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Abstract

The canonical approach in generative modeling is to split model fitting into two
blocks: define first how to sample noise (e.g. Gaussian) and choose next what
to do with it (e.g. using a single map or flows). We explore in this work an
alternative route that ties sampling and mapping. We find inspiration in moment
measures [Cordero-Erausquin and Klartag), 2015]], a result that states that for any
measure p, there exists a unique convex potential v such that p = Vuf e™". While
this does seem to tie effectively sampling (from log-concave distribution e~")
and action (pushing particles through Vu), we observe on simple examples (e.g.,
Gaussians or 1D distributions) that this choice is ill-suited for practical tasks. We
study an alternative factorization, where p is factorized as Vw* §e~*, where w*
is the convex conjugate of a convex potential w. We call this approach conjugate
moment measures, and show far more intuitive results on these examples. Because
Vw* is the Monge| map between the log-concave distribution e =" and p, we rely
on optimal transport solvers to propose an algorithm to recover w from samples
of p, and parameterize w as an input-convex neural network. We also address
the common sampling scenario in which the density of p is known only up to a
normalizing constant, and propose an algorithm to learn w in this setting.

1 Introduction

A decade after the introduction of GANs [Goodfellow et al.,2014]] and VAEs [Kingma and Welling,
2014, the field of generative modeling has grown into one of the most important areas of research in
machine learning. Both canonical approaches follow the template of learning a transformation that can
map random codes to meaningful data. These transformations can be learned in supervised manner,
as in the dimensionality reduction pipeline advocated in VAEs, or distributionally as advocated in the
purely generative literature. In the latter, the variety of such transforms has gained remarkably in
both complexity, using increasingly creative inductive biases, from Neural-ODEs|Chen et al., 2018
Grathwohl et al.| 2018]], diffusions [Song et al., {2020, Ho et al., |2020]], optimal transport [Korotin
et al.,[2020]] to flow-matching [Lipman et al.,|2023} [Tong et al., 2023} [Pooladian et al., 2023]].

Sample first, move next. All of these approaches are grounded, however, on choosing a standard
Gaussian multivariate distribution to sample noise/codes. For both GANs and VAEs, that choice is
usually made because of its simplicity, but also, in the case of diffusion models, because Gaussian
distributions can be recovered quickly with suitable stochastic processes (Ornstein—Uhlenbeck).
Other works have considered optimizing prior noise distributions [Tomczak and Welling, [2018| [Lee
et al.l 2021} [Liang et al.,|2022]| but still do so in a two step approach where mappings are estimated

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



independently. We explore in this work a new generative paradigm where sampling and transforms
are not treated separately, but seen as two facets of the same single convex potential.

Tying sampling and action. Our work looks to moment measures [|Cordero-Erausquin and Klartag,
2015| |[Santambrogio} 2016] to find inspiration for a factorization that ties both sampling and action.
Cordero-Erausquin and Klartag|[2015]] proved that for any sufficiently regular probability measure
p, one can find an essentially-continuous, convex potential u such that p = Vufe™": essentially,
any probability distribution can be recovered by first sampling points from a log-concave distribution
e, and moving them with Vu where, remarkably, the same single convex potential u is used twice.

Our Contributions. We build on the work of |Cordero-Erausquin and Klartag|[2015] to propose an
alternative path to build generative models, that we call conjugate moment measures.

* After recalling in detail the contribution of |[Cordero-Erausquin and Klartag| [2015]] in §2] we
argue in that the moment measure factorization may not be suitable for practical tasks. For
instance, in the case of Gaussian distributions, we show that if p is Gaussian with variance 3, the
corresponding log-concave distribution e~ is Gaussian with variance ¥~!, amplifying beyond
necessary any minor degeneracy in 2. Similarly, for univariate p, we found that the spread of e™"
is inversely proportional to that of p. While these results may not be surprising from a theoretical
perspective, they call for a different strategy to estimate a tied sample/action factorization.

* We propose instead in §3.2]a new factorization that is conjugate to that of (Cordero-Erausquin and
Klartag [2015]]: We show that any absolutely continuous probability distribution p supported on
a compact convex set can be written as p = Vw* fe~", where w* is the convex conjugate of w.
Importantly, in our factorization the convex potential w is used to map p to e~ ", since one has
equivalently that Vw f p = e~ ™. Note that evaluating w*, the convex conjugate of w, only requires
solving a convex optimization problem, since w is assumed to be convex.

* We explore how to infer the potential w from the conjugate factorization using either samples from p
or its associated energy function when the density of p is only known up to a normalizing constant,
leveraging optimal transport (OT) theory [Santambrogiol [2015]]. Indeed, since the condition
p = Vw* e " is equivalent to stating that w* is the Brenier potential linking e~ to p, we can
parameterize w as an input-convex neural network wy whose gradient is an OT map. We provide
illustrations on simple generative examples.

2 Background

Optimal Transport. Let P(R%) denote the set of Borel probability measures on R?. For y, v €
P(RY), let II(11, v) denote the set of couplings between y and . We consider the primal OT problem,

W3(j1,v) = mft/ Lz — g dn(z,y). M
m€ll(p,v) Jrd xR

with squared-Euclidean cost. This problem admits a dual formulation:

sup fdu +/ gdv, st f(z) +g(y) < 3l —yl?V(z,y) e R xR, (2)
(f,9) €L (p)xLt (v) /R4 Rd

The functions f and g that maximize the expression in (2)) are referred to as the Kantorovich potentials.

Equation (T can itself be seen as a relaxation of the Monge|formulation of the OT problem,

it [ Hlle - T(@)|Pa(do) @
T:R*—R%, JRd
T p=v

where f is the pushforward operator. An important simplification of (2)) comes from the fact that
solutions f*, g* for equation (2) must be such that § | -||* — f* is convex. Using this parameterization,
let C(R?) be the space of convex functions in R¢. Brenier| proved that in that case, a T* solving
problem (3) exists, and is the gradient of the convex function % | - ||* — f*, namely Id — V f*. Making
a change of variables, u = || - ||> — f and using the machinery of cost-concavity [Santambrogio,
2015} §1.4], one can show that solving (2)) is equivalent to computing the minimizer of:

min /u(m)du(m)—i—/ u*(x) dv(z) )
o “



where u*(y) := max,cpa(z,y) — u(z) is the convex-conjugate of u and noting that we lift any
ambiguity on u by selecting the unique potential such that «(0) = 0. By denoting B(y, v/) the Brenier
potential solving problem (@) above, this results in v = VB(u, v) { u.

Neural OT solvers. The goal of neural OT solvers is to estimate B(u, ) using samples drawn from
the source p and the target distribution v. [Makkuva et al.| [2020]], Korotin et al.| [2020] proposed
methods that leverage input convex neural networks (ICNN), originally introduced by /Amos et al.
[2017]], to parameterize the potential u as an ICNN. A key challenge in these approaches is handling
the Legendre transform u*. To overcome this, a surrogate network can approximate v* with recent
advances by |Amos|[2023]] improving these implementations through amortized optimization.

Moment Measures. For a given convex function u, the moment measure of u is defined as the
pushforward measure Vu f 3, where 3, is the log-concave (Gibbs) probability measure with density
B (x) := jdee% The moment measure of u is well defined when the quantity fRd e~ dz
is positive and finite. While any measure p supported on a compact set K is guaranteed to be the
moment measure of some convex potential v [Santambrogiol 2016]], (Cordero-Erausquin and Klartag
showed that u is often discontinuous at the boundary K. By studying the variational problem

min /u*dp— In (/ e‘“) , 5)
ueC(R%)

Cordero-Erausquin and Klartag [2015]], proved that if p is a measure with a finite first moment, a
barycenter at 0 and is not supported on a hyperplane, then it is the moment measure of an essentially
continuous potential (in the sense of (Cordero-Erausquin and Klartag| [2015])).

