e ∗ (dOWt

Cw
e+ 1) +

(
B ∗OH ∗OW ∗ d OC

OCt
e ∗ (dOCt

Cw
e+ 1)

)
.

Remark 1. For the cache complexity of CONV in TVM, we only need to replace the bold part in120

Table 3 with OCt ∗ ICt ∗ (dKW
Cw
e+ 1) +KW ∗ ICt ∗ (dOCt/Cwe+ 1) and (1) in Theorem 2 by121

OC ∗ IC ∗KH ∗ (dKW
Cw
e+ 1). It is usually larger than that of CONVOpt for the same tiling size.122

Learning to choose schedules. We first evaluate the performance of each schedule on a dataset123

consisting of matrices with sizes ranging from small to large. The experiments, reported in Section 4,124

show that each one can be exclusively the best for certain types of sizes. We then choose the top125

four best performed schedules as candidates and train a boosted tree model by Xgboost [7], with the126

matrix size as input feature, to automatically select the best one for a particular size.127

4

Table 2: Values of Tm for different schedules for matrix multiplication (from top to bottom: TMM,
TTMM, DNMM, LPMM, RPMM, DPMM)
Tm(Mt,Kt, Nt)

Mt(dKt

Cw
e+ 1) +Nt(dKt

Cw
e+ 1) +Mt(d Nt

Cw
e+ 1)

Kt(d Nt

Cw
e+ 1) + max

(
Nt(dKt

Cw
e+ 1),Mt(dKt

Cw
e+ 1) +Mt(d Nt

Cw
e+ 1)

)
Mt(dNtKt

Cw
e+ 1) + max

(
Mt(d Nt

Cw
e+ 1), (Mt +Nt)(dKt

Cw
e+ 1)

)
1 + max

(
dMt

Cw
e+Mt, dMtNt

Cw
e+ max

(
Mt(d Nt

Cw
e+ 1), Nt(dKt

Cw
e+ 1) + dKtMt

Cw
e+ 1

))
1 + max

(
d Nt

Cw
e+Nt, dMtNt

Cw
e+ max

(
Mt(d Nt

Cw
e+ 1),Mt(dKt

Cw
e+ 1) + dKtNt

Cw
e+ 1

))
1 + max

(
dMt

Cw
e+Mt, d Nt

Cw
e+Nt, dMtNt

Cw
e+ max

(
Mt(d Nt

Cw
e+ 1), dKtMt

Cw
e+ dKtNt

Cw
e+ 2

))

Table 3: Values of Tc for convolution schedules (top: CONVOpt, bottom: Im2col-CONV)
Tc(OWt, ICt, OCt)

max

OCt ∗ (dKH∗KW∗ICt

Cw
e+ 1) +KH ∗KW ∗ ICt ∗ (dOCt

Cw
e+ 1),

(dOWt∗OCt

Cw
e+ 1) +KH ∗ ICt ∗ (d (s2∗(OWt−1)+(KW−1)∗d2+1)

Cw
e+ 1)

+KH ∗KW ∗ ICt ∗ (dOCt

Cw
e+ 1), (dOWt∗OCt

Cw
e+ 1) +OWt ∗ (dOCt

Cw
e+ 1),

OWt ∗ (dOCt

Cw
e+ 1) +OCt ∗ (dOWt

Cw
e+ 1)

max

 OWt ∗ (dKH∗KW∗ICt

Cw
e+ 1) + ICt ∗ (d (OWt−1)∗s2+(KW−1)∗d2+1

Cw
e+ 1),

2 ∗OCt ∗ (dKH∗KW∗ICt

Cw
e+ 1), OCt ∗ (dOWt

Cw
e+ 1) +OWt ∗ (dOCt

Cw
e+ 1),

Tm(OWt, ICt ∗KH ∗KW,OCt)

