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ABSTRACT

The filter pruning method introduces structural sparsity by removing selected fil-
ters and is thus particularly effective for reducing complexity. However, previous
works face two common limitations. 1) The pruned filters are prevented from
contributing to the final outputs, resulting in performance degradation, especially
when it comes to a large pruning rate. 2) To recover accuracy, the time-consuming
fine-tuning step is required. The cost in time and the need for training data make
it difficult to deploy in real-world scenarios. To address the aforementioned lim-
itations, we propose a novel filter pruning method called Cluster Pruning (CP).
Our CP reconstructs the redundant filters from the perspective of similarity and
removes them equivalently using the proposed channel addition operation in a
lossless manner. Pruning in such a way allows CP to preserve as many learned
features as possible while getting rid of the need for fine-tuning. Specifically,
each filter is first distinguished by clustering and then reconstructed as the cen-
troid to which it belongs. Filters are then updated to eliminate the effect caused
by mistakenly selected. After convergence, CP can equivalently remove identical
filters through the proposed channel addition operation. The strategies for adjust-
ing the pruning rate and the adaptive coefficient for clustering make our CP even
smoother and more efficient. Extensive experiments on CIFAR-10 and ImageNet
datasets show that our method achieves the best trade-off between performance
and complexity compared with other state-of-the-art algorithms.

1 INTRODUCTION

The state-of-the-art performance of deep convolutional neural networks (CNNs) (Ren et al., 2015)
(Chen, 2015) (Lin et al., 2014) is based on deeper and wider architecture, which hinders the de-
ployment in resource-limited devices due to its expensive computation cost and memory footprint.
As an effective compression technique, network pruning has attracted numerous attention. Unlike
fine-grained weight pruning (Guo et al., 2016) (Han et al., 2015) (LeCun et al., 1989) which causes
unstructured sparsity, filter pruning directly deletes the whole filter and is efficient in saving memory
usage and computational cost on general platforms.

Numerous studies have been conducted to study how to define unimportant filters. ”More-similar-
less-important” is a promising viewpoint for filter pruning. The observation of these semantically
similar feature map pairs, as shown in Fig. 1(a), which has also been pointed out by GhostNet (Han
et al., 2020), indicates the prevalent redundancy on the feature level. For further investigation, we
visualize filters after PCA in Fig. 1(c), which demonstrates the phenomenon of cluster formation.
Given such natural clustering property, we intuitively seek to prune redundancy based on similarity.
In comparison to the commonly used ℓp-norm criteria (Yu et al., 2021) (Lin et al., 2020c) (Li et al.,
2020b), similarity-based criteria avoid the sensitivity to the filter distribution (He et al., 2019) which
can lead to the erroneous removal of those relatively unimportant filters.

However, no matter which criteria the network is pruned under, previous works either directly re-
move filters or set them to zero (or masking). Although these filters are considered trivial under
certain criteria, they do not make zero contribution and still contain semantic information helpful
for further processing. Pruning in such manner will undoubtedly degrade performance, especially at
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(a) Similar feature map pairs (b) Performance of CP compared with other works.

(c) Filter distribution of ResNet-50.

Figure 1: (a) Similar feature map pairs of the second residual block in ResNet-50. Different pairs
are framed in different colors. (b) Comparison with other state-of-the-art filter pruning methods of
various FLOPs reduction when pruning ResNet-56 on CIFAR-10. We can see the advantage of CP
under same configuration, especially at large pruning rate. (c) Visualization of filter distribution of
ResNet-50 after decomposition.

large pruning rates. Furthermore, even if the accuracy can be regained through fine-tuning, the high
computational cost and the requirement for training data make it inefficient to carry out in realistic
scenarios.

In this paper, we propose Cluster Pruning (CP), a novel filter pruning method based on clustering.
The core of our CP is that instead of removing or zeroing out unimportant filters, we intend to use
the equivalence of the convolutional layer to remove filters without impact. To accomplish this, we
gradually replace filters with the value of cluster centroids while training, which still preserves their
ability to extract features. After convergence, we can obtain a network whose filters are divided into
several clusters and exactly identical within each cluster. The proposed channel addition operation
can discard all but one filter from each cluster by leveraging the linear and combinational properties
of the convolutional layer. Our CP no longer requires the time-consuming fine-tuning process,
since it is equivalent before and after pruning. As shown in Fig. 1(b), our method can maintain
comparable performance even at a large pruning rate, demonstrating our advantage in the trade-off
between complexity and performance.