3 From Moment Measures to Conjugate Moment Measures

For a measure p, we call the convex function u that satisfies VuffJ3,, = p the moment potential of
p. Additionally, we refer to the Gibbs distribution associated with such potential, J3,,, as the Gibbs
factor of p. We show in this section that moment measures are not well suited for generative modeling
purposes, as they often produce a Gibbs factor that differs significantly from the target distribution
p. This limitation is particularly evident in the case of Gaussian distributions, which motivates the
introduction of an alternative representation: the conjugate moment measure.

3.1 Limitations of Moment Measures

By writing the KL divergence between p and P,- as KL(p[|Bu) = [In(p)dp + [u*dp +

In ( fe ) and applying this in the variational problem studied by |Cordero-Erausquin and Klartag
as referenced in (5), we obtain that the moment potentials of p minimize the following problem:

min KL(p||PBy+) —In (/e“/e“*> . (6)
ueC(R?)

Equation (0) reveals that the Gibbs distributions associated with the Legendre transform of p’s
moment potentials, 3,,«, are the log-concave distributions closest to p, up to the regularization term
—In ( f e f e ) This quantity has been studied by Ball [1986] and |Artstein-Avidan et al.|[2004]],
who showed that for convex functions u whose corresponding Gibbs factor 3, has its barycenter
at the origin, the term —1In ([e™" [e¢™*") attains its minimum value of —dIn(27) when B, is
Gaussian. A direct consequence of (6)) is that the Gibbs factor of p can differ significantly from p,
particularly when p is Gaussian, as formalized in the following proposition:

Proposition 1. Ler p = N (Oga, X). If 2 is non degenerate, the moment potentials of p are u,,(x) =
Lz —m)TS(z — m), with m € R% The associated Gibbs factor of p is B, = N (m, L)

Proof. The optimization problem in equation @ is translation invariant: replacing v with x —
u(x + a) for any a € R? leaves the objective unchanged. We can thus restrict to convex functions u
such that J3,, has barycenter at zero. In this setting, choosing u(z) = 1z " Sz yields B, = N(0,271)
and B,» = N(0, X), which minimize the first term in (6]), while the second term reaches its minimum
value of —d In(27) [Artstein-Avidan et al.,2004]. Hence, this choice minimizes the full objective,
and translations of u span the set of moment potentials of p. O



Intuitively this re.sult.s can be 'interpreted as follows. BN Conj. Gibbs Moment %,
When a peaked distribution p is centered around the
origin (e.g. X ~ 0), its corresponding moment poten-
tial is such that the image set Vu on the support of
B, is necessarily tightly concentrated around 0. This
has the implication that u is a slowly (almost constant)
varying potential on the entire support of 3,,. As a
result, one has the (perhaps) counter-intuitive result
that the more peaky p, the more spread-out 3,, must
be. From this simple observation—validated experimen- .
tally in Figure 2}-we draw the intuition that a change is Figure 1: and conjugate
needed to reverse this relationship, while still retaining ;i1 factor of =N (o, 2 18
the interest of a measure factorization result. 1.8 2

Gibbs Moment
.

3.2 The Conjugate Moment Measure factorization

Our main result, which establishes the conjugate moment measure factorization, is stated below:

Theorem 1. Let p € P(R?) be an absolutely continuous probability measure supported on a compact,
convex set. Then, there exists a convex function w such that p = Vw* §B,,.

Accordingly, we now refer to p as the conjugate moment measure of w, w as the conjugate moment
potential of p, and 3, as the conjugate Gibbs factor of p. Our proof strategy differs significantly
from that used in |(Cordero-Erausquin and Klartag| [2015] and [Santambrogio| [2016] since we use
Schauder’s fixed point theorem to show that the following map admits a fixed point:

Gy LRY) = LRY),  Gp(w) := Blp, Bu) ©)

where £(IR?) is the set of functions mapping R? to R U {+00}, and G, assigns to a potential w the
Brenier| potential transporting p to *B,,. Fixed points of G, correspond precisely to the conjugate
moment potentials of p, and their existence guarantees a solution to the moment measure factorization.
A sketch of the proof is provided in Appendix [A7T] with full details in Appendix [A.2] When p is
Gaussian, the conjugate moment measure factorization admits an explicit solution, as given in
Proposition 2] Recall that we saw in that Gibbs factors of A/(0, ¥) were multivariate normal
distributions with covariance matrix >~ .
Proposition 2. When 3 is non-degenerate, p = N (m,X) is the conjugate moment measure of
w(z) = 3(xz — r)TS™3(x — r), whose Gibbs distribution is B, = N (r,S1/3) where r =
(Ig + »i/ 3)=Im. The function w is the unique conjugate moment potential of p whose Gibbs
distribution remains Gaussian.

The proof is provided in Appendix [A-4]and relies on the fact that the OT map between two Gaussians
is known in closed form [Peyré et al.,|2019]]. While this potential w may not be the only conjugate
moment potential, the Gibbs distribution associated with it, A/ (r, »i/ 3), appears to be better suited to
the target distribution p. This is particularly evident in the example shown in Figure[T} Additionally,
it is worth noting that for the Gaussian case, our factorization still works when p is not centered,
whereas the approach of |Cordero-Erausquin and Klartag| [2015]] requires p to be mean 0.

3.3 Monge-Ampere Equation for Conjugate Moment Measures

From the moment measure factorization, p = Vuf33,, which holds at the level of probability
distributions, one can derive the corresponding equality between probability density functions and
obtain the following Monge—Ampere equation [Cordero-Erausquin and Klartagl |[2015]:

p(x) = e 5@ with &,(x) = u(Vu*(z)) — In(det Hy-(2)) + In(C,,), ®)
where u* is the convex conjugate of u, H,,« () denotes the Hessian of u* at z, and C,, = f e " is the
normalizing constant ensuring that 3, = e~%/C,, is a probability distribution. Similarly, Theorem
guarantees the existence of a convex function w that satisfies the following Monge-Ampere equation
for any absolutely continuous probability measure p supported on a compact, convex set:

p(z) = e @ where &,(z) = w(Vw(z)) — In(det Hy,(z)) + In(Chy), )

with H,,(z) denoting the Hessian of w at z and C' = | e~ being the normalizing constant of .
The potentials w that solve (9] are precisely the conjugate moment potentials of p.



4 Estimating Conjugate Moment Potentials in Practice

We first explain how to sample from p when one of its conjugate moment potential is known, using
the Langevin Monte Carlo (LMC) algorithm and a conjugate solver. We then describe a method
to estimate a conjugate moment factorization of p using i.i.d samples (z1,...,2,) ~ p. In this
approach, the conjugate moment potential of p is parameterized using an input convex neural network
(ICNN) wy following the architecture proposed in|Vesseron and Cuturi|[2024]. The conjugate moment
potential wy is then estimated using an algorithm inspired by the fixed-point method associated to
Theorem|[I] Finally, we address the case where the density of p is known up to a normalizing constant,
a common scenario in sampling; we use an ICNN to parameterize the potential and estimate it via
regression using the Monge—Ampere equation (9).

