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Abstract
In this work we introduce Labrador, a pre-
trained Transformer model for laboratory data.
Labrador and BERT were pre-trained on a
corpus of 100 million lab test results from
electronic health records (EHRs) and evalu-
ated on various downstream outcome prediction
tasks. Both models demonstrate mastery of the
pre-training task but neither consistently out-
perform XGBoost on downstream supervised
tasks. Our ablation studies reveal that transfer
learning shows limited effectiveness for BERT
and achieves marginal success with Labrador.
We explore the reasons for the failure of trans-
fer learning and suggest that the data gener-
ating process underlying each patient cannot
be characterized sufficiently using labs alone,
among other factors. We encourage future work
to focus on joint modeling of multiple EHR data
categories and to include tree-based baselines in
their evaluations.

Keywords: Transformer, EHR, lab data

Data and Code Availability The MIMIC-IV
database can be accessed via PhysioNet after com-
pleting a short online training. The lab data that was
used to pre-train Labrador and BERT come from
the labevents table within MIMIC-IV and our pre-
processing code can be found in our codebase. The
COVID-19, cancer diagnosis and alcohol consump-
tion fine-tuning datasets are public and therefore we
provide our pre-processed versions of these datasets
directly in our codebase.

The codebase also contains all of the code neces-
sary to replicate the pre-training data pre-processing,
model pre-training, fine-tuning and other evaluations.

∗ Corresponding author.

We cannot directly share the sepsis dataset due to
MIMIC-IV’s data sharing policy, however with ac-
cess to MIMIC-IV the steps described in Section F.3.2
recreate our evaluation dataset. Finally, the weights
for the pre-trained Labrador and BERT models
can be downloaded from our HuggingFace repository
here.

1. Introduction

In recent years, self-supervised pre-training of masked
language models (MLMs) (see Appendix A for back-
ground) has demonstrated remarkable success across
a wide range of machine learning problems and has
led to significant downstream improvements across
diverse tasks in natural language processing (Liu
et al., 2019; Devlin et al., 2019; Raffel et al., 2020).
There is considerable excitement surrounding the po-
tential of large pre-trained MLMs to achieve similar
success in medical applications. For instance, exist-
ing applications of MLMs in medicine have already
yielded promising results in tasks related to medical
text understanding (Lee et al., 2020; Alsentzer et al.,
2019; Huang et al., 2019; Yang et al., 2019; Beltagy
et al., 2019). Despite the success of self-supervised
models in certain areas of biomedicine (Palepu and
Beam, 2022; Beam et al., 2023; Singhal et al., 2023;
Moor et al., 2023; Tiu et al., 2022; Ingraham et al.,
2022; Watson et al., 2023; Shay et al., 2023), there has
been no previous work on pre-trained models for lab-
oratory measurements. Laboratory data is abundant,
routinely collected, less biased compared to other
types of data in electronic health records (EHRs) like
billing codes (Beam et al., 2021), and directly mea-
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sure a patient’s physiological state, offering a valuable
opportunity for creating a medical foundation model.

However, there is a large body of evidence showing
that deep learning is consistently outperformed on so-
called “tabular” data prediction tasks by traditional
machine learning techniques like random forests, XG-
Boost, and even simple regression models (Bellamy
et al., 2020; Finlayson et al., 2023; Sharma, 2013).
The reasons for this are only partially understood,
but previous work (Grinsztajn et al., 2022) has sug-
gested that this phenomenon may be caused by a ro-
tational invariance in deep learning models that is
harmful for tabular data. More broadly, the suc-
cess of deep learning is thought to be largely due
to inductive biases that can be leveraged for images,
text, and graphs. These inductive biases are absent
or only weakly present in tabular data. Conversely,
tree-based methods are scale invariant and robust to
uninformative features.

In this work, we introduce Labrador, a novel
continuous Transformer architecture, which mod-
els permutation-invariant data consisting of (integer,
float) tuples (Figure 1). We pre-trained Labrador
alongside a standard implementation of BERT on 100
million lab test results from over 260,000 patients us-
ing an MLM objective. We evaluated both models
on several downstream outcome prediction tasks and
validated the success of pre-training with a set of in-
trinsic evaluations.

We discuss the design and implementation of
Labrador and BERT, their training process, and
their evaluation in Sections 3 and 4, respectively. We
conclude in Section 5 with the implications of our
findings, shedding light on the limitations and ar-
eas for improvement in the application of pre-trained
MLMs to laboratory data and more generally, the cre-
ation of foundation models for numeric EHR data.

2. Related Work

In previous work, the Transformer architecture
(Vaswani et al., 2017) has been adapted to handle
continuous inputs alongside discrete inputs (i.e. to-
kens). For example, Gorishniy et al. (2021) intro-
duce the Feature-Tokenizer (FT) Transformer, which
is a similar architecture to Labrador. They bench-
mark FT Transformer against gradient boosted de-
cision trees and Random Forests on several super-
vised learning tasks (without pre-training) and con-
clude that there is no universally superior solution.
Later work by these authors (Gorishniy et al., 2022)

introduced an additional variant of continuous Trans-
former that uses a piecewise linear encoding system
for continuous values. These authors argue that the
design of embeddings for numerical features is an im-
portant consideration in adapting Transformer mod-
els to continuous data, a notion that we support
strongly. Our work may be viewed as an extension
of the FT Transformer to the setting of MLM-based
pre-training.

Rossi et al. (2019) learned embeddings of labora-
tory data using Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) by encoding each lab
test result as the concatenation of an octal indicator
of abnormality and the test’s LOINC code1. The ab-
lations showed improved mortality prediction when
the octal indicator was included in the embeddings
despite this being only a discrete representation of
the underlying continuous lab test result.

Hegselmann et al. (2023) showed that pre-trained
large language models (LLMs) can directly perform
prediction tasks involving numeric features by serial-
izing the features and a description of the task into
a natural language string – an approach the authors
called TabLLM. They found that this approach could
outperform strong tree-based baselines in the very-
few-shot setting (0 to 8 labeled examples). How-
ever, Dinh et al. (2022) could not reproduce this re-
sult with GPT-3 and instead found that a fine-tuned
GPT-3 model performed worse than logistic regres-
sion for up to 250 training examples. Hegselmann
et al. also found that the downstream performance is
highly task dependent and that performance on med-
ical prediction tasks was notably worse than others in
a more general knowledge domain. However, regard-
less of the domain, XGBoost outperforms TabLLM
on average across all tasks.

