
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHARTREF: BENCHMARKING FINE-GRAINED VISUAL
ELEMENT LOCALIZATION IN CHARTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans interpret charts by first localizing visual elements—such as bars, markers,
and segments—before reasoning over the data. In contrast, current multimodal
models primarily rely on text reasoning, limiting their ability to leverage fine-
grained visual information. To address this, we introduce CHARTREF, a dataset
of 38,846 questions, answers, referential expressions, and bounding boxes across
1,141 figures and 11 chart types. Our key insight is that the chart-rendering code
makes it possible to generate visual element localizations that are aligned with
question–answer pairs. Given only the Python script, a large language model
infers the semantics of plotted data, maps data series to visual encodings, and
programmatically extracts bounding boxes, yielding visual annotations for charts
at scale. Using CHARTREF, we benchmark multimodal LLMs and find 3–7%
accuracy improvements on chart question answering when models are provided
with ground-truth bounding boxes. We further evaluate vision and multimodal
models on chart object detection and visual grounding, where models localize
an expression referring to the data in the chart. While object detection exceeds
80 AP@50, visual grounding accuracy is only 2.8, revealing a significant gap:
current models can recognize chart elements perceptually but struggle to integrate
context cues from axes, legends, labels, and data to ground fine-grained textual
references.

1 INTRODUCTION

When reading charts, humans localize relevant visual elements before extracting insights, ground-
ing their reasoning in the visualized data. Building AI models with similar chart localization and
reasoning capabilities propel applications in finance (Shu et al., 2025) and healthcare (Lee et al.,
2024), support interactive systems where models communicate with humans through visual annota-
tions (Hu et al., 2024), and advance document understanding (Ma et al., 2024) and scientific discov-
ery (Lála et al., 2023; Yang et al., 2023b). Despite the importance of chart grounding, prior work
has focused exclusively on evaluating models through question answering (Masry et al., 2022; Wang
et al., 2024; Xia et al., 2025; Tang et al., 2025), which only measures the accuracy of textual answers
and overlooks whether models actually localize and reason over the relevant visual evidence.

While vision-language models are proficient at localizing objects in natural scenes (Liu et al., 2024;
Li et al., 2022; Zhong et al., 2022; Xiao et al., 2024; Fu et al., 2025), grounding phrases in charts
requires fundamentally different visual reasoning skills, such as the ability to interpret elements
such as legends and axis labels, understand coordinate systems, and navigate multi-panel subplot
arrangements. For example, in Figure 1 (right), identifying the visual marker that corresponds to the
phrase “average response for Control Group in session 5” requires understanding the correspondence
between the legend and the markers, parsing the correct data series, and comparing the x-axis to the
plotted data. This makes chart localization a process that current models have limited exposure to,
as their pretraining focuses primarily on natural image-text alignment rather than supervision over
chart-specific structures.

Additionally, unlike visual grounding for natural images, there are relatively few datasets for evalu-
ating and enhancing chart visual grounding. Previous work has focused intensely on treating charts
as a computer vision problem (Methani et al., 2020; Suri et al., 2025), applying off-the-shelf detec-
tion models to raw images to extract bounding box annotations. These approaches inherently limit

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

sessions = [1, 2, ..., 20]
control_group = [624, 583, ..., 459]
treatment_group_1 = [484, 509, ..., 361]
treatment_group_2 = [547, 529, ..., 413]
treatment_group_3 = [509, 531, ..., 391]

Variables for plot configuration
...
xlabel_text = "Session"
ylabel_text = "Average Response Time (ms)"
...

Plot data series
plt.plot(sessions, control_group, ...)
plt.plot(sessions, treatment_group_1, ...)
plt.plot(sessions, treatment_group_2, ...)
plt.plot(sessions, treatment_group_3, ...)
...

fig = plt.figure()

ax = fig.get_axes()[0]
lines = ax.get_lines()

control_line = lines[0]
xdata = control_line.get_xdata()
ydata = control_line.get_ydata()

Question 1:
“What is the average response time for the Control
Group in session {xdata[0]}? {ydata[0]}”

Referential Expression 1:
“The average response time for the Control Group in
session {xdata[0]}:
{ax.transData.transform(xdata[0], ydata[0])}”

1

2

3
Step 2. Extract the line corresponding to “Control Group”

Chart Rendering Script
Step 1. Extract the plotted lines from the matplotlib figure the average response time for the Control Group in session 1

ChartRef Data Generation

Step 3. Write questions and answers based on the data

Step 4. Extract corresponding bounding boxes P
yt

h
o

n
 In

te
rp

re
te

r

Chart Visual Grounding Examples

the average response time for the Control Group in session 5

the average response time for the Control Group in session 11

1
2

3

Figure 1: CHARTREF dataset. To generate a large-scale, diverse dataset of bounding box anno-
tations paired with questions, answers, and referential expressions, we propose a data generation
pipeline that takes as input the Python rendering script. We leverage the insight that the code repre-
sentation contains information on the semantics of the plotted data, e.g. that ax.get lines()[0]
corresponds to the data for “Control Group”, enabling generation of accurate questions and referen-
tial expressions that are grounded in contextual cues such as labels and ticks. Additionally, the code
provides a means to extract bounding boxes for visual representations of the data by querying the
underlying figure rendering. Our data generation results in CHARTREF, a benchmark for evaluating
the chart visual grounding capabilities of multimodal models.

the diversity of the data to a select few chart types, such as bars, lines, and pie charts, to which
standard object detection can be directly applied.

To address these shortcomings, we leverage the power of code as an intermediate medium to pro-
cedurally generate potentially unlimited source of chart images, visual element localizations, ques-
tions, and answers. This results in CHARTREF, a dataset of 38,846 paired examples across 11 figure
types. Specifically, our data generation takes as input Python rendering scripts that encompass charts
of diverse types and visual complexity. Our key insight is that without relying on the rendered im-
age and given only the rendering script, a large language model can infer the semantic meaning of
plotted data, associate data series with their corresponding visual encodings, and programmatically
extract bounding boxes by querying the figure rendering as shown in Figure 1.

Using CHARTREF, we first evaluate multimodal foundation models on chart-question answering
with and without the ground truth bounding boxes. In comparison to both standard prompting and
chain-of-thought, models achieve a significant improvement in accuracy of 3-7% when given the
ground truth annotation, motivating the development of models capable of fine-grained chart element
localization. We next evaluate the capabilities of state-of-the-art vision and multimodal models
on two tasks: 1) object detection, where the model detects all visual elements corresponding to
the plotted data, and 2) visual grounding, where the model localizes an expression referring to a
data point in the chart. Finetuning models on CHARTREF enhances performance significantly on
both tasks – 10.6 AP@50 to 80.6 AP@50 for object detection and 0.3 Acc@1 to 2.8 Acc@1 for
visual grounding. However, visual grounding performance is still far below that of object detection.
These results highlight a critical gap in chart understanding and motivate future work on improving
vision–language alignment to enable fine-grained chart visual grounding.

2 CHARTREF DATA CURATION

In Section 2.1, we first detail our pipeline for generating chart questions and answers with corre-
sponding referential expressions and bounding boxes for the visual elements. In Section 2.2, we
describe our procedure for postprocessing the generated questions and answers to facilitate evalu-
ating numerical answers and eliminate ambiguous questions with a multimodal LLM verifier. In
Section 2.3, we detail key statistics of CHARTREF.

2.1 DATA GENERATION

Given a matplotlib Python script that renders a chart, our data generation pipeline uses an LLM
to synthesize code that extracts bounding boxes from the rendered visualization. This approach

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

days = [0, 10, 20, 30, 40]
stock_A = [<data>, ..., <data>]
stock_B = [<data>, ..., <data>]
stock_C = [<data>, ..., <data>]
...

Variables for plot configuration
...
xlabel_text = "Days"
ylabel_text = "Stock Prices (in USD)"
...

Plot data series
fig = plt.figure()

def extract_stock_A(fig):
 ax = fig.get_axes()[0]
 stock_a_line = ax.get_lines()[0] # Stock A is
plotted first
 kwargs_list = []
 for (day, price) in zip(stock_a_line.get_xdata(),
stock_a_line.get_ydata()):
 kwargs_list.append({
 'data': price,
 'day': int(day),
 'stock_name': 'Stock A',
 })
 return kwargs_list

def extract_stock_A_with_bboxes(fig):
 # Same code from step 2
 ...
 for (day, price) in zip(stock_a_line.get_xdata(),
stock_a_line.get_ydata()):
 # Transform data coordinates to display coordinates
 display_point = ax.transData.transform((day, price))
 bbox = Bbox.from_bounds(...)
 kwargs_list.append({
 'data': price,
 'bbox': bbox,
 'day': int(day),
 'stock_name': 'Stock A',
 })
 return kwargs_list

Python Interpreter
days = [0, 10, 20, 30, 40]
stock_A = [100. 110, 105, 115, 120]
stock_B = [95, 102, 108, 107, 115]
stock_C = [98, 99, 101, 103, 106]
...