4.1 Sampling from p using its Conjugate Moment Factorization

In this paragraph, we suppose that we know a conjugate moment potential w of p, i.e. Vw* §,, = p.
Knowing w, drawing samples from p can be done by first sampling z ~ *J3,, and then applying Vw*
to those points as Vw*(z) ~ Vw* 9B, = p. The LMC algorithm is a widely used method for
generating samples from a smooth, log-concave density like 3, [Roberts and Tweedie, |1996} (Cheng
and Bartlett, 2018} |Dalalyan and Karagulyan, |[2019]]. Starting from an initial point x(o), the LMC
algorithm iterates according to the following update rule:

2 ® ) = 28 79 4 v2rz0) 20~ A0, 1),

where 7 is the step size. As for the gradient of the convex conjugate Vw®, it can be efficiently
estimated from w. By applying |[Danskin’s envelope theorem [1966], it follows that Vw*(y) is the
solution to the following concave maximization problem:Vw*(y) = argsup,, (z,y) — w(z) . This
optimization problem can be solved using algorithms such as gradient ascent, (L)BFGS [Liu and
Nocedall [1989]], or ADAM [Kingma and Bal [2014]]. Thus, having access to a conjugate moment
potential w of p enables to efficiently draw samples from it. Note that the gradient steps of the
conjugate solver can be interpreted as a denoising procedure applied to samples drawn from 3.

4.2 Learning the Conjugate Moment Factorization from Samples: CMFGen

We consider the case where p € P(R?) can only be accessed through samples, as in an empirical
distribution approximation p,, := % >, 8, The fixed points of the map G, as defined in (7),
correspond exactly to the conjugate moment potentials of p. This observation motivates the following
fixed-point iteration scheme to compute a conjugate moment potential of p:

wo =13 VE21, wi = Gplwy), (10)

Starting from wy = || - [|?, which corresponds to B.,, = N(0, 1), we iteratively compute the
Brenier potential w;y; between the distribution p and 3, at iteration ¢ + 1. During the next iteration
t + 2, the updated distribution B, , becomes the target distribution to compute the next Brenier
potential starting from the source p. This process is repeated until the algorithm converges.

Gibbs Factor 3, Gibbs Factor B, Conji Gibbs Factor 33,,
H(0,1) A (0,1)
m p o p

z z 2

& £ £

3 3 )

| 'Y
—10 0 10 —4 —2 0 2 4 -5 0 5 =5 0 5
(a) (b) (c) (d)
Figure 2: Comparison between the B, and the conjugate Gibbs factor 33, for two

mixtures of 1D Gaussian distributions, p; and p-. The density plots overlay the (conjugate) Gibbs
factor with p and a standard Gaussian N/ (0, 1) for reference. Gibbs factors spread inversely to p
((a), (¢)) while conjugate Gibbs factors show more suitable alignment ((b), (d)).



Univariate distributions In the 1D case, the OT map between probability density functions ;. and
v has a closed-form expression given by |Peyré et al.[[2019]:

VB(uv) = C; o C,

where C,, : R — [0, 1] is the cumulative distribution function associated to i, defined as: C),(x) :=
J© . dp. The quantile function C;;* : [0, 1] — RU{—o0} is the pseudoinverse C,; ! (r) := min{z €
RU{—o0} : Cy(x) > r}. For a given distribution p and an initial distribution B, , the analytical
form of the Brenier| map enables the execution of the algorithm in (I0). To compare the conjugate
moment measure factorization with the moment measure factorization in 1D, we also propose a
similar 1D algorithm for estimating a moment measure potential of a distribution p, described in
Appendix [B.T] as no method currently exists for solving the moment measure factorization. The code
for both algorithms is also provided in Appendix [B.1]

Higher dimensional case In higher dimensions, where the OT map is not available in closed
form, we estimate it using ICNNs with the architecture used in |Vesseron and Cuturi [2024] and
the neural OT solver proposed in |/Amos| [2023]]. We found that performing a single optimization
step to estimate the OT map at each iteration was sufficient. As a result, our final methodology
relies on a single ICNN, wy, which serves two purposes at each iteration: generating samples
from *B,,, and being optimized by a single step of the neural OT solver to approximate the OT
map between p and P,,. Algorithm [I| details the steps of the procedure, where Z(y;) is the
estimation of Vwy(y;), computed as described in |Amos| [2023]. The LMC sampling step in
step 4 of Algorithm |l| requires selecting the step size hyperparameter 7, which depends on wy.

. - Since wy evolves during the algorithm, the
Algorithm 1 CMFGen algorithm step size must be dynamically adjusted. Fol-

I: Initialize wy such that wy =~ sl 12 lowing Proposition 1 in[Dalalyan| [2016], we
2: while not converged do set 7 = 1%49, where My is the largest eigen-
3 Draw n i.i.d samples x; ~ p value of the Hessian of wy, estimated from
4: Draw y1,...,yn ~ Pu, using LMC the current minibatch {x1,...,2,}. To ac-
1\ 1" ~ . )
5 Lo 5 Zi:_1 wy(xi) — 7 > wo(Z(Yi))  celerate convergence, the LMC algorithm is
6:  Update wy with VL initialized using particles from the previous
7: end while iteration.

4.3 Learning the Conjugate Moment Factorization from an Energy: CMFMA

We now consider the case where the density of p is known only up to a normalizing constant, which
is the typical setting in sampling-based frameworks. Specifically, we assume access to an energy
function & such that p oc e~¢. To learn a conjugate moment potential of p, we propose to leverage
the Monge—Ampere formulation defined in (9)), and parameterize the potential using an ICNN wy
trained via regression on the following objective:

Eonrp [[€(x) — wo(Vwy(x)) + In(det Hu, (2))]7] -

In this objective, P can be taken as the uniform distribution over the sampling space when the
dimension is small and the domain is bounded. In higher-dimensional settings, IP can instead
be chosen as p, with samples obtained via the Langevin Monte Carlo (LMC) algorithm. At the
end of training, the learned potential wy satisfies wy(Vwy(x)) + In(det Hy, (z)) =~ E(x) and
the pushforward Vwj#9,,, provides a close approximation of the target p. details how to
sample from Vw9, using only the learned potential wy. Note that, in contrast, learning the
moment potential » via regression seems particularly challenging due to the presence of the Legendre
transform u»* in multiple terms of the Monge—Ampere equation ().

5 Experiments

We begin with preliminary experiments using the CMFGen and CMFMA algorithms introduced in
Section[4.2]and [4.3] starting with univariate distributions p for which the Monge| map is available in
closed form. We then estimate the conjugate moment potential for several 2D distributions, either
from samples (using CMFGen) or from an energy function (using CMFMA). Finally, we demonstrate
the applicability of CMFGen to higher-dimensional datasets such as MNIST [LeCun et al.;[2010] and



the Cartoon dataset from Royer et al.| [2018]]. At the moment, CMFGen is not comparable to state-of-
the-art generative models such as flow matching [Lipman et al.l 2023} |Albergo and Vanden-Eijnden,
2023|], and we believe this is primarily due to CMFGen’s reliance on ICNNs, which, while useful to
parameterize convex functions, are known to be challenging to train [Korotin et al.l 2021]. For this
reason, we restrict our comparisons to a generative ICNN trained to transport the Gaussian A/(0, I)
to the distribution of data p. We use the Sinkhorn divergence as a metric for the 2D experiments, and
provide images generated by both our approach CMFGen and generative ICNNs.