TabTransformer (Huang et al., 2020) is another ar-
chitecture that can model categorical and continuous
numeric features, however only categorical features
pass through the attention layer. Numeric features
are passed directly to the prediction head where they
are concatenated to the contextualized embeddings
for the categorical features. TabTransformer is dis-
tinct from our architecture, which handles data that
consist of (integer, float) samples and performs at-
tention jointly over these two types of data. To the
best of our knowledge, the recently introduced xVal
encoding scheme (Golkar et al., 2023) is the only ex-
isting work that adapts the Transformer architecture

1. https://loinc.org/get-started/what-loinc-is/
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Figure 1: Labrador model architecture.

to jointly model these two types of data during pre-
training. Their multi-task MLM pre-training objec-
tive and model architecture are similar to Labrador
so we designed Figure 1 to facilitate their comparison.
However, the authors evaluate xVal on a distinct set
of tasks (learning arithmetic, temperature forecasting
and predicting planetary orbits) and do not include
a baseline comparison with gradient boosted decision
trees.

Recent work by Zhu et al. (2024) evaluated 14 lan-
guage models alongside conventional clinical predic-
tive models and found that even with well-designed
prompts, the best LLMs’ zero-shot performance does
not consistently beat traditional machine learning
models when there are 100 or more examples to train
on.

3. Methods

In this section, we describe the Labrador and
BERT model architectures and pre-training. For fur-
ther experimental details, see Appendix F.

BERT is primarily distinguished from other Trans-
formers by its learning objective rather than its model
architecture. BERT’s architecture is classified as
encoder-only and consists of an embedding layer, N
transformer blocks with the canonical layers (Multi-
HeadAttention, Dropout, LayerNorm, Feedforward,
Dropout, LayerNorm), and a prediction head.

The primary contribution of the original work was
the approach of masked language modeling (MLM).
The key advantage of MLM is that it does not rely
on the input data having a natural sequential order-
ing, unlike autoregressive language modeling. The
lab data in our study does not have a natural se-
quential ordering so we had to use an MLM-based
approach. We considered ways to add positional em-
beddings to the lab data such that they would have
a sequential ordering (even if only artificially), but
we concluded that it is impossible to find a natural
ordering because batches of lab tests are requested at
the same moment in time by physicians. So there is
no way to order labs sequentially besides alphabeti-
cally or some other arbitrary order. We did not think
that adding such arbitrary ordering would be helpful.

Besides encoder-only transformer architectures,
GPT-style models have decoder-only architectures
and older seq2seq transformer models (e.g. t5) have
encoder-decoder architectures. Both decoder-only
and encoder-decoder architectures are useful for gen-
erating sequences like text. In other words, these ar-
chitectures were designed for seq2seq tasks. But since
lab data do not have a sequential ordering, we cannot
pose it as a seq2seq task so these transformer archi-
tectures are not applicable to our setting. This is why
we chose a BERT-like (i.e. encoder-only) MLM-based
approach in this work.

3
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3.1. Labrador architecture

Labrador consists of two embedding modules (cat-
egorical and continuous), N transformer blocks, and
two prediction heads (categorical and continuous).
The categorical embedding layer uses the standard
integer lookup method, whereas the continuous em-
bedding layer involves a position-wise linear projec-
tion. A pseudo-code implementation is in Section B
of the Appendix.

Each Transformer block consists of the canonical
layer ordering: MultiHeadAttention, Dropout, Lay-
erNorm, Feedforward, Dropout, LayerNorm. How-
ever, we use a distinct key_dim size for the multi-head
attention layers. We set this hyperparameter equal
to Labrador’s embedding dimension, whereas it is
commonly set to be equal to d_model // num_heads

where d_model is the model’s embedding size and
num_heads is the number of attention heads.

The categorical prediction head consists of a ReLU-
activated position-wise dense layer followed by a soft-
max layer over the 529 token vocabulary. A pseudo-
code implementation of the continuous prediction
head is also in Section B of the Appendix. The out-
put of this layer is simply a float on the interval [0, 1],
since all input values are standardized to this interval
using the empirical cumulative distribution function
(see Section 3.3). In our evaluations, we use 10 trans-
former blocks, an embedding dimension of 1024, 4 at-
tention heads, and a feedforward dimension of 1024,
resulting in 196,642,645 parameters.

3.2. BERT architecture

BERT is implemented using HuggingFace’s
TFBertForMaskedLM. To eliminate positional
embeddings, we pass the zero vector in place of the
position_ids key.

The model configuration (HuggingFace’s
BERTConfig) that is used in our experiments
has a vocabulary size of 4251, a hidden size of
1024, 10 hidden layers, 4 attention heads and an
intermediate (i.e. feedforward) size of 1024 with a
ReLU activation.

All other parameters use their default BERTConfig
value. Most notably, the dropout probabilities are
set to 0.1 throughout the model, which is consistent
with Labrador and common practice.

This model shares the same feedforward layer size
(intermediate_size), number of attention heads
and transformer blocks (num_attention_heads and
num_hidden_layers), dropout rate, and embedding

size (hidden_size) with Labrador. Therefore, this
BERT model has the same backbone as Labrador
and differs only in its embedding module, prediction
head and the key_dim in the multi-head attention
layers.

This BERT instance has 68,522,139 parameters,
which is less than Labrador due to their difference
in key_dim size. To ensure that this difference in
parameter count does not impact our conclusions, we
performed all experiments with a parameter-matched
BERT that uses the same key_dim as Labrador
(Appendix E). The results from these experiments
are indistinguishable from the results in Section 4.

3.3. Preprocessing of pre-training lab data

We pre-processed the lab data obtained from MIMIC
(version IV) before MLM pre-training. First, we re-
moved all lab codes (i.e. “itemid”) from the labevents
data table that had 500 or fewer occurrences to en-
sure that there was a sufficient number of samples
for BERT and Labrador to learn about each lab
code. This results in 529 unique lab codes. We split
patients into training, validation and test sets. 70%
(≈ 229, 000) of the patients were selected uniformly
at random for the training split, whereas 10% and
20% formed the validation and test splits, respec-
tively.

For each lab code, the empirical cumulative distri-
bution function (eCDF) is computed using the train-
ing split. Normally, mapping values of a random vari-
able to their probabilities under an eCDF requires the
entire dataset. However, in practice, there are far
fewer unique lab values in the dataset. Therefore, we
can represent each eCDF using only the unique lab
values for each lab code as well as the probabilities
that they map to on their corresponding eCDF. This
compression of the eCDF is lossless, which means that
it perfectly represents the eCDF obtained from the
full training split. These compressed eCDFs are used
in all downstream pre-training and evaluation steps
and can be found in the data/ directory of our code-
base.

To tokenize the lab data for Labrador, lab values
are mapped to the interval [0, 1] using their eCDFs
whereas lab codes are mapped to their integer fre-
quency ranking in the training split, indexed at 1. For
example, hematocrit, the most frequently ordered lab
test, receives the integer token 1. We also include a
mask token (the integer 530) and a special null to-
ken (the integer 531). The null token is used when
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a lab test is recorded but it has no associated lab
value. Approximately 10% of lab tests in MIMIC-IV
have no associated lab value. Although we used fre-
quency ranking to assign integer tokens to lab codes,
this ordering has no consequence so even an arbitrary
ordering of the lab codes could be used.

