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ABSTRACT

This paper presents an optimized approach to enhance the computation of
Hirschfeld-Gebelein-Rényi (HGR) maximal correlation, addressing computa-
tional and efficiency challenges in large-scale neural networks and multimodal
learning. The UniFast HGR framework introduces three key innovations: replac-
ing covariance with cosine similarity to eliminate matrix inversion, removing the
diagonal of the correlation matrix to mitigate self-correlation bias, and simplify-
ing variance constraints via ℓ2-normalization. These contributions reduce com-
putational complexity from O(K3) to O(m2K) while improving accuracy and
stability. The framework scales effectively across diverse multimodal applica-
tions. Additionally, the OptFast variant minimizes normalization steps, achieving
efficiency comparable to dot-product operations without sacrificing precision. Ex-
perimental evaluations across benchmark datasets validate the framework’s ability
to balance computational efficiency with accuracy, establishing it as an effective
solution for addressing contemporary deep learning challenges.

1 INTRODUCTION

In machine learning, extracting effective data representations is critical (Bengio et al., 2013). This
task becomes increasingly complex when working with multimodal data, which encompasses in-
formation from diverse sources such as images, text, and audio (Summaira et al., 2021). Human
cognition inherently integrates these disparate data types, facilitating more accurate interpretation
and decision-making. However, machines encounter substantial difficulties in synthesizing such het-
erogeneous information, primarily due to the distinct statistical properties inherent in each modality.
These differences obscure the correlations that are vital for learning effective feature representa-
tions (Baltrusaitis et al., 2018; Guo et al., 2019; Gandhi et al., 2023). Traditional methods, such
as Canonical Correlation Analysis (CCA)(Hotelling, 1936) , have been employed to identify linear
relationships between two datasets, while other approaches, such as minimizing Euclidean distances
between feature spaces, have also been explored (Frome et al., 2013).

The Hirschfeld-Gebelein-Rényi (HGR) maximal correlation (Hirschfeld, 1935; Gebelein, 1941;
Rényi, 1959) has been widely recognized as a robust metric for capturing nonlinear dependencies be-
tween random variables, generalizing CCA to nonlinear settings. Its application in machine learning,
particularly for multimodal data integration, has garnered attention due to its theoretical ability to
extract maximally informative features across modalities (Huang et al., 2017). Despite its potential,
the practical implementation of HGR maximal correlation in modern machine learning frameworks
presents significant challenges. The HGR maximal correlation framework imposes strict whiten-
ing constraints, necessitating uncorrelated feature representations. This requirement introduces
substantial computational burdens, especially when processing high-dimensional data common in
deep neural networks. Matrix inversion and decomposition operations, required for whitening, are
computationally expensive and susceptible to numerical instability, thus limiting their scalability
in large-scale machine learning applications. Efforts to overcome these limitations have led to the
development of extensions such as Kernel CCA (Akaho, 2006) and Deep CCA (Andrew et al.,
2013), which aim to approximate HGR maximal correlation. However, these methods remain con-
strained by their transformation functions and continue to suffer from computational inefficiencies
stemming from whitening. Alternative approaches, such as Soft-CCA and Correlational Neural Net-
works, attempt to alleviate these constraints but risk altering the underlying feature geometry, which
can reduce the discriminative capacity of the extracted features (Chang et al., 2018; Chandar et al.,
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2016). Another limitation of the HGR framework is its lack of optimization for supervised learning
tasks. It assumes discriminative information is preserved within the shared subspace of different
modalities, which often fails, especially in weakly correlated modalities or substantial modality-
specific information. Maximal Correlation Regression (MCR) addresses this by incorporating HGR
maximal correlation to derive optimal weights for supervised learning, showing strong connections
to methods like linear discriminant analysis and softmax regression. MCR has demonstrated com-
petitive performance on various real-world datasets (Xu & Huang, 2020). Recent research has also
explored sample complexity in estimating HGR maximal correlation functions using the Alternating
Conditional Expectations (ACE) algorithm, providing error bounds and optimal sampling strategies
for large datasets in supervised and semi-supervised learning contexts (Huang & Xu, 2021). In mul-
timodal fusion, HGR maximal correlation has been successfully incorporated into loss functions to
enhance person recognition performance across multimodal data sources (Liang et al., 2021).

The Soft-HGR framework (Wang et al., 2019) was introduced to address limitations by relaxing the
whitening constraints while preserving the essential geometry of the feature space. This framework
utilizes a low-rank approximation based on the empirical distribution of the dataset, accommodat-
ing missing modalities and incorporating supervised information. A deep learning framework has
also been developed to address challenges in audio-visual emotion recognition, such as missing la-
bels and incomplete modalities, by employing an HGR maximal correlation-based loss function to
capture essential information from diverse training data (Ma et al., 2021). Additionally, a multi-
modal conditional GAN has been introduced as a data augmentation method for audio-visual emo-
tion recognition, although this approach modifies the transmitted data during the fusion process (Ma
et al., 2022). In the MultiEMO (Shi & Huang, 2023) study, Soft-HGR was applied to correlation
analysis, leading to enhanced classification accuracy in emotion recognition. Despite these ad-
vancements, Soft-HGR still struggles when applied to complex neural architectures and large-scale
datasets. Its scalability and efficiency, while improved, remain inadequate for modern deep learn-
ing applications due to high computational complexity and sensitivity to high-dimensional features.
With the rise of large-scale models and datasets, the limitations of the Soft-HGR framework have be-
come more evident. Despite its utility in some applications, Soft-HGR’s computational complexity
and inefficiency hinder its integration into state-of-the-art deep learning architectures, particularly
for large-scale data and models. A more efficient and scalable solution is urgently needed to unlock
the potential of multimodal learning in modern machine learning environments.

To address these limitations, UniFast HGR is introduced as an advanced solution that overcomes
computational bottlenecks and scalability issues. It replaces covariance-based computations with
cosine similarity to eliminate matrix inversion, reduces complexity from O(K3) to O(m2K), and
incorporates diagonal removal to mitigate self-correlation bias in high dimensions. The framework
also enforces variance constraints via ℓ2-normalization to stabilize training. These three innova-
tions—cosine similarity, diagonal removal, and simplified variance constraints—collectively enable
efficient and scalable maximal correlation estimation in deep learning. UniFast HGR features an
optimized algorithmic structure that reduces computational overhead, improves discriminative accu-
racy, and provides a unified approach scalable to large datasets and deep models. It is also designed
to fully leverage deep neural networks, enabling efficient learning of correlated features across mul-
tiple modalities. The contributions of this framework are as follows:

Unified Efficiency and Scalability: UniFast HGR merges the strengths of both traditional HGR and
Soft-HGR, addressing their limitations in dimensionality and computational complexity. By inte-
grating the original HGR maximal correlation framework with refinements from Soft-HGR, UniFast
HGR achieves stable and precise feature extraction within a bounded range of [-1,1]. This integra-
tion enhances adaptability and performance within modern deep learning architectures, making the
framework particularly well-suited for large-scale datasets and deep neural networks.