Variables for plot configuration
...
xlabel_text = "Days"
ylabel_text = "Stock Prices (in USD)"
...

Plot data series
fig = plt.figure()

def get_templates_stock_A():
 question_template = "What is the price of
{stock_name} on day {day}?"
 reference_template = "the price of {stock_name} on
day {day}"

What is the price of Stock A on day 10? 100

ChartMimic script

Step 1: Generate template code
with masked data values

Step 2: Generate code to extract data and
question parameters

Step 3: Generate code to extract
bounding boxes for each question

<questions, answers, referential
expressions, bounding boxes>

Locate “the price of stock on day 10”: [x1, y1,
x2, y2]

Figure 2: Data generation pipeline. Given the Python script from ChartMimic, we gener-
ate paired <question, answer, referential expression, bounding box> using the fol-
lowing data generation pipeline. In Step 1, we prompt a LLM to mask out the plotted data values,
while preserving information required to interpret the chart, such as labels and coordinates at which
the data points appear. In Step 2, the model identifies all data series that are masked out and writes
code that extracts the data values and identifying parameters, as well as the question and referential
expression templates. Applying the identifying parameters to the templates results in the questions
and referential expressions that align with the data values. In Step 3, the model modifies the data
extraction code from Step 2 to additionally extract the bounding boxes.

is necessary because unlike SVG or HTML formats where spatial coordinates are directly embed-
ded in the markup, matplotlib scripts do not explicitly expose this spatial information. Instead,
the figure object (e.g., figure = plt.figure(...)), stores both the ground truth data and the
coordinates of the visualized data in image space. To extract both the underlying data and their
bounding boxes, an LLM generates code that programmatically queries the figure object’s proper-
ties. For example, the axes can be extracted with figure.get axes(), and all line objects can
be further collected with ax.get lines() for each axis. This allows access to the data points via
line.get xdata() and line.get ydata(), which can be converted to pixel coordinates using
ax.transData.transform().

Concretely, our data generation pipeline is as follows. As shown in Figure 2, we first prompt an LLM
to generate template versions of a given Python script, where the plotted data is masked out but all
other code is unchanged. This step ensures that the model writes code that extracts data directly
from the figure object rather than hardcoding values, while still providing sufficient context—labels,
axis titles, and visualization parameters—to infer the correspondence between data values and their
textual descriptions. In the next stage, the LLM is prompted with the template to first identify all
data series that are plotted by the code and for each data series, the LLM synthesizes a function
that extracts the visualized data and parameters specifying how each series is visualized. These
parameters are then used to instantiate question and referential expression templates. For example,
if a data series represents “Stock A” values over a set of days, the generated questions correspond
to individual data values, such as “What is the value of Stock A at day 10?”, with the referential
expression highlighting the corresponding visual element in the chart. After the data is extracted,
the model is prompted to augment the data extraction code to additionally extract the bounding box
for the visual element that corresponds to the visual element. When there are no explicit markers, we
instruct the model to generate a 10 × 10 bounding box. See Fig 3 (top) for an overview of the types
of questions, answers, and bounding boxes generated for each chart type. We use Claude Sonnet
4 (Anthropic, 2025) for all stages of the pipeline. See Appendix B for the data generation prompts
and Appendix E for examples of the data in CHARTREF.

We organize the generated data into two tasks: chart question answering and chart element localiza-
tion as shown in Figure 3 (bottom). To assess chart question answering with and without bounding
boxes, we use the generated questions, answers, and bounding boxes. For chart element localization,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pie Heatmap ScatterTreemap Radar

Line
QA: line value

Visual: line marker / path

Hist
QA: bin height

Visual: bin rectangle

Density
QA: density value

Visual: density curve

Errorbar
QA: bar error margin

Visual: bar error segment

QA: pie percentage
Visual: pie wedge

QA: heatmap cell value
Visual: heatmap cell

Area
QA: area height

Visual: area boundary line

QA: treemap cell value
Visual: treemap cell

QA: radar values
Visual: radar vertex

Bar
QA: bar height

Visual: bar rectangle

QA: scatter cluster mean
Visual: scatter cluster

The height of
the bar at x=2 is
...

Standard

Question: What is the height of the bar at x=2? Visual Grounding

 ChartRef

Object Detection

Task 1: Chart Question Answering Task 2: Chart Element Localization

Category: data Phrase: the bar at x=2Set-of-Marks

The height of the
bar at x=2 (high-
lighted by bounding
box 1) is ...

1

Figure 3: CHARTREF overview. Top: CHARTREF consists of figures across 11 chart types, with
questions that require correctly extracting the underlying data and are paired with the correspond-
ing answers, referential expressions, and bounding boxes around individual visual elements. For
example, questions for bar plots ask about values that are visualized by the bar rectangle. Bottom
Left: CHARTREF allows us to investigate the capabilities of multimodal foundation models on chart
question answering, with both the original image and annotated with the ground truth bounding box.
Bottom Right: With the ground truth bounding boxes, we benchmark models on two vision tasks:
object detection, where all visual elements representing the data are identified, and visual grounding,
where given a phrase, the model localizes a specific data element.

we consider two vision tasks: object detection and visual grounding. For object detection, we use
all annotated bounding boxes for a given figure as ground truth. For visual grounding, by the nature
of our data generation, there is a one-to-one mapping between referential expressions and bounding
boxes.

2.2 DATA POSTPROCESSING

Table 1: Data generation statis-
tics.

Statistic Value
Total
of Examples 44345
of Figures 1259
of Chart Types 11

Object Detection
of Annotations 40336
of Figures 1148

Visual Grounding
of Examples 38846
of Figures 1141

After generating (question, answer, referential expression,
bounding box) tuples, we post-process the questions and an-
swers as follows. We employ a multimodal LLM to determine
the appropriate precision level for each ground truth answer
and establish an error margin based on the spacing of relevant
axis ticks. For numerical answers, we consider a prediction
correct if |round(yg, p)−yp| ≤ ϵ, where yg is the ground truth,
yp is the predicted answer, p is the determined precision level,
and ϵ is the error margin. For text answers, we use exact string
matching.

We then validate the quality of the questions using a multi-
modal LLM to classify each question into one of three cat-
egories: 1) ambiguous questions, where there is not enough
context in the chart to answer the question, 2) defective ques-
tions, where the answer is trivially answered without looking

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 4: CHARTREF statistics. Left: The number of figures per type shows that the dataset is
balanced across figure types. Middle: The number of questions per type reflects that certain figure
types tend to reflect much denser information – for example a pie chart with several wedges will
have fewer examples than a line plot reflecting tens or hundreds of individual examples. Right:
The distribution of the number of questions show that the plots are densely annotated with bounding
boxes, with many figures having over 20 paired examples.

at the chart, and 3) valid questions that do not fall into the above two categories. This ensures that the
resulting questions do not reference information that is not available in the chart image. See Table
1 for the statistics. We use Claude Sonnet 4 as the multimodal LLM and detail the postprocessing
prompts in Appendix C.

2.3 DATASET STATISTICS

We apply our pipeline to ChartMimic (Yang et al., 2025), a diverse dataset of human-curated Python
chart rendering scripts with 2400 total figures across 22 different chart types. We select 11 of the
chart types for which we could generate accurate bounding box annotations. In total, we generated
44345 paired question, answer, referential expression, and bounding box from 1259 figures. For
object detection, we filtered out bounding box annotations with greater than 0.95 IoU overlap and did
not include density plots, which represent continuous functions or distributions rather than discrete
points, resulting in 40336 bounding boxes across 1148 figures. For visual grounding, we filtered out
ambiguous and defective questions as discussed in Section 2.2, in addition to duplicate referential
expressions. This resulted in a total of 38846 filtered examples across 1141 figures. In Figure 4, we
analyze the distribution of figures per type, showing that although there is a higher proportion of bar
and line plots, our data is balanced. The number of questions per figure type reflects the information
density of plots – for example, line plots contain many individual data points. The distribution of the
number of questions shows that the figures are densely annotated, with many having over 20 paired
examples.

3 RELATED WORK

We outline prior work in assessing chart question answering, which have paired (chart image, ques-
tion, answer) but lack visual annotations, as well as work that curates visual annotations for charts
and other structured visuals, but often are limited to a subset of simple chart types, lack alignment
between annotations and question-answers, or require human annotators.