For BERT, we construct an integer-only token vo-
cabulary by assigning a unique integer to each decile
of the eCDF for each lab code, sorted in descend-
ing order of test frequency. For example, tokens 1
through 10 represent the 10 deciles of the hemat-
ocrit lab value distribution because it is the lab test
with the highest frequency ranking. We also include
an eleventh token that represents a missing value for
hematocrit. The second most frequent test was cre-
atinine and therefore tokens 12 through 21 represent
the 10 deciles of its lab value distribution. Once
again, token 22 stands for a missing value of creati-
nine. This produces a vocabulary size of 4250 tokens
plus one additional token that represents the <MASK>

indicator. Although there are 529 unique lab codes,
there are not 529 × 11 = 5819 tokens in BERT’s vo-
cabulary because 157 of the lab codes have no nu-
meric values and, instead, are interpreted as binary
presence/absence indicators. For example, the tox-
icology screens for opiates, cocaine, amphetamines
and barbiturates are entered as positive/negative test
results.

Finally, the labs for each patient are divided
into order sets. A bag is defined as all labs or-
dered at the same time for a specific patient in the
MIMIC database, also called an order set. Bags
with fewer than 3 labs are removed from the train-
ing, validation and test splits as we consider these
bags to be of insufficient size for learning embed-
dings. Order sets are converted to an appropri-
ate input structure for Labrador and BERT sep-
arately. For Labrador, each bag is structured as
a dictionary with keys categorical_input (integer)
and continuous_input (float), whereas BERT’s in-
put dictionary has keys input_ids (all integers) and
position_ids (the zero vector). Bags of different
lengths are padded to the maximum size in the cur-
rent batch. In order to minimize step time during
pre-training, we performed random masking of one
element per bag in advance and sharded these bags
across approximately 220 TensorFlow TFRecord files.

3.4. Transformer pre-training

Both Labrador and BERT were pre-trained using a
single 40GB A100 GPU for 500,000 steps (80 hours)
and 1.5M steps (237 hours), respectively. Our stop-
ping criterion for each model was to observe that the
validation loss was sufficiently converged. We also
wanted to ensure that BERT’s degree of convergence
was greater than or equal to Labrador’s in order to
avoid falsely representing the capabilities of BERT
in downstream evaluations. Both models were pre-
trained with a dropout rate of 0.1, learning rate of
1e-5, a batch size of 256, and an embedding size of
1024.

We used Adam optimization for stochastic gradient
descent. Model checkpoints were saved every 14,000
training steps. BERT optimized a standard categor-
ical cross-entropy loss for measuring its accuracy at
predicting masked tokens. Labrador optimized a
simple multi-task loss that was the sum of its categor-
ical cross-entropy for lab code prediction and mean-
squared error (MSE) for lab value prediction.

4. Results

In the following sections, we assess Labrador and
BERT on intrinsic evaluations to understand the
extent to which each model accomplishes the pre-
training task. Following that, we fine-tune both
models for downstream outcome prediction on four
datasets: COVID-19 diagnosis, cancer diagnosis, and
the prediction of sepsis-related mortality and alcohol
consumption level.

4.1. Intrinsic evaluations

4.1.1. Assessment of pre-training loss

BERT and Labrador were pre-trained until each
converged in their pre-training loss (Figure 6 and
7). After 1.5 × 106 steps, BERT reaches a valida-
tion perplexity of 1.3 tokens, whereas after 5 × 105

steps Labrador reaches a validation perplexity of
1.02 tokens and MSE of 0.013, respectively. Recall
that BERT and Labrador have vocabulary sizes of
4251 and 531 tokens, respectively. This shows that
both models clearly master their categorical predic-
tion tasks.

Also, Labrador’s final validation MSE of 0.013
suggests that its average error is ±

√
0.013 ≈

±0.114, which corresponds approximately to quin-
tile resolution in the lab value distribution because
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Labrador’s lab values are uniform on the interval
[0, 1] (described in Section 3.3).

4.1.2. Embedding space visualization

Despite the fact that BERT and Labrador have
comparable pre-training perplexity, the structure of
their embedding space differs greatly. We performed
dimensionality reduction on BERT and Labrador’s
embeddings for the labs in the test split using the
UMAP algorithm (McInnes et al., 2018). Section
F.1 describes the details of the experiment. Figure
2 presents the two-dimensional structure of the 70
most frequent lab tests, which are colored according
to the panel of labs that they are most often ordered
with. Appendix I defines each lab panel.

Labrador has a well-separated cluster of embed-
dings for each lab code, whereas BERT has far less
separation. Qualitatively, we do not observe any clin-
ical meaning to the relative distances between each
pair of Labrador’s embedding clusters. In contrast,
the relative positioning of the large embedding islands
in BERT’s UMAP plot may possess some basic clin-
ical meaning. For instance, urinalysis tests (pink)
are directly adjacent to urine toxicology screening
tests (light blue). Similarly, the CBC tests (dark
blue) form a continuation with the CBC with dif-
ferential tests (purple). We note that the two most
common panels of lab tests (CBC and BMP) do
not appear to be well-separated in BERT’s embed-
ding space, whereas they are completely separated in
Labrador’s embedding space.

Panel B of Figure 2 visualizes the embedding space
for the four most frequently ordered lab tests and
colors these embeddings by their lab value. While
Labrador learns a smooth gradient representing the
quantitative value for each lab test, BERT does not.
There is some directionality in the BERT embedding
space that correlates with lab value, but it is notably
less monotonic when compared to Labrador.

It is important to note that while low-dimensional
representations of embeddings can be helpful in pro-
viding high-level, qualitative intuitions for how a
model behaves, they can be misleading and unfaith-
ful to the original, high-dimensional space (Chari
and Pachter, 2023). We provide these visualiza-
tions to provide some insight into the different ways
Labrador and BERT learn to represent the input
space, but caution should be used when attempting
to make fine-grained, quantitative conclusions.

4.1.3. Imputation

We also evaluated Labrador and BERT for their
ability to impute missing lab values in the test split
of their pre-training data. To do so, we mask a ran-
domly selected lab value from each bag of labs in
the test split and run each model’s forward pass to
obtain its prediction for the masked value (see Sec-
tion F.2 for more details). In panel A of Figure 3, we
see that the predictions from both pre-trained models
achieve a Pearson correlation r2 > 0.8. As an abla-
tion, we also evaluated Labrador and BERT with
randomly initialized parameters to assess the effect
of pre-training on the imputations. We see that the
strong correlation between the imputed and true lab
values stems entirely from pre-training and is not an
artifact of the model architectures or the data.

In panel B of Figure 3, we present individual scat-
ter plots for the four best lab tests as measured by
Pearson correlation. For Labrador, there is a clear
relationship between the strength of the correlation
and the frequency of the lab test in the training data.
Interestingly, we found that this relationship was less
pronounced for BERT, as there were some frequent
lab tests where the model performed relatively poorly
and a small number of rare tests where the model per-
formed well. In panel C, we show the four worst lab
tests as measured by Pearson correlation. It should
be noted that although the majority of MIMIC-IV
laboratory data consists of common test results, such
as the tests from the panels shown in Figure 2, there
is a long tail of rare tests in the database. Labrador
and BERT may be less capable of capturing the sta-
tistical dependencies in this long tail.