5.1 Univariate distributions

We compute the conjugate moment potential for two univariate Gaussian mixtures, p; and p2, shown
in Figure [2} using both CMFGen and CMFMA. CMFGen uses i.i.d. samples from the mixture,
while CMFMA leverages the log-density. The distribution p; is sharply concentrated around zero,
whereas py exhibits heavier tails. For comparison, we also compute the standard moment potentials
using the fixed-point method described in Appendix [B.1] The pushforward densities Vw* 9., and
VufP, (Figures[IT]and[8) closely match the target distributions, confirming that the three algorithms
successfully recover the (conjugate) moment potentials for p; and ps. The recovered conjugate
potentials are shown in Figures[9]and[I0] As illustrated in Figure[2](a), the Gibbs factor associated
with p; has heavier tails than the standard Gaussian, consistent with the theoretical insight that
concentrated distributions yield broader Gibbs measures. Conversely, the broader py induces a more
concentrated Gibbs factor (panel (c)). In contrast, the conjugate Gibbs factors (panels (b) and (d))
more closely match the target distributions.

5.2 2D Experiments

We consider several 2D distributions defined either through samples—(a) Circles, (b) S-curve, (c)
Checkerboard, (d) Scaled-Rotated S-curve, and (e) Diag-Checkerboard (Figure E[)—or through known
energy functions &1, &, and &3 (Figures Band[I2)). Our first step is to estimate a conjugate moment
potential wy for these distributions using either the CMFGen or the CMFMA algorithm. Following
this, we generate new samples based on the learned conjugate potential wy using the methodology
detailed in §4.1] The potential wy is implemented as an ICNN with five hidden layers of size 128
and quadratic input connections, based on the architecture of |Vesseron and Cuturi|[2024]]. Detailed
hyperparameters for both 2D and high-dimensional experiments are provided in Appendix [E]
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Figure 3: Learning the conjugate moment potential from an energy. & and & are learned
by regression with CMFMA. The second column shows the learned energy; the third displays the
corresponding conjugate moment potential; the fourth shows samples (in red) drawn from Vw9, .
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Figure 4: Samples from p (top), level sets of wy (middle) and samples from Vw; §e~"¢ (bottom).

CMFMA. The energy functions £, &, and &3 are standard 2D benchmarks for evaluating
optimization algorithms; their analytical forms are provided in Appendix [C.2} For all three, the
ICNNSs wy successfully learn the corresponding energy landscape and permit to draw new samples
from the target distributions, as demonstrated in Figure [3|and[T2]

CMFGen. Our method accurately estimates the conjugate moment potentials, as the associated
measures Vwy P, closely align with the target distributions in FigureF_fl The second row further
illustrates that the conjugate Gibbs factor follows the shape of the distribution p in each case. For
comparison, we train an ICNN to map a Gaussian directly to the target distribution using the solver
of [2023]). The boxplots in Figure [I3] which show the Sinkhorn divergence
between generated and target data, demonstrate that CMFGen consistently produces samples
of equal or superior quality. Note that CMFGen introduces no additional hyperparameters compared
to the generative ICNN, aside from the number of LMC steps used when sampling from ‘B,,,,.

5.3 High-dimensional experiments.

Image generation. We evaluate CMFGen on MNIST and the Cartoon
dataset [Royer et al. 2018]. As illustrated in Figures [5] and [6] (see also [I4] for additional gen-
erated cartoons), CMFGen successfully generates visually coherent images of digits and cartoon
faces. Interestingly, the noise sampled from the log-concave distribution B3,,, already exhibits fea-
tures of the generated distribution: digits and faces emerge directly in the noise. To the best of our
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Figure 5: MNIST Generation using CMFGen. Samples from the Gibbs noise distribution 3,,,
(left); digits generated from Vwj B, (middle); and digits generated by an ICNN trained to directly
transport Gaussian noise to MNIST (right).
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Figure 6: Cartoon Generation using CMFGen. The conjugate potential wy is parameterized as an
ICNN following [Vesseron and Cuturi| [2024]], with five hidden layers of size 512 and four quadratic
input connections, each with two additional layers of size 512. After training with CMFGen, the
generative map Vwy transforms structured data p into the log-concave distribution *33,,,. To sample
from p, we first draw a sample from 3, using the LMC algorithm, and then apply a conjugate solver
to iteratively invert the map Vwy. The strict convexity of wy ensures both (i) invertibility of Vwy,
and (ii) correctness of Langevin dynamics for sampling from 3,,, .

knowledge, this is the first instance where the MNIST distribution has been successfully generated
using an ICNN. For comparison, Figures [5] and [I5] show samples generated by ICNNs trained to
transport a Gaussian distribution to the MNIST and Cartoon data. For both datasets, CMFGen
generates samples of higher quality.

Image reconstruction. Similar to normalizing flows [Rezende and Mohamed, 2015]], we have
access to the (unnormalized) probability density of the distribution Vw9, generated by CM-

FGen and CMFMA: that densuy is proportional to e~€ve(*) where ~ &,,(z) = wg(ng( ) —
In(det Hy, (x)) (see § After training wy, this enables downstream tasks such as image in-
painting. To evaluate thls we mask half of the pixels in test samples from MNIST and the Cartoon
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Figure 7: Image inpainting task on Cartoon. The learned wy trained on the Cartoon dataset is
used for a post-processing task to recover the masked pixels. Gradient ascent is performed on the
masked pixels to maximize the log-probability of the full image. Top: Masked images; Bottom:
Reconstructed images.




dataset, and perform gradient ascent on masked pixels to maximize the log-probability of the full
image. As seen in Figures and[I7] our method effectively reconstructs missing regions.

6 Conclusion

We borrowed inspiration from |Cordero-Erausquin and Klartag| [2015] to define a new representation
for probability measures. For a given p, we prove the existence of a convex potential w such that
Vw* §8, = p. We show that this representation is better suited to generative modeling, because
the Gibbs factor 3, follows more closely the original measure p, in contrast to |(Cordero-Erausquin
and Klartag['s approach, Vu §B3,, = p, which results in a Gibbs factor °3,, whose spread is inversely
proportional to that of p. Our conjugate measure factorization uses w to sample noises (using LMC
on a log-concave distribution) and transforms these codes in a final step, using Vw*. We propose
to parameterize the conjugate potential w as an ICNN wy, and estimate it using the OT toolbox in
two settings: when the target distribution is accessible via samples, and when it is known up to a
normalizing constant. We validate both approaches on generative modeling tasks. In the future,
we wish to explore the suitability of replacing N (0, I) with our pre-trained Gibbs factor 3., in
generative modeling pipelines, and retrain maps on top of it. Interestingly, one can draw parallels
between CMFGen and flow matching in the sense that CMFGen does a simple noisy gradient flow
to generate codes (the LMC algorithm), concluded by a one step generation step Vwy, which can
compared to the iterated application of a time-varying (non-conservative) velocity field to generate
data.
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Appendix[A.T|and Appendix [A.2] The proof of Proposition 1 is given directly following its
statement, while the proof of Proposition 2 is provided in Appendix
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referenced.
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. Experimental result reproducibility
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of the paper (regardless of whether the code and data are provided or not)?
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to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
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be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
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appropriate to the research performed.
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nature of the contribution. For example
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to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
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Answer:
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gradually. The implementation is made of OSS bricks available elsewhere.
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results?
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the main claims of the paper.
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* The method for calculating the error bars should be explained (closed form formula,
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* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on the computational resources used for our experiments are provided
in Appendix [E]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Yes, the research conducted in the paper fully conforms to the NeurIPS Code
of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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Broader impacts
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Justification: We do not envision immediate societal impacts beyond those commonly
associated with the proposal of new methods to understand and train generative models.
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* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This question is not relevant to our work.
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* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors produced the code for the experiments. The real-world datasets
used to illustrate our method are explicitly referenced: the MNIST dataset [LeCun et al.,
2010] and the Cartoon dataset from [Royer et al.|[2018]].