Chart Question Answering Datasets. One line of work (Masry et al., 2022; Xu et al., 2024; Wang
et al., 2024; Masry et al., 2024; 2025; Xia et al., 2025; Tang et al., 2025) focuses on evaluating chart
question answering (CQA) that involve visual and logical reasoning over charts. Some benchmarks
are human annotated – for example, ChartQA (Masry et al., 2022) consists of bar, line, and pie charts
collected through web-crawling and human-annotated questions and answers. ChartQAPro (Masry
et al., 2025) has been proposed as a CQA dataset with enhanced visual diversity. CharXiv (Wang
et al., 2024) sources its charts from arXiv papers and evaluates multimodal LLMs on descriptive
questions on extracting information from basic chart elements and reasoning questions requiring
synthesizing information across multiple visual elements. ChartMuseum (Tang et al., 2025) con-
tains expert-annotated questions focusing on visual reasoning that is difficult to perform with textual
chain-of-thought. Other benchmarks are curated in an automated manner, involving multimodal
LLMs in the loop. ChartX (Xia et al., 2025) uses GPT-4 to automatically generate chart title and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

types that are aligned with CSV data for chart perception questions and task templates to gener-
ate cognition questions that builds on the perception questions. ChartBench (Xu et al., 2024) first
generates the chart using LLMs to synthesize chart themes and JSON data and subsequently syn-
thesizes questions and answers from chart templates. ChartGemma (Masry et al., 2024) proposes
a data curation pipeline that leverages a multimodal LLM to directly generate questions from chart
images.

Visual Annotation Datasets. Prior work has collected bounding box annotations for chart elements
but typically only for a narrow range of chart types. FigureQA (Kahou et al., 2018) generates bound-
ing box annotations from Bokeh (de Ven, 2018) for bar, lines, and pie charts, but these annotations
are limited in visual diversity and lack alignment between annotations and questions. Other works
leverage off-the-shelf vision models, such as PlotQA (Methani et al., 2020), which uses Faster-
RCNN (Ren et al., 2017) to detect all bars, lines, and chart interpretation elements such as titles and
labels. ChartLens (Suri et al., 2025) uses instance segmentation to annotate bar and pie charts and a
specialized Transformer model to detect lines. Because these approaches depend on computer vision
models for localization, they are inherently constrained to chart types where such models perform
reliably. Orthogonal to our work, prior works (Battle et al., 2018; Zhu et al., 2025a) have developed
pipelines for extracting annotations from SVG scripts, which have spatial coordinates directly em-
bedded in the source code. Beagle (Battle et al., 2018) extracts circles, rectangles, line, and paths
from charts. OrionBench (Zhu et al., 2025a) focuses on automatically synthesizing annotations for
chart and human-readable objects embedded in infographics. Recently, RADAR (Rani et al., 2025)
has curated human-annotated bounding boxes that correspond to individual CQA reasoning steps.

4 EXPERIMENTS

4.1 DO VISUAL ANNOTATIONS ENHANCE CHART PERCEPTION?

Table 2: Set-of-Marks with bounding boxes en-
hances chart perception.

Model Direct CoT SoM
Qwen2.5-VL-72B 67.6 66.6 70.2
InternVL3-78B 67.9 66.5 69.6
GPT-5 80.0 80.0 83.8
GPT-o3 78.4 76.8 81.4
Gemini-2.5-Pro 72.9 - 79.7

To motivate the use of bounding boxes to locate
relevant visual elements for chart question an-
swering, we evaluate the performance of multi-
modal LLMs on our synthesized dataset, where
questions and answers are paired with ground
truth bounding boxes that localizes the visual
element corresponding to the answer. This en-
ables us to evaluate the impact of annotating the
ground truth bounding box on chart perception.
We evaluate three closed source models, GPT-
5 (OpenAI, 2025b), GPT-o3 (OpenAI, 2025a),
Gemini-2.5-Pro (Comanici et al., 2025), and
two open source models, Qwen2.5-VL (Bai et al., 2025), and InternVL3 (Zhu et al., 2025b). For all
models, we experiment with three settings: standard prompting, chain-of-thought, and set-of-marks
(SoM) prompting (Yang et al., 2023a), a visual prompting technique designed to ground model re-
sponses in visual cues. In our SoM prompting, the ground truth bounding box is overlayed on the
image with a numerical label, allowing models to reference it in their answers. Results are shown in
Table 2.

In comparison to standard prompting, set-of-marks prompting enhances performance by 2-3% for
open-source models and 3-7% for closed-source models. In contrast, chain-of-thought prompt-
ing does not improve performance and even degrades it for Qwen2.5-VL, InternVL3, and GPT-o3.
These results demonstrate that when the relevant chart visual elements are localized, downstream
question answering is improved as the model is able to ground its reasoning in the bounding boxes.

4.2 OBJECT DETECTION

Using the bounding boxes, we evaluate vision models on object detection, where the task is to de-
tect all visual elements corresponding to discrete data elements. We consider two types of models:
traditional object detection models that must be trained to evaluate new categories, as well as foun-
dation models capable of zero-shot detection. For traditional object detection models, we evaluate
YOLOv3 (Redmon & Farhadi, 2018), Faster-RCNN (Ren et al., 2017), RTMDet (Lyu et al., 2022),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Object detection performance. Left: Traditional object detection and foundation models
finetuned on CHARTREF. Right: Zero-shot inference with foundation models.

Model AP AP50 AP75 AR
YOLOv3 25.0 52.8 20.4 37.7
Faster-RCNN 54.1 60.4 60.4 67.4
Co-DETR 64.0 79.8 69.7 74.8
RTMDet 38.0 56.2 40.1 16.0

MM-GD 61.5 79.1 67.6 72.8
LLMDet 64.2 80.6 68.5 75.1

Model AP AP50 AP75 AR
GroundingDINO (T) 5.2 8.7 5.1 20.3
GroundingDINO (B) 4.7 7.8 4.7 20.2
GLIP (T) 3.8 6.6 3.8 13.2
GLIP (L) 5.8 8.7 5.8 16.3
MM-GD T) 4.1 8.0 3.6 26.4
MM-GD (B) 5.8 10.6 5.3 27.1
MM-GD (L) 3.6 6.2 3.7 26.7
LLMDet (T) 5.8 10.6 5.3 28.2
LLMDet (B) 6.3 12.2 5.6 30.0
LLMDet (L) 3.3 6.6 2.9 23.8

and CoDeTR (Zong et al., 2023). For vision models, we evaluate Grounding DINO (Liu et al., 2024),
MM-Grounding-DINO (MM-GD) (Zhao et al., 2024), GLIP (Li et al., 2022), and LLMDet (Fu et al.,
2025). As these models are not adapted to charts, we evaluate both the pretrained and finetuned
models on our dataset.

Results and Analysis. Results for zero-shot inference and finetuned models on CHARTREF are
shown in Table 3. For zero-shot inference, we benchmark vision foundation models across different
sizes and show that the best performance achieved is 6.3 AP and 30.0 AR. Notably, increasing model
size does not always enhance performance, demonstrating the out-of-domain shift from natural im-
ages to chart object detection. After finetuning on CHARTREF, AP improves from 6.3 to 64.2 and
AR improves from 30.0 for 80.6 for LLMDet, with similar improvements seen in MM-GD. The best
traditional object detection model, Co-DETR, achieves 64.0 AP and 74.8 AR.

Ground truth Prediction Ground truth Prediction

Figure 5: Object Detection Example Errors. We visualize errors made by Co-DETR, with ground
truth bounding boxes displayed in blue and predicted bounding boxes displayed in red. Left: For
area charts, data is plotted at each x-tick. However, the predictions are not able to capture the correct
data points and are missing bounding boxes where the slope of the lines are constant and lack salient
features. Right: For scatter plots, the ground truth visual elements include clusters of data points.
Although the predictions are able to capture the blue cluster as it is well-separated from the other
data points, the model does not correctly separate the overlapping orange, purple, and green clusters.

Additionally, we conduct a qualitative analysis in Figure 5 of Co-DETR’s errors. We find that the
models have an overreliance on salient perceptual features. For example, on the left chart of Fig. 5,
the model struggles to identify individual data points at the x-ticks. On the right, Co-DETR does not
correctly separate overlapping clusters that denote separate data series.

We further analyze Co-DETR’s performance across different chart types in Table 4. We find that the
lowest performance is for line and scatter plots, as the bounding boxes around individual markers in
the line or scatter plot are typically small, whereas the model performs best for treemaps, pie charts,
and bars, which contain fewer fine-grained bounding boxes and are represented by well-defined
shapes, e.g. rectangles for treemaps and bars and pie wedges for bar charts.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Object detection performance across chart types. Both AP@50 and AR scores are above
0.8 for errorbar, bar, tree, pie, and heatmap plots. The data for these plot types are represented by
larger geometric shapes, such as rectangles, wedges, and grid cells, making it easier for the model
to detect. In contrast, detecting individual data points for line and scatter plots are more difficult, as
these visual elements are more fine-grained.