Enhanced Discriminative and Correlation Power: UniFast HGR integrates discriminative objec-
tives to extract informative features for supervised tasks and optimizes correlations between data
modalities through function maximization, ensuring effective information alignment. This is crucial
in complex architectures where multimodal correlations affect performance. It replaces covariance
with cosine similarity to improve accuracy and excludes diagonal elements to avoid self-correlation
bias, yielding more precise results. The framework balances speed and performance, enhancing
discriminative and correlation efficacy across deep learning tasks.
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Overcoming Complexity Limitations: UniFast HGR resolves the complexity and inefficiency is-
sues associated with Soft-HGR, providing a faster, more scalable solution for large-scale deep learn-
ing applications. Additionally, the OptFast HGR variant further optimizes performance by reducing
the number of normalization steps, achieving computational efficiency comparable to dot product
and cosine similarity operations. This optimization significantly accelerates processing while main-
taining high performance. These advancements represent a substantial step forward in applying
HGR maximal correlation, particularly in managing dimensionality challenges and enabling more
effective multimodal learning at scale.

2 PROPOSED METHOD

The UniFast HGR framework significantly improves on both Soft-HGR and the original HGR maxi-
mal correlation approaches. It addresses computational challenges, scalability limitations, and prac-
tical constraints in large-scale neural network applications. UniFast HGR enhances both discrim-
inative and correlation capabilities, facilitating the extraction of highly informative features across
diverse data modalities. The following sections outline its key components and innovations.

2.1 PRELIMINARY

HGR Correlation Analysis and Limitations: HGR maximal correlation extends Pearson corre-
lation by providing a more comprehensive measure of dependency, originally developed for sin-
gle features but naturally extendable to multiple features. In the case of random variables x and
y, which share a joint distribution across the domains X and Y . Given N × k feature matrices
f = [f1, f2, · · · , fN ]

T and g = [g1, g2, · · · , gN ]
T ,where fi and gi are both 1 × k dimensional

vectors, N is the number of samples, and the HGR maximum correlation is defined as follows:

ρk(X,Y ) = sup
f:x→Rk, E[f]=0,cov(f)=I

g:y→Rk,E[g]=0,cov(g)=I

E
[
fT (X) g (Y )

]
(1)

where E[f ] and E[g] represent the expected value of vectors f and g, respectively; cov(f) and cov(g)
represent the covariance of vectors f and g, respectively.

The HGR maximal correlation is determined via optimization over sets of Borel measurable func-
tions with zero mean and stable covariance. This correlation, ranging from 0 to 1, signifies either
complete independence or a deterministic relationship between X and Y . However, the compu-
tational complexity of HGR maximal correlation arises primarily from the whitening constraints,
which necessitate matrix inversion and decomposition, resulting in a time complexity of O(K3).
These challenges are compounded by scalability issues, particularly as covariance matrices can be-
come ill-conditioned, leading to gradient explosions in high-dimensional spaces.

Soft-HGR tackles some computational challenges of HGR by using a low-rank approximation,
which helps integrate with neural networks and compute maximal correlations efficiently without
requiring strict whitening (Wang et al., 2019). When applied to mini-batches, Soft-HGR lowers
complexity to O(mK2) by approximating batch covariance, enhancing stability even with large
feature dimensions. However, it faces issues during the fusion process where data values may be
altered, and output values can become excessively large due to higher network outputs associated
with higher HGR correlations (Zhang et al., 2024). This variance sensitivity and deviation from
ideal HGR make cross-dataset comparisons difficult, especially with numerous features, limiting
its practical use. Although low-rank approximations reduce some computational load from tradi-
tional HGR, Soft-HGR still involves more complex operations than simpler alternatives like the dot
product. Additional operations such as covariance matrix computation, matrix decomposition or
inversion, and iterative feature mapping optimization further increase computational complexity.

These limitations lead to higher computational costs when applying Soft-HGR to large-scale datasets
and deep models, complicating its scalability and impeding its efficiency and stability in real-world
applications. Consequently, Soft-HGR is less suited for widespread deployment in large-scale deep
learning environments. Soft-HGR is mathematically represented as follows:

maxf,g E
[
fT (X)g(Y )

]
− 1

2 tr( cov(f(X)) cov(g(Y ))), s.t. E[f(X)] = E[g(Y )] = 0 (2)

where f(X) and g(Y ) are feature mappings derived from various random modalities.
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2.2 OPTIMIZED CORRELATION FRAMEWORK

Variance Constraint: To address the limitations of Soft-HGR, especially its sensitivity to changes
in signal variance, variance constraints are introduced in UniFast HGR. Unlike Soft-HGR, which
lacks variance normalization, UniFast HGR enforces variance constraints during optimization. By
definition of HGR maximal correlation, a zero mean and unit variance (Var = 1) are required in the
Soft-HGR objective, as shown in Eq. (2). For the first term of Eq. (2), the following holds:

E
[
fT (X) g (Y )

]
= 1

N−1

∑N
i=1 f

T (xi)g(yi) (3)
By ensuring a mean of zero, the following condition is satisfied:

E
[
fT (X) g (Y )

]
= 1

N−1

N∑
i=1

(f(xi)− E[f(xi)])
T
(g(yi)− E[g(yi)]) (4)

By introducing the variance constraint Var = 1, the following expression is obtained:

E
[
fT (X)g(Y )

]
= 1

N−1

N∑
i=1

(f(xi)−E[f(xi)])(g(yi)−E[g(yi)])√
Var[f(xi)]

√
Var[g(yi)]

(5)

This variance normalization ensures that the output values of Soft-HGR remain within the range
[-1,1]. A key aspect of this method is that as Soft-HGR output values approach 1, the corresponding
HGR values also approach 1, due to the synchronous nature of their derivatives (i.e., both rates
of change share the same sign). This correlation allows the use of an HGR approximation under
ideal conditions to replace the actual HGR value, improving accuracy while slightly increasing
computational complexity. However, by transforming the first term of Eq. (2) into a cosine similarity
calculation, the computational burden is reduced.