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All details regarding our algorithms are provided in the paper. Additionally, the
code will be made publicly available upon completion of the double-blind review process.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:

Guidelines:
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* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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for what should or should not be described.
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A Appendix / Supplementary Material

A.1 Sketch of Proof for Theorem 1]

Proof Sketch. The complete proof, along with the theorems used in the proof, can be found in
Appendix We rely on the identity Vw* o Vw = id that holds for strictly convex functions w
and show the existence of a strictly convex potential w that verifies Vw § p = B,,. To proceed, we
first introduce some notations. Let £(R?) be the set of functions mapping R? to R U {+o0}. Given a

non-negligible set 2 C R? and a continuous function v :  — R such that Jga e~v(#)dz is finite, we
denote by B! the probability measure with density

e @1, eq
fQ e—v(z)dz :

We then define, for a probability p supported on a non-negligible set €2, the map G 22 : L(RY) — L(RY)
which to a potential v associates the Brenier potential, defined in @), from p to R3¢’

G (v) = B(p, )

The fixed points of Gf} are precisely the convex functions v such that Vot p = ‘B? from which we
can construct w defined as w(x) = v(x) for z € Q and w(x) = 400 elsewhere. This function w is
convex and verifies Vw § p = 3, (since p is supported on 2). We rely on Schauder’s fixed point
theorem to show that G5 admits a fixed-point. Given a Banach space (X, ||.||) and a compact, convex
and nonempty set M C X, Schauder’s theorem states that any continuous operator A : M — M
has at least one fixed point. In this proof, we consider the Banach space of continuous functions
over a compact set €2, denoted €'(€2), equipped with the supremum norm, and establish the following
theorem that directly implies Theorem I}

Lemma 1. Let p be an absolutely continuous probability measure supported on a compact, convex
set Q C R%. Then G}? admits a fixed point in

M = {f € (52) such that ¥z,y € 0, |f(z) — ()] < Rz — yll» and f(0gs) = 0}
where R is the radius of an euclidean ball that contains Q i.e., Q C B(0,R) = {z € R?, ||z|2 < R}.

We first show that the set M is a non-empty, compact, convex set of X = (€(2), || ||c) by relying
Arzela-Ascoli’s theorem for the compactness. We then use Brenier’s theorem that, given the absolute
continuity of p, garantees the existence of the Brenier potential B(p,B<}) and the fact that Gﬁ} is
therefore well-defined on the set M C %(2). Moreover, the gradient of the obtained potential
GS}(v) transports p on P} which is compactly supported on 2 C B(0, R). For this reason, VG (v)
is bounded by R on () and the obtained potential is Lipschitz continuous with constant R. This
permits to show that Gg (M) C€ M. To prove the continuity of Gg on M, one can remark that
G = H, o F, with F(v) = B and H,(1u) = B(p, j1), both viewed as functions from %' () to
€ (). To show that F*? is continuous, we use the definition of continuity in X = (%(Q), || |/s0)
while we rely on Theorem 1.52 from [Santambrogio| [2015] to prove that H/, is continuous. We
conclude by applying Schauder’s theorem.

A.2 Proof Lemmalll

Let p be an absolutely continuous probability measure supported on a compact, convex set 2 C R
2 being compact, it is bounded and there exists a real number R such that {2 be included in the ball
B(0, R). We begin by recalling Schauder’s fixed point theorem, which is central to our proof for
showing that G*?, defined as:

Gy (v) = B(p,B7)

where 3¢} the probability measure with density
e—v(r) 1$EQ
Joevdz’

admits a fixed-point.
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Theorem (Schauder’s fixed point Theorem). Let (X, ||.||) be a Banach space and M C X is compact,
convex, and nonempty. Any continuous operator A : M — M has at least one fixed point.

We consider the Banach space X = (%(2), ]| [|o) to study the continuity of G}’ on the set
M ={f € €(Q) such that Vz,y € Q, [f(x) — f(y)| < Rllx — yll2 and f(Oa) = 0}.

We prove the two following lemmas in order to use Schauder’s theorem.
Lemma 2. The set M is a non-empty, compact, convex set of X.
Lemma 3. GY is well defined and continuous on M and GS}(M) € M.

By applying these two lemmas along with Schauder’s theorem, we conclude that Gf} has a fixed
point vy in M C €(€2). Moreover, the absolute continuity of ‘,}3?0” ensures that the optimal solution
Vopt Whose gradient transports p onto ‘1320 o is strictly convex on the support of p, ). Additionally, the
gradient of its Legendre transform Vg, is the OT map from ‘13?0}“ to p.

A.2.1 Proof of Lemmal[2

M is non-empty 0 is included in M which is therefore not empty.

M is convex Let f and g functions of M and A € [0, 1]. We have that A\f 4+ (1 — \)g € €(Q2) and
that Af(0) + (1 — A)g(0) = 0. Letz € Qand y € Q, then :
[(Af(2) + (1= Ng(@)) = (Af(y) + (1= Ng)] < Alf (@) = fy)l + (1 = Vlg(z) - g(y)]
<AR[z —ylla + (1 = MRljz —yl2 = Rl|z - yll
where, for the first inequality, we rely on the fact that the absolute value verifies the triangular

inequality and for the second inequality, we use that f and g belong to M and are therefore R-
lipschtiz.

M is compact We rely on Arzela-Ascoli theorem which is recalled below to show that the set M
is compact. We also recall the definitions of equicontinuity and equiboundness.

Definition. A family of functions F C € (2) is equibounded if there exists a constant Cy such that
forallxz € Qand f € F, we have |f(z)| < Cy.

Definition. A family of functions F C € () is equicontinous if for all € > 0, there exists § such that
forxz,y €€,

lz—yll <0 = VfeF|f(z)- fly)l<e
Theorem (Arzela-Ascoli). Let (K, d) a compact space, a family of functions F C € (K) is relatively
compact if and only if F is equibounded and equicontinuous.

The family of functions M is equibounded. In fact, for f € M and = € (2, we have that:
|f(z)| = |f(z) = f(0)] < R[|z —0]|2 < R?

The first equality comes from the fact that f € M, therefore f(0) = 0, the first inequality uses
the fact that f is Lipschitz continuous with constant R while the last one is due to the fact that
x € Q C B(0,R).

The family of functions M is equicontinuous. For & > 0, we define 6 = 5. Let f € M and z,y € Q
such that ||x — y||2 < J then because f is Lipschitz on €2, we have that

[f(z) = f)l < Rljz —ylla < R = ¢

Then, according to Arzela-Ascoli theorem, M is relatively compact i.e. its closure is compact.

Misclosed in X = (4(Q),] ||«~) Let (fn) be a sequence of functions in M that converges
uniformly to a limiting function f. We have that f € € () which is closed. Moreover, because
(fn) converges uniformly to f, it also converges pointwise and in particular f,,(0) =0 — 0 = f(0).
Finally, because Vn, f,, is Lipschitz continuous, we have

[fn(x) = fu(y)] < Rljz — yll2 Vn

21



By taking the limit when n — 400 we get that:

[f(@) = f(y)| < Rz = yll2

and f is Lipschitz continuous with constant R and f € M. This proves that M is closed and that M
is therefore compact.

A.2.2 Proof of Lemma[3

G} is well-defined on M For a given v € M, the fact that v € €(2) and that 2 is non-negligible

(because p is an absolutely continuous probability measure supported on 2) ensure the measure B!
to be well-defined. Using Brenier’s theorem, the absolute continuity of p garantees the existence of
the Brenier potential B(p,J;}) and the fact that G} is therefore well-defined on the set M C %/(€2).