Metric Tree Bar Errorbar Line Radar Hist Area Scatter Heatmap Pie
AP50 92.3 91.3 80.0 60.4 74.3 84.8 85.6 69.4 95.6 82.4
AR 99.0 96.4 86.7 50.5 65.8 78.2 65.5 69.8 92.7 98.4

4.3 VISUAL GROUNDING

Table 5: Visual grounding performance

Model Acc@1 Acc@5 Acc@10
Zero-shot
GroundingDINO (T) 0.6 2.8 4.9
GroundingDINO (B) 0.7 3.0 5.3
GLIP (T) 0.4 0.5 0.5
GLIP (L) 0.5 0.5 0.6
MM-GroundingDino (T) 0.3 2.7 5.3
MM-GroundingDino (B) 0.2 2.8 5.3
MM-GroundingDino (L) 0.3 3.1 5.9
LLMDet (T) 0.5 3.9 7.4
LLMDet (B) 0.6 3.6 6.9
LLMDet (L) 0.6 3.3 5.7

Finetuned
MM-GroundingDino (T) 2.8 13.5 22.9
LLMDet (T) 2.3 12.0 21.3

GPT-4o 0.7 - -
Qwen-2.5-VL-72B 0.5 - -
InternVL3-78B 0.2 - -

We benchmark both vision models
and multimodal LLMs on chart vi-
sual grounding, where given a phrase,
such as “the bar for Model A”, the
model outputs the correct bound-
ing box that localizes the phrase.
For vision models, we consider the
same vision foundation models dis-
cussed in Section 4.2. We evaluate
both zero-shot capabilities as well as
finetune models on our CHARTREF.
For reference, we additionally bench-
mark multimodal LLMs with zero-
shot referential capabilities, includ-
ing GPT-4o, Qwen2.5-VL, and In-
ternVL3. We show the results in Ta-
ble 5.

Results and Analysis. Among zero-
shot vision models, performance is
low, with all models achieving below
1 Acc@1. Larger vision models do
not offer significant performance im-
provements, demonstrating that cur-
rent models are not well-adapted to the task. In comparison, multimodal LLMs perform similarly
to the zero-shot foundation models, in spite of the increased amount of training on diverse image
sources, which often include chart data, and on chart question-answering. Finetuning vision models
yields a significant improvement: MM-GroundingDINO improves from 0.3 to 2.8 and LLMDet’s
accuracy improves from 0.6 to 2.3. However, the performance on visual grounding is still far be-
low the object detection capabilities, which are close to perfect. This suggests that even though the
vision backbone can be adapted to detect visual elements in charts, both vision foundation models
and multimodal LLMs lack the vision-language alignment to understand the semantic information
of charts beyond perceptual features.

For MM-GroundingDINO and GPT-4o, we visualize the visual grounding results in Figure 6. We
find that MM-GroundingDINO tends to predict bounding boxes that do correspond to a visual ele-
ment in the plot; however, it is not able to correctly identify the visual element referred to by the text.
In contrast, GPT-4o’s predictions tend to be imprecise, even in the presence of visual markers and
text. These findings highlight that the main bottleneck lies in linking text references to the correct
visual elements: vision foundation models can localize objects but fail to disambiguate which ele-
ment is referenced, while multimodal LLMs struggles with precise localization altogether. Closing
this gap will require improving models’ ability to jointly reason over visual structure and textual
cues, rather than relying solely on perceptual or linguistic features.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ground Truth

Ground Truth

Ground Truth
Prediction

Prediction

Prediction

the # of publications for pragmatism in the 1960s the Unemployment Rate bar for 2018 the market share wedge for Microsoft

(a) Examples of MM-GroundingDINO visual grounding errors.

the Revenue value for Q4

Ground Truth

Prediction

the density value at income amount 60K

Prediction

Ground Truth

the sales value of cherries for Vendor A

Prediction

Ground Truth

(b) Examples of GPT-4o visual grounding errors.

Figure 6: Visual grounding errors. Although MM-GroundingDINO tends to produce bounding
boxes that are more closely aligned to the visual elements in the plot, it is not able to localize the
correct visual element. Top Left: MM-GroundingDINO predicts a bounding box that contains
multiple data points. Top Middle: The predicted bar does not match ground truth. Top Right. Even
for a plot that represents only 6 distinct data points, MM-GroundingDINO localizes the wrong pie
wedge. In contrast, GPT-4o’s predictions often do not precisely localize the prediction. Bottom
Left: The predicted bounding box is vertically offset from the ground truth and is also much larger
than the visualized markers. Bottom Middle: GPT-4o’s prediction is vertically offset and localizes
an empty region of the plot. Bottom Right: The prediction is horizontally offset from the ground
truth.

5 CONCLUSION

In this work, we present CHARTREF, a large scale dataset of 38846 paired (chart question, an-
swer, referential expression, and bounding box) across 11 figure types. Our data curation pipeline
leverages the chart’s Python rendering code to programatically extract bounding boxes of visual el-
ements that are aligned with questions and answers. With CHARTREF, we demonstrate that access
to ground-truth bounding boxes improves chart question answering, motivating approaches capable
of chart visual grounding. We thus benchmark vision models and multimodal LLMs on chart ob-
ject detection and chart visual grounding. Through finetuning on CHARTREF, vision models can
be adapted to detect all visual elements corresponding to the underlying data. However, both vision
models and multimodal LLMs struggle to achieve comparable visual grounding performance when
given a referential phrase. This gap highlights that chart visual grounding requires novel advances in
text-vision alignment that would allow models to integrate diverse contextual cues, such as the leg-
end, axis ticks, and subplot arrangement, to localize fine-grained information in charts. CHARTREF
serves as a tool for both evaluating and training models on chart visual grounding, inspiring future
work in models capable of human-like visual grounding.

Limitations. Because CHARTREF is generated from Python rendering code, it may not fully cap-
ture the stylistic variability, noise, or imperfections of real-world charts, potentially limiting model
generalization to figures from research papers, reports, or scanned images. Additionally, the refer-
ential expressions in CHARTREF only require extracting individual data from the chart and do not
cover more complex structures, such as comparisons or relationships between multiple data points.
Finally, while the dataset spans 11 chart types, it does not encompass all visualization formats,
including network diagrams, 3D plots, or interactive charts.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

Our contribution represents a step towards developing models capable of localizing relevant visual
elements in charts, which enhances the interpretability of model outputs and supports more trans-
parent AI systems. This advancement contributes to society by enabling better understanding and
validation of automated chart analysis, ultimately benefiting applications in data visualization, ac-
cessibility, and decision-making processes.

We have carefully reviewed all applicable ethical guidelines and believe our work adheres to the
principles of scientific excellence, transparency, and responsible research conduct. Our dataset gen-
eration uses ChartMimic as input, which is available under the Apache 2.0 license, and we will
adhere to the terms of this license when releasing CHARTREF, thus respecting intellectual property,
privacy, and confidentiality guidelines.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide comprehensive details of our methodology and
experimental setup. The main text includes a detailed overview of our data generation pipeline,
explaining the key steps for creating CHARTREF. Appendix B contains all prompts used in our
LLM-based data curation process, enabling the replication of our dataset generation approach. Ad-
ditionally, we detail experimental settings, hyperparameters, and evaluation protocols in AppendixD.
We plan to release CHARTREF and code upon publication to facilitate further research and repro-
duction of our results.

REFERENCES

Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, May 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report.
CoRR, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923.

Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang, and Michael
Stonebraker. Beagle: Automated Extraction and Interpretation of Visualizations from the Web. In
Regan L. Mandryk, Mark Hancock, Mark Perry, and Anna L. Cox (eds.), Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada,
April 21-26, 2018, pp. 594. ACM, 2018. doi: 10.1145/3173574.3174168.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit S.
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaı̈ Deutel, Nam Nguyen,
Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller,
Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan
Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy
Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Hey-
ward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik,
Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu,
Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-
Juen Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Le-
ichner, Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin
Chen, Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios
Vytiniotis, Jieru Mei, and Mu Cai. Gemini 2.5: Pushing the Frontier with Advanced Reasoning,
Multimodality, Long Context, and Next Generation Agentic Capabilities. CoRR, abs/2507.06261,
2025. doi: 10.48550/ARXIV.2507.06261.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bryan Van de Ven. Bokeh. https://bokeh.org/, 2018.

Shenghao Fu, Qize Yang, Qijie Mo, Junkai Yan, Xihan Wei, Jingke Meng, Xiaohua Xie, and Wei-
Shi Zheng. LLMDet: Learning Strong Open-Vocabulary Object Detectors under the Supervision
of Large Language Models. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2025, Nashville, TN, USA, June 11-15, 2025, pp. 14987–14997. Computer Vision
Foundation / IEEE, 2025. doi: 10.1109/CVPR52734.2025.01396.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith,
and Ranjay Krishna. Visual Sketchpad: Sketching as a Visual Chain of Thought for Multimodal
Language Models. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich
Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Samira Ebrahimi Kahou, Vincent Michalski, Adam Atkinson, Akos Kadar, Adam Trischler, and
Yoshua Bengio. FigureQA: An Annotated Figure Dataset for Visual Reasoning, February 2018.