Initializing the tiling size space. Suppose that there are m dimensions to be tiled and the size of128

each dimension is Xi, i = 1, . . . ,m. Then the number of valid one-level tilings is
∏m

i=1 Xi, which129

is one billion for Xi = 1000. Thus one has to set up a reasonable initial tiling size space. For130

instance, in TVM, there are two basic strategies depending on the tiling size being a factor of Xi or a131

power of 2. Suppose that there are m dimensions X1, . . . , Xm to be tiled, and each dimension has a132

nested tiling of levels di, i = 1, . . . ,m. Then the initial configure space for the factor strategy is a133

direct product of the sets Gi := {(X(0)
i , . . . , X

(di)
i) |

∏di

j=0 X
(j)
i = Xi}, i = 1, . . . ,m. We adopt134

this factor strategy for 2D-convolution. For matrix multiplication, we propose a more sophisticated135

strategy, motivated by both the factor strategy of TVM and the analytic model of [21] to balance136

cache locality and load balancing among parallel threads. This strategy is described by Algorithm 1.137

Filtering the tiling size space. Let G(Zt, Yt, Xt) be the initial tiling size space for the com-138

pute/schedule pair (O,S), where Zt, Yt, Xt denote the innermost tiling sizes for the tiled dimensions139

Z, Y,X . Let T (Xt, Yt, Xt) be the cache fit formula Tc or Tm. Let X be the dimension for vectoriza-140

tion and Xt be the tiling size for this dimension. We would only consider the tiling size satisfying141

both X ≥ min(Xt, Vw) and T < Zw/Cw and filter out the rest ones from G.142

Learning to choose optimal configurations. Except for the default schedule CONV of TVM, the143

configuration space for all the schedules considered in this work is solely formed by different tiling144

sizes. The schedule CONV has another knob unroll_kw to decide whether to unroll the for loop145

involving the kernel dimension KW . The size of the configuration space in our experiments is146

usually less than 10, 000 thanks to the initialization and filter strategies. For this moderate size, we147

find that the rather direct tuning strategy described by Algorithm 2 works quite well in practice.148

4 Evaluation149

We developed AutoMCL on top of TVM (0.6.0) and it will be released in open source. Three Intel150

CPUs (Intel i7-G9700F, Intel i7-9750H, Intel i9-9900) and one AMD CPU (AMD-Ryzen9-3900X) are151

used for evaluation. More detailed hardware information can be found in the supplemental material.152

5

We first evaluate each optimization strategy individually based on TVM on randomly generated153

datasets consisting of tensors of various sizes, in order to see if a particular optimization can speed up154

either optimization time or inference time. Then we evaluate the whole integrated framework on both155

the operation and the end-to-end level for typical fully connected and convolutional neural networks.156

The maximum number of trials for the whole tuning and the early stopping are set respectively as157

10, 000 and 400 for most of the experiments. The only exception is the end-to-end evaluation of158

CNNs, where we set the two numbers respectively as 500 and 300.159

Algorithm 1: InitConfigSpace(O,S)

Input: A compute/schedule pair (O,S) for matmul, the number of parallel threads p.
Output: The initial configure space G for tiling.

1 begin
2 if S has 1-level tiling then
3 initialize G′, Gx, Gy, Gk, Gyx respectively as ∅;
4 for all factors py of p do
5 px := p/py; let Gy and Gx be respectively all the factors of dM/pye and dN/pxe;
6 Gyx := {(Mt, Nt) |Mt ∈ Gy, Nt ∈ Gx}
7 let Gk be all the factors of K; G := {(1,Mt, 1, Nt,Kt) | (Mt, Nt) ∈ Gyx,Kt ∈ Gk};
8 else if S has 2-level tiling then
9 initialize G′, Gx, Gy, Gk, Gyx respectively as ∅;

10 for all factors py of p do
11 px := p/py;
12 let Gy := {(Mo,Mt) : MoMt|dM/pye}; Gx := {(No, Nt) : NoNt|dN/pxe;
13 Gyx := {(Mo,Mt, No, Nt) | (Mo,Mt) ∈ Gy, (No, Nt) ∈ Gx}
14 let Gk be all the factors of K;
15 G := {(Mo,Mt, No, Nt,Kt) | (Mo,Mt, No, Nt) ∈ Gyx,Kt ∈ Gk};

/* Due to limitation of TVM, it is additionally rquired that Mt|M for
LPMM, Nt|N for RPMM and Mt|M,Nt|N for DPMM. */

16 return G

Algorithm 2: AutoConfig(O,S,G,m, n, b)

Input: The compute/schedule pair (O,S), the configuration space G for (O,S), the maximum
number of trials m, the batch size n for restarting training, the batch size b for a parallel run.