G?(M) C M For a given v € M, the Brenier potential Gf}(v) verifies Gf}(v)(O) = 0 by
definition. As a convex function which takes real values on (2, G? (v) is continuous on {2 and
Gf}(v) € %(Q)). Moreover, the gradient of the obtained potential VG?(’U) transports p on Pl

The probability measures 3¢’ and p are both compactly supported on Q C B(0, R) which implies
that the support of the optimal transport plan vy = (i, VG?(@))#p is included in 2 x Q. Q being

the support of p, we have that for each z € ©Q, VG (v)(z) € © C B(0,R) and in particular

VG (v)(2)]l2 < R. Q being convex and G} (v) being differentiable in the interior of 2, we can
apply the mean value theorem to deduce that:

Va,y € Q|G (v)(2) - G () (y)] < sup IVGZ () (2)l2llz = yll2 < Rllz — yll2

G}? (v) is therefore Lipschitz continuous with constant R and it belongs to the set M.

G} is continuous on M To prove the continuity of G} on M, one can remark that G} = H, 0 F*%,
with

FY: M — N
v%‘ﬁf}
and
H,: N —%(Q)
w— B(p, p)

with N = {BL,v € €(Q)} C €(Q). We show that both function F** and H, are continuous
in X = (F(Q),|| l|so)- Letv € €(Q) and (v,,) a familly of functions of € (£2) that converges
uniformly to v. We will show that the family (F*(v,,)) converges uniformly to F'*(v). Let z in Q
and n € N, we have:

e—vn(z) B e—v($)
Joe@dz [ ev(2)dz

() e ) — () fy i)
fQ e—vn(2)dz fQ e—v(z)dz

|F (vn)(2) = F(v)(2)] =

We will use the following lemma:

Lemma 4. If (v,,) converges uniformly to v in € (Q) with 2 compact then e~ converges uniformly

to eV in €(2).

Proof of Lemmald] Let us denote by f the real function f : « — e~*. f is continuous on R.
Because v € € () and 2 compact, we have, by Heine’s theorem, that v(2) C R is compact and
therefore bounded. There exists a and b such that v(2) C [a, b]. Moreover because (v,,) converges
uniformly to v, there exists N such thatn > N = ©v,,(Q) C [a — 1,b+ 1]. f being continuous on
R, it is uniformly continuous on the interval [a — 1, b + 1] according to Heine’s theorem. We deduce
that (f (v, )) converges uniformly to f(v). O
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On the other hand, the function g : t — e~¥(*) is continuous on the compact 2 as a composition
of continuous functions. By Heine’s theorem, the image of {2 by g is a compact and there exists
¢,? € R such that g(Q) C [c,¢] with ¢ > 0. Because e~ converges uniformly to e~ ? in €'(£2),
there exists Ng such that n > Ny = e~ ""(z) > § Vz € (1. As a consequence, we have for

n > No:
c c?
/e*vn(z)dz/ e ?(®dz > / fdz/ cdz = —|Q?
Q Q o2 @ 2

with |Q2| the lebesgue measure of the compact 2. ) being non-negligible, we have || > 0. Let
Cy = ﬁ, we have shown that for n > N, we had:

1
e—vn(2dz [, ev(2)dz
Jo o

< Cy

Furthermore, one notes that:

(e‘”"(z)/ e_"(z)dz) — <e_"(m)/e_”"(z)dz>
Q Q
— (e—vn(z)/e—v(z)dz) _ (6—1)(m)/e—1)(z)dz) + (e—v(m)/e—v(z)dz) _ (e—v(.’r)/e—vn(z)dz>

Q Q Q Q
(e—vnu) —e_”(z))/e_”(z)dz o—o(@) </ e—v(z>d2_/e—un(z>dz)

Q Q Q

/e_”(z)dz—/e_”“(z)dz
Q Q

< et — et i+ [ femv @ — et
Q

<209 |le — 7|

IN

+

S e—vn(w) _ e—v(;t)

09 + ¢

dz

oo

Until now, we have shown that for n > N, we had, for z € Q:

[F2(v,) (@) — FO(0) ()] < Co26][|e~" — ™|,

Lete > 0, let us define £9 = 577 > 0. Because (e~") converges uniformly to e 7, there exists
Nj suchthatn > Ny = |le”"~ — e‘“”oo < gg. Let us denote N = max(Ny, N1), we have that
forn > N,

|F (vn)(2) — F(v)(2)] < e

Because this is true for any = € 2, we have || F®(v,) — F(v) ||Oo < &. We just proved that F'* is

continuous at v for any v € €'(£2) ie F** is continuous on ¢’(Q2) and in particular it is continuous on
M CEQ).

We will now show that H, is continuous on /. Let € A and let (y,) a family of densities
from N that converges uniformly to . For n € N, we denote by P(u,,) and P() the probability
measures associated to the respective densities 1, and p. Because () converges uniformly to
1, we have that P(u,,) converges in distribution to P(u). Then according to Santambrogio| [2015]
(Theorem 1.52), the family of Kantorovich potentials from p to P(u,,) with value 0 in O that we
denote (f*) converges uniformly to the Kantorovich potential f* from p to P(u) whose value is 0 in
0. Therefore, the family of Brenier potentials (H,(j,) : t — %|t||? — f;:(t)) converges uniformly to
H,(p) = %[ - |* = f*. We conclude that H,, is continuous on " and by composition of continuous
functions Gi} is continuous on M.
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A.3 Additional Proof for Proposition

Let us observe that p is the moment measure of u if and only if Vu is the Monge map from ‘3,
to p. One can then consider quadratic functions u, A (z) = 5(x — )T A~ (2 — r) whose Gibbs
distribution is B,, = N (r, A) and use the expression [Gelbrich, [1990] of the OT map between two
Gaussian distributions A (ma, X 4) and N (mpg, Xp):

TmA,EA,mB,EB x> mp+ M(J? - mA)

where M = ¥, /22?5 551/2)1/25 /2 0 solve the equation

Vua(z) =Traox(r) Vo eR?

One get:
ANz —r) = M(z —r) with M = ATV2(AYV2SAY2)1/2A~1/2

By identification, we obtain that A=' = M = A~Y2(AY22AY/2)1/2A~1/2 which leads to
A = ¥~1. It means that the functions in {u, x-1,r € R} are fixed-point of G, with p = N(0,X).
According to|Cordero-Erausquin and Klartag| [2015]], the moment potential is unique up to translation,
which implies that there are no other convex functions whose moment measure is p.

A.4 Proof of Proposition 2]

The proof is similar to the additional proof of Proposition [1| provided Section Given p =
N (m,¥), we are looking for w such that Vw*#3,, = p and B,, = N (r, A). This means that
w(z) = (z—r)TA™ (z—r) and w*(z) = 327 Az +2Tr. Moreover Vw* : z — Az +r must be
the OT map between B, = N (r, A) and p = N (m, X). The OT map between these two gaussians is
known in closed form and is given by & — m -+ M (z —r) with M = A=Y2(AV/2RAY/2)1/2A-1/2,
Solving A = A~1/2(AV2EAY2)1/2A~1/2 gives A = X1/3 while solving r = m — M gives
r = (Ig + X3)~1m. We conclude that p is the conjugate moment measure of the unique potential
w among those whose Gibbs distribution is Gaussian.