Jakub Lála, Odhran O’Donoghue, Aleksandar Shtedritski, Sam Cox, Samuel G. Rodriques, and
Andrew D. White. PaperQA: Retrieval-Augmented Generative Agent for Scientific Research.
CoRR, abs/2312.07559, 2023. doi: 10.48550/ARXIV.2312.07559.

Chanseo Lee, Kimon A. Vogt, and Sonu Kumar. Prospects for AI clinical summarization to reduce
the burden of patient chart review. Frontiers in Digital Health, 6, November 2024. ISSN 2673-
253X. doi: 10.3389/fdgth.2024.1475092.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao.
Grounded Language-Image Pre-training. In IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 10955–10965.
IEEE, 2022. doi: 10.1109/CVPR52688.2022.01069.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding DINO: Marrying DINO with
Grounded Pre-training for Open-Set Object Detection. In Ales Leonardis, Elisa Ricci, Stefan
Roth, Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), Computer Vision - ECCV 2024
- 18th European Conference, Milan, Italy, September 29-October 4, 2024, Proceedings, Part
XLVII, volume 15105 of Lecture Notes in Computer Science, pp. 38–55. Springer, 2024. doi:
10.1007/978-3-031-72970-6\ 3.

Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou, Yudong Wang, Yanyi Liu, Shilong Zhang,
and Kai Chen. RTMDet: An Empirical Study of Designing Real-Time Object Detectors. CoRR,
abs/2212.07784, 2022. doi: 10.48550/ARXIV.2212.07784.

Yubo Ma, Yuhang Zang, Liangyu Chen, Meiqi Chen, Yizhu Jiao, Xinze Li, Xinyuan Lu, Ziyu Liu,
Yan Ma, Xiaoyi Dong, Pan Zhang, Liangming Pan, Yu-Gang Jiang, Jiaqi Wang, Yixin Cao, and
Aixin Sun. MMLONGBENCH-DOC: Benchmarking Long-context Document Understanding
with Visualizations. In Amir Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich
Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024, 2024.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. ChartQA: A Bench-
mark for Question Answering about Charts with Visual and Logical Reasoning, March 2022.

Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, and Shafiq Joty.
ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild, November 2024.

Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
Kartha, Md. Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmoham-
madi, Megh Thakkar, Md. Rizwan Parvez, Enamul Hoque, and Shafiq Joty. ChartQAPro: A
More Diverse and Challenging Benchmark for Chart Question Answering. In Wanxiang Che,

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Asso-
ciation for Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025, pp.
19123–19151. Association for Computational Linguistics, 2025.

Nitesh Methani, Pritha Ganguly, Mitesh M. Khapra, and Pratyush Kumar. PlotQA: Reasoning over
Scientific Plots, February 2020.

OpenAI. OpenAI o3 and o4-mini System Card, 2025a.

OpenAI. GPT-5 System Card. https://cdn.openai.com/gpt-5-system-card.pdf, September 2025b.

Anku Rani, Aparna Garimella, Apoorv Saxena, Balaji Vasan Srinivasan, and Paul Pu Liang.
RADAR: A Reasoning-Guided Attribution Framework for Explainable Visual Data Analysis, Au-
gust 2025.

Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. CoRR, abs/1804.02767,
2018.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6):1137–1149, 2017. doi: 10.1109/TPAMI.2016.2577031.

Dong Shu, Haoyang Yuan, Yuchen Wang, Yanguang Liu, Huopu Zhang, Haiyan Zhao, and Meng-
nan Du. FinChart-Bench: Benchmarking Financial Chart Comprehension in Vision-Language
Models. CoRR, abs/2507.14823, 2025. doi: 10.48550/ARXIV.2507.14823.

Manan Suri, Puneet Mathur, Nedim Lipka, Franck Dernoncourt, Ryan A. Rossi, and Dinesh
Manocha. ChartLens: Fine-grained Visual Attribution in Charts, May 2025.

Liyan Tang, Grace Kim, Xinyu Zhao, Thom Lake, Wenxuan Ding, Fangcong Yin, Prasann Singhal,
Manya Wadhwa, Zeyu Leo Liu, Zayne Sprague, Ramya Namuduri, Bodun Hu, Juan Diego Ro-
driguez, Puyuan Peng, and Greg Durrett. ChartMuseum: Testing Visual Reasoning Capabilities
of Large Vision-Language Models, May 2025.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi
Wu, Haotian Liu, Sadhika Malladi, Alexis Chevalier, Sanjeev Arora, and Danqi Chen. CharXiv:
Charting Gaps in Realistic Chart Understanding in Multimodal LLMs, June 2024.

Renqiu Xia, Bo Zhang, Hancheng Ye, Xiangchao Yan, Qi Liu, Hongbin Zhou, Zijun Chen, Peng Ye,
Min Dou, Botian Shi, Junchi Yan, and Yu Qiao. ChartX & ChartVLM: A Versatile Benchmark
and Foundation Model for Complicated Chart Reasoning, March 2025.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a Unified Representation for a Variety of Vision Tasks. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA,
USA, June 16-22, 2024, pp. 4818–4829. IEEE, 2024. doi: 10.1109/CVPR52733.2024.00461.

Zhengzhuo Xu, SiNan Du, Yiyan Qi, Chengjin Xu, Chun Yuan, and Jian Guo. ChartBench: A
Benchmark for Complex Visual Reasoning in Charts. October 2024.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, Gongye Liu, Xiaomei Nie, Deng Cai, and Yujiu Yang. ChartMimic:
Evaluating LMM’s Cross-Modal Reasoning Capability via Chart-to-Code Generation. In The
Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April
24-28, 2025. OpenReview.net, 2025.

Jianwei Yang, Hao Zhang, Feng Li, Xueyan Zou, Chunyuan Li, and Jianfeng Gao. Set-of-Mark
Prompting Unleashes Extraordinary Visual Grounding in GPT-4V. CoRR, abs/2310.11441,
2023a. doi: 10.48550/ARXIV.2310.11441.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhishen Yang, Raj Dabre, Hideki Tanaka, and Naoaki Okazaki. Scicap+: A knowledge augmented
dataset to study the challenges of scientific figure captioning. In Amir Pouran Ben Veyseh, Franck
Dernoncourt, Thien Huu Nguyen, and Viet Dac Lai (eds.), Proceedings of the Workshop on Sci-
entific Document Understanding co-located with 37th AAAI Conference on Artificial Inteligence
(AAAI 2023), Remote, February 14, 2023, volume 3656 of CEUR Workshop Proceedings. CEUR-
WS.org, 2023b. URL https://ceur-ws.org/Vol-3656/paper13.pdf.

Xiangyu Zhao, Yicheng Chen, Shilin Xu, Xiangtai Li, Xinjiang Wang, Yining Li, and Haian Huang.
An Open and Comprehensive Pipeline for Unified Object Grounding and Detection. CoRR,
abs/2401.02361, 2024. doi: 10.48550/ARXIV.2401.02361.

Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li,
Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, and Jianfeng Gao. RegionCLIP: Region-based
Language-Image Pretraining. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 16772–16782. IEEE, 2022.
doi: 10.1109/CVPR52688.2022.01629.

Jiangning Zhu, Yuxing Zhou, Zheng Wang, Juntao Yao, Yima Gu, Yuhui Yuan, and Shixia Liu.
OrionBench: A Benchmark for Chart and Human-Recognizable Object Detection in Infographics.
CoRR, abs/2505.17473, 2025a. doi: 10.48550/ARXIV.2505.17473.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen
Deng, Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi,
Xingcheng Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong
Jiao, Han Lv, Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min
Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang.
InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal
Models. CoRR, abs/2504.10479, 2025b. doi: 10.48550/ARXIV.2504.10479.

Zhuofan Zong, Guanglu Song, and Yu Liu. DETRs with collaborative hybrid assignments training.
In IEEE/CVF International Conference on Computer Vision, ICCV 2023, Paris, France, October
1-6, 2023, pp. 6725–6735. IEEE, 2023. doi: 10.1109/ICCV51070.2023.00621.

13

https://ceur-ws.org/Vol-3656/paper13.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to improve the phrasing and clarity of the paper, particu-
larly in the introduction and abstract, where we asked the model to improve an existing draft. LLMs
were also used to enhance the prompts used in the data curation and verification pipeline. They did
not play a significant role in research ideation.

B DATA GENERATION PROMPTS

Below is the prompt for generating templates from the input Python script.