Output: The optimal configuration.
1 begin
2 D := ∅; t := 0; randomly pop n configurations from G and put in N ;
3 while true do
4 while N 6= ∅ do
5 choose b configurations B from N ; N := N \B;
6 in parallel, run the code compiled from the tuple (O,S, c), c ∈ B, on hardware;
7 add B examples labelled with (averaged) running timings to D; t := t+ |N |;
8 if G 6= ∅ and t < m then
9 train a ML model with D and predict the running timings of (O,S, c), c ∈ G;

10 pop the best (shortest predicted timing) n configurations N from G;
11 else
12 break;

13 return the configurations in D with the shortest running time

Comparison of different schedules. To make a fair comparison, we create two testing datasets160

consisting of examples of various dimension sizes for matrix multiplication and convolution. For161

matrix multiplication, a dimension size is chosen in three different scales, with small size in {1, 8, 16},162

medium size in {64, 256} and large size in {1024, 4096}, which creates 73 different combinations.163

We remove 5 extreme size cases and add additional 120 examples with each dimension randomly164

6

taking values in 1..4096. For convolution, we create a dataset of the same size (458) as matrix mul-165

tiplication. The dimensions of each convolution example (DB×IC×DH×DW ,WOC×IC×KH×KW)166

with stride s and padding size p randomly take values by the following rule: B ∈ {1, 32, 128},167

IC ∈ {20 · · · 214}, OC ∈ {20..214}, DH = DW ∈ {1 · · · 256}, KH = KW ∈ {1, 3, 5, 7},168

s ∈ {1, 2}, p = b(KH − 1)/2c. In addition, we only keep examples with each dimension size less169

than 4096 in their im2col representations.170

Fig. 2 reports the proportions of examples with the shortest running time or the lowest cache misses171

(measured by the ideal cache model) for different schedules implementing matrix multiplication or172

convolution. The experiments show that each schedule can be exclusively the best for certain types of173

tensor sizes. Here we allow a 0.02 tolerance for being the best. Our manually improved schedule174

DNMM332, RPMMV and CONVOpt indeed work better than their counterparts. Moreover, the real175

and the theoretical measure correlate quite well for the “top performed” schedules, except for the two176

based on DNMM, which however have a different vectorization dimension from the others.

DNMM DNMM332 RPMM RPMMV DPMM LPMM TMM TTMM
0.0

0.2

0.4

0.6

0.8

Pr
op

or
tio

n

Best-performed
Exclusively Best-performed
Best-cache-model-measured
Exclusively Best-cache-model-measured

CONV CONVOpt Im2colRPMMV Im2colDNMM332
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Best-performed
Exclusively Best-performed
Best-cache-model-measured
Exclusively Best-cache-model-measured

Figure 2: Performance of different candidate schedules for matmul and conv2d.

177

Evaluation of automatic schedule chosen. With performing exclusively the best on at least 5% of178

the dataset as a criterion, four “top performed” schedules DNMM332, RPMMV, LPMM, TMM are179

selected for matmul and three are selected for conv2d. For matmul, we adopt Xgboost to automatically180

choose the best schedule among the four for a given problem size. The dataset is the same as the181

one in last subsection, from which 40 randomly chosen examples are reserved for the testing dataset182

and the rest for the training dataset. Fig. 3 reports the performance on the testing dataset, where183

AutoSchedule denotes the learned schedule and OptSchedule stands for choosing schedules in a static184

manner as TVM but with DNMM and RPMM replaced respectively by DNMM332 and RPMMV.185

For conv2d, the learning approach does not work quite well and we instead use CONVOpt as the

Figure 3: Performance of OptSchedule and AutoSchedule for matmul.