B Experiments in the 1D case where p is known from samples

B.1 Proposed algorithm for moment measures

For a probability measure p € P(R?), we define the map J, : £L(R?) — L£(R?) which to a potential
u associates the Brenier| potential from 93, to p

Jp(u) = B(Bu,p)

The fixed point of J, correspond exactly to the moment potentials of p. This observation motivates
the following fixed-point iteration scheme to compute a moment potential of p:

up = 3| - 1% VE> 1, wppn = Jp(ue), (1)

In the 1D case, the OT map between density functions x and v is known in closed form (see §4.2)
which enables the exact application of the fixed-point algorithm.

B.2 Details on the 1D experiments

We conducted two experiments, with p defined as a mixture of Gaussian distributions. In the first
experiment, p is a mixture of four Gaussians: A/(—0.1,0.07), A(0.3,0.1), A/(0.3,0.1), N'(0.7,0.15)
with mixture weights %, %, %, %, respectively. In the second experiment, p is a mixture of the three
Gaussians A/(—0.8,0.4), N'(1.5,0.6), N'(3,0.5), with weights 3, £, £. To approximate these mix-
tures, we used 400,000 samples and estimated their histograms using 100,000 bins. This allowed us
to compute the cumulative distribution and quantile functions using numpy’s cumsum and quantile
functions, which were essential for estimating the OT map at each iteration of the fixed-point
algorithm. The algorithm converged after 300 iterations.
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B.3 Code for the 1D experiments

Code for estimating the moment potential in 1D

Listing 1: Code for estimating the moment potential in 1D

Qjax.jit

def compute_ot_map(positions_source, freq_source, samples_target):
cdf = jnp.cumsum(freq_source, axis=0)
cdf = cdf/cdf[-1]
quantile_fn = jax.vmap(lambda x: jnp.quantile(samples_target, x))
inverse_cdf = quantile_fn(cdf)
return (positions_source, inverse_cdf, freq_source)

def compute_next_measure(positions_source, freq_source, samples_target):
positions_source, inverse_cdf, freq_source = compute_ot_map(positions_source,
freq_source, samples_target)
u = integrate.cumtrapz(inverse_cdf, positions_source, initial=0)
weights = jnp.array(scipy.special.softmax(-u)) * jnp.sum(freq_source)
return (positions_source, weights), (u, inverse_cdf)

# hyperparameters
nb_bins = 100000

bound_min = -11
bound_max = 11
nb_points = 400000

nb_bins_plot = 1000

# generate source and target distributions
rng = jax.random.PRNGKey (0)
rng_source, rng_target, rng = jax.random.split(rng, 3)

mu_target = jnp.array([-0.6, -0.1, 0.3, 0.7]) * 0.8

sigma_target = jnp.array([0.15, 0.07, 0.1, 0.15]) * 0.8

alpha_target = jnp.array((1,3,2,1))

sampler_target = multivariate_gaussians_1D(mu=mu_target, sigma=sigma_target, alpha=
alpha_target)

samples_target = sampler_target.generate_samples(rng_target, nb_points)

samples_target = samples_target - jnp.mean(samples_target)

samples_source = jax.random.normal(rng_source, shape=(nb_points,))

# construct bins and histogram

freq_source, edges_source = jnp.histogram(samples_source, nb_bins, range=(bound_min,
bound_max) )

positions_source = (edges_source[:-1] + edges_source[1l:]) / 2.0

freq_target, edges_target = jnp.histogram(samples_target, nb_bins, range=(bound_min,
bound_max))

positions_target = (edges_target[:-1] + edges_target[1:1) / 2.0

for i in range(300):
(positions_source, freq_source), (u, grad_u) = compute_next_measure(
positions_source, freq_source, samples_target)

Code for estimating the conjugate moment potential in 1D: CMFGen
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Listing 2: Code for estimating the conjugate moment potential in 1D

Qjax.jit
def compute_ot_map_star(positions_target, freq_target, samples_source):
cdf = jnp.cumsum(freq_target, axis=0)
cdf = cdf/cdf[-1]
quantile_fn = jax.vmap(lambda x: jnp.quantile(samples_source, x))
inverse_cdf = quantile_fn(cdf)
return (positions_target, inverse_cdf, freq_target)

def compute_next_measure(positions_target, freq_target, samples_source):
positions_target, inverse_cdf, freq_target = compute_ot_map_star(positions_target
, freq_target, samples_source)
u = integrate.cumtrapz(inverse_cdf, positions_target, initial=0)
weights = jnp.array(scipy.special.softmax(-u)) * jnp.sum(freq_target)
return (positions_target, weights), (u, inverse_cdf)

# hyperparameters
nb_bins = 100000
bound_min = -4
bound_max = 4
nb_points = 400000
nb_bins_plot = 1000

# generate source and target distributions
rng = jax.random.PRNGKey (0)
rng_source, rng_target, rng = jax.random.split(rng, 3)

mu_target = jnp.array([-0.6, -0.1, 0.3, 0.7]) * 0.8

sigma_target = jnp.array([0.15, 0.07, 0.1, 0.15]) * 0.8

alpha_target = jnp.array((1,3,2,1))

sampler_target = multivariate_gaussians_1D(mu=mu_target, sigma=sigma_target, alpha=
alpha_target)

samples_target = sampler_target.generate_samples(rng_target, nb_points)

samples_target = samples_target - jnp.mean(samples_target)

samples_source = jax.random.normal (rng_source, shape=(nb_points,))

# construct bins and histogram

freq_source, edges_source = jnp.histogram(samples_source, nb_bins, range=(bound_min,
bound_max))

positions_source = (edges_source[:-1] + edges_source[1:]) / 2.0

freq_source_plot, edges_source_plot = jnp.histogram(samples_source, nb_bins)
positions_source_plot = (edges_source_plot[:-1] + edges_source_plot[1:]) / 2.0

freq_target, edges_target = jnp.histogram(samples_target, nb_bins, range=(bound_min,
bound_max))
positions_target = (edges_target[:-1] + edges_target[1:]) / 2.0

for i in range(300):
rng_, rng = jax.random.split(rng, 2)
(positions_source, freq_source), (u_star, grad_u_star) = compute_next_measure(
positions_target, freq_target, samples_source)
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samples_source =
freq_source)

samples_source =

jax.random.choice(rng_, positions_source, shape=(nb_points,), p=

samples_source - jnp.mean(samples_source)

B.4 Other figures
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Figure 8: Comparison between the Gibbs factor 3, and the conjugate Gibbs factor 33, for two
mixtures of 1D Gaussian distributions, p; and p>. Pushforward densities Vw*#3,, and Vulf3,

closely match the target distributions, illustrating that the fixed-point algorithms converged and

succefully estimated the (conjugate) potentials.

C CMFMA experiments

C.1 1D experiments: Figures
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Figure 9: Energy associated to the mixture of gaussians p; (left), learned energy (middle), associated

potential (right).
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Figure 10: Energy associated to the mixture of gaussians po (left), learned energy (middle), associated

potential (right).
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Figure 11: The pushforward densities Vw8, closely match the target distributions p; and pa,
illustrating that CMFMA succefully estimated the (conjugate) potentials.