Stage 1: Template Generation Prompt
You are a helpful assistant. Given a python script as follows:
‘‘‘python
{code}
‘‘‘

Your task is to replace the data that is plotted to placeholder <data>
tokens.

Replace with <data>:
- Data values that appear as visual elements within the plot, such as
bars, lines, points, etc.
- Text labels that appear INSIDE the plotted area (annotations, data
labels on visual elements)

Keep unchanged:
- Axis labels, titles, legends (all legend text)
- Tick labels and categorical labels
- All plotting parameters (colors, sizes, styles, limits)

Example:
‘‘‘python
Original
data = [10, 25, 30]
labels = [’A’, ’B’, ’C’]
plt.bar(labels, data)
plt.title(’Chart’)

Template
data = [<data>, <data>, <data>]
labels = [’A’, ’B’, ’C’] # Keep unchanged
plt.bar(labels, data)
plt.title(’Chart’) # Keep unchanged
‘‘‘

Below is the prompt for extracting individual data elements and identifying arguments, as well
as generating question and referential expression templates that use these arguments. Note
that we prompt the model with additional guidelines for specific chart types, denoted by
chart type prompt.

Stage 2: Extract Data and Generate Question Templates Prompt
You are a helpful assistant. Given a template python script as follows:
‘‘‘python
{code}
‘‘‘

Notice that data values are intentionally filled in with <data>
placeholders. You have access to the matplotlib fig object that this
script with the filled in data values creates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Your Task
Create extraction functions that extract the actual data values plotted/
displayed in the rendered matplotlib figure. These values generally
correspond to the <data> placeholders but may be approximated, rounded,
or otherwise modified during visualization.

Steps:
1. Identify visual attributes in the script. Different attributes
represent distinct data series or groupings, such as such as individual
line series, bar groups, scatter plot series, or sets of data labels
displayed within the chart. Do not extract hardcoded values that are not
masked out with <data> placeholders - these are not the underlying data
being plotted.
2. For each attribute, create two functions following the pattern below
3. Extract data as it appears visually - approximated/binned values are
acceptable

Data Extraction and Kwargs Generation Functions
- Name: extract_and_generate_kwargs_<attribute_name>(fig)
- Extract the actual data values for the given attribute that is plotted/
displayed in the chart. Infer the attribute name from the context of the
template script.
- DO NOT extract axis labels, legend labels, tick labels, titles, or
other chart annotations used in interpreting the chart
- DO NOT round the data values after extracting them from the matplotlib
figure
- Return a list of dictionaries, where each dictionary contains:

- A "data" key with the extracted value (number or string only),
which is used to format the answer template
- Additional kwargs that capture all dimensions of variation needed
to identify the data value, which are used to format the question
template

- Values should match what’s visually plotted, which may be approximated/
rounded from original data
- Extracted data can be either numerical values or text strings,
depending on what is plotted

Question and Answer Template Functions
- Name: get_templates_<attribute_name>()
- Return a tuple containing (question_template, answer_template) as
strings with {{placeholder}} variables
- Questions must be answerable from the chart image alone
- Answer template should simply be "{{data}}"
- DO NOT round any formatted values in the question or the answer
template
- Use descriptive references to identify the extracted data based on
visual elements observable in the chart image itself (e.g., category
names, legend labels, axis values, colors, positions). DO NOT USE generic
index-based references like "first bin", "second point", or "item 1",

which are ambiguous when looking at the rendered chart
- Templates should work for all data values in the attribute and yield
unique questions for each data value

Additional Instructions
- Access legend elements: Use ax.get_legend() to get the legend object,
then legend.get_children() to access the individual legend components (
text labels, colored patches, lines).
{chart_type_prompt}
Format:
‘‘‘python
Imports here (matplotlib.pyplot, numpy, etc.)

def extract_and_generate_kwargs_<attribute_name>(fig):
\"\"\"

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Extract plotted data values and generate kwargs for question
formatting
\"\"\"
kwargs_list = []
Extract data and build kwargs dictionaries
Each dict should include ’data’ key, and other identifying
parameters
return kwargs_list # List of dicts, each with ’data’ and other
kwargs

def get_templates_<attribute_name>():
\"\"\"
Return question and answer templates with {{placeholders}}
\"\"\"
question_template = "What is the {{metric}} for {{category}}?" #
Example
answer_template = "{{data}}" # Always just {{data}}
return question_template, answer_template

‘‘‘
Create separate code blocks for each visual attribute. Each function must
be self-contained.

Below is the prompt for extracting bounding boxes.

Stage 3: Extract Bounding Boxes Prompt
You are a helpful assistant. Given a previously created data extraction
function for a single attribute, modify it to add bounding box generation
capabilities.

‘‘‘python
{extract_functions}
‘‘‘

Task
Modify the provided extract_and_generate_kwargs_<attribute_name> function
and get_templates_<attribute_name> function to include bounding box

functionality.

Required Modifications:

Modify Data Extraction Function
- Update extract_and_generate_kwargs_<attribute_name>(fig) to include "
bbox" key in returned dictionaries
- The "bbox" key refers to the bounding box as a matplotlib Bbox object
that localizes the visual element representing this data point. The
bounding box must be in display coordinates. Follow the below tips:

- Target the most specific visual element for each data point (e.g.
marker, bar segment, text label)
- Use ax.get_window_extent() when possible.
- Avoid converting to display coordinates manually when the bounding
box can be obtained directly from the matplotlib object.

- CRITICAL: Each data value must have a unique bounding box

Modify Template Function
- Update get_templates_<attribute_name>() to return 4-tuple: (
question_template, answer_template, bbox_question_template,
bbox_answer_template)
- Bbox question template: "Provide the bounding box coordinates of the
region this sentence describes: [description using same placeholders as
data question]"
- Bbox answer template: always "{{bbox}}"
{chart_type_prompt}
Expected Output Format:
‘‘‘python

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Imports here

def extract_and_generate_kwargs_<attribute_name>(fig):
\"\"\"Extract plotted data values and generate kwargs with bounding
boxes\"\"\"
kwargs_list = []
Extract data and build kwargs dictionaries with ’data’, ’bbox’, and
identifying parameters
return kwargs_list

def get_templates_<attribute_name>():
\"\"\"Return question, answer, and bbox templates\"\"\"
question_template = "What is the {{metric}} for {{category}}?"
answer_template = "{{data}}"
bbox_question_template = "Provide the bounding box coordinates of the
region this sentence describes: the {{metric}} bar for {{category}}"
bbox_answer_template = "{{bbox}}"
return question_template, answer_template, bbox_question_template,
bbox_answer_template

‘‘‘

Provide the complete modified functions for this specific attribute.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 6: Additional Instructions for Extracting Data for Each Chart Type
Chart Type Additional Instructions
Area At any given x-coordinate in a stackplot, each layer’s polygon has both a top edge

and a bottom edge. The individual layer height is simply: individual height
= y top - y bottom at that x-coordinate. Follow the below approach to extract
individual layer heights:
• Extract x-coordinates: Get the unique x-values (data points) from the polygon

vertices
• For each collection (layer) and each x-coordinate: Find all vertices at that ex-

act x-coordinate (within small tolerance). Get y top = max(y values at x)
and y bottom = min(y values at x). Calculate individual height
= y top - y bottom

• Generate kwargs: Include the individual height, layer name, and x-coordinate
Errorbar • ax.containers will contain both BarContainer and ErrorbarContainer objects.

Check the type of the container and process accordingly.
• For ErrorbarContainer objects, check container.has xerr and
container.has yerr to determine error bar orientation.

• container.lines is a tuple with structure like (data line,
(cap line1, cap line2), (line collection,)). Use
container.lines[2][0] to get the error bar stems.

• When processing the unpacked line objects, use the has xerr/has yerr results
to determine which coordinates contain the error information.

Scatter If individual points are not uniquely identifiable by categorical labels, focus on aggre-
gate statistics:
• Use ax.collections to get scatter data points, then compute aggregate values

from the x,y coordinates, such as cluster means, ranges of values, etc. The bounding
box template should refer to the cluster of points used to compute the aggregate
statistic.

Density When extracting values from a continuous distribution or function, you must first
identify the tick values from ax.get xticks() or ax.get yticks(). Extract
ONLY the data points at these tick values. Do NOT extract data at other arbitrary
points.

Hist • Each question should ask about the height of a specific bin within a specific interval.
• Determine intervals by obtaining the x-tick positions using ax.get xticks().

For every pair of adjacent x-ticks, define an interval [xtick i, xtick {i+1}].
• For each interval, include only bars whose centers fall within that range. You MUST

refer to these bins using ordinal numbers (first, second, third, etc.) from left to right
within each interval. DO NOT use generic index-based references like “bin 1”, “bin
2”, or “item 1”, which are ambiguous when looking at the rendered chart.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 7: Additional Bounding Box Generation Instructions for Each Chart Type
Chart Type Additional Instructions
Area When visible markers are present, compute the bounding box around each marker.