To summarize, our main contributions are three-fold as follows:
• We investigate the similarity between filters and propose our Cluster Pruning (CP), which

prunes the network based on such similarity. We propose an adaptive coefficient for clus-
tering which well preserves the extracted features. Various strategies for the pruning rate
are designed to smooth the pruning process.

• The channel addition operation is proposed to equivalently remove generated identical fil-
ters. It enables CP to omit the time-consuming fine-tuning step and avoids steep accuracy
degradation especially at large pruning rates.

• Extensive experiments on CIFAR-10 and ImageNet datasets demonstrate that the proposed
CP can achieve the best trade-off between complexity and performance compared with
other state-of-the-art methods.

2 RELATED WORK

In this section, we will give a comprehensive overview of different pruning methods, from the as-
pects of pruning structure, pruning criteria and pruning manner.

Pruning Structure. Early works of network pruning concentrate on fine-grained granularities:
weight-level (LeCun et al., 1989), vector-level (Wen et al., 2016) and kernel level (Li et al., 2017).
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For architecture consistency, this type of non-structured method can only zeroize the unnecessary
parameters rather than prune. The need of saving special coordinates for every weight makes it
difficult to satisfy nowadays trillion-level models. During inference, although the model sizes and
the number of multiply-accumulate operations are dramatically decreased, the irregular structure of
dense matrices requires additional computations and special hardware designs for acceleration.

Pruning Criteria. Selecting a proper criterion to identify filters which need to be pruned is a major
point of network pruning. (Li et al., 2017) prunes filters with small ℓ1-norm in each layer, while (Han
et al., 2016) (Lin et al., 2018) are based on ℓ2-norm. (Molchanov et al., 2017) uses the Taylor series
to estimate the loss change after each filter’s removal and prune the filters that cause minimal training
loss change. Network slimming (Liu et al., 2017) applies LASSO on the scaling factors of BN,
by setting the BN scaling factor to zero, channel-wise pruning is enabled. FPGM (He et al., 2019)
prunes filters nearest to the geometric median of each layer using Euclidian distance, refraining from
the limits of norm-based criterion. (Hu et al., 2016) indicates activation may also be an indicator,
and it introduces Average Percentage Of Zeros (APoZ) to judge if one output activation map is
contributing to the result. Regardless of the criteria used to identify redundancy, previous works
either remove or zero out unimportant parameters, which will inevitably result in information loss.
Our method, however, solves these drawbacks by an equivalent approach, which will be discussed
in Section 3.2

Pruning Manner. The traditional filter pruning pipeline will reduce the model capacity of the orig-
inal models, thus facing the problem of unrecoverable performance loss after incorrect pruning.
Besides, the overreliance on pre-trained models and the huge time cost of fine-tuning make it un-
suitable to deploy in real-world scenarios. To overcome that, SFP (He et al., 2018) zeroizes pruned
filters with a binary mask and updates filters in a soft manner to maintain the capacity of the network.
Based on SFP, ASFP (He et al., 2020b) gradually increases the pruning rate to alleviate the accuracy
drop caused by pruning and stabilize the whole pruning process. STP (Rong et al., 2020) uses the
first-order Taylor series to measure the importance of filters while SRFP (Cai et al., 2021a) removes
filters smoothly by gradually decaying to zero so that it can better preserve the trained information.
(Cai et al., 2021b) analysis the characteristic of hard manner and soft manner, and propose GHFP
to smoothly switch from soft to hard to achieve a balance between performance and convergence
speed. Similarly, our work can be also classified as a SFP-basd method, which well guarantees the
model capacity after pruning.

