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ABSTRACT

Humans interpret charts by first localizing visual elements—such as bars, markers,
and segments—before reasoning over the data. In contrast, current multimodal
models primarily rely on text reasoning, limiting their ability to leverage fine-
grained visual information. To address this, we introduce CHARTREF, a dataset
of 38,846 questions, answers, referential expressions, and bounding boxes across
1,141 figures and 11 chart types. Our key insight is that the chart-rendering code
makes it possible to generate visual element localizations that are aligned with
question–answer pairs. Given only the Python script, a large language model
infers the semantics of plotted data, maps data series to visual encodings, and
programmatically extracts bounding boxes, yielding visual annotations for charts
at scale. Using CHARTREF, we benchmark multimodal LLMs and find 3–7%
accuracy improvements on chart question answering when models are provided
with ground-truth bounding boxes. We further evaluate vision and multimodal
models on chart object detection and visual grounding, where models localize
an expression referring to the data in the chart. While object detection exceeds
80 AP@50, visual grounding accuracy is only 2.8, revealing a significant gap:
current models can recognize chart elements perceptually but struggle to integrate
context cues from axes, legends, labels, and data to ground fine-grained textual
references.

1 INTRODUCTION

When reading charts, humans localize relevant visual elements before extracting insights, ground-
ing their reasoning in the visualized data. Building AI models with similar chart localization and
reasoning capabilities propel applications in finance (Shu et al., 2025) and healthcare (Lee et al.,
2024), support interactive systems where models communicate with humans through visual annota-
tions (Hu et al., 2024), and advance document understanding (Ma et al., 2024) and scientific discov-
ery (Lála et al., 2023; Yang et al., 2023b). Despite the importance of chart grounding, prior work
has focused exclusively on evaluating models through question answering (Masry et al., 2022; Wang
et al., 2024; Xia et al., 2025; Tang et al., 2025), which only measures the accuracy of textual answers
and overlooks whether models actually localize and reason over the relevant visual evidence.

While vision-language models are proficient at localizing objects in natural scenes (Liu et al., 2024;
Li et al., 2022; Zhong et al., 2022; Xiao et al., 2024; Fu et al., 2025), grounding phrases in charts
requires fundamentally different visual reasoning skills, such as the ability to interpret elements
such as legends and axis labels, understand coordinate systems, and navigate multi-panel subplot
arrangements. For example, in Figure 1 (right), identifying the visual marker that corresponds to the
phrase “average response for Control Group in session 5” requires understanding the correspondence
between the legend and the markers, parsing the correct data series, and comparing the x-axis to the
plotted data. This makes chart localization a process that current models have limited exposure to,
as their pretraining focuses primarily on natural image-text alignment rather than supervision over
chart-specific structures.

Additionally, unlike visual grounding for natural images, there are relatively few datasets for evalu-
ating and enhancing chart visual grounding. Previous work has focused intensely on treating charts
as a computer vision problem (Methani et al., 2020; Suri et al., 2025), applying off-the-shelf detec-
tion models to raw images to extract bounding box annotations. These approaches inherently limit
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sessions = [1, 2, ..., 20]
control_group = [624, 583, ..., 459]
treatment_group_1 = [484, 509, ..., 361]
treatment_group_2 = [547, 529, ..., 413]
treatment_group_3 = [509, 531, ..., 391]

# Variables for plot configuration
...
xlabel_text = "Session"
ylabel_text = "Average Response Time (ms)"
...

# Plot data series
plt.plot(sessions, control_group, ...)
plt.plot(sessions, treatment_group_1, ...)
plt.plot(sessions, treatment_group_2, ...)
plt.plot(sessions, treatment_group_3, ...)
...

fig = plt.figure()

ax = fig.get_axes()[0]
lines = ax.get_lines()

control_line = lines[0]
xdata = control_line.get_xdata()
ydata = control_line.get_ydata()

# Question 1:
“What is the average response time for the Control
Group in session {xdata[0]}? {ydata[0]}”

# Referential Expression 1: 
“The average response time for the Control Group in
session {xdata[0]}:
{ax.transData.transform(xdata[0], ydata[0])}”

1

2

3
Step 2. Extract the line corresponding to “Control Group”

Chart Rendering Script
Step 1. Extract the plotted lines from the matplotlib figure the average response time for the Control Group in session 1 

ChartRef Data Generation

Step 3. Write questions and answers based on the data

Step 4. Extract corresponding bounding boxes P
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Chart Visual Grounding Examples

the average response time for the Control Group in session 5 

the average response time for the Control Group in session 11 
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Figure 1: CHARTREF dataset. To generate a large-scale, diverse dataset of bounding box anno-
tations paired with questions, answers, and referential expressions, we propose a data generation
pipeline that takes as input the Python rendering script. We leverage the insight that the code repre-
sentation contains information on the semantics of the plotted data, e.g. that ax.get lines()[0]
corresponds to the data for “Control Group”, enabling generation of accurate questions and referen-
tial expressions that are grounded in contextual cues such as labels and ticks. Additionally, the code
provides a means to extract bounding boxes for visual representations of the data by querying the
underlying figure rendering. Our data generation results in CHARTREF, a benchmark for evaluating
the chart visual grounding capabilities of multimodal models.

the diversity of the data to a select few chart types, such as bars, lines, and pie charts, to which
standard object detection can be directly applied.

To address these shortcomings, we leverage the power of code as an intermediate medium to pro-
cedurally generate potentially unlimited source of chart images, visual element localizations, ques-
tions, and answers. This results in CHARTREF, a dataset of 38,846 paired examples across 11 figure
types. Specifically, our data generation takes as input Python rendering scripts that encompass charts
of diverse types and visual complexity. Our key insight is that without relying on the rendered im-
age and given only the rendering script, a large language model can infer the semantic meaning of
plotted data, associate data series with their corresponding visual encodings, and programmatically
extract bounding boxes by querying the figure rendering as shown in Figure 1.

Using CHARTREF, we first evaluate multimodal foundation models on chart-question answering
with and without the ground truth bounding boxes. In comparison to both standard prompting and
chain-of-thought, models achieve a significant improvement in accuracy of 3-7% when given the
ground truth annotation, motivating the development of models capable of fine-grained chart element
localization. We next evaluate the capabilities of state-of-the-art vision and multimodal models
on two tasks: 1) object detection, where the model detects all visual elements corresponding to
the plotted data, and 2) visual grounding, where the model localizes an expression referring to a
data point in the chart. Finetuning models on CHARTREF enhances performance significantly on
both tasks – 10.6 AP@50 to 80.6 AP@50 for object detection and 0.3 Acc@1 to 2.8 Acc@1 for
visual grounding. However, visual grounding performance is still far below that of object detection.
These results highlight a critical gap in chart understanding and motivate future work on improving
vision–language alignment to enable fine-grained chart visual grounding.

2 CHARTREF DATA CURATION

In Section 2.1, we first detail our pipeline for generating chart questions and answers with corre-
sponding referential expressions and bounding boxes for the visual elements. In Section 2.2, we
describe our procedure for postprocessing the generated questions and answers to facilitate evalu-
ating numerical answers and eliminate ambiguous questions with a multimodal LLM verifier. In
Section 2.3, we detail key statistics of CHARTREF.

2.1 DATA GENERATION

Given a matplotlib Python script that renders a chart, our data generation pipeline uses an LLM
to synthesize code that extracts bounding boxes from the rendered visualization. This approach
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days = [0, 10, 20, 30, 40]
stock_A = [<data>, ..., <data>]
stock_B = [<data>, ..., <data>]
stock_C = [<data>, ..., <data>]
...