Otherwise, when the extracted values are heights of layers, compute the center of the
bounding box at the top of the layer at each x-coordinate and create a square bounding
box with 10 × 10 pixel dimensions centered at that point. Do NOT use other bounding
box dimensions.

Line When visible markers for the data are present, compute the bounding box around each
marker. Otherwise, when there are no markers, create a square bounding box with 10 ×
10 pixel dimensions for each data point. Do NOT use other bounding box dimensions.

Radar When visible markers for the data are present, compute the bounding box around each
marker. Otherwise, when there are no markers, create a square bounding box with 10 ×
10 pixel dimensions for each data point. Do NOT use other bounding box dimensions.

Density If the extracted values are the density at specific coordinates, create a square bounding
box with 10 × 10 pixel dimensions centered at the point on the density curve corre-
sponding to each coordinate. Do NOT use other bounding box dimensions.

Scatter If the extracted values are aggregate statistics, compute the bounding box over the
relevant cluster of points. If the extracted values are individual points, compute the
bounding box over each point.

Error Bar Manually calculate the bounding box using the segment endpoints: use
ax.transData.transform to convert the two segment points to dis-
play coordinates. Create a Bbox from the transformed coordinates using
Bbox.from bounds(min x, min y, width, height). For the dimension
perpendicular to the error bar, use a fixed width of 5 pixels.

C DATA POSTPROCESSING PROMPTS

Below is the prompt to determine the error margin for generated questions and answers.

Postprocessing: Error Margin Prompt

You are given a chart image and several questions about the chart.

{questions}

Your Task:
Analyze the chart’s visual elements to determine the appropriate
precision level of the ground truth answer and establish a reasonable
error margin for evaluating predicted answers. You should reason about
how you would answer these questions based on the chart image and
identify the relevant visual elements.

Step-by-Step Analysis:

STEP 1: Identify Answer Type
- **Direct readings**: Values explicitly shown as text labels, legend
items, category names, or data point labels
- **Estimated values**: Values that must be visually interpolated from
axis positions, calculated, or derived

STEP 2: For Direct Readings:
- **Ground truth precision**: If the answer is a number, use the
precision of the number in the text label (e.g., "42.5" has precision 1)
- **Error margin**: 0 (exact match required for directly labeled values)
- **Special case**: If answer is categorical/text, set precision to null
and error margin to 0

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

**STEP 3: For Estimated Values: Determine Ground Truth Precision and
Error Margin**

Look at the axis tick labels and identify the **smallest meaningful unit
of difference** between consecutive ticks. The ground truth should be **
one decimal place more precise** than the tick interval, while the error
margin accounts for visual estimation uncertainty.

Tick Interval Analysis Examples:

Interval = 1 (ticks: 1, 2, 3, 4, 5)
- Ground truth precision: 1 (tenths place) - one level more precise than
interval
- Error margin: 0.5 (half the tick interval)
- Reasoning: Ground truth can be 2.3, 4.7, etc. Visual tolerance is
+/-0.5

Interval = 10 (ticks: 10, 20, 30, 40, 50)
- Ground truth precision: 0 (ones place) - one level more precise than
interval
- Error margin: 5 (half the tick interval)
- Reasoning: Ground truth can be 23, 47, etc. Visual tolerance is +/-5

Interval = 20 (ticks: 20, 40, 60, 80, 100)
- Ground truth precision: 0 (ones place) - one level more precise than
interval
- Error margin: 10 (half the tick interval)
- Reasoning: Ground truth can be 33, 67, etc. Visual tolerance is +/-10

Interval = 0.1 (ticks: 0.1, 0.2, 0.3, 0.4)
- Ground truth precision: 2 (hundredths place) - one level more precise
than interval
- Error margin: 0.05 (half the tick interval)
- Reasoning: Ground truth can be 0.23, 0.37, etc. Visual tolerance is
+/-0.05

Interval = 0.5 (ticks: 0.5, 1.0, 1.5, 2.0)
- Ground truth precision: 2 (hundredths place) - one level more precise
than interval
- Error margin: 0.25 (half the tick interval)
- Reasoning: Ground truth can be 1.23, 1.67, etc. Visual tolerance is
+/-0.25

Precision Scale Reference:
The precision can be **any integer** (positive, negative, or zero) or **
null**:

- **null**: Categorical/text values
- **3**: Thousandths place (0.001)
- **2**: Hundredths place (0.01)
- **1**: Tenths place (0.1)
- **0**: Ones place (1)
- **-1**: Tens place (10)
- **-2**: Hundreds place (100)
- **-3**: Thousands place (1000)

Ground Truth Precision Rule:
For estimated values: Ground truth precision = interval_precision + 1
For direct readings: Ground truth precision matches the precision
shown in labels

Complex Cases:
- **Multiple axes**: Use the axis most relevant to the answer
- **Logarithmic scales**: Focus on the linear spacing between major ticks

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

- **Mixed scales**: Choose the most restrictive precision that’s
reasonable for the ground truth
- **Percentage charts**: Disregard the percentage sign, focus on
numerical values
- **Calculated values**: Consider the precision of the least precise
component

Output your analysis as a JSON object:
‘‘‘json
{{

"answer_type": "direct_reading" or "estimated_value",
"ground_truth_precision": <integer or null>,
"error_margin": <number or 0>,
"tick_interval": <the interval between consecutive ticks, if
applicable>,
"reasoning": "Detailed explanation: Ground truth precision [X] (one
level more precise than tick interval [Y]) because [reason]. Error
margin [Z] (half tick interval) because [visual estimation tolerance
reasoning]"

}}
‘‘‘

Below is the prompt to evaluate question quality.

Postprocessing: Question Quality Prompt
You are given a chart image and several questions about the chart.

{questions_section}

Your Task:
Evaluate the overall quality and answerability of this set of questions
given the chart image. You should reason about how you would answer these
questions based on the chart image. Since all questions follow a similar
reasoning pattern, judge them as a group and determine which category

they fall into:

1. **VALID**: Questions that can be answered by examining the chart, even
if they require:

- Making reasonable assumptions about standard chart elements (axes,
legends, data points)
- Basic chart reading skills (identifying trends, comparing values,
reading labels)
- Standard domain knowledge (e.g., knowing that "Q1" means first
quarter)
- IMPORTANT: Questions with precise numerical parameters are valid as
long as the underlying data is represented in the chart.

2. **AMBIGUOUS**: Questions that are genuinely unanswerable because:
- Key terms are completely undefined AND cannot be inferred from chart
context

- The question refers to chart elements that definitively don’t exist

3. **DEFECTIVE**: Questions where:
- The answer is explicitly stated in the question text itself
- No chart examination is needed because the answer is given away in
the question

Output a JSON object with the following fields:
‘‘‘json
{{

"questions_quality": "<AMBIGUOUS|VALID|DEFECTIVE>",
"justification": "<Brief explanation for your judgment of the
question set>"

}}

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

‘‘‘

D EXPERIMENT DETAILS

D.1 MULTIMODAL LLM EVALUATION

In Table 8, we detail the standard, chain-of-thought, and set-of-marks prompts that we use for eval-
uating chart question-answering. Table 9 shows the prompt we use for evaluating visual ground-
ing. Additionally, for GPT-4o, we instruct the model to output normalized coordinates in [0, 1].
Qwen2.5-VL natively outputs coordinates relative to the resized image, and InternVL3 is prompted
to normalize coordinates by 1000.

Table 8: Chart Question Answering Prompts
Prompt Type Prompt
Standard You are an expert in analyzing charts. Your task is to answer the question based

on the chart provided.

At the end of your response, provide your final answer in the format ”Answer: X”
where X is your final answer.

Question:{question}
CoT You are an expert in analyzing charts. Your task is to answer the question based on

the chart provided. Think step by step and provide your reasoning before giving
the final answer.

At the end of your response, provide your final answer in the format ”Answer: X”
where X is your final answer.

Question:{question}
Set-of-Marks You are an expert in analyzing charts. Your task is to answer the question based

on the chart provided. Think step by step, and in your reasoning, refer to relevant
bounding boxes labeled with numbers.

At the end of your response, provide your final answer in the format ”Answer: X”
where X is your final answer.

Question: {question}

Table 9: Visual Grounding Prompt
Prompt Type Template Content
Standard You are an expert in analyzing charts. Your task is to localize the visual element

corresponding to a given region.

At the end of your response, provide your final answer in the format ”Answer:
[x1, y1, x2, y2]” where [x1, y1] are the coordinates of the top-left corner of the
bounding box and [x2, y2] are the coordinates of the bottom-right corner of the
bounding box.