4.2. Extrinsic evaluations

In this section, we evaluate Labrador and BERT
for their ability to improve predictive performance in
real-world, downstream use cases. We also conduct
an ablation study to understand which parts of each
model contribute most to its performance.

4.2.1. Fine-tuning experiments and outcome
prediction

We compare Labrador and BERT’s performance to
a set of baseline models in four distinct outcome sce-
narios where predictions were made on the basis of
laboratory measurements: ICU mortality due to sep-
sis, cancer diagnosis, COVID-19 diagnosis, and the
prediction of alcohol consumption. Baseline methods
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are defined in Section F.5 and pre-processing for each
evaluation dataset is described in Section F.3.

For each of these experiments, we add a prediction
head to Labrador or BERT consisting of multiple
fully-connected layers followed by extensive hyper-
parameter tuning for this prediction head on each
outcome dataset and with each base model. Sec-
tion F.4 describes this fine-tuning procedure in de-
tail. Table 1 shows the performance of Labrador
and BERT compared to simple logistic (or linear) re-
gression, Random Forest and XGBoost.

XGBoost narrowly outperforms all other methods
on sepsis mortality prediction, cancer diagnosis and
COVID-19 diagnosis. Labrador performs best on
alcohol consumption prediction, which is a regres-
sion problem (as opposed to the other 3 classification
tasks) and is also the smallest outcome dataset. Ad-
ditionally, Labrador outperforms BERT across all
four evaluations, suggesting there is value in a model
that explicitly accounts for the continuous nature of
the data. For a precise definition of each evaluation
task see Section F.3.

4.2.2. Ablation study

It is important to differentiate the inductive bias of
the model architecture from the effect of pre-training,
since previous studies have shown that many archi-
tectures (including Transformers) can perform sur-
prisingly well even before they are trained on any
data (Rives et al., 2021). In order to assess this, we
perform an ablation study where the parameters of
BERT and Labrador are randomly initialized and
undergo the same hyperparameter tuning as their
pre-trained counterparts. The difference between a
pre-trained model’s performance and its ablation per-
formance isolates the effect of pre-training on these
downstream outcome prediction tasks. In Table 2,
we observe that the pre-trained Labrador outper-
forms its ablation in 3 of 4 downstream tasks with
the exception of cancer diagnosis. In contrast, the
pre-trained BERT underperforms its ablation in 3 of
4 downstream tasks with the exception of COVID-19
diagnosis. Table 2 demonstrates that Labrador’s
transfer learning is strictly superior to BERT’s.

5. Discussion

Through extensive experiments on downstream tasks,
we demonstrated that Labrador consistently out-
performs the standard BERT architecture on both

intrinsic and extrinsic evaluations. Our results show
the value of an architecture specialized for labora-
tory data compared to the traditional approach of
discretizing numeric values for tokenization. A key
contribution of our work is the creation of an effec-
tive self-supervised objective for pre-training on the
challenging distribution of laboratory data in EHRs.

Both Labrador and BERT were successfully op-
timized as masked language models, learning useful
representations of laboratory tests. This was evi-
denced by their ability to accurately impute missing
values in the test set. However, our fine-tuning exper-
iments reveal that transfer learning from pre-training
on laboratory data has limited success. On outcome
prediction tasks, neither Labrador nor BERT con-
sistently surpass simple baseline methods. Our ab-
lation study (Section 4.2.2) indicates that this stems
from insufficient representation learning during pre-
training, rather than issues with the inductive biases
or fine-tuning.

Next, we posit several reasons why pre-training on
laboratory data may fail to produce significant down-
stream gains, and provide a summary of the available
support for each.

Lab data lack correlation structure. If lab values
were statistically independent then the pre-training
task would be impossible. Likewise, if there is a triv-
ial correlation structure (e.g. some pairs of labs are
perfectly correlated) then we would not expect an
MLM objective to outperform simple models. How-
ever, we believe that there is a meaningful and com-
plex correlation structure amongst the lab measure-
ments, as evidenced in Figure 8.

MLM masking rate is too low. Labrador and
BERT may satisfy the pre-training objective without
learning enough about labs and patients to be adept
at outcome prediction. During our pre-training, the
average mask rate is just 5% per bag. Unfortunately,
increasing the mask rate may be impossible because
each bag of labs is permutation invariant. As a re-
sult, if multiple elements are masked within a bag,
Labrador and BERT’s predictions for each mask
token will be identical. There is no way for the model
to distinguish one mask token from the next in a per-
mutation invariant setting.

Positional embeddings are typically used to break
this symmetry, but we are not aware of a variable
to encode using via positional embeddings. For ex-
ample, the index in the input cannot be used since
the relative ordering of multiple mask tokens is arbi-
trary. The timestamp when a lab was measured could
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Table 1: Comparison of predictive performance among Labrador, BERT, and baseline models
across four outcome prediction settings.

Sepsis
mortality (↓)

Cancer
diagnosis (↓)

COVID-19
diagnosis (↓)

Alcohol
consumption (↓)

LR1 0.410 (0.398, 0.424) 1.177 (1.100, 1.272) 0.462 (0.434, 0.529) 9.73 (4.83, 13.93)
RF 0.387 (0.372, 0.401) 0.942 (0.902, 0.987) 0.431 (0.404, 0.487) 9.65 (4.62, 13.35)
XGB 0.387 (0.376, 0.399) 0.918 (0.847, 0.989) 0.419 (0.371, 0.504) 10.84 (5.54, 15.39)

BERT 0.406 (0.368, 0.431) 1.01 (0.859, 1.127) 0.441 (0.391, 0.513) 8.34 (5.80, 12.71)
Labrador 0.400 (0.371, 0.420) 0.978 (0.889, 1.163) 0.425 (0.369, 0.487) 7.11 (5.33, 9.15)

Note: We report the metrics as mean (min, max) across 5 random replicates. The best model for
each evaluation dataset is in bold. We use cross-entropy as evaluation metrics for all but alcohol
consumption, where we use MSE. Lower values indicate better predictive performance in all cases.

1 LR = logistic regression for all evaluations but alcohol consumption, where LR = linear regression.

Table 2: Ablation study evaluating the influence of pre-training on the predictive performance of BERT and
Labrador in four outcome prediction settings.