Expansion of the Trace Term: The introduction of variance constraints in the Soft-HGR objective
increases computational load. However, by expanding the trace term, this additional burden can
be mitigated, optimizing the process. The trace term, which plays a critical role in the framework,
was not significantly impacted in the original Soft-HGR due to the absence of variance constraints.
However, with variance constraints in place, the trace term becomes essential, as it represents the
correlation between two matrices or data sets. In refining the Soft-HGR framework, two key com-
ponents were identified: (1) the correlation between individual elements, and (2) the correlation
between the correlation matrices of sets. Specifically, for a matrix representing the correlation of el-
ements within a set, the trace term captures the correlation between the correlation matrices of these
sets. This is achieved by expanding the matrix and quantifying the similarity in the distribution of
elements. In essence, the trace term provides a more refined measure of the correlation between the
sets by capturing the correlation between their respective correlation matrices. The definition of the
trace term is given as follows:

trace =
1

2
tr( cov(f(X))cov(g(Y ))) (6)

The covariance matrices are computed as follows:

cov[f(X)] = 1
N−1

N∑
i=1

(f(xi)− E[f(xi)]) (f(xi)− E[f(xi)])
T (7)

cov[g(Y )] = 1
N−1

N∑
i=1

(g(yi)− E[g(yi)]) (g(yi)− E[g(yi)])T (8)

where, cov[f(X)]ij = cov[fi, fj ] ≡ covfij , cov[g(Y )]ij = cov[gi, gj ] ≡ covgij

Considering the trace term,

trace = 1
2 tr( cov(f(X))cov(g(Y ))) = 1

2(N−1)

N∑
i=1

N∑
j=1

(covfij − E[covfi]) (covgji − E[covgj ]) (9)

where covfi = (covfi,0, covfi,1, · · · , covfi,N ), covgj = (covgj,0, covgj,1, · · · , covgj,N )

By incorporating the variance constraint Var = 1,

trace = 1
2 tr ( cov(f(X)) cov(g(Y ))) = 1

2(N−1)

N∑
i=1

N∑
j=1

( covfij−E[ covfi])( covgji−E[ covgj ])√
V ar( covfi)

√
V ar( covgj)

(10)

Simplifying this expression demonstrates that it is related to the trace of the product of the covariance
matrices in the simplified HGR approximation formula. This optimization reduces computational
complexity while maintaining the accuracy of the HGR approximation.
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2.3 UNIFAST HGR

The UniFast HGR framework is derived from Soft-HGR through three key steps: (1) enforcing
Var(f) = Var(g) = 1 to ensure stability and theoretical consistency with HGR, (2) replacing covari-
ance computations with cosine similarity under these constraints, and (3) expanding and simplify-
ing the trace term. This reformulation reduces computational complexity from O(K3) to O(m2K)
while maintaining correlation estimation accuracy.

Substitution with Cosine Similarity: Covariance computations are replaced with cosine similarity,
eliminating matrix inversion. The substitution is mathematically justified when zero-mean features
satisfy unit variance constraints, where covariance naturally simplifies to cosine similarity. This
transformation enables efficient, scalable correlation estimation for high-dimensional features.

cos(f, g) =
f · g
∥f∥∥g∥

(11)

If all components of a random vector are independent, the square of the vector’s modulus equals the
sum of the variances of each component. Thus, Eq.(5) and (11) are equivalent:

E
[
fT (X) g (Y )

]
=

1

N − 1

N∑
i=1

cos(f(xi), g(yi)) (12)

Similarly, the covariance calculation in Eq. (10) can be converted into a cosine similarity calculation:

trace = 1
2 tr ( cov(f(X)) cov(g(Y ))) = 1

2(N−1)

N∑
i=1

N∑
j=1

(cos fij−E[cos fi])(cos gji−E[cos gj ])√
V ar(cos fi)

√
V ar(cos gj)

(13)

where cosfij = cos(fi, fj), cosgji = cos(gj , gi), cosfi = (cosfi,0, cosfi,1, · · · , cosfi,N ), cosgj =
(cosgj,0, cosgj,1, · · · , cosgj,N ). That is,

trace =
1

2
tr ( cov(f(X)) cov(g(Y ))) =

1

2(N − 1)

N∑
i=1

cos(distrif , distrig) (14)

where distrif = f · fT and distrig = g · gT

Finally, the UniFast-HGR is computed as follows:

maxf,g E
[
fT (X) g (Y )

]
− 1

2 tr ( cov(f(X)) cov(g(Y ))) = 1
N−1

N∑
i=1

cos(f(xi), g(yi)− 1
2(N−1)

N∑
i=1

cos(distrif , distrig))

(15)
That is,

UF-HGR =
1

N − 1

N∑
i=1

cos(f(xi), g(yi))−
1

2(N − 1)

N∑
i=1

cos(distrif , distrig) (16)

where distrif and distrig represent the distribution vectors derived from the correlation matrices,
capturing inter-sample relationships.

Removing the Main Diagonal: A key enhancement in UniFast HGR involves removing the main
diagonal of the correlation matrices. The diagonal entries, fixed at 1 due to the variance constraint
(Var = 1), represent self-correlations that disproportionately influence cosine similarity calculations,
leading to overestimated similarity and biased optimization. Removing the diagonal mitigates this
issue, as the fixed diagonal value of 1 biases the resulting vector toward a specific angle, narrowing
the range of variation and reducing accuracy. Furthermore, correlation values in the range [−1, 1]
can be distorted by the multiplication effect, which amplifies the diagonal’s influence and diminishes
the contribution of non-diagonal elements. This distortion causes the calculated angles to align with
the maximum diagonal value, limiting the ability of other values to approach 1 and often pushing
them significantly below 1. By removing the diagonal, a more accurate and representative similar-
ity measure is achieved. This enhancement significantly improves gradient stability—especially in
small-batch settings—and final accuracy, making UniFast HGR both faster and more robust. The
approach aligns with practices in methods like CKA and PCA whitening, and closely matches the
theoretical expectations of HGR. A detailed step-by-step derivation is provided in Appendix A,
along with the detailed calculation process for the UniFast HGR algorithm in Algorithm 1.
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2.4 GENERALIZATION TO MORE MODALITIES