3 METHODOLOGY

3.1 FORMULATION

In this section, we formally introduce the symbol and notation. The deep CNN network can be pa-
rameterized by Wi ∈ RNi

out∗N
i
in∗hi∗wi , where 1 ⩽ i ⩽ L and L is the total number of convolutional

layers in a network, hi and wi represent the height and width of a kernel. N i
out and N i

in denote
the number of output channels and input channels for the i-th convolution layer, respectively. The
output feature map Oi ∈ RNi

out∗hi+1∗wi+1 is calculated by the convolution operation of input feature
map Ii ∈ RNi

in∗hi∗wi and Wi, shown as below:

Oi = Wi ∗ Ii, (1)

where Oi,j and Wi,j denote the j-th output channel of output feature maps and the j-th filter of the
i-th layer, respectively. Assume that the pruning rate of i-th layer is Pi, then the number of filters
after pruning will reduce from N i

out to N i
out ∗ (1− Pi). Accordingly, the size of the pruned output

tensor would be N i
out ∗ (1− Pi) ∗ hi+1 ∗ wi+1. Given a dataset D = {(xi, yi)}ni=1 and a desired

sparsity level k (i.e., the number of remaining filters), filter pruning can be formulated as:

min
W

ℓ
(
W

′
;D

)
= min

W

1

n

n∑
i=1

ℓ
(
W

′
; (xi, yi)

)
, (2)

s.t.
∥∥∥W ′

∥∥∥
0
⩽ k,

3



Under review as a conference paper at ICLR 2023

Features

× ...

Filters

...

Filter Clustering & Selection 

C
lu

ster
s

...

...

Initial Network Filter Recovery Channel Addition

Iteratively

× ...

× ... ...

...

...

...

...

...
...
...

...

...

Layer i

Layer i+1

...

...

...

Convergence

Layer i

Figure 2: Overview of our CP. Filters are clustered and manually reconstructed in the filter clus-
tering and selection step, and are retrained in the filter recovery step. This pipeline is executed
iteratively till convergence before channel operation operation is conducted to obtain the compact
model. Filters in similar colors are considered close to each other in Euclidean space. (Best viewed
in color.)

where ℓ(.) is the loss function (e.g., cross-entropy loss), W
′

is the filter set of the pruned network.
Typically, hard filter pruning prunes the model layer by layer and fine-tune iteratively to complement
the degradation of the performance, while soft filter pruning (SFP) and its variants prune filters by
simply zeroizing them with a Boolean matrix, indicates whether the filter is pruned or not.

3.2 CLUSTER PRUNING

Based on the observation that filters are naturally clustered in each layer, our CP intends to manually
introduce redundancy by generating identical filters. As depicted in Fig. 2, our pipeline is composed
of four steps, 1) Clustering Step 2) Selection Step 3) Recovery Step and 4) Channel Addition. The
first three steps are carried out iteratively till convergence, right before those redundant filters are
pruned with the proposed channel addition operation.

Clustering Step: We first reshape 4D tensor Wi into a 2D matrix of size (N i
in ∗ hi ∗ wi) ∗N i

out.
Therefore, each column of this 2D matrix stands for the filter of the weight tensor. Then we can
regard them as coordinates in high dimensional space and conduct clustering as:

min
1

N i
out

Ni
out∑

j=1

∥∥∥Wij − µ
c
(j)
i

∥∥∥
2
, (3)

where ci is the amount of clusters of i-th layer, µ
c
(j)
i

is the cluster centroid which Wij is assigned to.
The optimization can be solved by kmeans (MacQueen, 1967) or other clustering algorithms. After
clustering, filters in the i-th layer can be divided into ci clusters, where their norm are relatively close
and may have a certain linear relationship (He et al., 2019). Filters within each cluster can generate
similar feature maps of the next layer, therefore, the clusters with more filters can be identified as
more redundant.

Selection Step: We adopt the Euclidean distance to evaluate the similarity of filters as Eq. 4. In
general, those filters close to assigned cluster centroids are considered much more redundant. Based
on this understanding, we can find the “most similar” filters and replace them with the centroids to
which they belong. Since the distance between these filters and corresponding clustering centroids
is small, such reconstruction does not have too much negative impact with a small pruning rate.

Wij∗∈ argmin
j∈[1,Ni

out]

∥∥∥Wij − µ
c
(j)
i

∥∥∥
2
, (4)

Wij∗ = µ
c
(j∗)
i

, for 1 ⩽ j∗ ⩽ N i
out ∗ Pi.