BERT Labrador

Pre-trained Random
weights (%)1

Pre-trained Random
weights (%)1

Sepsis mortality 0.406 (0.368, 0.431) +0.5% 0.400 (0.371, 0.420) -2%
Cancer diagnosis 1.01 (0.859, 1.127) +8.8% 0.978 (0.889, 1.163) +5.1%
COVID-19 diagnosis 0.441 (0.391, 0.513) -3.2% 0.425 (0.369, 0.487) -3.8%
Alcohol consumption 8.34 (5.80, 12.71) +11.5% 7.11 (5.33, 9.15) -5.9%

1 A positive percentage corresponds to an improvement in the evaluation metric relative to the corresponding pre-
trained model.

be used but labs are ordered in sets at the exact same
moment in time in a patient’s medical record. Even
if a bag of labs includes tests that span multiple or-
der sets, there would still be a symmetry issue within
each order set. We believe that this is a general chal-
lenge for any MLM of electronic health record data,
since measurements are often made in order sets.

Pre-training and downstream evaluations are
a poor match. The set of features used for can-
cer diagnosis is the least similar to the pre-training
vocabulary and is also the evaluation that both
Labrador and BERT perform the worst on. How-
ever, sepsis mortality prediction uses lab data from
the same ICU data distribution as in pre-training and
yet it is not the evaluation where pre-training delivers
the most value, which would be COVID-19 diagno-
sis. Therefore, we do not believe that a mismatch
between pre-training and downstream data distribu-

tions is the primary factor explaining the failure in
transfer learning.

Lab data only partially capture patient state.
Lab data, unlike text, do not provide a comprehen-
sive view of a patient's condition, necessitating the
incorporation of additional patient data categories.
Thus, it could be that even simple models are close to
the Bayes error rate given the information captured
by lab measurements. We propose that future work
should jointly learn from multiple EHR data cate-
gories, like diagnostic codes, procedure codes, and
medication prescriptions. This could lead to a multi-
modal model predicting next tokens across structured
EHR data, medical images, and clinical text.

Insufficient data scale. The capabilities of fron-
tier LLM’s have emerged as a function of the scale
of the pre-training data. We pre-trained Labrador
and BERT on approximately 100 million lab tests
but this only corresponds to 4.5 million input sam-
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ples. In comparison, GPT-3 (Brown et al., 2020) was
trained on a corpus of 300 billion tokens where each
input sequence contained 2048 tokens or about 145
million input sequences. This is nearly two orders
of magnitude larger than our pre-training dataset in
terms of input sequences and over 3 orders of mag-
nitude larger in token count. We believe that this is
at least 1 order of magnitude larger than the largest
available lab dataset today. Therefore, we encourage
others to contribute to the harmonization of datasets
across many sources, which requires large organized
coding efforts to unify the data into a compatible vo-
cabulary. This also requires open access to such data
sources, as MIMIC has provided. Importantly, if we
take into account the Chinchilla scaling laws from
Hoffmann et al. (2022), it is plausible that scaling
model size will not yield significant benefits in down-
stream performance given the relative scarcity of lab
data compared to text.

6. Conclusion

In this work, we presented Labrador, a novel Trans-
former architecture that can be pre-trained on (inte-
ger, float) data such that the float values are treated
in a continuous manner. We showed that Labrador
outperforms BERT across all downstream evaluations
and appears to learn monotonic axes corresponding
to lab value in its embedding space. However, de-
spite the success seen in pre-training, both models
fail to outperform XGBoost on four outcome predic-
tion tasks. Our ablation studies reveal that trans-
fer learning largely fails in this setting despite being
more successful for Labrador than for BERT. We
hypothesize that this failure is largely due to a lack
of pre-training data scale and an insufficient charac-
terization of the data generating process underlying
each patient using labs in isolation from other clini-
cal data types. As a result, we urge future work to
focus on harmonizing disparate datasets and jointly
modeling several categories of EHR data.

A persistent challenge in medical machine learning
for structured data is the lack of universally accepted
evaluations. Model predictions are difficult to verify,
since there is no human baseline for performance. As
a result, we have a poor sense of the Bayes error rate
for these types of prediction tasks. We argue that a
prerequisite to progressing the self-supervised learn-
ing efforts on EHR data is the establishment of uni-
versally accepted evaluations that will provide a clear

picture of the field’s progress over time in comparison
to tree-based methods (Bellamy et al., 2020).
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Appendix A. Background:
transformers and
masked language models

A.1. Transformers

Transformers are a class of deep learning models in-
troduced by Vaswani et al. (2017) that have signif-
icantly impacted various areas of machine learning,
including natural language processing, computer vi-
sion, and reinforcement learning. Transformers are
based on the principle of self-attention, which allows
them to efficiently capture long-range dependencies
in input data by computing weighted combinations

of all input elements instead of relying on the fixed-
size sliding windows used in traditional convolutional
and recurrent neural networks.

The core building block of a Transformer is the
attention mechanism, which computes the similarity
between all pairs of input elements and replaces each
input element with a weighted average of all other
inputs, weighted by their similarity. Transformers
are built by stacking multiple layers of self-attention
mechanisms, enabling the model to learn complex
patterns and representations in the input data.

A.2. Masked language models

Masked language models (MLMs) are a popular pre-
training technique for natural language processing
tasks. The key idea behind MLMs is to train a model
to predict missing words in a given text, with some
portion of the input words being masked out. By
learning to predict the masked words, the model is
forced to capture the underlying structure and se-
mantics of the language, resulting in a more robust
and generalizable representation.

MLMs are usually pre-trained on large-scale text
corpora and fine-tuned on specific downstream tasks,
such as text classification, sentiment analysis, or
named entity recognition. This two-step process, con-
sisting of pre-training and fine-tuning, is known as
transfer learning. Pre-training on large corpora al-
lows the model to learn general language features,
while fine-tuning adapts the model to the nuances of
the specific task at hand.

The success of MLMs is primarily attributed to
their ability to learn contextualized word represen-
tations, which capture both syntactic and semantic
information from the input text. This is in contrast
to traditional word embedding techniques, such as
Word2Vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014), which learn static word repre-
sentations that are context-independent.

In this work, we leverage the power of Transform-
ers and the masked language model pre-training tech-
nique to explore their applicability to laboratory data
in medicine. We aim to assess whether the successes
of Transformers and MLMs in other domains can be
replicated in the context of medical data, particularly
in outcome prediction tasks based on laboratory data.
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Appendix B. Pseudo-code
Implementations

The continuous embedding layer is implemented as
follows:

def ContinuousEmbeddingLayer(

lab_values, token_embeddings):

x = Dense_pw(lab_values,

out_size=d_model,

activation=‘linear’)

x = x + token_embeddings

x = Dense_pw(x, out_size=d_model,

activation=‘relu’)

x = LayerNorm(x)

return x

Where Dense_pw represents a position-wise dense
layer and token_embeddings is the output of the cat-
egorical embedding layer.