C.2 2D experiments
VwsPBug

& we(Vwg) —In(detHp) wo

Figure 12: Learning the conjugate moment potential from an energy. &, £ and &3 are learned by
regression with CMFSamp. The second column shows the learned energy, the third column displays
the corresponding conjugate moment potential, and the fourth column presents samples (in red)

drawn from Vwj; #B ., -

The expressions of the three energies used for the 2D experiments with CMFMA are the following:

&i(z,y) = —6-sin ((%@2 + (%y)z)

22 +y—11)2%+ (x+y? —7)?
52(%1/):( y )100( vy,

Es(x,y) =3 - cos (21%1: — g) . cos (%y _ g)
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D CMFGen experiments

D.1 2D experiments: comparison with generative ICNNs

In this experiment, we compare our method, CMFGen, with the standard ICNN-based generative
pipeline (see [2023]]) that maps a standard gaussian noise to data. The two approaches are
evaluated using the Sinkhorn divergence between generated samples and reference samples from the
target distribution, computed over batches of size N = 2048. We repeat this evaluation across 100
random seeds applied to both generated and target distributions, and the resulting divergences are
summarized by the boxplots in Figure[T3] As a baseline, the leftmost column reports the 2-Sinkhorn
divergence between two independent samples drawn from the target distribution. The £ parameter
used to compute the Sinkhorn divergence is adapted to the scale of the data. As in
, we set ¢ = 0.05 - E$1z/~p|x — x’|2, where the expectation is estimated from two
batches of 2048 samples each, drawn independently from the target distribution p.
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Figure 13: Comparison with generative ICNN across various datasets: Diagonal Checkerboard,
Checkerboard, Circles, S-curve, and Scale-Rotated S-curve. Each boxplot shows the 2-Sinkhorn
divergences between generated and target samples, computed over N = 2048 samples and averaged
over 100 random seeds. For each dataset, the first boxplot shows the divergence between two
independent samples from the target, the second for the generative ICNN, and the third for our
method, CMFGen.
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D.2 Cartoon dataset: comparison with generative ICNNs
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Figure 14: Additional images for the cartoon experiment using CMFGen. Top left: Images from the
cartoon dataset; top right: Transported images using the map Vw; bottom left: Samples from the
Gibbs distribution ,,,; bottom right: Samples from the distribution Vwj B,

Figure 15: Images produced with a generative ICNN on the cartoon dataset. Left: Gaussian noise;
Right: Generated samples by the ICNN with the same architecture as used by CMFGen, i.e., an
ICNN with five hidden layers of size 512 and four quadratic input connections.
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D.3 Image Reconstruction: MNIST and Cartoon dataset
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Figure 16: The learned wy trained on the MNIST dataset is used for a post-processing task to recover
the masked pixels. Gradient ascent is performed on the masked pixels to maximize the log-probability
of the full image. Left: Masked images; Right: Reconstructed images.
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Figure 17: The learned wy trained on the Cartoon dataset is used for a post-processing task to recover
the masked pixels. Gradient ascent is performed on the masked pixels to maximize the log-probability
of the full image. Top: Masked images; Bottom: Reconstructed images.

E Hyperparameters and infrastructure
All runs have been made on a single GPU V100-32GB.

Noisy MNIST and Cartoon Datasets For the MNIST experiment, We convolve the MNIST
images with Gaussian noise of standard deviation 0.3 to ensure the existence of the OT map from the
MNIST distribution to the log-concave distribution 33, as guaranteed when the starting distribution
is absolutely continuous [Santambrogio,[2013]. Similarly, for the Cartoon dataset, we apply Gaussian
noise with a standard deviation of 0.2 to avoid significantly altering the images.

E.1 Hyperparameters for CMFGen

Our algorithm, CMFGen, introduces no additional hyperparameters compared to the generative ICNN
trained with the solver from [Amos| [2023]}, except for the number of LMC steps used when sampling
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from *3,,,. For a fair comparison, we adopt the same ICNN architecture for both CMFGen and the
generative ICNN baseline shown in Figures Bl and We follow the standard ICNN design
from [Vesseron and Cuturi| [2024]], which is known to perform well in generative settings. All the 2D
experiments in Figure 4 were generated using a common set of hyperparameters, detailed in Table|T]
Only the number of particles used (i.e., batch size) varies across experiments. For the 2D distributions
Circles, S-curve, Scaled-Rotated S-curve and Diag-Checkerboard we used 1024 particles, while for
Checkerboard, a larger number of particles (4096) was used to ensure the stability of the algorithm.
The hyperparameters used for the MNIST and Cartoon experiments are given in Table[2] Moreover,
we adopt the approach of Amos|[2023]], where the cost of computing the conjugate at each training
step is amortized by initializing the conjugate solver with the predictions of an MLP. This MLP
is trained via regression on the outputs of the conjugate solver. The MLP consists of three hidden
layers with 128 units each for the 2D experiments and three hidden layers with 256 units each for
the MNIST and Cartoon experiment. It is trained using the Adam optimizer with default parameters,
and a fixed learning rate of 1e-4 for the 2D experiments and 5e-4 for the MNIST experiment. As
explained in /Amos|[2023]], the predictions of the MLP are then refined with a conjugate solver whose
hyperparameters are given Table [3]and are kept consistent across all experiments with both CMFGen
and the generative ICNN. It is important to note that the number of LMC steps listed in the tables
refers to the steps taken to sample from *33,,, starting from uniform noise, as used to generate the
figures. During training, however, we reuse the particles sampled from the previous gradient step and
apply 200 LMC steps to these particles to form the new batch. The number of LMC steps during
training reflects a trade-off between computational efficiency and performance: using significantly
fewer steps (e.g., 50) results in degraded performance.

Hyperparameter Value
dense
2 - 128 - 128 - 128 - 128 - 128 —» 1
ELU activation functions
Adam
step size = 0.0001
B1=0.5
B = 0.5

wy architecture

wy optimizer

number of gradient steps 1,000,000

Table 1: Hyperparameters for CMFGen and the generative ICNN in 2D experiments. The only
additional hyperparameter used by CMFGen, compared to the generative ICNN, is denoted in orange.

Hyperparameter Value
wy architecture dense
2—-512—-512-512-512-512 -1
ELU activation functions
Adam
we optimizer step size = 0.0005

o op B =05

B2 =10.5
number of gradient steps 50,000

batch size 512

Table 2: Hyperparameters for CMFGen and the generative ICNN in the MNIST and Cartoon
experiments. The only additional hyperparameter used by CMFGen, compared to the generative
ICNN, is denoted in orange.
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Hyperparameter Value
Adam

step size with cosine decay schedule
Conjugate solver wy init value = 0.1

alpha = le-4

81 =0.9

B2 = 0.999
100 iterations

Table 3: Hyperparameters for the conjugate solver used in CMFGen and for the generative [CNN
(the same hyperparameters are used in all experiments).

E.2 Hyperparameters for CMFMA

The hyperparameters for our CMFMA algorithm are listed in Tables ] and[5] We follow standard
ICNN architectures, except for the 1D experiments, where we observed discontinuities in the learned
potential when using ELU activations. This issue arises because the second derivative of ELU is not
continuous, and the CMFMA regression loss involves the Hessian of the network wy. To address this,
we use Softplus activations with a beta coefficient of 10.

Hyperparameter Value

dense
2128 - 128 - 128 - 128 - 128 - 1
Softplus(8 = 10.0) activation functions

wy architecture

Adam
wy optimizer step size = 0.0001
b1 =0.5
B2 =0.5
number of gradient steps 100,000
batch size 1024

Table 4: Hyperparameters for CMFMA in 1D experiments.

Hyperparameter Value
dense
2 - 128 - 128 - 128 - 128 - 128 —» 1
ELU activation functions

wy architecture

Adam
wy optimizer step size = 0.0001
51 =0.5
B2 =0.5
number of gradient steps 500,000
batch size 1024

Table 5: Hyperparameters for CMFMA in 2D experiments.
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