To further avoid the severe impact of such reconstruction when 1) the pruning rate is large 2) pruning
the network from scratch, we limit Pi to gradually increase from the initial value towards the goal
pruning rate Pgoal. The definition of Pi is listed as follows:
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(a) Different pruning strategy (b) Adaptive number of clusters

Figure 3: (a) Illustration of different strategies to control the speed of pruning ResNet-56 on CIFAR-
10 dataset, where the goal pruning rate is 0.5. (b) The adaptive coefficient for clustering, where
number of clusters (vertical axis) represents the percentage of total number of filters of each layer.

Pi = f
(
P init
i , P goal

i , epoch
)
, (5)

where P init
i represents the initial pruning rate for the i-th layer. To stabilize the pruning process, we

consider two kinds of strategies, which are linear increase and exponential increase respectively.

The linear increase strategy can be written as:

Pi =
Pgoal

epochmax
× epoch, (6)

where epochmax is the number of total training epochs. Starting from zero, the pruning rate will
linearly increase until it reach the goal pruning rate, as illustrated in Fig. 3(a). Similarly, the expo-
nential increase strategy can be given by:

Pi = k1 ×
(
ek2×epoch − 1

)
, (7)

where k1 and k2 are two hyper-parameters to control the growth speed of the pruning rate. For
different setting of hyper-parameters, the trend of pruning rate can be fast to slow, or vice versa, as
shown in Fig. 3. With the adaptive strategies of pruning rate, the whole pruning process will become
smoother, which is intuitively reflected on the final performance.

Recovery Step: Filters can be wrongly reconstructed since the cluster centroids are changing along
the whole iterative pruning process. Thus after the selection step, we retrain the network for some
epochs so that it can recover from the wrong assignment. As the pruning step is integrated into the
normal training schema, the model can be trained and pruned synchronously.

Channel Addition: Our CP iterates over the clustering, selection and recovery steps till the model
converges. Afterwards, each layer contains lots of identical filters within different clusters, where
we can utilize the proposed channel addition operation to obtain a actual compact model. As shown
in Fig. 2, suppose filters Wi,m and Wi,n are identical, we can safely prune Wi,n by adding the n-th
channel to the m-th of the filters in the next layer, which can be represented by:

Wi+1 ∗ Ii+1 = W
′

i+1 ∗ I
′

i+1,

s.t.


Wi,m = Wi,n,

W
′

i+1,:,m = Wi+1,:,m +Wi+1,:,n,

I
′

i+1 = WC
i,n ∗ Ii,

(8)

where I
′

i+1 denotes the input feature map of i+1-th layer after pruning Wi,n. Wi+1,:,m and Wi+1,:,n

represent the m-th and n-th channel of Wi+1, respectively. WC
i,n is the complementary set of Wi,n.

It is worth noting that the mainstream CNN structures consist of the common Conv-BN cell. Thus,
in order to omit the time-consuming fine-tuning step after channel addition, inspired by ConvNeXt
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(Liu et al., 2022) which only preserve part of normalization layers, we remove those BN layers after
the target convolutional layers. The details of our CP are illustrated in Algorithm 1.

3.3 ADAPTIVE COEFFICIENT FOR CLUSTERING

Setting the hyper-parameter ci properly is quite critical since it determines both the performance
and complexity of the pruned network. One possible approach is to set ci to a constant across
layers, which is simple and intuitive. However, as deeper layers suppose to have more channels to
extract various features, setting it to a constant will do harm to the diversity of features. Another
possible way is to use metrics such as Silhouette Coefficient, which allows for fine-grained settings
for each layer. Although it can provide better accuracy, the time-consuming process for traversing
each layer makes it less efficient. Besides, it can be hard to control the overall FLOPs reduction, as
it is automatically determined. For the best trade-off between accuracy and FLOPs reduction, we
propose our adaptive coefficient for clustering as follows.

Considering that the network logically should be assigned more clusters as it goes deeper, we scale
the pruning rate to the worse case and restrict it to satisfy the realistic pruning rate Pr as in Eq. 9,
which factually treats Pr as the lower pruning bound.