The continuous prediction head is implemented as
follows:

def ContinuousPredictionHead(

final_layer_embeddings, probs):

x = concat([final_layer_embeddings,

probs])

x = Dense_pw(x,

out_size=embed_dim + probs_dim,

activation=‘relu’)

x = Dense_pw(x, out_size=1,

activation=‘sigmoid’)

return x

Where probs is the categorical head’s probability
distribution over the lab code vocabulary. This sup-
plies the continuous prediction head with each token’s
predicted probability when attempting to impute the
masked lab value.
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Appendix C. Embedding Space Visualization

Figure 2: UMAP Visualization of Labrador and BERT Embeddings. A. A global view of the embedding
space structure for Labrador (left) and BERT (right). The 70 most frequently ordered lab tests
are shown and colored according to the panel of tests they are typically ordered with (see Appendix
I for all panel definitions). All labs on this figure are from the test split and were not seen during
pre-training. B. Visualization of embeddings for four routinely collected laboratory measurements
colored by lab value and scaled to the interval [0, 1]. Labrador appears to encode the measured
lab value in a much more natural way with a smooth gradient for lab value compared to BERT.
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Appendix D. Imputation Evaluation of Labrador and BERT

Figure 3: Intrinsic Evaluation of Labrador and BERT by lab value imputation. A. We masked a random
lab from each bag in the test set of the pre-training data and imputed these values using pre-trained
Labrador (left) and BERT (right). Both Labrador and BERT achieve a Pearson correlation
r2 > 0.8, in contrast to their ablations (orange). B. Imputations for the four best lab tests as
measured by Pearson correlation. C. Imputations for the four worst lab tests as measured by
Pearson correlation.
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Appendix E. Parameter-matched BERT experiments

Figure 4: Pre-training loss for BERT with 68.5M (dk =
⌊
dmodel

h

⌋
) versus 194M parameters (dk = dmodel).

Top: The training loss for both BERT models. Bottom: The validation loss.

To ensure that our choice for Labrador’s key dimension, dk = dmodel (instead of the more common
dk = dmodel

h , where h is the number of attention heads) does not alter our results or conclusions, we pre-
trained a second BERT model with the same dk as Labrador and repeated our evaluations.

BERT with dk = dmodel

h has 68.5M parameters, whereas the BERT model with the larger dk has 194M
parameters. The latter matches Labrador’s parameter count of 196M as closely as possible, since their
backbone structure is identical besides the additional 2M weights in Labrador’s continuous embedding layer
and continuous prediction head. Figure 4 compares the pre-training loss curves for BERT with 68.5M versus
194M parameters. Figure 5 compares their intrinsic lab value imputation performance. The imputation
performance of BERT 194M is slightly better than BERT 68.5M, despite their pre-training loss curves
appearing nearly identical.

Most importantly, we also include the larger BERT’s fine-tuning performance on the downstream out-
come prediction tasks, both with pre-training and without. Table 3 shows that the smaller BERT model
outperforms the larger BERT on 7 out of the 8 evaluations, but in general the difference is not statistically
significant.
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Figure 5: Lab value imputations from BERT with 68.5M (dk =
⌊
dmodel

h

⌋
) versus 194M parameters (dk =

dmodel). A. Imputations from both pre-trained BERT models (blue) as well as their ablations
(orange) on the test split of the pre-training data. B. Imputations for the four best lab tests as
measured by Pearson correlation. C. Imputations for the four worst lab tests as measured by
Pearson correlation.

Table 3: Comparison of fine-tuning performance between BERT with 68.5M versus 194M parameters. Left:
Performance of each model size after pre-training. Right: Performance of each model size starting
from randomly initialized weights.

Pre-trained Random weights

BERT 68M (↓) BERT 194M (↓) BERT 68M (↓) BERT 194M (↓)

Sepsis mortality 0.406 (0.368, 0.431) 0.400 (0.368, 0.424) 0.404 (0.378, 0.418) 0.406 (0.379, 0.419)
Cancer diagnosis 1.01 (0.859, 1.127) 1.08 (0.978, 1.20) 0.921 (0.774, 1.054) 0.972 (0.884, 1.10)
COVID-19 diagnosis 0.441 (0.391, 0.513) 0.484 (0.400, 0.544) 0.455 (0.412, 0.511) 0.470 (0.435, 0.489)
Alcohol consumption 8.34 (5.80, 12.71) 8.68 (6.57, 12.41) 7.38 (4.93, 10.43) 7.49 (4.39, 11.28)
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Appendix F. Further experimental
details

F.1. UMAP

After performing several scaling experiments with
UMAP reduction on the full test split of the pre-
training data, we observed that the results were
not significantly altered if we used a random sub-
sample of the data. We randomly selected bags
of labs totalling 50,000 (lab code, lab value) pairs
from the test split. These bags separately underwent
Labrador and BERT’s forward pass to obtain the
final layer embeddings from each Transformer. The
UMAP algorithm was run with n_neighbors=600,
min_dist=0.99 and a random seed of 3141592. In
preliminary experiments, we found that increasing
the number of neighbors and increasing the minimum
distance between points in the reduction provided a
better global structure of the embedding space. In
consultation with the MIMIC database authors, we
manually labeled lab codes according to their panel
membership, such as the Complete Blood Count (see
Appendix I for all panels). This allowed us to color
Figure 2 accordingly.

F.2. Intrinsic imputations

For intrinsic imputations, we randomly sampled ap-
proximately 2 million bags of labs from the pre-
training test split and randomly masked one (lab
code, lab value) pair. These masked bags were run
through the forward pass of Labrador and BERT
in order to assess their predictions for the masked
lab value. Labrador’s continuous prediction head
outputs a predicted lab value, which we compared
directly to the true masked lab value.

Since BERT only predicts tokens, we experimented
with two methods for converting these categorical
predictions into continuous values. First, we tried
an argmax method, which simply extracts the token
with the greatest logit in BERT’s output distribu-
tion and set the predicted lab value equal to the lower
bound of that token’s defined decile. Second, we tried
a weighted quantile method, which takes a weighted
average of the lower bounds of each token’s decile
where the weights are the re-normalized probabilities
for that lab code’s subset of the output distribution.
We found that this weighted quantile method works
far better than the argmax method, which is likely
due to the fact that the model is able to hedge its
probabilities across several deciles.

We present the Pearson correlation between the
true lab values and each model’s predictions in Fig-
ure 3. We also calculated Pearson correlations for
each unique lab code and used this to rank lab codes
from best to worst in terms of their imputation accu-
racy. Finally, we performed an ablation experiment
to highlight what was learned during pre-training.
The ablation was conducted by randomly initializ-
ing the weights for each model prior to performing
the steps described above.

F.3. Pre-processing the evaluation data

F.3.1. COVID-19 cohort

For COVID-19 diagnosis, we used a public dataset
(Cabitza et al., 2020, 2021) that contains blood work
for 1,624 patients (52% COVID-19 positive) admit-
ted at San Raphael Hospital from February to May
2020. The data contain 34 features and a binary tar-
get variable for COVID-19 diagnosis determined by
RT-PCR at a later point in time. Features ‘CK’ (cre-
atine kinase) and ‘UREA’ (blood urea nitrogen) were
dropped from the data because their rates of miss-
ingness were too high (60% and 38.5%, respectively).
Any patients that were missing greater than 25% of
the remaining 32 features were dropped as well since
we believe that the imputation quality for these pa-
tients would be too poor. This resulted in 1,312 pa-
tients.