# Variables for plot configuration
...
xlabel_text = "Days"
ylabel_text = "Stock Prices (in USD)"
...

# Plot data series
fig = plt.figure()

def extract_stock_A(fig):
  ax = fig.get_axes()[0]
  stock_a_line = ax.get_lines()[0] # Stock A is
plotted first
  kwargs_list = []
  for (day, price) in zip(stock_a_line.get_xdata(),
stock_a_line.get_ydata()):
    kwargs_list.append({
     'data': price,
     'day': int(day),
     'stock_name': 'Stock A',
    })
  return kwargs_list

def extract_stock_A_with_bboxes(fig):
  # Same code from step 2
  ...
  for (day, price) in zip(stock_a_line.get_xdata(),
stock_a_line.get_ydata()):
    # Transform data coordinates to display coordinates
    display_point = ax.transData.transform((day, price))
    bbox = Bbox.from_bounds(...)
    kwargs_list.append({
     'data': price,
     'bbox': bbox,
     'day': int(day),
     'stock_name': 'Stock A',
    })
  return kwargs_list

Python Interpreter
days = [0, 10, 20, 30, 40]
stock_A = [100. 110, 105, 115, 120]
stock_B = [95, 102, 108, 107, 115]
stock_C = [98, 99, 101, 103, 106]
...

# Variables for plot configuration
...
xlabel_text = "Days"
ylabel_text = "Stock Prices (in USD)"
...

# Plot data series
fig = plt.figure()

def get_templates_stock_A():
  question_template = "What is the price of
{stock_name} on day {day}?"
  reference_template = "the price of {stock_name} on
day {day}"

What is the price of Stock A on day 10? 100

ChartMimic script

Step 1: Generate template code
with masked data values

Step 2: Generate code to extract data and
question parameters

Step 3: Generate code to extract
bounding boxes for each question

<questions, answers, referential
expressions, bounding boxes>

Locate “the price of stock on day 10”: [x1, y1,
x2, y2] 

Figure 2: Data generation pipeline. Given the Python script from ChartMimic, we gener-
ate paired <question, answer, referential expression, bounding box> using the fol-
lowing data generation pipeline. In Step 1, we prompt a LLM to mask out the plotted data values,
while preserving information required to interpret the chart, such as labels and coordinates at which
the data points appear. In Step 2, the model identifies all data series that are masked out and writes
code that extracts the data values and identifying parameters, as well as the question and referential
expression templates. Applying the identifying parameters to the templates results in the questions
and referential expressions that align with the data values. In Step 3, the model modifies the data
extraction code from Step 2 to additionally extract the bounding boxes.

is necessary because unlike SVG or HTML formats where spatial coordinates are directly embed-
ded in the markup, matplotlib scripts do not explicitly expose this spatial information. Instead,
the figure object (e.g., figure = plt.figure(...)), stores both the ground truth data and the
coordinates of the visualized data in image space. To extract both the underlying data and their
bounding boxes, an LLM generates code that programmatically queries the figure object’s proper-
ties. For example, the axes can be extracted with figure.get axes(), and all line objects can
be further collected with ax.get lines() for each axis. This allows access to the data points via
line.get xdata() and line.get ydata(), which can be converted to pixel coordinates using
ax.transData.transform().

Concretely, our data generation pipeline is as follows. As shown in Figure 2, we first prompt an LLM
to generate template versions of a given Python script, where the plotted data is masked out but all
other code is unchanged. This step ensures that the model writes code that extracts data directly
from the figure object rather than hardcoding values, while still providing sufficient context—labels,
axis titles, and visualization parameters—to infer the correspondence between data values and their
textual descriptions. In the next stage, the LLM is prompted with the template to first identify all
data series that are plotted by the code and for each data series, the LLM synthesizes a function
that extracts the visualized data and parameters specifying how each series is visualized. These
parameters are then used to instantiate question and referential expression templates. For example,
if a data series represents “Stock A” values over a set of days, the generated questions correspond
to individual data values, such as “What is the value of Stock A at day 10?”, with the referential
expression highlighting the corresponding visual element in the chart. After the data is extracted,
the model is prompted to augment the data extraction code to additionally extract the bounding box
for the visual element that corresponds to the visual element. When there are no explicit markers, we
instruct the model to generate a 10 × 10 bounding box. See Fig 3 (top) for an overview of the types
of questions, answers, and bounding boxes generated for each chart type. We use Claude Sonnet
4 (Anthropic, 2025) for all stages of the pipeline. See Appendix B for the data generation prompts
and Appendix E for examples of the data in CHARTREF.

We organize the generated data into two tasks: chart question answering and chart element localiza-
tion as shown in Figure 3 (bottom). To assess chart question answering with and without bounding
boxes, we use the generated questions, answers, and bounding boxes. For chart element localization,
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Pie Heatmap ScatterTreemap Radar

Line
QA: line value 

Visual: line marker / path 

Hist
QA: bin height 

Visual: bin rectangle

Density
QA: density value 

Visual: density curve

Errorbar
QA: bar error margin

Visual: bar error segment

QA: pie percentage
Visual: pie wedge 

QA: heatmap cell value
Visual: heatmap cell 

Area
QA: area height 

Visual: area boundary line

QA: treemap cell value
Visual: treemap cell

QA: radar values
Visual: radar vertex

Bar
QA: bar height

Visual: bar rectangle 

QA: scatter cluster mean
Visual: scatter cluster

The height of
the bar at x=2 is 
...  

Standard

Question: What is the height of the bar at x=2? Visual Grounding

 ChartRef

Object Detection

Task 1: Chart Question Answering Task 2: Chart Element Localization

Category: data Phrase: the bar at x=2Set-of-Marks

The height of the 
bar at x=2 (high-
lighted by bounding
box 1) is ...  

1

Figure 3: CHARTREF overview. Top: CHARTREF consists of figures across 11 chart types, with
questions that require correctly extracting the underlying data and are paired with the correspond-
ing answers, referential expressions, and bounding boxes around individual visual elements. For
example, questions for bar plots ask about values that are visualized by the bar rectangle. Bottom
Left: CHARTREF allows us to investigate the capabilities of multimodal foundation models on chart
question answering, with both the original image and annotated with the ground truth bounding box.
Bottom Right: With the ground truth bounding boxes, we benchmark models on two vision tasks:
object detection, where all visual elements representing the data are identified, and visual grounding,
where given a phrase, the model localizes a specific data element.

we consider two vision tasks: object detection and visual grounding. For object detection, we use
all annotated bounding boxes for a given figure as ground truth. For visual grounding, by the nature
of our data generation, there is a one-to-one mapping between referential expressions and bounding
boxes.

2.2 DATA POSTPROCESSING

Table 1: Data generation statis-
tics.

Statistic Value
Total
# of Examples 44345
# of Figures 1259
# of Chart Types 11

Object Detection
# of Annotations 40336
# of Figures 1148

Visual Grounding
# of Examples 38846
# of Figures 1141

After generating (question, answer, referential expression,
bounding box) tuples, we post-process the questions and an-
swers as follows. We employ a multimodal LLM to determine
the appropriate precision level for each ground truth answer
and establish an error margin based on the spacing of relevant
axis ticks. For numerical answers, we consider a prediction
correct if |round(yg, p)−yp| ≤ ϵ, where yg is the ground truth,
yp is the predicted answer, p is the determined precision level,
and ϵ is the error margin. For text answers, we use exact string
matching.