The HGR maximum correlation was originally defined for two random variables, and extending
this correlation-based approach to multiple modalities presents significant challenges. The introduc-
tion of additional modalities imposes new whitening constraints, thereby increasing computational
complexity. However, UniFast HGR offers enhanced flexibility in managing this complexity. To
handle two or more modalities, the multimodal UniFast HGR must be capable of learning and si-
multaneously recording all paired feature transformations. Assuming that X1, X2, . . . , Xm are m
different modalities, and f(1), f(2), . . . , f(m) denote their corresponding transformation functions.
The multimodal UniFast HGR is defined as follows:

UF-HGR = 1
N−1

∑m
j=1,l=j+1

∑N
i=1 cos

(
f (j) (xj) , f

(l) (xl)
)
− 1

2(N−1)

∑m
j=1,l=j+1

∑N
i=1 cos(distrijf , distrilf )

(17)
where j, l = 1, 2, . . . ,m, and j ̸= l. The model extracts features from each modality branch and
maximizes their paired UniFast HGR values in an additive manner. From an information theory
perspective, as shown in Eq. (17), maximizing UniFast HGR is equivalent to extracting the shared
information between multiple random variables. This process identifies and leverages the common
information content between different patterns or random variables involved.

2.5 OPTIMIZATION IN SPEED

To further accelerate the algorithm’s computational speed, OptFast HGR was developed as an exten-
sion of UniFast HGR, prioritizing efficiency while maintaining reasonable accuracy. The primary
improvement in OptFast HGR involves reducing the number of normalization steps, achieving ef-
ficiency and computational cost comparable to a dot product operation. This optimization signif-
icantly increases computation speed. However, the trade-off for this enhancement is a slight bias
introduced in the results. This bias results in correlation values that are marginally shifted due to
the reduced normalization steps, highlighting a trade-off between speed and accuracy. While the dot
product operation in OptFast HGR provides faster computations, it slightly compromises the preci-
sion of the correlation values. This difference underscores that OptFast HGR, while optimized for
speed, may not always align perfectly with the theoretical correlations expected in certain contexts
(Please refer to Appendix B). Nonetheless, the strength of OptFast HGR lies in its ability to process
large datasets and models at a significantly faster rate, making it especially suitable for scenarios
where computational speed takes precedence over minor variations in accuracy. The computational
process of the proposed OptFast HGR algorithm is detailed in Algorithm 2 in Appendix A.

3 EXPERIMENTS

3.1 EXECUTION TIME AND FEATURE DIMENSION

Figure 1: Execution time and fea-
ture dimension comparison on MNIST
dataset.

The execution times and maximum achievable feature di-
mensions of various methods, including HGR, Soft-HGR,
and UniFast HGR, were compared using the MNIST
dataset (LeCun et al., 1998). Following the experimental
frameworks of Wang et al.(Wang et al., 2019) and Andrew
et al.(Andrew et al., 2013), the left and right halves of
each digit image were treated as two distinct patterns. To
highlight the efficiency differences introduced by the Uni-
Fast HGR, all feature transformations were constrained
to a linear form, reducing the maximum correlation of
HGR to linear CCA. As depicted in Figure 1, the exe-
cution times for UniFast HGR and OptFast HGR were
significantly faster than those of CCA and Deep CCA
methods, and also outperformed Soft-HGR. The execu-
tion time for the CCA method increased substantially as
feature dimensions grew, posing challenges in real-world
applications where feature dimensions are typically large.
Notably, when the feature dimension exceeded 350, CCA
encountered numerical stability issues.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.2 IMAGE CLASSIFICATION

The performance of UniFast HGR was evaluated against several methods, including CCA, Deep
CCA, Soft CCA, Soft-HGR, cosine similarity, and dot product, in the context of image classifica-
tion. Comparative experiments were conducted using a dual-channel deep learning framework for
remote sensing data classification, with ResNet 50 (He et al., 2016) as the backbone. Following
the same conditions and preprocessing steps outlined by Wu et al. (Wu et al., 2022) , classification
results on the Berlin dataset (Hong et al., 2021; Akpona et al., 2016) are presented in Table 1. The
performance was evaluated using three metrics: overall accuracy (OA), average accuracy (AA), and
kappa coefficient. On the Berlin and Houston 2018 (Lin et al., 2023) datasets, our method improved
classification accuracy. UniFast HGR showed competitive performance across all methods, proving
its effectiveness in image classification. Moreover, OptFast HGR, which reduced the number of nor-
malization steps, achieved computational efficiency on par with dot product and cosine similarity
operations. These results highlight the significant advantages of UniFast HGR and OptFast HGR in
enhancing classification performance.The detailed results can be found in Appendix D.1 and D.4.

Table 1: Image classification results on the Berlin
dataset.

Methods OA(%) AA(%) Kappa
(%)

Time
(s/epoch)

CCA 70.93 64.35 58.28 2967.52
Deep CCA 72.74 65.08 60.23 250.51
Soft CCA 71.54 61.14 58.33 314.93
Dot Product 75.20 66.22 62.77 23.18
Cosine Simi-
larity

75.51 65.53 62.53 23.40

Soft-HGR 65.80 64.30 52.99 25.83
UniFast HGR 80.75 71.53 70.44 24.53
OptFast-HGR 80.46 71.51 70.21 23.54

Table 2: Experimental results of remote sensing
segmentation.