Pr ⩽

∑L
i=1

(
Pi −max

(
ci

Ni
out

))
N i

out∑L
i=1 N

i
out

⩽

∑L
i=1

(
Pi − ci

Ni
out

)
N i

out∑L
i=1 N

i
out

,

then max

(
ci

N i
out

)
⩽

∑L
i=1 (Pi − Pr)N

i
out∑L

i=1 N
i
out

(9)

In our experiment, since the pruning rate is same across layers, we can simply scale the arctan-
gent function to modify its upper bound, as shown in Fig. 3(b). The ablation studies validate the
advantages of the proposed adaptive coefficient with other methods.

Algorithm 1 Cluster Pruning Algorithm

Input: training set D, pruning rate Pi, number of clusters ci, model with parameters W =
{Wi, 0 ⩽ i ⩽ L}, total epochs tepoch

1: for epoch = 1; epoch ⩽ tepoch; epoch++ do
2: Update the model parameter W based on D;
3: for i = 1; i ⩽ L, i++ do
4: Filter Clustering based on ci;
5: Filter Selection base on Equation 4;
6: Set each selected filter Wij∗ to centroid µ

c
(j∗)
i

it belongs to;
7: end for
8: end for
9: Obtain the pruned model by Channel Addition;

Output: The compact model with parameter W
′
= W tepoch

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct experiments on two publicly available datasets CIFAR-10 (Krizhevsky, 2009)
and ImageNet (Russakovsky et al., 2015) to show the efficiency of our method. CIFAR-10 dataset
contains 60000 32*32 images with 10 classes, 50000 images for training while the remaining for
testing. ImageNet is a large-scale dataset which contains 1.28 million 224*224 training images and
50k validation images drawn from 1000 categories. For both datasets, we first preprocess the data
by subtracting the mean and dividing the standard-deviation, then adopt the same data augmentation
scheme as (He et al., 2018) (He et al., 2019).
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Table 1: Pruning results of ResNet-56 and VGG16 on CIFAR-10. ”PR” denotes the actual prun-
ing rate. CP obtains the maximum FLOPs reduction with close accuracy drop on ResNet-56. On
VGG16, CP outperforms other methods with both performance and complexity under different prun-
ing rates.

Arch Method Baseline(%) Pruned Accu.(%) ↓ Accu. (%) ↓ FLOPs(%)

ResNet-56

FPGM (He et al., 2019) 93.59 93.49 0.10 52.6
HRank (Lin et al., 2020a) 93.26 93.17 0.09 50.0

ABCPruner (Lin et al., 2020b) 93.26 93.23 0.03 54.1
HFP (Enderich et al., 2021) 93.30 93.30 0.00 56.0

GDP (Guo et al., 2021) 93.90 93.55 0.35 34.3
FS (Lin et al., 2021) 93.26 93.19 0.07 41.5

SCOP (Tang et al., 2020) 93.70 93.64 0.06 56.0
CP (ours, PR=50%) 93.39 93.34 0.05 58.6

VGG-16

AutoPrune (Xiao et al., 2019) 92.40 91.50 0.90 23.0
VCNNP (Zhao et al., 2019) 93.25 93.18 0.07 39.1

CP (ours, PR=25%) 93.87 93.92 ↑0.05 37.1
GAL (Lin et al., 2019) 93.96 90.73 3.23 45.2
GS (Li et al., 2020a) 94.02 93.59 0.43 60.9
CP (ours, PR=40%) 93.87 93.51 0.36 61.9

HRank (Lin et al., 2020a) 93.96 92.34 1.62 65.3
CP (ours, PR=50%) 93.87 92.72 1.15 72.2

Network Architecture. We study the performance on various mainstream CNN models, including
VGGNet (Simonyan & Zisserman, 2015) with a plain structure and ResNet series (He et al., 2016)
with residual blocks. For CIFAR-10 dataset, we test our CP on VGGNet and ResNet-56, while on
ImageNet, we test it on commonly used ResNet-50. Since ResNet is less redundant than VGGNet,
we will focus more on it.