The features contain 26 lab tests that exist in the
MIMIC-IV vocabulary of Labrador and BERT. We
manually verified the scale of each lab test to ensure
that the units of measurement were identical. One
test, ‘CA’ (calcium), was initially in mmol/L so we
converted it to mg/dL, which is the unit of measure-
ment used in MIMIC-IV for this test (itemid 50893).
Our pre-processed version of the COVID-19 dataset
can be found in our codebase on GitHub.

During evaluation of the baseline methods, any
missing values were imputed using the column mean
in the current split during k-fold cross-validation. In
contrast, both Transformers have natural ways of
handling missing values without requiring imputa-
tion. Labrador uses a special null token for missing
values and BERT has a special token in its vocabu-
lary for missing values for each lab code. Finally,
we used the stored eCDFs from pre-training to con-
vert all lab values from the 26 in-vocabulary features
to the interval [0, 1]. Labrador was fine-tuned di-
rectly on these values. For BERT, an additional step
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is required which maps the eCDF values to their re-
spective tokens in the model’s vocabulary.

F.3.2. Sepsis cohort

We downloaded the MIMIC-IV sepsis cohort from
Google BigQuery under physionet-data/mimic_

derived/sepsis3. Accessing the MIMIC-IV data
(Johnson et al., 2020, 2023) requires signing a data
use agreement and completing a short online train-
ing, so we cannot share this dataset directly. How-
ever, after obtaining MIMIC-IV access on PhysioNet,
you can find instructions on accessing the data using
Google BigQuery.

The sepsis dataset contains information on 34,678
septic patients, such as their patient ID, hospital
stay ID, and several other variables. The variable
sofa_time, which is the timestamp for the patient’s
most recent SOFA score, was used to link patients
to their other MIMIC records. These patients were
linked to their admission record to determine whether
they survived their ICU stay or not. We created a bi-
nary outcome variable equal to 1 if the patient died
by the end of their stay and 0 otherwise. We also
linked patients to their lab test results. We filtered
the labs to only include those that were measured in
the first 24 hours of the patient’s stay in the ICU.
Patients with fewer than 2 lab tests during the first
24 hours were dropped from the analysis, which left
34,136 remaining patients.

In order to conduct a fair comparison with baseline
methods, we opted to create a tabular dataset out of
this ragged dataset of lab tests. To do so, we selected
the 23 most frequently occurring lab tests in the first
24 hours. We chose the top 23 because this produced
a tabular dataset for all 34,136 patients with under
5% missingness. Finally, we converted all lab val-
ues to the interval [0, 1] using the eCDF method de-
scribed in Section 3.3 and mapped these values into
BERT’s token vocabulary. The code to recreate this
dataset is included in our codebase.

F.3.3. Cancer diagnosis cohort

For cancer diagnosis, we used a public dataset shared
by Tsai et al. (2022) that contains blood work for
1,336 patients. Briefly, each patient received a diag-
nosis of either cystitis, bladder cancer, kidney can-
cer, uterine cancer, or prostate cancer. The original
dataset contained 39 features in addition to the 5-
class target variable. Five of these 39 features were

removed for having too much missingness (urine ep-
ithelium, A/G ratio, urine ketone, urine glucose, and
strip WBC). Among the remaining 34 features, 24
were lab tests within the MIMIC-IV vocabulary, 2
lab tests were out of vocabulary, and there were 8
social variables (age, gender, smoking status, dia-
betes status, etc.). We manually verified that each
in-vocabulary lab test was using the same units of
measurement as in MIMIC-IV. For categorical vari-
ables that had missing values, we used the missing
indicator method. We transformed all lab values us-
ing the eCDF method and missing lab values were
handled in the same manner as for the COVID-19
dataset (Section F.3.1).

F.3.4. Alcohol consumption cohort

We obtained the alcohol consumption dataset from
the UCI Machine Learning Repository2. This small
dataset contains 345 patients, 5 lab test features
and 1 continuous outcome variable. Briefly, the out-
come is the number of half-pint equivalents of alco-
holic beverages drunk per day. The 5 lab test fea-
tures are all thought to be sensitive to liver disorders
that might arise from excessive alcohol consumption.
There is no missingness in this dataset therefore no
pre-processing was required for the baseline methods.
For Labrador and BERT, the lab values were trans-
formed with the eCDF method.

F.4. Transformer fine-tuning

In order to fine-tune Labrador and BERT on the
four downstream outcome prediction tasks, we cre-
ated a simple wrapper class for each model that could
handle a combination of in-vocabulary lab features as
well as previously unseen features. The pseudocode
for Labrador’s wrapper class’ call method is as fol-
lows:

def LabradorFinetuneWrapper(

inputs: Dict[Tensor]) -> Tensor:

x = base_model(inputs[’lab_features’])

x = pool(x)

if ’non_mimic_features’ in inputs.keys():

non_mimic_features = dense(

inputs[’non_mimic_features’])

x = concat([x, non_mimic_features],

axis=1)

2. https://doi.org/10.24432/C54G67
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x = dense(x)

x = dropout(x)

x = dense(x)

return x

The lab features are passed to the base model as
usual. The base model’s final embeddings are aver-
aged into a single vector of size hidden_dim (i.e. 1024
in our experiments). If there are other features, these
are passed through a 1-to-1 dense layer with a ReLU
activation followed by concatenation with the pooled
embedding vector. This combined representation is
passed through an additional 1-to-1 ReLU-activated
dense layer prior to the final dense layer that projects
this vector down to the size required by the outcome
prediction task. This final dense layer also has an
activation function that is dependent on the outcome
prediction task (e.g. linear for alcohol consumption
prediction, sigmoid for sepsis mortality prediction).
The pseudocode is the same for BERT.

Across all fine-tuning experiments, we froze the pa-
rameters of the base model and performed hyperpa-
rameter tuning across a grid consisting of the learning
rate, dropout rate, number of fine-tuning epochs and
batch size. More specifically, we use the following
grid of hyperparameters:

• Number of epochs: [30, 60, 90]

• Batch size: [16, 32, 64]

• Learning rate: [1e-4, 3e-4, 5e-4, 1e-3]

• Dropout rate: [0.1, 0.3, 0.5, 0.7]

In our preliminary experiments, we found that this
grid spans all plausible regions of interest in hyper-
parameter space. We also conducted preliminary ex-
periments with unfrozen base models and the same
hyperparameter grid as the original authors of BERT,
but we found that this resulted in worse performance.

F.5. Baseline methods for outcome
prediction

We include a set of simple baseline methods for com-
parison in our fine-tuning experiments. This in-
cluded linear regression, logistic regression, Random
Forest (classification and regression) and XGBoost
(classification and regression). For all logistic regres-
sion experiments, we tuned C, the coefficient for the
strength of L2-regularization, using the grid: [0.0001,
0.001, 0.01, 0.1]. Otherwise, we allowed 200 iterations

for the solver to converge and used the lbfgs solver.
For linear regression, we used ordinary least squares.
For the random forest baseline and XGBoost, the hy-
perparameter grids can be seen below.