We then validate the quality of the questions using a multi-
modal LLM to classify each question into one of three cat-
egories: 1) ambiguous questions, where there is not enough
context in the chart to answer the question, 2) defective ques-
tions, where the answer is trivially answered without looking
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Figure 4: CHARTREF statistics. Left: The number of figures per type shows that the dataset is
balanced across figure types. Middle: The number of questions per type reflects that certain figure
types tend to reflect much denser information – for example a pie chart with several wedges will
have fewer examples than a line plot reflecting tens or hundreds of individual examples. Right:
The distribution of the number of questions show that the plots are densely annotated with bounding
boxes, with many figures having over 20 paired examples.

at the chart, and 3) valid questions that do not fall into the above two categories. This ensures that the
resulting questions do not reference information that is not available in the chart image. See Table
1 for the statistics. We use Claude Sonnet 4 as the multimodal LLM and detail the postprocessing
prompts in Appendix C.

2.3 DATASET STATISTICS

We apply our pipeline to ChartMimic (Yang et al., 2025), a diverse dataset of human-curated Python
chart rendering scripts with 2400 total figures across 22 different chart types. We select 11 of the
chart types for which we could generate accurate bounding box annotations. In total, we generated
44345 paired question, answer, referential expression, and bounding box from 1259 figures. For
object detection, we filtered out bounding box annotations with greater than 0.95 IoU overlap and did
not include density plots, which represent continuous functions or distributions rather than discrete
points, resulting in 40336 bounding boxes across 1148 figures. For visual grounding, we filtered out
ambiguous and defective questions as discussed in Section 2.2, in addition to duplicate referential
expressions. This resulted in a total of 38846 filtered examples across 1141 figures. In Figure 4, we
analyze the distribution of figures per type, showing that although there is a higher proportion of bar
and line plots, our data is balanced. The number of questions per figure type reflects the information
density of plots – for example, line plots contain many individual data points. The distribution of the
number of questions shows that the figures are densely annotated, with many having over 20 paired
examples.

3 RELATED WORK

We outline prior work in assessing chart question answering, which have paired (chart image, ques-
tion, answer) but lack visual annotations, as well as work that curates visual annotations for charts
and other structured visuals, but often are limited to a subset of simple chart types, lack alignment
between annotations and question-answers, or require human annotators.

Chart Question Answering Datasets. One line of work (Masry et al., 2022; Xu et al., 2024; Wang
et al., 2024; Masry et al., 2024; 2025; Xia et al., 2025; Tang et al., 2025) focuses on evaluating chart
question answering (CQA) that involve visual and logical reasoning over charts. Some benchmarks
are human annotated – for example, ChartQA (Masry et al., 2022) consists of bar, line, and pie charts
collected through web-crawling and human-annotated questions and answers. ChartQAPro (Masry
et al., 2025) has been proposed as a CQA dataset with enhanced visual diversity. CharXiv (Wang
et al., 2024) sources its charts from arXiv papers and evaluates multimodal LLMs on descriptive
questions on extracting information from basic chart elements and reasoning questions requiring
synthesizing information across multiple visual elements. ChartMuseum (Tang et al., 2025) con-
tains expert-annotated questions focusing on visual reasoning that is difficult to perform with textual
chain-of-thought. Other benchmarks are curated in an automated manner, involving multimodal
LLMs in the loop. ChartX (Xia et al., 2025) uses GPT-4 to automatically generate chart title and
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types that are aligned with CSV data for chart perception questions and task templates to gener-
ate cognition questions that builds on the perception questions. ChartBench (Xu et al., 2024) first
generates the chart using LLMs to synthesize chart themes and JSON data and subsequently syn-
thesizes questions and answers from chart templates. ChartGemma (Masry et al., 2024) proposes
a data curation pipeline that leverages a multimodal LLM to directly generate questions from chart
images.

Visual Annotation Datasets. Prior work has collected bounding box annotations for chart elements
but typically only for a narrow range of chart types. FigureQA (Kahou et al., 2018) generates bound-
ing box annotations from Bokeh (de Ven, 2018) for bar, lines, and pie charts, but these annotations
are limited in visual diversity and lack alignment between annotations and questions. Other works
leverage off-the-shelf vision models, such as PlotQA (Methani et al., 2020), which uses Faster-
RCNN (Ren et al., 2017) to detect all bars, lines, and chart interpretation elements such as titles and
labels. ChartLens (Suri et al., 2025) uses instance segmentation to annotate bar and pie charts and a
specialized Transformer model to detect lines. Because these approaches depend on computer vision
models for localization, they are inherently constrained to chart types where such models perform
reliably. Orthogonal to our work, prior works (Battle et al., 2018; Zhu et al., 2025a) have developed
pipelines for extracting annotations from SVG scripts, which have spatial coordinates directly em-
bedded in the source code. Beagle (Battle et al., 2018) extracts circles, rectangles, line, and paths
from charts. OrionBench (Zhu et al., 2025a) focuses on automatically synthesizing annotations for
chart and human-readable objects embedded in infographics. Recently, RADAR (Rani et al., 2025)
has curated human-annotated bounding boxes that correspond to individual CQA reasoning steps.

4 EXPERIMENTS

4.1 DO VISUAL ANNOTATIONS ENHANCE CHART PERCEPTION?

Table 2: Set-of-Marks with bounding boxes en-
hances chart perception.

Model Direct CoT SoM
Qwen2.5-VL-72B 67.6 66.6 70.2
InternVL3-78B 67.9 66.5 69.6
GPT-5 80.0 80.0 83.8
GPT-o3 78.4 76.8 81.4
Gemini-2.5-Pro 72.9 - 79.7

To motivate the use of bounding boxes to locate
relevant visual elements for chart question an-
swering, we evaluate the performance of multi-
modal LLMs on our synthesized dataset, where
questions and answers are paired with ground
truth bounding boxes that localizes the visual
element corresponding to the answer. This en-
ables us to evaluate the impact of annotating the
ground truth bounding box on chart perception.
We evaluate three closed source models, GPT-
5 (OpenAI, 2025b), GPT-o3 (OpenAI, 2025a),
Gemini-2.5-Pro (Comanici et al., 2025), and
two open source models, Qwen2.5-VL (Bai et al., 2025), and InternVL3 (Zhu et al., 2025b). For all
models, we experiment with three settings: standard prompting, chain-of-thought, and set-of-marks
(SoM) prompting (Yang et al., 2023a), a visual prompting technique designed to ground model re-
sponses in visual cues. In our SoM prompting, the ground truth bounding box is overlayed on the
image with a numerical label, allowing models to reference it in their answers. Results are shown in
Table 2.

In comparison to standard prompting, set-of-marks prompting enhances performance by 2-3% for
open-source models and 3-7% for closed-source models. In contrast, chain-of-thought prompt-
ing does not improve performance and even degrades it for Qwen2.5-VL, InternVL3, and GPT-o3.
These results demonstrate that when the relevant chart visual elements are localized, downstream
question answering is improved as the model is able to ground its reasoning in the bounding boxes.

4.2 OBJECT DETECTION

Using the bounding boxes, we evaluate vision models on object detection, where the task is to de-
tect all visual elements corresponding to discrete data elements. We consider two types of models:
traditional object detection models that must be trained to evaluate new categories, as well as foun-
dation models capable of zero-shot detection. For traditional object detection models, we evaluate
YOLOv3 (Redmon & Farhadi, 2018), Faster-RCNN (Ren et al., 2017), RTMDet (Lyu et al., 2022),
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Table 3: Object detection performance. Left: Traditional object detection and foundation models
finetuned on CHARTREF. Right: Zero-shot inference with foundation models.