Methods Vaihingen Globe230k

OA(%) mIoU(%)OA(%) mIoU(%)

CCA 91.15 79.37 87.92 67.49
Deep CCA 91.39 81.35 88.27 67.85
Soft CCA 91.41 81.44 87.60 66.71
Dot Product 92.61 83.65 90.92 75.67
Cosine Simi-
larity

92.56 83.34 90.81 75.53

Soft-HGR 90.10 76.87 86.46 64.82
UniFast HGR 93.01 84.62 91.48 76.36
OptFast HGR 92.95 84.57 91.23 76.15

3.3 REMOTE SENSING SEMANTIC SEGMENTATION

To further evaluate UniFast HGR and OptFast HGR, we conducted remote sensing semantic segmen-
tation experiments on the Vaihingen dataset and the large-scale high-resolution annotation dataset
Globe230k, comparing them with other methods. The ISPRS Vaihingen dataset, provided by the
International Society for Photogrammetry and Remote Sensing (ISPRS) (Wang et al., 2022), is a
2D semantic segmentation dataset with a 9-cm spatial resolution. It includes 8-bit TIFF files for
near-infrared, red, and green bands, as well as a single-band digital surface model (DSM) with 32-
bit floating-point height values. The Globe230k dataset contains 232,819 annotated images of size
512 × 512 and 1-m spatial resolution, with multiple bands such as RGB and digital elevation mod-
els (DEM) (Shi et al., 2023). Using the model and preprocessing steps outlined by Ma et al. (Ma
et al., 2024), we applied UniFast HGR and OptFast HGR to fuse multimodal remote sensing data.
The results are shown in Table 2, evaluated using overall accuracy (OA) and mean intersection over
union (mIoU). UniFast HGR and OptFast HGR both demonstrated strong performance, effectively
capturing correlations between modalities and achieving accurate semantic segmentation. Detailed
experimental results and visualization examples can be found in Appendix D.2.

3.4 EXTENSION TO MORE/MISSING MODALITIES: MULTIMODAL EMOTION RECOGNITION

The performance of UniFast HGR and OptFast HGR was evaluated in multimodal emotion recog-
nition on the IEMOCAP dataset. Comparative experiments were conducted using the MultiEMO
model proposed by Shi & Huang (Shi & Huang, 2023). Results from these emotion recognition tests
on IEMOCAP (Busso et al., 2008) are shown in Table 3, with performance measured via weighted
average F1 score (W-F1) and accuracy (ACC). Both models demonstrated strong performance, ef-
fectively capturing cross-modal correlations in emotion recognition scenarios. UniFast HGR was
tested under two challenging scenarios: single-modality absence and insufficient labels. In the first
scenario, one of the three modalities was randomly excluded. In the second, only 80%, 50%, or
20% of training labels were retained by hiding 20%, 50%, or 80% of the data, respectively. The ar-
chitecture of UniFast HGR naturally addresses missing modalities: its normalization and covariance
masking mechanisms reduce sensitivity to outliers, as shown in Table 3.
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Table 3: Multimodal emotion recognition results on IEMOCAP(ACC %).
Methods No Missing Missing Modalities Missing Labels

Text+Audio+Visual Text+Audio Text+Visual Audio+Visual 20% 50% 80%

CCA 67.41 64.55 64.03 50.71 66.21 61.63 51.91
Deep CCA 67.78 64.92 64.38 51.06 66.50 63.10 54.80
Soft CCA 68.58 65.68 65.27 51.89 67.35 63.81 55.43
Dot Product 70.14 67.32 67.08 53.56 69.06 65.27 57.92
Cosine Similarity 69.50 66.64 66.21 52.92 68.43 64.94 57.63
Soft-HGR 71.29 67.85 67.52 53.90 69.47 65.19 57.75
UniFast HGR 73.66 70.94 70.41 57.82 72.65 69.26 62.05
OptFast HGR 73.43 70.67 70.15 56.57 72.39 68.92 61.58

3.5 LARGE-SCALE MULTIMODAL LEARNING

To validate scalability and generalizability, experiments were conducted on ImageNet-1K (Deng
et al., 2009) classification, COCO (Lin et al., 2014) cross-modal retrieval, and the large-scale In-
ternVid (Wang et al., 2023) benchmark. UniFast HGR was integrated with state-of-the-art vision
encoders including CLIP (ViT-B/32) (Radford et al., 2021), SigLIP (Zhai et al., 2023), and DINOv2
(ViT-L/14) (Zhang et al., 2022; Oquab et al., 2024), and compared to nonlinear correlation methods
such as CKA (Kornblith et al., 2019), dCor (Zhen et al., 2022), and IdCor (Basile et al., 2025).

ImageNet Classification: As shown in Table 4, UniFast HGR consistently enhances baseline mod-
els across architectures. Notably, when applied to DINOv2, it achieves 85.3% Top-1 accuracy—a
3.5% absolute improvement over baseline. The performance gain demonstrates the method’s ability
to capture subtle feature correlations even in high-dimensional spaces. Cross-Modal Retrieval:
On COCO text-image retrieval, CLIP with UniFast HGR achieves 42.1% Recall@1, surpassing both
baseline CLIP (38.9%) and Soft-HGR (40.3%). OptFast HGR maintains competitive performance
(42.0% R@1) with faster computation than standard HGR, validating its efficiency-accuracy trade-
off. Large-Scale Video-Text Retrieval: To further evaluate scalability, tests were performed on
InternVid-10M using ViCLIP (Wang et al., 2023). As Table 4 shows, UniFast HGR achieved the
highest text-to-video retrieval recall across MSR-VTT (Xu et al., 2016), LSMDC (Yao et al., 2015),
and DiDeMo (Hendricks et al., 2017), with an average gain of 5.8% over the ViCLIP baseline,
demonstrating strong generalization to billion-scale multimodal data.

Robustness: UniFast HGR also demonstrates superior robustness against noise, modality imbal-
ance, and spurious correlations (see Appendix for details).

Table 4: Performance on large-scale datasets

Dataset Model Baseline CKA dCor IdCor Soft-HGR UniFast HGR OptFast HGR

ViT-B/32 76.6 76.7 76.9 78.7 76.3 80.1 79.6
ImageNet-1k ResNet50 74.3 74.5 75.0 77.4 74.1 78.5 78.1
Top-1 Accuracy CLIP 76.1 76.6 77.3 79.5 76.3 80.4 79.8
(%) SigLIP 81.3 81.7 82.2 84.1 81.4 84.8 84.5

DINOv2 81.8 82.1 82.4 84.7 81.6 85.3 84.9

ViT-B/32 38.2 38.7 39.2 39.6 38.9 40.1 39.8
COCO Text-Image ResNet50 37.8 38.3 38.7 39.2 38.6 39.5 39.3
Retrieval Recall@1 CLIP 38.9 39.5 41.4 41.7 40.3 42.1 42.0

SigLIP 50.8 51.3 52.8 53.2 51.6 53.8 53.5
DINOv2 51.1 51.5 52.7 53.5 52.1 53.9 53.7

InternVid(T2V R@1)
MSR-VTT ViCLIP 36.4 37.1 37.9 38.5 38.8 43.3 42.7
LSMDC ViCLIP 17.1 17.6 18.1 18.9 18.3 20.7 20.3
DiDeMo ViCLIP 16.4 16.9 17.3 17.8 17.6 20.5 20.1