Provide the bounding box coordinates of the region this sentence describes:
{referential expression}

D.2 CHART ELEMENT LOCALIZATION

For object detection, we finetune 6 models: MM-GD (Zhao et al., 2024), LLMDet (Fu et al., 2025),
Faster R-CNN (Ren et al., 2017), YOLOv3 (Redmon & Farhadi, 2018), RTMDet (Lyu et al., 2022),
and Co-DETR Zong et al. (2023). For visual grounding, we finetune MM-GD and LLMDet.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For each model, we specify the number of epochs, batch size, and learning rate when fine-tuning
on CHARTREF’s training set in Table 10 shows the fine-tuning hyperparameters. The training was
done on 4 NVIDIA H200s.

Table 10: Training hyperparameters
Object Detection

Hyperparameters MM-GD LLMDet Faster R-CNN YOLOv3 RTMDet Co-DETR

Optimizer AdamW AdamW SGD SGD AdamW AdamW
E 100 100 100 120 50 30
B 4 16 4 4 16 16
lr 1e− 4 1e− 4 0.02 1e− 3 4e− 3 1e− 4

weight decay 1e− 4 1e− 4 1e− 4 5e− 4 0.05 1e− 4

Visual Grounding
Optimizer AdamW AdamW - - - -

E 8 16 - - - -
B - - - - - -
lr 1e− 4 1e− 4 - - - -

weight decay 1e− 4 1e− 4 - - -

E CHARTREF EXAMPLES

Below are visual grounding examples, where each referential expression corresponds to a red bound-
ing box labeled with a number.

1. the yield in tons/acre for Wheat in Year 4
2. the yield in tons/acre for Soybeans in
Year 1
3. the yield in tons/acre for Wheat in Year 3
4. the yield in tons/acre for Wheat in Year 1
5. the yield in tons/acre for Rice in Year 5

Figure 7: Area Chart, Example 1

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

1. the annual hours spent on Meetings in 2018
2. the annual hours spent on Meetings in 2017
3. the annual hours spent on Meetings in 2017
4. the annual hours spent on Virtual
Conferences in 2018
5. the annual hours spent on Calls in 2021

Figure 8: Area Chart, Example 2

1. the Case Process Efficiency bar
for the Verdict stage
2. the Case Process Efficiency bar
for the Pre-trial stage
3. the Document Error Rate bar
for the Pre-trial stage
4. the Document Error Rate bar
for the Post-trial stage
5. the Average Resolution
Accuracy bar for the Pre-trial
stage

Figure 9: Bar Chart, Example 1

1. the Mental Health Services bar
segment for EU
2. the Physical Activity bar segment
for US
3. the Social Support bar segment for
India
4. the Average Sleep Hours bar
segment for US
5. the Stress Levels bar segment for
EU

Figure 10: Bar Chart, Example 2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

1. the Inflation Rate data point in 1994.848
2. the Inflation Rate data point in 2014.848
3. the GDP Growth rate in 2004.848
4. the Inflation Rate data point in 1990
5. the GDP Growth rate in 2014.848

Figure 11: Density Plot, Example 1

1. the density value for Jazz Streams at
500 streams
2. the density value for Pop Streams at
2500 streams
3. the density value for Pop Streams at
1000 streams
4. the density value for Rock Streams at
500 streams
5. the density value for Rock Streams at
1000 streams

Figure 12: Density Plot, Example 2

1. the CO2 emissions error
margin for South America
2. the CO2 emissions error
margin for Asia
3. the CO2 emissions for Asia
4. the CO2 emissions for Europe
5. the renewable energy usage
error margin for Europe

Figure 13: Error Bar Chart, Example 1

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

1. the mean number of speak tokens bar for the
Werewolf role
2. the mean speak duration bar for the Villager
role
3. the error bar for the speak duration of the
Werewolf role
4. the error bar for the speak duration of the
Seer role
5. the error bar for the speak duration of the
Witch role

Figure 14: Error Bar Chart, Example 2

1. the heatmap cell at row 'mistral' and
column 'ada'
2. the heatmap cell at row 'MiniLM'
and column 'mpn'
3. the heatmap cell at row 'mpnet' and
column 'mis'
4. the heatmap cell at row 'MiniLM'
and column 'ada'
5. the heatmap cell at row 'mpnet' and
column 'mpn'

Figure 15: Heatmap, Example 1

1. the percentage value showing votes Seer casts
for Witch
2. the percentage value showing votes Seer casts
for Seer
3. the percentage value showing votes Hunter
casts for Werewolf
4. the percentage value showing votes Werewolf
casts for Villager
5. the percentage value showing votes Werewolf
casts for Werewolf

Figure 16: Heatmap, Example 2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

1. the fourth User Engagement bin in
the interval [1, 2] in subplot (a) Initial
Phase
2. the second Response Times bin in
the interval [0, 1] in subplot (a) Initial
Phase
3. the ninth Response Times bin in the
interval [1, 2] in subplot (a) Initial
Phase
4. the third Response Times bin in the
interval [0, 1] in subplot (a) Initial
Phase
5. the third User Engagement bin in the
interval [3, 4] in subplot (b) Mid Phase

Figure 17: Histogram, Example 1

1. the seventh bar for Weekdays in the
interval [10, 20) in the Movie Ticket
Sales histogram
2. the fifth bar for Weekends in the
interval [20, 30) in the Movie Ticket
Sales histogram
3. the second bar for Weekends in the
interval [30, 40) in the Movie Ticket
Sales histogram
4. the sixth bar for Weekdays in the
interval [10, 20) in the Movie Ticket
Sales histogram
5. the first bar for Weekends in the
interval [20, 30) in the Movie Ticket
Sales histogram

Figure 18: Histogram, Example 2

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

1. the content decay value at time point 3
months
2. the spikes in engagement value at time
point 9 months
3. the user growth value at time point 6
months
4. the spikes in engagement value at time
point 1 months
5. the user growth value at time point 2
months

Figure 19: Line Chart, Example 1

1. the Stress Level for week 11
2. the Stress Level for week 1
3. the Stress Level for week 9
4. the Productivity Index for week 25
5. the Productivity Index for week 5

Figure 20: Line Chart, Example 2

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

1. the pie slice for Criminal cases
2. the pie slice for Family cases
3. the pie slice for Civil cases
4. the pie slice for Labor cases
5. the pie slice for IP cases

Figure 21: Pie Chart, Example 1

1. the Oil segment in the inner
donut chart
2. the Pottery segment in the
inner donut chart
3. the Watercolor segment in the
inner donut chart
4. the 3D segment in the inner
donut chart
5. the 2D segment in the inner
donut chart

Figure 22: Pie Chart, Example 2

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1. the Clarity score for Model A
2. the Empathy score for Model B
3. the Listening score for Model B
4. the Non-verbal Cues score for
Model B
5. the Engagement score for Model
A

Figure 23: Radar Chart, Example 1

1. the Conversion Rate value for
Print Advertising
2. the Cost Efficiency value for
Print Advertising
3. the Customer Retention value
for Social Media Campaigns
4. the Reach value for Digital
Marketing
5. the Customer Retention value
for Digital Marketing

Figure 24: Radar Chart, Example 2

1. the Water Requirement data
point for Tomato
2. the Nutrient Efficiency data
point for Corn
3. the Disease Resistance
marker for Wheat
4. the Growth Rate marker for
Wheat
5. the Yield data point for
Broccoli

Figure 25: Scatter Plot, Example 1

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

1. the mean x-coordinate (Age)
of the Youth (18-25) cluster
2. the mean x-coordinate (Age)
of the Low Income cluster
3. the mean y-coordinate
(Income) of the High Income
cluster
4. the mean y-coordinate
(Income) of the Adults (26-45)
cluster
5. the mean x-coordinate (Age)
of the Seniors (60+) cluster

Figure 26: Scatter Plot, Example 2

1. the IT sector in the treemap
2. the Retail sector in the treemap
3. the percentage displayed for the
Retail sector in the treemap
4. the percentage displayed for the IT
sector in the treemap
5. the percentage displayed for the
Manufacturing sector in the treemap

Figure 27: Treemap, Example 1

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1. the market share percentage for
Nuclear
2. the market share percentage for Coal
3. the market share percentage for Solar
4. the market share percentage for Hydro
5. the market share percentage for
Natural Gas

Figure 28: Treemap, Example 2

32

	Introduction
	ChartRef Data Curation
	Data Generation
	Data Postprocessing
	Dataset Statistics

	Related Work
	Experiments
	Do Visual Annotations Enhance Chart Perception?
	Object Detection
	Visual Grounding

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Use of Large Language Models (LLMs)
	Data Generation Prompts
	Data Postprocessing Prompts
	Experiment Details
	Multimodal LLM Evaluation
	Chart Element Localization

	ChartRef Examples