Model AP AP50 AP75 AR
YOLOv3 25.0 52.8 20.4 37.7
Faster-RCNN 54.1 60.4 60.4 67.4
Co-DETR 64.0 79.8 69.7 74.8
RTMDet 38.0 56.2 40.1 16.0

MM-GD 61.5 79.1 67.6 72.8
LLMDet 64.2 80.6 68.5 75.1

Model AP AP50 AP75 AR
GroundingDINO (T) 5.2 8.7 5.1 20.3
GroundingDINO (B) 4.7 7.8 4.7 20.2
GLIP (T) 3.8 6.6 3.8 13.2
GLIP (L) 5.8 8.7 5.8 16.3
MM-GD T) 4.1 8.0 3.6 26.4
MM-GD (B) 5.8 10.6 5.3 27.1
MM-GD (L) 3.6 6.2 3.7 26.7
LLMDet (T) 5.8 10.6 5.3 28.2
LLMDet (B) 6.3 12.2 5.6 30.0
LLMDet (L) 3.3 6.6 2.9 23.8

and CoDeTR (Zong et al., 2023). For vision models, we evaluate Grounding DINO (Liu et al., 2024),
MM-Grounding-DINO (MM-GD) (Zhao et al., 2024), GLIP (Li et al., 2022), and LLMDet (Fu et al.,
2025). As these models are not adapted to charts, we evaluate both the pretrained and finetuned
models on our dataset.

Results and Analysis. Results for zero-shot inference and finetuned models on CHARTREF are
shown in Table 3. For zero-shot inference, we benchmark vision foundation models across different
sizes and show that the best performance achieved is 6.3 AP and 30.0 AR. Notably, increasing model
size does not always enhance performance, demonstrating the out-of-domain shift from natural im-
ages to chart object detection. After finetuning on CHARTREF, AP improves from 6.3 to 64.2 and
AR improves from 30.0 for 80.6 for LLMDet, with similar improvements seen in MM-GD. The best
traditional object detection model, Co-DETR, achieves 64.0 AP and 74.8 AR.

Ground truth Prediction Ground truth Prediction

Figure 5: Object Detection Example Errors. We visualize errors made by Co-DETR, with ground
truth bounding boxes displayed in blue and predicted bounding boxes displayed in red. Left: For
area charts, data is plotted at each x-tick. However, the predictions are not able to capture the correct
data points and are missing bounding boxes where the slope of the lines are constant and lack salient
features. Right: For scatter plots, the ground truth visual elements include clusters of data points.
Although the predictions are able to capture the blue cluster as it is well-separated from the other
data points, the model does not correctly separate the overlapping orange, purple, and green clusters.

Additionally, we conduct a qualitative analysis in Figure 5 of Co-DETR’s errors. We find that the
models have an overreliance on salient perceptual features. For example, on the left chart of Fig. 5,
the model struggles to identify individual data points at the x-ticks. On the right, Co-DETR does not
correctly separate overlapping clusters that denote separate data series.

We further analyze Co-DETR’s performance across different chart types in Table 4. We find that the
lowest performance is for line and scatter plots, as the bounding boxes around individual markers in
the line or scatter plot are typically small, whereas the model performs best for treemaps, pie charts,
and bars, which contain fewer fine-grained bounding boxes and are represented by well-defined
shapes, e.g. rectangles for treemaps and bars and pie wedges for bar charts.
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Table 4: Object detection performance across chart types. Both AP@50 and AR scores are above
0.8 for errorbar, bar, tree, pie, and heatmap plots. The data for these plot types are represented by
larger geometric shapes, such as rectangles, wedges, and grid cells, making it easier for the model
to detect. In contrast, detecting individual data points for line and scatter plots are more difficult, as
these visual elements are more fine-grained.

Metric Tree Bar Errorbar Line Radar Hist Area Scatter Heatmap Pie
AP50 92.3 91.3 80.0 60.4 74.3 84.8 85.6 69.4 95.6 82.4
AR 99.0 96.4 86.7 50.5 65.8 78.2 65.5 69.8 92.7 98.4

4.3 VISUAL GROUNDING

Table 5: Visual grounding performance

Model Acc@1 Acc@5 Acc@10
Zero-shot
GroundingDINO (T) 0.6 2.8 4.9
GroundingDINO (B) 0.7 3.0 5.3
GLIP (T) 0.4 0.5 0.5
GLIP (L) 0.5 0.5 0.6
MM-GroundingDino (T) 0.3 2.7 5.3
MM-GroundingDino (B) 0.2 2.8 5.3
MM-GroundingDino (L) 0.3 3.1 5.9
LLMDet (T) 0.5 3.9 7.4
LLMDet (B) 0.6 3.6 6.9
LLMDet (L) 0.6 3.3 5.7

Finetuned
MM-GroundingDino (T) 2.8 13.5 22.9
LLMDet (T) 2.3 12.0 21.3

GPT-4o 0.7 - -
Qwen-2.5-VL-72B 0.5 - -
InternVL3-78B 0.2 - -

We benchmark both vision models
and multimodal LLMs on chart vi-
sual grounding, where given a phrase,
such as “the bar for Model A”, the
model outputs the correct bound-
ing box that localizes the phrase.
For vision models, we consider the
same vision foundation models dis-
cussed in Section 4.2. We evaluate
both zero-shot capabilities as well as
finetune models on our CHARTREF.
For reference, we additionally bench-
mark multimodal LLMs with zero-
shot referential capabilities, includ-
ing GPT-4o, Qwen2.5-VL, and In-
ternVL3. We show the results in Ta-
ble 5.

Results and Analysis. Among zero-
shot vision models, performance is
low, with all models achieving below
1 Acc@1. Larger vision models do
not offer significant performance im-
provements, demonstrating that cur-
rent models are not well-adapted to the task. In comparison, multimodal LLMs perform similarly
to the zero-shot foundation models, in spite of the increased amount of training on diverse image
sources, which often include chart data, and on chart question-answering. Finetuning vision models
yields a significant improvement: MM-GroundingDINO improves from 0.3 to 2.8 and LLMDet’s
accuracy improves from 0.6 to 2.3. However, the performance on visual grounding is still far be-
low the object detection capabilities, which are close to perfect. This suggests that even though the
vision backbone can be adapted to detect visual elements in charts, both vision foundation models
and multimodal LLMs lack the vision-language alignment to understand the semantic information
of charts beyond perceptual features.

For MM-GroundingDINO and GPT-4o, we visualize the visual grounding results in Figure 6. We
find that MM-GroundingDINO tends to predict bounding boxes that do correspond to a visual ele-
ment in the plot; however, it is not able to correctly identify the visual element referred to by the text.
In contrast, GPT-4o’s predictions tend to be imprecise, even in the presence of visual markers and
text. These findings highlight that the main bottleneck lies in linking text references to the correct
visual elements: vision foundation models can localize objects but fail to disambiguate which ele-
ment is referenced, while multimodal LLMs struggles with precise localization altogether. Closing
this gap will require improving models’ ability to jointly reason over visual structure and textual
cues, rather than relying solely on perceptual or linguistic features.
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Ground Truth

Ground Truth

Ground Truth
Prediction

Prediction

Prediction

the # of publications for pragmatism in the 1960s the Unemployment Rate bar for 2018 the market share wedge for Microsoft

(a) Examples of MM-GroundingDINO visual grounding errors.

the Revenue value for Q4

Ground Truth

Prediction

the density value at income amount 60K

Prediction

Ground Truth

the sales value of cherries for Vendor A

Prediction

Ground Truth

(b) Examples of GPT-4o visual grounding errors.