186
default implementation since it performs better than CONV while having the same advantage as187

CONV on leveraging NCHWc layout optimization [18] in the end-to-end inference.188

Evaluation of tiling size space initialization and filter. Fig. 4 illustrates how the two default189

schedules for matmul (DNMM when M ≤ 16 and RPMM when M > 16) perform when being190

combined with different strategies for initializing the tiling size space. The left image shows the191

speedup over the base (factor). The middle and right images show the space swell ratio over the192

base (factor). Our strategy pfactor shrinks the tiling size space more than 40% for matrices with193

powers of 2 sizes without an obvious performance loss. For the dataset consisting of matrices of194

prime number sizes, pfactor brings 1.2 speedup on average.195

Fig. 5 show that the filter strategy further reduces tiling space size while not loosing performance.196

7

data-prime
(M<=16)

data-prime
(M>16)

data-power2
(M<=16)

data-power2
(M>16)

Geomean
0.50

0.75

1.00

1.25

1.50

1.75

2.00

Sp
ee

du
p

1.
00

0
1.

00
1 1.

20
3

1.
22

9

factor
power2
factor+power
pfactor

data-prime
(M<=16)

data-prime
(M>16)

Geomean
0

10

20

30

40

Sp
ac

e
Sw

el
l F

ac
to

r

1.
00

0 5.
89

4 14
.4

87
7.

46
9

data-power2
(M<=16)

data-power2
(M>16)

Geomean
0.0

0.5

1.0

1.5

Sp
ac

e
Sw

el
l F

ac
to

r

1.
00

0
1.

00
0

1.
00

0
0.

56
4

Figure 4: Performance of different initialization strategy for matmul.

DNMM
(M<=16)

RPMM
(M>16)

CONV Geomean
0.0

0.5

1.0

1.5

2.0

Sp
ac

e
R

at
io

0.
71

1

0.
70

7

0.
76

6

0.
72

7

AutoTVM
filter

DNMM
(M<=16)

RPMM
(M>16)

CONV Geomean
0.0

0.5

1.0

1.5

Sp
ee

du
p 1.

04
3

0.
97

5

1.
01

9

1.
01

2

Figure 5: Performance of the proposed filter strategy for pruning the tiling size space.

Comparison of different configuration space exploiting strategies. Fig. 6 compares AutoTVM’s197

exploration module (SA+RANK) and AutoMCL’s performance model (REG) on tuning GEMMs of198

different sizes. The left and right image show the average performance of tuned matrix multiplications199

and the average tuning time.

0 100 200 300 400 500
0

50

100

150

200

250

G
flo

ps

SA+RANK
REG

0 100 200 300 400 500
0

500

1000

1500

O
pt

im
iz

at
io

n
Ti

m
e

(s
)

SA+RANK
REG

Figure 6: Comparison between AutoTVM and AutoMCL on exploring the configuration space.

200

Evaluation of AutoMCL on the operation and the end-to-end level. Now we evaluate the per-201

formance of AutoMCL, which integrates all the optimization strategies introduced in Section 3, on202

optimizing matmul and conv2d for both fully connected neural networks (FCNNs) [26] and typical203

convolutional neural networks (CNNs) ResNet-50 [14], Inception-v3[24], and VGG16 [22].204

D1-1 D2-1 D3-1 D4-1 D5-1 D6-1 D7-1 D1-16 D2-16 D3-16 D4-16 D5-16 D6-16 D7-16 Geo-
mean

0

1

2

3

4

Sp
ee

du
p

L7 AMD

Inference
Optimization

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 Geo-
mean

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

resnet50 Intel

Inference
Optimization

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9

C
10

C
11

C
12

C
13

C
14

C
15

C
16

C
17

C
18

C
19

C
20

C
21

C
22

C
23

C
24

C
25

C
26

C
27

C
28

C
29

C
30

C
31

C
32

C
33

C
34

C
35

C
36

C
37

C
38

C
39

C
40

C
41

C
42

C
43

G
eo

-
m

ea
n0

1

2

3

Sp
ee

du
p

inception_v3 Intel

Inference
Optimization

C1 C2 C3 C4 C5 C6 C7 C8 C9 Geomean
0.0

0.5

1.0

1.5

Sp
ee

du
p

vgg16 Intel

Inference
Optimization

Figure 7: Evaluating the operations matmul and conv2d for FCNNs and CNNs.