Configurations. The models are trained from scratch using SGD with a weight decay of 0.0005
and Nesterov momentum of 0.9 (Sutskever et al., 2013). For CIFAR-10, we train the model with
a batchsize of 128 for 200 epochs and use an initial learning rate as 0.1, while on ImageNet, the
number of epochs, batchsize and the initial learning rate are set to 100, 256 and 0.1, respectively.
The learning rate is divided by 5 at epoch 60, 120, 160 on CIFAR-10, and is divided by 10 every 30
epochs on ImageNet. We prune all the convolutional layers of VGGNet for it has a plain structure.
While for ResNet, due to the existence of shortcut, we prune all the convolutional layers except
for the last one of every residual block for simplification. We compare our results with other state-
of-the-art filter pruning methods and all the results are obtained from the original papers. Each
experiment is conducted 3 times and we report the mean value for comparison.

4.2 PRUNING RESULTS ON CIFAR-10

ResNet-56. We summarize the results of ResNet-56 on CIFAR-10 in Table 1. Our CP achieves
comparable performance on CIFAR-10 compared with other filter pruning methods. For example,
GDP accelerates ResNet-56 by 34.3% with 0.35% accuracy drop while our CP can prune 58.6%
of total FLOPs with only 0.05% accuracy drop. Furthermore, CP outperforms FS on accuracy loss
(0.05% v.s. 0.07%) and pruned FLOPs (58.6% v.s. 41.5%) on ResNet-56.

VGG-16. Table 1 shows the performance of various pruning methods on VGG-16. Those numbers
in brackets denote the overall pruning rate. Our CP provides lower accuracy loss compared to
AutoPrune and VCNNP (-0.05% v.s. 0.07%, 0.9%) with similar FLOPs reduction. Compared with
GAL and Hrank, CP outperforms each of them in all aspects (45.2% v.s. 61.9% and 65.3% v.s.
72.2% in FLOPs reduction, 0.36% v.s. 3.23% and 1.15% v.s. 1.62% in accuracy loss), which proves
its ability to compress and accelerate a neural network with a plain structure.
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Table 2: Pruning results of ResNet on ImageNet, where “BL” and ”PR” denote baseline and pruned,
respectively. Our method achieves only 1.06% Top-1 drop with the most 61.8% FLOPs pruned.

Arch Method
Top-1 Accu.
BL/PR(%)

Top-5 Accu.
BL/PR(%)

Top-1 Accu.↓(%) Top-5 Accu.↓(%) FLOPs↓(%)

SFP (He et al., 2018) 76.15/74.61 92.87/92.06 1.54 0.81 41.8

ResNet-50

FPGM (He et al., 2019) 76.15/74.83 92.87/92.32 1.32 0.55 53.5
LFPC (He et al., 2020a) 76.15/74.46 92.87/92.04 1.69 0.83 60.8

MetaPruning (Liu et al., 2019) 76.60/75.40 - 1.20 - 51.1
HRank (Lin et al., 2020a) 76.15/74.98 92.87/92.33 1.17 0.54 43.8

ABCPruner (Lin et al., 2020b) 76.01/73.52 92.96/91.51 2.49 1.45 56.6
FS (Lin et al., 2021) 76.13/74.68 92.86/92.17 1.45 0.69 45.5

SCOP (Tang et al., 2020) 76.15/75.26 92.87/92.53 0.89 0.34 54.6
CP (ours) 75.56/74.50 92.70/92.02 1.06 0.68 61.8

Table 3: Comparison of test accuracies between
different guidelines for clustering when pruning
ResNet-56 on CIFAR-10.

Accuracy(%) FLOPs ↓(%)
Constant (ci = 5) 92.98 54.6

Silhouette Coefficient 93.39 41.2
Adaptive Coefficient 93.34 58.6

Table 4: Comparison of test accuracies be-
tween different clustering methods when pruning
ResNet-56 on CIFAR-10.