Figure 6: Visual grounding errors. Although MM-GroundingDINO tends to produce bounding
boxes that are more closely aligned to the visual elements in the plot, it is not able to localize the
correct visual element. Top Left: MM-GroundingDINO predicts a bounding box that contains
multiple data points. Top Middle: The predicted bar does not match ground truth. Top Right. Even
for a plot that represents only 6 distinct data points, MM-GroundingDINO localizes the wrong pie
wedge. In contrast, GPT-4o’s predictions often do not precisely localize the prediction. Bottom
Left: The predicted bounding box is vertically offset from the ground truth and is also much larger
than the visualized markers. Bottom Middle: GPT-4o’s prediction is vertically offset and localizes
an empty region of the plot. Bottom Right: The prediction is horizontally offset from the ground
truth.

5 CONCLUSION

In this work, we present CHARTREF, a large scale dataset of 38846 paired (chart question, an-
swer, referential expression, and bounding box) across 11 figure types. Our data curation pipeline
leverages the chart’s Python rendering code to programatically extract bounding boxes of visual el-
ements that are aligned with questions and answers. With CHARTREF, we demonstrate that access
to ground-truth bounding boxes improves chart question answering, motivating approaches capable
of chart visual grounding. We thus benchmark vision models and multimodal LLMs on chart ob-
ject detection and chart visual grounding. Through finetuning on CHARTREF, vision models can
be adapted to detect all visual elements corresponding to the underlying data. However, both vision
models and multimodal LLMs struggle to achieve comparable visual grounding performance when
given a referential phrase. This gap highlights that chart visual grounding requires novel advances in
text-vision alignment that would allow models to integrate diverse contextual cues, such as the leg-
end, axis ticks, and subplot arrangement, to localize fine-grained information in charts. CHARTREF
serves as a tool for both evaluating and training models on chart visual grounding, inspiring future
work in models capable of human-like visual grounding.

Limitations. Because CHARTREF is generated from Python rendering code, it may not fully cap-
ture the stylistic variability, noise, or imperfections of real-world charts, potentially limiting model
generalization to figures from research papers, reports, or scanned images. Additionally, the refer-
ential expressions in CHARTREF only require extracting individual data from the chart and do not
cover more complex structures, such as comparisons or relationships between multiple data points.
Finally, while the dataset spans 11 chart types, it does not encompass all visualization formats,
including network diagrams, 3D plots, or interactive charts.
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6 ETHICS STATEMENT

Our contribution represents a step towards developing models capable of localizing relevant visual
elements in charts, which enhances the interpretability of model outputs and supports more trans-
parent AI systems. This advancement contributes to society by enabling better understanding and
validation of automated chart analysis, ultimately benefiting applications in data visualization, ac-
cessibility, and decision-making processes.

We have carefully reviewed all applicable ethical guidelines and believe our work adheres to the
principles of scientific excellence, transparency, and responsible research conduct. Our dataset gen-
eration uses ChartMimic as input, which is available under the Apache 2.0 license, and we will
adhere to the terms of this license when releasing CHARTREF, thus respecting intellectual property,
privacy, and confidentiality guidelines.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility of our work, we provide comprehensive details of our methodology and
experimental setup. The main text includes a detailed overview of our data generation pipeline,
explaining the key steps for creating CHARTREF. Appendix B contains all prompts used in our
LLM-based data curation process, enabling the replication of our dataset generation approach. Ad-
ditionally, we detail experimental settings, hyperparameters, and evaluation protocols in AppendixD.
We plan to release CHARTREF and code upon publication to facilitate further research and repro-
duction of our results.

REFERENCES

Anthropic. Introducing Claude 4. https://www.anthropic.com/news/claude-4, May 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Ming-Hsuan Yang, Zhaohai Li, Jianqiang
Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen
Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-VL Technical Report.
CoRR, abs/2502.13923, 2025. doi: 10.48550/ARXIV.2502.13923.

Leilani Battle, Peitong Duan, Zachery Miranda, Dana Mukusheva, Remco Chang, and Michael
Stonebraker. Beagle: Automated Extraction and Interpretation of Visualizations from the Web. In
Regan L. Mandryk, Mark Hancock, Mark Perry, and Anna L. Cox (eds.), Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, CHI 2018, Montreal, QC, Canada,
April 21-26, 2018, pp. 594. ACM, 2018. doi: 10.1145/3173574.3174168.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit S.
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin
Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaı̈ Deutel, Nam Nguyen,
Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller,
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used to improve the phrasing and clarity of the paper, particu-
larly in the introduction and abstract, where we asked the model to improve an existing draft. LLMs
were also used to enhance the prompts used in the data curation and verification pipeline. They did
not play a significant role in research ideation.

B DATA GENERATION PROMPTS

Below is the prompt for generating templates from the input Python script.

Stage 1: Template Generation Prompt
You are a helpful assistant. Given a python script as follows:
‘‘‘python
{code}
‘‘‘

Your task is to replace the data that is plotted to placeholder <data>
tokens.

## Replace with <data>:
- Data values that appear as visual elements within the plot, such as
bars, lines, points, etc.
- Text labels that appear INSIDE the plotted area (annotations, data
labels on visual elements)

## Keep unchanged:
- Axis labels, titles, legends (all legend text)
- Tick labels and categorical labels
- All plotting parameters (colors, sizes, styles, limits)

Example:
‘‘‘python
# Original
data = [10, 25, 30]
labels = [’A’, ’B’, ’C’]
plt.bar(labels, data)
plt.title(’Chart’)

# Template
data = [<data>, <data>, <data>]
labels = [’A’, ’B’, ’C’] # Keep unchanged
plt.bar(labels, data)
plt.title(’Chart’) # Keep unchanged
‘‘‘

Below is the prompt for extracting individual data elements and identifying arguments, as well
as generating question and referential expression templates that use these arguments. Note
that we prompt the model with additional guidelines for specific chart types, denoted by
chart type prompt.

Stage 2: Extract Data and Generate Question Templates Prompt
You are a helpful assistant. Given a template python script as follows:
‘‘‘python
{code}
‘‘‘

Notice that data values are intentionally filled in with <data>
placeholders. You have access to the matplotlib fig object that this
script with the filled in data values creates.
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## Your Task
Create extraction functions that extract the actual data values plotted/
displayed in the rendered matplotlib figure. These values generally
correspond to the <data> placeholders but may be approximated, rounded,
or otherwise modified during visualization.

## Steps:
1. Identify visual attributes in the script. Different attributes
represent distinct data series or groupings, such as such as individual
line series, bar groups, scatter plot series, or sets of data labels
displayed within the chart. Do not extract hardcoded values that are not
masked out with <data> placeholders - these are not the underlying data
being plotted.
2. For each attribute, create two functions following the pattern below
3. Extract data as it appears visually - approximated/binned values are
acceptable

## Data Extraction and Kwargs Generation Functions
- Name: extract_and_generate_kwargs_<attribute_name>(fig)
- Extract the actual data values for the given attribute that is plotted/
displayed in the chart. Infer the attribute name from the context of the
template script.
- DO NOT extract axis labels, legend labels, tick labels, titles, or
other chart annotations used in interpreting the chart
- DO NOT round the data values after extracting them from the matplotlib
figure
- Return a list of dictionaries, where each dictionary contains:

- A "data" key with the extracted value (number or string only),
which is used to format the answer template
- Additional kwargs that capture all dimensions of variation needed
to identify the data value, which are used to format the question
template

- Values should match what’s visually plotted, which may be approximated/
rounded from original data
- Extracted data can be either numerical values or text strings,
depending on what is plotted

## Question and Answer Template Functions
- Name: get_templates_<attribute_name>()
- Return a tuple containing (question_template, answer_template) as
strings with {{placeholder}} variables
- Questions must be answerable from the chart image alone
- Answer template should simply be "{{data}}"
- DO NOT round any formatted values in the question or the answer
template
- Use descriptive references to identify the extracted data based on
visual elements observable in the chart image itself (e.g., category
names, legend labels, axis values, colors, positions). DO NOT USE generic
index-based references like "first bin", "second point", or "item 1",

which are ambiguous when looking at the rendered chart
- Templates should work for all data values in the attribute and yield
unique questions for each data value