Random forest:

• Number of estimators: [30, 100, 200]

• Max depth: [3, 5, 10]

• Max features: [All, sqrt]

XGBoost grid:

• Number of estimators: [30, 100, 200]

• Subsample: [0.6, 0.8, 1.0]

• Column sample by tree: [0.6, 0.8, 1.0]

• Max depth: [3, 5]

During fine-tuning, continuous features were nor-
malized using the mean and standard deviation of the
current fold in K-fold cross-validation.
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Appendix G. Pre-training loss curves

Figure 6: Pre-training loss curves for Labrador, the continuous Transformer. Top: The training loss for
both the lab code (cross-entropy) and lab value (MSE) prediction heads. Bottom: The validation
cross-entropy and MSE.
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Figure 7: Pre-training loss curves for BERT. Top: The training cross-entropy. Bottom: The validation
cross-entropy.
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Appendix H. Lab value correlation plot

Figure 8 is a heatmap of the Pearson correlation coefficients between each pair of the 70 most frequently
ordered lab tests in MIMIC-IV. Labs are grouped by their panel membership and black lines separate these
panels. For example, the top left box contains the correlation coefficients within the Basic Metabolic Panel
(BMP), whereas the box at row 6, column 3 represents the inter-panel correlation between lipid tests and
blood gas tests. This allows us to compare intra-panel (main diagonal) to inter-panel correlation structure
(off-diagonal).

Figure 8: Lab value correlation matrix. A 70 x 70 matrix of Pearson correlation coefficients between each
pair of the 70 most frequently ordered lab tests in MIMIC-IV. The 70 tests are grouped by the
panel that they are most frequently ordered with (see Appendix I for panel definitions). Black
lines divide the matrix into panel-by-panel correlation blocks.

Appendix I. Lab panel definitions

Table 4: Definition of the MIMIC-IV bilirubin panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

50885 Bilirubin, Total Blood Chemistry 1975-2
50883 Bilirubin, Direct Blood Chemistry 1968-7
50884 Bilirubin, Indirect Blood Chemistry 1971-1
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Table 5: Definition of the MIMIC-IV blood gas panel. These tests do not have LOINC codes.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

50820 pH Blood Blood Gas
50821 pO2 Blood Blood Gas
50802 Base Excess Blood Blood Gas
50804 Calculated Total CO2 Blood Blood Gas
50818 pCO2 Blood Blood Gas
50813 Lactate Blood Blood Gas

Table 6: Definition of the MIMIC-IV basic metabolic panel (BMP).

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

50912 Creatinine Blood Chemistry 2160-0
51006 Urea Nitrogen Blood Chemistry 3094-0
50971 Potassium Blood Chemistry 2823-3
50983 Sodium Blood Chemistry 2951-2
50902 Chloride Blood Chemistry 2075-0
50882 Bicarbonate Blood Chemistry 1963-8
50868 Anion Gap Blood Chemistry 1863-0
50931 Glucose Blood Chemistry 6777-7
50893 Calcium, Total Blood Chemistry 2000-8
50960 Magnesium Blood Chemistry 2601-3
50970 Phosphate Blood Chemistry 2777-1

Table 7: Definition of the MIMIC-IV complete blood count (CBC) panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

51221 Hematocrit Blood Hematology 4544-3
51265 Platelet Count Blood Hematology 777-3
51222 Hemoglobin Blood Hematology 718-7
51301 White Blood Cells Blood Hematology 804-5
51249 MCHC Blood Hematology 786-4
51279 Red Blood Cells Blood Hematology 789-8
51250 MCV Blood Hematology 787-2
51248 MCH Blood Hematology 785-6
51277 RDW Blood Hematology 788-0
52172 RDW-SD Blood Hematology N/A
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Table 8: Definition of the MIMIC-IV complete blood count with differential panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

51256 Neutrophils Blood Hematology 761-7
51244 Lymphocytes Blood Hematology 731-0
51254 Monocytes Blood Hematology 742-7
51146 Basophils Blood Hematology 704-7
51200 Eosinophils Blood Hematology 711-2
52075 Absolute Neutrophil Count Blood Hematology 751-8
52073 Absolute Eosinophil Count Blood Hematology 711-2
52074 Absolute Monocyte Count Blood Hematology 742-7
51133 Absolute Lymphocyte Count Blood Hematology 731-0
52069 Absolute Basophil Count Blood Hematology 704-7

Table 9: Definition of the MIMIC-IV lipid panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

51000 Triglycerides Blood Chemistry 1644-4
50907 Cholesterol, Total Blood Chemistry 2093-3
50904 Cholesterol, HDL Blood Chemistry 2086-7
50903 Cholesterol Ratio (Total/HDL) Blood Chemistry 9322-9
50905 Cholesterol, LDL, Calculated Blood Chemistry 2090-9
50906 Cholesterol, LDL, Measured Blood Chemistry N/A

Table 10: Definition of the MIMIC-IV liver function test (LFT) panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

50861 Alanine Aminotransferase (ALT) Blood Chemistry 1742-6
50878 Asparate Aminotransferase (AST) Blood Chemistry 1920-8
50863 Alkaline Phosphatase Blood Chemistry 6768-6
50927 Gamma Glutamyltransferase Blood Chemistry 2324-2

Table 11: Definition of the MIMIC-IV toxicology (blood) panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

50922 Ethanol Blood Chemistry 5642-4
50856 Acetaminophen Blood Chemistry 3297-9
50981 Salicylate Blood Chemistry 4023-8
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Table 12: Definition of the MIMIC-IV toxicology (urine) panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

51092 Opiate Screen, Urine Urine Chemistry N/A
51079 Cocaine, Urine Urine Chemistry N/A
51071 Amphetamine Screen, Urine Urine Chemistry N/A
51090 Methadone, Urine Urine Chemistry N/A
51074 Barbiturate Screen, Urine Urine Chemistry 3377-9
51989 Oxycodone Urine Chemistry N/A
51089 Marijuana Urine Chemistry N/A

Table 13: Definition of the MIMIC-IV urinalysis panel.

MIMIC-IV
ItemID

Test Name
MIMIC-IV
Test Fluid

MIMIC-IV
Test Category

LOINC Code

51506 Urine Appearance Urine Hematology 5767-9
51498 Specific Gravity Urine Hematology 5811-5
51491 pH Urine Hematology 5803-2
51478 Glucose Urine Hematology 5792-7
51492 Protein Urine Hematology 5804-0
51484 Ketone Urine Hematology 5797-6
51464 Bilirubin Urine Hematology 5770-3
51487 Nitrite Urine Hematology 5802-4
51514 Urobilinogen Urine Hematology 5818-0
51087 Length of Urine Collection Urine Chemistry N/A
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