8

0 4 5 6 7 8 9
Batch Size (2^x)

0

20

40

In
fe

re
nc

e
Ti

m
e

(m
s) FC5

TensorFlow
AutoTVM
AutoMCL

0 4 5 6 7 8 9
Batch Size (2^x)

0

50

100

In
fe

re
nc

e
Ti

m
e

(m
s) FC7

TensorFlow
AutoTVM
AutoMCL

0 4 5 6 7 8 9
Batch Size (2^x)

5

10

O
pt

im
iz

at
io

n
Ti

m
e

(h
) FC5

AutoTVM
AutoMCL

0 4 5 6 7 8 9
Batch Size (2^x)

0

10

O
pt

im
iz

at
io

n
Ti

m
e

(h
) FC7

AutoTVM
AutoMCL

Figure 8: End-to-end evaluation on FCNNs with batch size=2i, i = 0, . . . , 9 on an Intel CPU.

vgg16
Intel

vgg16
AMD

resnet50
Intel

resnet50
AMD

inception_v3
Intel

inception_v3
AMD

0

100

200

300

400

500

In
fe

re
nc

e
Ti

m
e

(m
s)

48
0.

13

31
6.

07

72
.9

0

10
1.

41

10
2.

94 15
7.

65

43
0.

47

17
1.

27

67
.2

7

47
.3

1 95
.7

6

71
.7

6

40
9.

97

16
8.

11

63
.8

8

48
.2

2 93
.9

8

69
.5

0
TensorFlow
AutoTVM
AutoMCL

vgg16
Intel

vgg16
AMD

resnet50
Intel

resnet50
AMD

inception_v3
Intel

inception_v3
AMD

0

10

20

30

40

50

60

70

O
pt

im
iz

at
io

n
Ti

m
e

(h
ou

rs
)

1.
72

2.
02

19
.8

2 24
.6

9

41
.3

8

61
.0

2

1.
98

2.
12

19
.9

8

23
.8

8

39
.7

6

60
.1

7

AutoTVM
AutoMCL

Figure 9: End-to-end evaluation on CNNs.

Ablation analysis. We analyze the effects of adding different optimizations on the performance,205

where OS and AS stand for using respectively the optimized and the automatically chosen schedules.206

0 200 400 600 800 1000

0

50

100

150

200

250

G
flo

ps

(64, 2048, 1000)

AutoTVM
AutoTVM+OS
AutoTVM+OS+AS
AutoTVM+OS+AS+Init-filter
AutoTVM+OS+AS+Init-filter+REG

0 50 100 150 200 250
50

60

70

80

90

100

110

G
flo

ps

(1, 256, 14, 14), (256, 256, 3, 3), (1, 1, 1, 1), (1, 1), (1, 1)

AutoTVM
AutoTVM+OS
AutoTVM+OS+Init-filter
AutoTVM+OS+Init-filter+REG

Figure 10: Ablation analysis on a dense layer and a convolution layer from CNNs.