Accuracy(%)
Kmeans 93.34
Spectral 93.19

Agglomerative 93.23
Meanshift 93.31

4.3 PRUNING RESULTS ON IMAGENET

For the ImageNet dataset, we evaluate our CP on ResNet-50 and compare our results with other
state-of-the-art methods. Table 2 shows the performance of our CP compared with the previously
mentioned methods. As a result, our method can achieve better FLOPs reduction and lower accuracy
drop. For instance, our CP can prune 61.8% FLOPs of ResNet-50 with only 1.06% top-1 and 0.68%
top-5 accuracy drop, while ABCPruner can only prune 56.6% of total FLOPs with 2.49% top-
1 accuracy drop. Compared with HRank, CP achieves 0.11% less top-1 accuracy drop and yields
18.0% more FLOPs reduction. This proves our CP can obtain a better trade-off between performance
and complexity compared with other state-of-the-art pruning methods, which is highly attributed to
the preservation of feature extraction when CP reconstructs filters.

4.4 ABLATION STUDY

Varying pruning rates. To better shed light on the performance of our CP, we present the test
accuracy under different pruning rates for ResNet-20 in Fig. 4(a). The network is trained from
scratch with the number of clusters ci is fixed at 25%. As shown in Fig. 4(a), with the decrease in
pruning rate, the test accuracy increases linearly, and the pruned FLOPs decreases gradually as well.
When the pruning rate is too large, it is difficult to recover even after fine-tuning. Thus, for a better
trade-off between model complexity and performance, the pruning rate should be chosen carefully.

Adaptive coefficient for clustering. We demonstrate the effectiveness of the proposed adaptive
coefficient for clustering in Table. 3. Compare with the constant setting, the adaptive coefficient
can achieve better performance and more FLOPs reduction. This is mainly because it allows deeper
layers to preserve more various features. We also compare our method with using Silhouette Coef-
ficient, whose accuracy is slightly higher than ours. However, as it automatically determines ci for
each layer, the total FLOPs reduction is uncontrollable. It tends to not prune the network as much
as possible. Besides, the time cost of traversing all possible choices is intolerant. In summary, our
adaptive coefficient can well balance performance and complexity.

Influence of the number of clusters. In order to explore the influence of ci, we compare the test
accuracy of pruned ResNet-20 with different ci on CIFAR-10 dataset. As shown in Fig. 4(b), the
overall trend of accuracy is that the larger ci is, the higher test accuracy becomes. However, the
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(a) Different pruning rate on ResNet-20 (b) Different number of clusters on ResNet-20

Figure 4: Comparison of test accuracies of different pruning rates and number of clusters for ResNet-
20 on CIFAR-10 dataset with the fast-slow stratgy.

(a) ResNet-20 from pre-train (b) ResNet-20 from scratch

Figure 5: The training process of ResNet-20 on CIFAR-10 with different strategies of pruning rate
while the goal pruning rate is set to 50%. Top-1 accuracy is reported for comparison.

pruned FLOPs is also downward and there exist some knee points of accuracy, which suggests that
ci should not be too large and it needs to be well designed to balance the general performance.

Different pruning strategies. We compare the results of three decay strategies when pruning
ResNet-20 on CIFAR-10 with the training epochs increasing. As shown in Fig. 5, no matter if
it is trained from scratch or not, the fast-slow strategy outperforms others although it causes a rel-
atively larger accuracy loss at the initial stage of the training process. The linear strategy creates
identical filters in a much smoother manner which leads to a disastrous non-convergence issue.

Choice of clustering methods. We compare the experimental results under different clustering
methods, as shown in Table. 4. Clustering methods including Kmeans, Spectral, Birch, and Ag-
glomerative are evaluated, respectively. No significant performance differences are observed, which
further validates the robustness of our method. A logical explanation of such a phenomenon can be
that our reconstruction of filters mainly concentrates on locations where density is high and these
clustering methods all well identify such locations.

5 CONCLUSION

To conclude, in this paper, we point out the limitations of previous works and propose a novel filter
pruning method based on clustering, named Cluster Pruning, to accelerate deep CNNs. Specifically,
CP considers the similarity between filters as redundancy and removes them in a softer way without
information loss. Thanks to these, CP allows filters to be pruned more stable as the training proce-
dures run and achieves state-of-the-art performance in several benchmarks. In the future, we plan to
work on how to combine CP with other norm-based criteria and more importantly, other accelera-
tion algorithms, e.g., knowledge distillation and matrix decomposition, to push the performance to
a higher stage.
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