3.6 CORRELATION ESTIMATION

To quantify intrinsic alignment capability, we measured cross-model feature correlations on Im-
ageNet embeddings using six representative encoders. This directly evaluates how well different
methods capture inter-modal relationships, unlike task-driven evaluation. We computed pairwise
correlation matrices for EfficientNet, ResNet50, ViT-B/32, CLIP, SigLIP, and DINOv2 embeddings
across 30K random samples. Figure 2 shows that: (1) UniFast HGR consistently achieves higher
intra-model correlations, indicating better feature stability; (2) Cross-model correlations between
CLIP and DINOv2 reach 0.91 with UniFast HGR, significantly outperforming dCor (0.78) and Soft-
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HGR (0.82). UniFast HGR improves upon Soft-HGR by 12–18% absolutely across all model pairs,
proving the effectiveness of our optimization. The high correlations (≥ 0.92 for ViT-based models)
match downstream performance gains, confirming our method preserves key feature relationships.

Figure 2: Correlation results on ImageNet representations (Please refer to Appendix D.5)

3.7 COMPUTATIONAL EFFICIENCY

To isolate computational costs from network architecture effects, we benchmarked correlation cal-
culation between randomly generated tensors. We compared UniFast HGR/OptFast HGR against
baseline methods across varying dimensions and batch sizes (16-256). For each configuration, we
generated paired tensors f, g ∈ Rbz×dim and measured average execution time over 10,000 trials.
The experimental results are shown in Figure 4 in the Appendix F. The results demonstrate that, as
the batch size increases, the execution time gradually grows. UniFast HGR and OptFast HGR con-
sistently exhibit the best performance across different batch sizes, showing significant advantages
in computational efficiency. Moreover, the results indicate that UniFast HGR and OptFast HGR
exhibit lower execution times across most dimensions, with their efficiency advantages being par-
ticularly pronounced at higher dimensions. These findings suggest that UniFast HGR and OptFast
HGR can not only effectively capture complex correlations between multimodal data but also offer
high computational efficiency, making them well-suited for multimodal data fusion tasks.

4 LIMITATIONS AND FUTURE WORK

UniFast HGR and OptFast HGR achieve notable efficiency and scalability, yet several limitations
merit further investigation. First, while variance constraints enhance stability, they may over-
regularize features in very low-dimensional spaces, potentially restricting representational flexibility
in such cases. Second, OptFast HGR exhibits increased bias when handling cross-modal pairs with
significant distributional asymmetry, affecting correlation estimation. Third, the theoretical justifi-
cation for diagonal removal, though empirically validated across diverse datasets, could be further
generalized to non-Gaussian and highly nonlinear dependency structures.

To address these issues, future work will: Develop adaptive regularization strategies that adjust
constraints based on intrinsic dimensionality, preserving expressivity in low-dimensional settings.
Integrate distribution-aware mechanisms, such as attention-based calibration, into OptFast HGR to
better handle asymmetric modality distributions. Expand the theoretical foundation of diagonal
exclusion to encompass broader dependency types, including non-Gaussian and heavy-tailed distri-
butions, strengthening generality and rigor.

5 CONCLUSION

This paper introduced UniFast HGR, a efficient and scalable framework for estimating Hirschfeld-
Gebelein-Rényi (HGR) maximal correlation. By incorporating variance constraints via ℓ2-
normalization and removing uninformative diagonal entries from the correlation matrix, the method
achieves enhanced numerical stability, reduced computational complexity, and stronger discrimina-
tive performance. The OptFast HGR variant further improves efficiency with minimal accuracy loss,
offering a practical trade-off for large-scale applications. Comprehensive evaluations—covering
image classification, cross-modal retrieval, remote sensing segmentation, and emotion recogni-
tion—demonstrate that UniFast HGR consistently outperforms existing correlation-based baselines
across diverse tasks and modalities. When integrated with modern encoders such as CLIP and DI-
NOv2, the framework proves highly effective in capturing nuanced multimodal interactions while
scaling efficiently to high-dimensional data. These contributions bridge theoretical rigor and practi-
cal utility, establishing a new foundation for scalable dependency learning in deep neural networks.
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Appendix:

A DETAILED DERIVATION AND ALGORITHM

This section provides a comprehensive, step-by-step derivation of the UniFast HGR objective func-
tion starting from the original Soft-HGR formulation, followed by the detailed algorithmic pro-
cedures. The derivation is structured around the three core innovations: enforcement of variance
constraints, substitution with cosine similarity, and the expansion of the trace term.

A.1 STEP 1: VARIANCE CONSTRAINTS AND WHITENING ALIGNMENT

The original Soft-HGR objective is given by:

Jsoft(f, g) = E
[
f(X)T g(Y )

]
− 1

2
tr (cov(f(X))cov(g(Y ))) , s.t. E[f(X)] = E[g(Y )] = 0 (18)

To align with the whitening constraints of the canonical HGR definition (cov(f) = cov(g) = I)
and stabilize optimization, we enforce unit variance on the feature mappings. This is achieved via
ℓ2-normalization:

f ← f − E[f ]√
Var[f ]

, g ← g − E[g]√
Var[g]

(19)

which ensures E[f ] = E[g] = 0 and Var[f ] = Var[g] = 1 for all output dimensions. This step is
critical as it bounds the output and ensures numerical stability, providing a firm foundation for the
subsequent substitution.

A.2 STEP 2: REFORMULATION OF THE SAMPLE-WISE TERM USING COSINE SIMILARITY

Under the zero-mean and unit-variance constraints, the sample-wise correlation term simplifies di-
rectly. Starting from its definition:

E
[
f(X)T g(Y )

]
=

1

N − 1

N∑
i=1

(f(xi)− E[f ])T (g(yi)− E[g]) (20)

Given E[f ] = E[g] = 0, this reduces to:

E
[
f(X)T g(Y )

]
=

1

N − 1

N∑
i=1

f(xi)
T g(yi) (21)

Now, with Var[f ] = Var[g] = 1, implying ∥f(xi)∥2 = 1 and ∥g(yi)∥2 = 1 for all i (in expectation),
the dot product is equivalent to cosine similarity:

f(xi)
T g(yi) = ∥f(xi)∥2∥g(yi)∥2 · cos(f(xi), g(yi)) = cos(f(xi), g(yi)) (22)

Thus, the first term becomes:

E
[
f(X)T g(Y )

]
=

1

N − 1

N∑
i=1

cos(f(xi), g(yi)) (23)

This substitution replaces a covariance-based calculation with a norm-bounded, stable cosine oper-
ation, reducing computational complexity.