5 Conclusion207

In this paper, we have introduced a framework AutoMCL to auto-tune the matrix multiplication and208

the 2D-convolution operations in fully connected and convolutional neural networks by leveraging209

both analytic and machine learning models. Experiments show that it outperforms AutoTVM on both210

inference speed and optimization cost for FCNNs and is competitive to AutoTVM for CNNs. In the211

future, we plan to further improve its performance by designing better strategies on automatically212

choosing the optimal schedule.213

9

References214

[1] Intel oneDNN. https://01.org/oneDNN.215

[2] Intel oneMKL. https://software.intel.com/content/www/us/en/develop/tools/216

oneapi/components/onemkl.html.217

[3] NVIDIA cuDNN. https://developer.nvidia.com/cudnn.218

[4] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu219

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for220

large-scale machine learning. In 12th {USENIX} symposium on operating systems design and221

implementation ({OSDI} 16), pages 265–283, 2016.222

[5] Byung Hoon Ahn, Prannoy Pilligundla, Amir Yazdanbakhsh, and Hadi Esmaeilzadeh.223

Chameleon: Adaptive code optimization for expedited deep neural network compilation. arXiv224

preprint arXiv:2001.08743, 2020.225

[6] Riyadh Baghdadi, Abdelkader Nadir Debbagh, Kamel Abdous, Fatima Zohra Benhamida,226

Alex Renda, Jonathan Elliott Frankle, Michael Carbin, and Saman Amarasinghe. Tiramisu: A227

polyhedral compiler for dense and sparse deep learning, 2020.228

[7] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of229

the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages230

785–794, 2016.231

[8] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing Xu,232

Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning library for233

heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.234

[9] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan235

Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. TVM: An automated end-to-end optimizing236

compiler for deep learning. In 13th USENIX Symposium on Operating Systems Design and237

Implementation (OSDI 18), pages 578–594, 2018.238

[10] Tianqi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos239

Guestrin, and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in240

Neural Information Processing Systems, 31:3389–3400, 2018.241

[11] Pratik Fegade, Tianqi Chen, Phil Gibbons, and Todd Mowry. Cortex: A compiler for recursive242

deep learning models. CoRR, abs/2011.01383, 2020.243

[12] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-oblivious244

algorithms. ACM Trans. Algorithms, 8(1), January 2012.245

[13] Kazushige Goto and Robert A van de Geijn. Anatomy of high-performance matrix multiplication.246

ACM Transactions on Mathematical Software (TOMS), 34(3):1–25, 2008.247

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image248

recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),249

pages 770–778, 2016.250

[15] Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor program251

compilation made efficient. Advances in Neural Information Processing Systems, 33, 2020.252

[16] Mingzhen Li, Yi Liu, Xiaoyan Liu, Qingxiao Sun, Xin You, Hailong Yang, Zhongzhi Luan, Lin253

Gan, Guangwen Yang, and Depei Qian. The deep learning compiler: A comprehensive survey.254

IEEE Transactions on Parallel and Distributed Systems, 32(3):708–727, 2020.255

[17] Rui Li, Yufan Xu, Aravind Sukumaran-Rajam, Atanas Rountev, and P. Sadayappan. Analytical256

characterization and design space exploration for optimization of cnns. In Proceedings of the257

26th ACM International Conference on Architectural Support for Programming Languages and258

Operating Systems, ASPLOS 2021, page 928–942, New York, NY, USA, 2021. Association for259

Computing Machinery.260

10

https://01.org/oneDNN
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/onemkl.html
https://developer.nvidia.com/cudnn

[18] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimizing CNN model261

inference on cpus. In 2019 USENIX Annual Technical Conference (USENIX ATC 19), pages262

1025–1040, Renton, WA, July 2019. USENIX Association.263

[19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,264

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative265

style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.266

[20] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and267

Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism, locality, and268

recomputation in image processing pipelines. SIGPLAN Not., 48(6):519–530, June 2013.269

[21] Yukinori Sato, Tomoya Yuki, and Toshio Endo. An autotuning framework for scalable execution270

of tiled code via iterative polyhedral compilation. ACM Transactions on Architecture and Code271

Optimization (TACO), 15(4):1–23, 2019.272

[22] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale273

image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference274

on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference275

Track Proceedings, 2015.276

[23] Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. Value learning for throughput277

optimization of deep learning workloads. In Proceedings of the 4th MLSys Conference, San278