## Additional Instructions
- Access legend elements: Use ax.get_legend() to get the legend object,
then legend.get_children() to access the individual legend components (
text labels, colored patches, lines).
{chart_type_prompt}
## Format:
‘‘‘python
# Imports here (matplotlib.pyplot, numpy, etc.)

def extract_and_generate_kwargs_<attribute_name>(fig):
\"\"\"
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Extract plotted data values and generate kwargs for question
formatting
\"\"\"
kwargs_list = []
# Extract data and build kwargs dictionaries
# Each dict should include ’data’ key, and other identifying
parameters
return kwargs_list # List of dicts, each with ’data’ and other
kwargs

def get_templates_<attribute_name>():
\"\"\"
Return question and answer templates with {{placeholders}}
\"\"\"
question_template = "What is the {{metric}} for {{category}}?" #
Example
answer_template = "{{data}}" # Always just {{data}}
return question_template, answer_template

‘‘‘
Create separate code blocks for each visual attribute. Each function must
be self-contained.

Below is the prompt for extracting bounding boxes.

Stage 3: Extract Bounding Boxes Prompt
You are a helpful assistant. Given a previously created data extraction
function for a single attribute, modify it to add bounding box generation
capabilities.

‘‘‘python
{extract_functions}
‘‘‘

## Task
Modify the provided extract_and_generate_kwargs_<attribute_name> function
and get_templates_<attribute_name> function to include bounding box

functionality.

## Required Modifications:

### Modify Data Extraction Function
- Update extract_and_generate_kwargs_<attribute_name>(fig) to include "
bbox" key in returned dictionaries
- The "bbox" key refers to the bounding box as a matplotlib Bbox object
that localizes the visual element representing this data point. The
bounding box must be in display coordinates. Follow the below tips:

- Target the most specific visual element for each data point (e.g.
marker, bar segment, text label)
- Use ax.get_window_extent() when possible.
- Avoid converting to display coordinates manually when the bounding
box can be obtained directly from the matplotlib object.

- CRITICAL: Each data value must have a unique bounding box

### Modify Template Function
- Update get_templates_<attribute_name>() to return 4-tuple: (
question_template, answer_template, bbox_question_template,
bbox_answer_template)
- Bbox question template: "Provide the bounding box coordinates of the
region this sentence describes: [description using same placeholders as
data question]"
- Bbox answer template: always "{{bbox}}"
{chart_type_prompt}
## Expected Output Format:
‘‘‘python
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# Imports here

def extract_and_generate_kwargs_<attribute_name>(fig):
\"\"\"Extract plotted data values and generate kwargs with bounding
boxes\"\"\"
kwargs_list = []
# Extract data and build kwargs dictionaries with ’data’, ’bbox’, and
identifying parameters
return kwargs_list

def get_templates_<attribute_name>():
\"\"\"Return question, answer, and bbox templates\"\"\"
question_template = "What is the {{metric}} for {{category}}?"
answer_template = "{{data}}"
bbox_question_template = "Provide the bounding box coordinates of the
region this sentence describes: the {{metric}} bar for {{category}}"
bbox_answer_template = "{{bbox}}"
return question_template, answer_template, bbox_question_template,
bbox_answer_template

‘‘‘

Provide the complete modified functions for this specific attribute.
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Table 6: Additional Instructions for Extracting Data for Each Chart Type
Chart Type Additional Instructions
Area At any given x-coordinate in a stackplot, each layer’s polygon has both a top edge

and a bottom edge. The individual layer height is simply: individual height
= y top - y bottom at that x-coordinate. Follow the below approach to extract
individual layer heights:
• Extract x-coordinates: Get the unique x-values (data points) from the polygon

vertices
• For each collection (layer) and each x-coordinate: Find all vertices at that ex-

act x-coordinate (within small tolerance). Get y top = max(y values at x)
and y bottom = min(y values at x). Calculate individual height
= y top - y bottom

• Generate kwargs: Include the individual height, layer name, and x-coordinate
Errorbar • ax.containers will contain both BarContainer and ErrorbarContainer objects.

Check the type of the container and process accordingly.
• For ErrorbarContainer objects, check container.has xerr and
container.has yerr to determine error bar orientation.

• container.lines is a tuple with structure like (data line,
(cap line1, cap line2), (line collection,)). Use
container.lines[2][0] to get the error bar stems.

• When processing the unpacked line objects, use the has xerr/has yerr results
to determine which coordinates contain the error information.

Scatter If individual points are not uniquely identifiable by categorical labels, focus on aggre-
gate statistics:
• Use ax.collections to get scatter data points, then compute aggregate values

from the x,y coordinates, such as cluster means, ranges of values, etc. The bounding
box template should refer to the cluster of points used to compute the aggregate
statistic.

Density When extracting values from a continuous distribution or function, you must first
identify the tick values from ax.get xticks() or ax.get yticks(). Extract
ONLY the data points at these tick values. Do NOT extract data at other arbitrary
points.

Hist • Each question should ask about the height of a specific bin within a specific interval.
• Determine intervals by obtaining the x-tick positions using ax.get xticks().

For every pair of adjacent x-ticks, define an interval [xtick i, xtick {i+1}].
• For each interval, include only bars whose centers fall within that range. You MUST

refer to these bins using ordinal numbers (first, second, third, etc.) from left to right
within each interval. DO NOT use generic index-based references like “bin 1”, “bin
2”, or “item 1”, which are ambiguous when looking at the rendered chart.
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Table 7: Additional Bounding Box Generation Instructions for Each Chart Type
Chart Type Additional Instructions
Area When visible markers are present, compute the bounding box around each marker.

Otherwise, when the extracted values are heights of layers, compute the center of the
bounding box at the top of the layer at each x-coordinate and create a square bounding
box with 10 × 10 pixel dimensions centered at that point. Do NOT use other bounding
box dimensions.

Line When visible markers for the data are present, compute the bounding box around each
marker. Otherwise, when there are no markers, create a square bounding box with 10 ×
10 pixel dimensions for each data point. Do NOT use other bounding box dimensions.

Radar When visible markers for the data are present, compute the bounding box around each
marker. Otherwise, when there are no markers, create a square bounding box with 10 ×
10 pixel dimensions for each data point. Do NOT use other bounding box dimensions.

Density If the extracted values are the density at specific coordinates, create a square bounding
box with 10 × 10 pixel dimensions centered at the point on the density curve corre-
sponding to each coordinate. Do NOT use other bounding box dimensions.

Scatter If the extracted values are aggregate statistics, compute the bounding box over the
relevant cluster of points. If the extracted values are individual points, compute the
bounding box over each point.

Error Bar Manually calculate the bounding box using the segment endpoints: use
ax.transData.transform to convert the two segment points to dis-
play coordinates. Create a Bbox from the transformed coordinates using
Bbox.from bounds(min x, min y, width, height). For the dimension
perpendicular to the error bar, use a fixed width of 5 pixels.

C DATA POSTPROCESSING PROMPTS

Below is the prompt to determine the error margin for generated questions and answers.

Postprocessing: Error Margin Prompt

You are given a chart image and several questions about the chart.

{questions}

## Your Task:
Analyze the chart’s visual elements to determine the appropriate
precision level of the ground truth answer and establish a reasonable
error margin for evaluating predicted answers. You should reason about
how you would answer these questions based on the chart image and
identify the relevant visual elements.