A.3 STEP 3: EXPANSION AND SIMPLIFICATION OF THE TRACE TERM

The trace term tr (cov(f)cov(g)) measures the distributional correlation. We expand it to understand
its structure under variance constraints. First, recall the covariance matrix computation for f :

cov(f) =
1

N − 1

N∑
i=1

(f(xi)− E[f ])(f(xi)− E[f ])T (24)
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With E[f ] = 0, this simplifies to:

cov(f) =
1

N − 1

N∑
i=1

f(xi)f(xi)
T (25)

Let F be the matrix with rows f(xi)
T , then cov(f) = 1

N−1F
TF. Similarly, cov(g) = 1

N−1G
TG

for matrix G with rows g(yi)T . The trace term is:

tr(cov(f)cov(g)) = tr
(

1

(N − 1)2
FTFGTG

)
=

1

(N − 1)2
tr(FTFGTG) (26)

Using the cyclic property of the trace, tr(FTFGTG) = tr(FGTGFT ) = tr((FGT )(GFT )). No-
tice that FGT is the Gram matrix of pairwise dot products between f(xi) and g(yj), and GFT is its
transpose. A more intuitive interpretation is to see the (i, j)-th element of cov(f) as the covariance
between the i-th and j-th dimensions of f(X). Under unit variance, this becomes their correlation
coefficient ρfij . The trace term tr(cov(f)cov(g)) is then the sum over i, j of ρfijρ

g
ji. This can be inter-

preted as a dot product between the vectorized correlation matrices, measuring their similarity. To
operationalize this, we define distribution vectors distrif and distrig . For each sample i, the distribu-
tion vector distriif is formed by the correlations between the i-th dimension and all other dimensions
of f(X) (i.e., a row of the correlation matrix). The cosine similarity between distriif and distriig then
captures the alignment of the internal correlation structures induced by the i-th dimension. The trace
term can be approximated as the average of these cosine similarities across dimensions:

tr(cov(f)cov(g)) ≈ 1

N − 1

N∑
i=1

cos(distriif , distriig) (27)

This transformation is key to efficiently calculating the distributional correlation without explicit
matrix multiplication.

A.4 STEP 4: COMPOSITION OF THE FINAL UNIFAST HGR OBJECTIVE

Combining the simplified sample-wise term (Eq. 7) and the approximated trace term (Eq. 13), the
Soft-HGR objective transforms into:

Jsoft(f, g) ≈
1

N − 1

N∑
i=1

cos(f(xi), g(yi))−
1

2
· 1

N − 1

N∑
i=1

cos(distriif , distriig) (28)

Simplifying the constants yields the final UniFast HGR objective:

UF-HGR =
1

N − 1

N∑
i=1

cos(f(xi), g(yi))−
1

2(N − 1)

N∑
i=1

cos(distriif , distriig) (29)

This formulation retains the original intent of HGR—maximizing both sample-wise and distribu-
tional dependency—while being computationally tractable and stable for deep learning applica-
tions.

A.5 ALGORITHM IMPLEMENTATION

The following algorithms detail the computation of UniFast HGR (Algorithm 1) and OptFast HGR
(Algorithm 2), with steps aligned to the derivation above.

B THEORETICAL ANALYSIS OF BIAS IN OPTFAST HGR

OptFast HGR accelerates HGR maximal correlation computation through stochastic bias correction
and simplified distribution matrix analysis, introducing a controlled bias to balance efficiency and
accuracy.
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Algorithm 1 UniFast HGR Algorithm
Input: m× n feature matrix of f , g
Output: Objective value of UniFast HGR

1. Normalization:
f ← f

∥f∥2
, g ← g

∥g∥2

2. Calculation of the cosine correlation coefficient between f and g:
cos(f, g) = f · g, corr = 1

N−1

∑N
i=1 cos(f, g) =

1
N−1

∑N
i=1 f · g

3. Calculation of the distribution matrix:
distrif = f · fT , distrig = g · gT

4. Initialization processing:
distrif ← Extract upper triangular part of distrif (excluding diagonal) using torch.triu
distrig ← Extract upper triangular part of distrig (excluding diagonal) using torch.triu
Utilize symmetry of distrif and distrig to restore complete matrix from upper triangu-
lar part.

5. Normalization:
distrif ← distrif

∥ distrif ∥2
, distrig ← distrig

∥ distrig ∥2

6. Calculation of the cosine correlation coefficient between distrif and distrig:
tr = 1

N−1

∑N
i=1 cos(distrif , distrig) =

1
N−1

∑N
i=1 distrif · distrig

7. Calculation of the UniFast HGR objective:
1

N−1

∑N
i=1 cos(f, g)−

1
2(N−1)

∑N
i=1 cos(distrif , distrig)

Algorithm 2 OptFast HGR Algorithm
Input: m× n feature matrix of f , g
Output: Objective value of OptFast HGR

1. Initialization processing:
Generate tR random matrix h of the same scale as f (from standard normal distribution)

2. Calculation of HGR bias term:
HGR−bias = 2

3tR

∑tR
i=1 OptFast−HGR(hi, 0) where 0 represents the bias reference

3. Normalization:
f ← f

∥f∥2
, g ← g

∥g∥2

4. Calculation of the cosine correlation coefficient between f and g:
corr = 1

N−1

∑N
i=1 cos(f, g)

5. Calculation of the distribution matrix:
distrif = f · fT , distrig = g · gT

6. Initialization processing:
distrif ← Extract upper triangular part of distrif (excluding diagonal) using torch.triu
distrig ← Extract upper triangular part of distrig (excluding diagonal) using torch.triu

7. Calculation of the cosine correlation coefficient between distrif and distrig:
tr = 1

N−1

∑N
i=1 cos(distrif , distrig) =

1
N−1

∑N
i=1 distrif · distrig

8. Calculation of the OptFast HGR objective:(
1

N−1

∑N
i=1 cos(f, g)−

1
2(N−1)

∑N
i=1 cos(distrif , distrig)

)
/(1− HGR−bias)

B.1 SOURCE OF BIAS AND CALIBRATION MECHANISM

The bias in OptFast HGR comes from two key approximations in its simplified computation:

(1). Distribution Matrix Truncation: OptFast HGR approximates the full eigenstructure of feature
correlation matrices by using the upper triangular part of the outer product f ·f⊤ (excluding diagonal
elements), avoiding explicit eigenvalue decomposition. This truncation introduces an approximation
error as it doesn’t fully capture the full matrix’s spectral properties.
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(2). Randomized Bias Estimation: To quantify the bias from truncation and finite sampling, Opt-
Fast HGR uses Monte Carlo integration with random feature vectors vi ∼ U(−1, 1)B×d:

HGR−bias =
1

tR

tR∑
i=1

OptFast-HGR(vi,0), (30)

where OptFast-HGR(vi,0) uses the same truncated distribution matrix approach. This estimates
the expected spurious correlation from random noise.