Jose, CA, USA, 2021.279

[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-280

thinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer281

Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.282

[25] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary DeVito,283

William S Moses, Sven Verdoolaege, Andrew Adams, and Albert Cohen. Tensor comprehen-284

sions: Framework-agnostic high-performance machine learning abstractions. arXiv preprint285

arXiv:1802.04730, 2018.286

[26] Yu Emma Wang, Gu-Yeon Wei, and David Brooks. Benchmarking tpu, gpu, and cpu platforms287

for deep learning. arXiv preprint arXiv:1907.10701, 2019.288

[27] R. Clinton Whaley and Jack J Dongarra. Automatically tuned linear algebra software. In SC’98:289

Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages 38–38. IEEE, 1998.290

[28] Huaqing Zhang, Xiaolin Cheng, Hui Zang, and Dae Hoon Park. Compiler-level matrix multipli-291

cation optimization for deep learning. arXiv preprint arXiv:1909.10616, 2019.292

[29] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu, Ameer Haj-Ali, Yida293

Wang, Jun Yang, Danyang Zhuo, Koushik Sen, et al. Ansor: Generating high-performance294

tensor programs for deep learning. In 14th {USENIX} Symposium on Operating Systems Design295

and Implementation ({OSDI} 20), pages 863–879, 2020.296

[30] Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng. Flextensor: An automatic297

schedule exploration and optimization framework for tensor computation on heterogeneous298

system. In Proceedings of the Twenty-Fifth International Conference on Architectural Support299

for Programming Languages and Operating Systems, pages 859–873, 2020.300

Checklist301

The checklist follows the references. Please read the checklist guidelines carefully for information on302

how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or303

[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing304

the appropriate section of your paper or providing a brief inline description. For example:305

• Did you include the license to the code and datasets? [Yes] See Section ??.306

11

• Did you include the license to the code and datasets? [No] The code and the data are307

proprietary.308

• Did you include the license to the code and datasets? [N/A]309

Please do not modify the questions and only use the provided macros for your answers. Note that the310

Checklist section does not count towards the page limit. In your paper, please delete this instructions311

block and only keep the Checklist section heading above along with the questions/answers below.312

1. For all authors...313

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s314

contributions and scope? [Yes]315

(b) Did you describe the limitations of your work? [Yes] See Section 4 on “Evaluation of316

automatic schedule chosen”.317

(c) Did you discuss any potential negative societal impacts of your work? [N/A]318

(d) Have you read the ethics review guidelines and ensured that your paper conforms to319

them? [Yes]320

2. If you are including theoretical results...321

(a) Did you state the full set of assumptions of all theoretical results? [Yes]322

(b) Did you include complete proofs of all theoretical results? [Yes] , but only in the323

supplemental material due to space limit.324

3. If you ran experiments...325

(a) Did you include the code, data, and instructions needed to reproduce the main ex-326

perimental results (either in the supplemental material or as a URL)? [Yes] , in the327

supplemental material.328

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they329

were chosen)? [Yes] , in the supplemental material.330

(c) Did you report error bars (e.g., with respect to the random seed after running experi-331

ments multiple times)? [Yes] , see Section 4 on “Ablation analysis”332

(d) Did you include the total amount of compute and the type of resources used (e.g., type333

of GPUs, internal cluster, or cloud provider)? [Yes] , in the supplemental material.334

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...335

(a) If your work uses existing assets, did you cite the creators? [Yes]336

(b) Did you mention the license of the assets? [Yes] , in the supplemental material.337

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]338

(d) Did you discuss whether and how consent was obtained from people whose data you’re339

using/curating? [N/A]340

(e) Did you discuss whether the data you are using/curating contains personally identifiable341

information or offensive content? [N/A]342

5. If you used crowdsourcing or conducted research with human subjects...343

(a) Did you include the full text of instructions given to participants and screenshots, if344

applicable? [N/A]345

(b) Did you describe any potential participant risks, with links to Institutional Review346

Board (IRB) approvals, if applicable? [N/A]347

(c) Did you include the estimated hourly wage paid to participants and the total amount348

spent on participant compensation? [N/A]349

12

	Introduction
	Background
	Components of AutoMCL
	Evaluation
	Conclusion