### Step-by-Step Analysis:

**STEP 1: Identify Answer Type**
- **Direct readings**: Values explicitly shown as text labels, legend
items, category names, or data point labels
- **Estimated values**: Values that must be visually interpolated from
axis positions, calculated, or derived

**STEP 2: For Direct Readings:**
- **Ground truth precision**: If the answer is a number, use the
precision of the number in the text label (e.g., "42.5" has precision 1)
- **Error margin**: 0 (exact match required for directly labeled values)
- **Special case**: If answer is categorical/text, set precision to null
and error margin to 0
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**STEP 3: For Estimated Values: Determine Ground Truth Precision and
Error Margin**

Look at the axis tick labels and identify the **smallest meaningful unit
of difference** between consecutive ticks. The ground truth should be **
one decimal place more precise** than the tick interval, while the error
margin accounts for visual estimation uncertainty.

### Tick Interval Analysis Examples:

**Interval = 1 (ticks: 1, 2, 3, 4, 5)**
- Ground truth precision: 1 (tenths place) - one level more precise than
interval
- Error margin: 0.5 (half the tick interval)
- Reasoning: Ground truth can be 2.3, 4.7, etc. Visual tolerance is
+/-0.5

**Interval = 10 (ticks: 10, 20, 30, 40, 50)**
- Ground truth precision: 0 (ones place) - one level more precise than
interval
- Error margin: 5 (half the tick interval)
- Reasoning: Ground truth can be 23, 47, etc. Visual tolerance is +/-5

**Interval = 20 (ticks: 20, 40, 60, 80, 100)**
- Ground truth precision: 0 (ones place) - one level more precise than
interval
- Error margin: 10 (half the tick interval)
- Reasoning: Ground truth can be 33, 67, etc. Visual tolerance is +/-10

**Interval = 0.1 (ticks: 0.1, 0.2, 0.3, 0.4)**
- Ground truth precision: 2 (hundredths place) - one level more precise
than interval
- Error margin: 0.05 (half the tick interval)
- Reasoning: Ground truth can be 0.23, 0.37, etc. Visual tolerance is
+/-0.05

**Interval = 0.5 (ticks: 0.5, 1.0, 1.5, 2.0)**
- Ground truth precision: 2 (hundredths place) - one level more precise
than interval
- Error margin: 0.25 (half the tick interval)
- Reasoning: Ground truth can be 1.23, 1.67, etc. Visual tolerance is
+/-0.25

### Precision Scale Reference:
The precision can be **any integer** (positive, negative, or zero) or **
null**:

- **null**: Categorical/text values
- **3**: Thousandths place (0.001)
- **2**: Hundredths place (0.01)
- **1**: Tenths place (0.1)
- **0**: Ones place (1)
- **-1**: Tens place (10)
- **-2**: Hundreds place (100)
- **-3**: Thousands place (1000)

### Ground Truth Precision Rule:
**For estimated values**: Ground truth precision = interval_precision + 1
**For direct readings**: Ground truth precision matches the precision
shown in labels

### Complex Cases:
- **Multiple axes**: Use the axis most relevant to the answer
- **Logarithmic scales**: Focus on the linear spacing between major ticks
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- **Mixed scales**: Choose the most restrictive precision that’s
reasonable for the ground truth
- **Percentage charts**: Disregard the percentage sign, focus on
numerical values
- **Calculated values**: Consider the precision of the least precise
component

Output your analysis as a JSON object:
‘‘‘json
{{

"answer_type": "direct_reading" or "estimated_value",
"ground_truth_precision": <integer or null>,
"error_margin": <number or 0>,
"tick_interval": <the interval between consecutive ticks, if
applicable>,
"reasoning": "Detailed explanation: Ground truth precision [X] (one
level more precise than tick interval [Y]) because [reason]. Error
margin [Z] (half tick interval) because [visual estimation tolerance
reasoning]"

}}
‘‘‘

Below is the prompt to evaluate question quality.

Postprocessing: Question Quality Prompt
You are given a chart image and several questions about the chart.

{questions_section}

## Your Task:
Evaluate the overall quality and answerability of this set of questions
given the chart image. You should reason about how you would answer these
questions based on the chart image. Since all questions follow a similar
reasoning pattern, judge them as a group and determine which category

they fall into:

1. **VALID**: Questions that can be answered by examining the chart, even
if they require:

- Making reasonable assumptions about standard chart elements (axes,
legends, data points)
- Basic chart reading skills (identifying trends, comparing values,
reading labels)
- Standard domain knowledge (e.g., knowing that "Q1" means first
quarter)
- IMPORTANT: Questions with precise numerical parameters are valid as
long as the underlying data is represented in the chart.

2. **AMBIGUOUS**: Questions that are genuinely unanswerable because:
- Key terms are completely undefined AND cannot be inferred from chart
context

- The question refers to chart elements that definitively don’t exist

3. **DEFECTIVE**: Questions where:
- The answer is explicitly stated in the question text itself
- No chart examination is needed because the answer is given away in
the question

Output a JSON object with the following fields:
‘‘‘json
{{

"questions_quality": "<AMBIGUOUS|VALID|DEFECTIVE>",
"justification": "<Brief explanation for your judgment of the
question set>"

}}
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‘‘‘

D EXPERIMENT DETAILS

D.1 MULTIMODAL LLM EVALUATION

In Table 8, we detail the standard, chain-of-thought, and set-of-marks prompts that we use for eval-
uating chart question-answering. Table 9 shows the prompt we use for evaluating visual ground-
ing. Additionally, for GPT-4o, we instruct the model to output normalized coordinates in [0, 1].
Qwen2.5-VL natively outputs coordinates relative to the resized image, and InternVL3 is prompted
to normalize coordinates by 1000.

Table 8: Chart Question Answering Prompts
Prompt Type Prompt
Standard You are an expert in analyzing charts. Your task is to answer the question based

on the chart provided.

At the end of your response, provide your final answer in the format ”Answer: X”
where X is your final answer.

Question:{question}
CoT You are an expert in analyzing charts. Your task is to answer the question based on

the chart provided. Think step by step and provide your reasoning before giving
the final answer.

At the end of your response, provide your final answer in the format ”Answer: X”
where X is your final answer.

Question:{question}
Set-of-Marks You are an expert in analyzing charts. Your task is to answer the question based

on the chart provided. Think step by step, and in your reasoning, refer to relevant
bounding boxes labeled with numbers.

At the end of your response, provide your final answer in the format ”Answer: X”
where X is your final answer.

Question: {question}

Table 9: Visual Grounding Prompt
Prompt Type Template Content
Standard You are an expert in analyzing charts. Your task is to localize the visual element

corresponding to a given region.

At the end of your response, provide your final answer in the format ”Answer:
[x1, y1, x2, y2]” where [x1, y1] are the coordinates of the top-left corner of the
bounding box and [x2, y2] are the coordinates of the bottom-right corner of the
bounding box.

Provide the bounding box coordinates of the region this sentence describes:
{referential expression}

D.2 CHART ELEMENT LOCALIZATION

For object detection, we finetune 6 models: MM-GD (Zhao et al., 2024), LLMDet (Fu et al., 2025),
Faster R-CNN (Ren et al., 2017), YOLOv3 (Redmon & Farhadi, 2018), RTMDet (Lyu et al., 2022),
and Co-DETR Zong et al. (2023). For visual grounding, we finetune MM-GD and LLMDet.
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For each model, we specify the number of epochs, batch size, and learning rate when fine-tuning
on CHARTREF’s training set in Table 10 shows the fine-tuning hyperparameters. The training was
done on 4 NVIDIA H200s.

Table 10: Training hyperparameters
Object Detection

Hyperparameters MM-GD LLMDet Faster R-CNN YOLOv3 RTMDet Co-DETR

Optimizer AdamW AdamW SGD SGD AdamW AdamW
E 100 100 100 120 50 30
B 4 16 4 4 16 16
lr 1e− 4 1e− 4 0.02 1e− 3 4e− 3 1e− 4

weight decay 1e− 4 1e− 4 1e− 4 5e− 4 0.05 1e− 4

Visual Grounding
Optimizer AdamW AdamW - - - -

E 8 16 - - - -
B - - - - - -
lr 1e− 4 1e− 4 - - - -

weight decay 1e− 4 1e− 4 - - -

E CHARTREF EXAMPLES

Below are visual grounding examples, where each referential expression corresponds to a red bound-
ing box labeled with a number.

1. the yield in tons/acre for Wheat in Year 4
2. the yield in tons/acre for Soybeans in
Year 1
3. the yield in tons/acre for Wheat in Year 3
4. the yield in tons/acre for Wheat in Year 1
5. the yield in tons/acre for Rice in Year 5

Figure 7: Area Chart, Example 1
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1. the annual hours spent on Meetings in 2018
2. the annual hours spent on Meetings in 2017
3. the annual hours spent on Meetings in 2017
4. the annual hours spent on Virtual
Conferences in 2018
5. the annual hours spent on Calls in 2021

Figure 8: Area Chart, Example 2

1. the Case Process Efficiency bar
for the Verdict stage
2. the Case Process Efficiency bar
for the Pre-trial stage
3. the Document Error Rate bar
for the Pre-trial stage
4. the Document Error Rate bar
for the Post-trial stage
5. the Average Resolution
Accuracy bar for the Pre-trial
stage

Figure 9: Bar Chart, Example 1

1. the Mental Health Services bar
segment for EU
2. the Physical Activity bar segment
for US
3. the Social Support bar segment for
India
4. the Average Sleep Hours bar
segment for US
5. the Stress Levels bar segment for
EU

Figure 10: Bar Chart, Example 2
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1. the Inflation Rate data point in 1994.848
2. the Inflation Rate data point in 2014.848
3. the GDP Growth rate in 2004.848
4. the Inflation Rate data point in 1990
5. the GDP Growth rate in 2014.848

Figure 11: Density Plot, Example 1

1. the density value for Jazz Streams at
500 streams
2. the density value for Pop Streams at
2500 streams
3. the density value for Pop Streams at
1000 streams
4. the density value for Rock Streams at
500 streams
5. the density value for Rock Streams at
1000 streams

Figure 12: Density Plot, Example 2

1. the CO2 emissions error
margin for South America
2. the CO2 emissions error
margin for Asia
3. the CO2 emissions for Asia
4. the CO2 emissions for Europe
5. the renewable energy usage
error margin for Europe

Figure 13: Error Bar Chart, Example 1
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1. the mean number of speak tokens bar for the
Werewolf role
2. the mean speak duration bar for the Villager
role
3. the error bar for the speak duration of the
Werewolf role
4. the error bar for the speak duration of the
Seer role
5. the error bar for the speak duration of the
Witch role

Figure 14: Error Bar Chart, Example 2

1. the heatmap cell at row 'mistral' and
column 'ada'
2. the heatmap cell at row 'MiniLM'
and column 'mpn'
3. the heatmap cell at row 'mpnet' and
column 'mis'
4. the heatmap cell at row 'MiniLM'
and column 'ada'
5. the heatmap cell at row 'mpnet' and
column 'mpn'

Figure 15: Heatmap, Example 1

1. the percentage value showing votes Seer casts
for Witch
2. the percentage value showing votes Seer casts
for Seer
3. the percentage value showing votes Hunter
casts for Werewolf
4. the percentage value showing votes Werewolf
casts for Villager
5. the percentage value showing votes Werewolf
casts for Werewolf

Figure 16: Heatmap, Example 2
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1. the fourth User Engagement bin in
the interval [1, 2] in subplot (a) Initial
Phase
2. the second Response Times bin in
the interval [0, 1] in subplot (a) Initial
Phase
3. the ninth Response Times bin in the
interval [1, 2] in subplot (a) Initial
Phase
4. the third Response Times bin in the
interval [0, 1] in subplot (a) Initial
Phase
5. the third User Engagement bin in the
interval [3, 4] in subplot (b) Mid Phase

Figure 17: Histogram, Example 1

1. the seventh bar for Weekdays in the
interval [10, 20) in the Movie Ticket
Sales histogram
2. the fifth bar for Weekends in the
interval [20, 30) in the Movie Ticket
Sales histogram
3. the second bar for Weekends in the
interval [30, 40) in the Movie Ticket
Sales histogram
4. the sixth bar for Weekdays in the
interval [10, 20) in the Movie Ticket
Sales histogram
5. the first bar for Weekends in the
interval [20, 30) in the Movie Ticket
Sales histogram

Figure 18: Histogram, Example 2
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1. the content decay value at time point 3
months
2. the spikes in engagement value at time
point 9 months
3. the user growth value at time point 6
months
4. the spikes in engagement value at time
point 1 months
5. the user growth value at time point 2
months

Figure 19: Line Chart, Example 1

1. the Stress Level for week 11
2. the Stress Level for week 1
3. the Stress Level for week 9
4. the Productivity Index for week 25
5. the Productivity Index for week 5

Figure 20: Line Chart, Example 2
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1. the pie slice for Criminal cases
2. the pie slice for Family cases
3. the pie slice for Civil cases
4. the pie slice for Labor cases
5. the pie slice for IP cases

Figure 21: Pie Chart, Example 1

1. the Oil segment in the inner
donut chart
2. the Pottery segment in the
inner donut chart
3. the Watercolor segment in the
inner donut chart
4. the 3D segment in the inner
donut chart
5. the 2D segment in the inner
donut chart

Figure 22: Pie Chart, Example 2

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

1. the Clarity score for Model A
2. the Empathy score for Model B
3. the Listening score for Model B
4. the Non-verbal Cues score for
Model B
5. the Engagement score for Model
A

Figure 23: Radar Chart, Example 1

1. the Conversion Rate value for
Print Advertising
2. the Cost Efficiency value for
Print Advertising
3. the Customer Retention value
for Social Media Campaigns
4. the Reach value for Digital
Marketing
5. the Customer Retention value
for Digital Marketing

Figure 24: Radar Chart, Example 2

1. the Water Requirement data
point for Tomato
2. the Nutrient Efficiency data
point for Corn
3. the Disease Resistance
marker for Wheat
4. the Growth Rate marker for
Wheat
5. the Yield data point for
Broccoli

Figure 25: Scatter Plot, Example 1
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1. the mean x-coordinate (Age)
of the Youth (18-25) cluster
2. the mean x-coordinate (Age)
of the Low Income cluster
3. the mean y-coordinate
(Income) of the High Income
cluster
4. the mean y-coordinate
(Income) of the Adults (26-45)
cluster
5. the mean x-coordinate (Age)
of the Seniors (60+) cluster

Figure 26: Scatter Plot, Example 2

1. the IT sector in the treemap
2. the Retail sector in the treemap
3. the percentage displayed for the
Retail sector in the treemap
4. the percentage displayed for the IT
sector in the treemap
5. the percentage displayed for the
Manufacturing sector in the treemap

Figure 27: Treemap, Example 1
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1. the market share percentage for
Nuclear
2. the market share percentage for Coal
3. the market share percentage for Solar
4. the market share percentage for Hydro
5. the market share percentage for
Natural Gas

Figure 28: Treemap, Example 2
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