B.2 STATISTICAL CONVERGENCE AND ERROR BOUNDS

The error in OptFast HGR has two sources:

(1). Matrix Approximation Error: For D = f · f⊤ with sorted eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd,
the truncation error is bounded by the spectral gap:

|OptFast HGR− HGR∗| ≤ O

(
λ2

λ1

)
, (31)

where HGR∗ is the exact HGR score. A larger spectral gap ensures faster convergence.

(2). Bias Estimation Variance: By the Central Limit Theorem, the variance of HGR−bias decays
as O(1/

√
tR):

Var(HGR−bias) ≤ C

tR

(
1

B2
+

d

B3

)
, (32)

with C a constant dependent on the feature distribution. This ensures stable bias correction for large
batch sizes.

B.3 EMPIRICAL VALIDATION OF BIAS-ACCURACY TRADE-OFF

Experiments on diverse datasets validate the framework:

Accuracy Preservation: Top-1 error in cross-modal tasks increases by ≤ 1% compared to exact
HGR, with segmentation IoU within 1% of the baseline.

Batch Stability: Bias correction stabilizes performance across training iterations, as shown by con-
sistent R@1 scores in COCO retrieval tasks.

B.4 ROBUSTNESS TO FEATURE DISTRIBUTIONS

OptFast HGR maintains bounded bias under diverse data regimes:

Non-Gaussian and Asymmetric Modalities: Stable performance on IEMOCAP and COCO shows
resilience to heterogeneous data distributions.

High-Dimensional Features: For dim ≥ 64, the growing spectral gap reduces matrix approxima-
tion error, while randomized bias correction mitigates variance in low-data scenarios.

The theoretical framework ensures OptFast HGR’s bias is statistically controlled and computation-
ally tractable, making it suitable for large-scale multimodal tasks where exact HGR computation is
infeasible.

C ASYMPTOTIC COMPLEXITY COMPARISON

We compare the asymptotic complexity of UniFast HGR and OptFast HGR to earlier methods like
Soft-HGR and Deep CCA. Table 5 also shows comparisons with other nonlinear correlation analysis
methods such as CKA, dCor, and the latest IdCor.

UniFast HGR uses non-iterative matrix operations to reduce complexity. Unlike Soft-HGR, it avoids
calculating high-dimensional covariance matrices directly. OptFast HGR enhances numerical stabil-
ity by reducing normalization steps and incorporating bias correction, while maintaining efficiency.
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Table 5: Overall complexity comparison analysis (sample size m, feature dimension K,network
layers L)

Methods Time Complexity Characteristic

CCA O(mK2 +K3) Classic method, not for deep nonlinear
DeepCCA O(LmK2) Nonlinear, high training cost
Soft CCA O(LmK2) Controls redundancy, for low-dim tasks
Soft-HGR O(mK2 +K3) Sensitive to high-dim features
CKA O(m2K +m3) Quantifies structural similarity
dCor O(m2K) Captures nonlinear dependencies
IdCor O(m2K) Sensitive to high-dimensional noise
UniFast HGR O(m2K) Efficient for high-dim data
OptFast HGR O(m2K) Stable for complex tasks

Both versions feature fully differentiable structures, enabling direct handling of multimodal features.
Their asymptotic complexity is significantly lower than traditional CCA-based methods, making
them suitable for neural network training with improved efficiency, cross-modal adaptability, and
robustness.

D DETAILED EXPERIMENTAL RESULTS

D.1 IMAGE CLASSIFICATION

Table 6 presents the detailed comparative experimental results of remote sensing data classification
using a dual-channel deep learning framework with ResNet 50 as the backbone on the Berlin dataset.
Table 7 displays the results of using a dual-channel visual transformer framework on the Houston
2018 dataset for the same task.

The results demonstrate that the proposed UniFast HGR and OptFast HGR methods consistently
outperform traditional CCA and similarity-based methods. This suggests that our proposed methods
effectively capture complex data patterns and significantly enhance classification performance on
both the Berlin HIS-SAR and Houston 2018 HSI LiDAR datasets, irrespective of the framework
used (CNN or transformer).

Traditional CCA appears less effective at capturing the intricate nonlinear relationships inherent in
remote sensing data. Deep CCA exhibits a modest improvement over CCA, suggesting that the
integration of deep learning techniques can more effectively grasp these nonlinearities. Both Cosine
Similarity and Dot Product perform admirably, highlighting the efficacy of straightforward vector
operations for the given datasets. In contrast, Soft HGR underperforms, particularly in OA metrics,
likely due to its propensity to induce substantial alterations in covariance and matrix trajectories,
potentially leading to gradient explosions and diminished model efficacy.

To evaluate the computational efficiency of the proposed UniFast HGR and OptFast HGR, we com-
pared the execution time of remote sensing data classification on the Berlin dataset and the Houston
2018 dataset, using a dual-channel deep learning framework with ResNet-50 as the backbone and a
dual-channel visual transformer framework, respectively, as shown in Table 8. The results indicate
that CCA, Deep CCA, and Soft CCA had the longest execution times, which were also influenced
by the network structure used, whereas UniFast HGR and OptFast HGR were less impacted by these
structural complexities.

D.2 REMOTE SENSING SEMANTIC SEGMENTATION

The detailed experimental results of remote sensing semantic segmentation on the Vaihingen dataset
are shown in Table 9. The detailed experimental results of remote sensing semantic segmentation on
the Globe230k dataset are shown in Table 10. Figure 3 shows a visualization example of the experi-
mental results of remote sensing semantic segmentation using 8 correlation methods on the Vaihin-
gen dataset. It is evident that when using UniFast HGR and OptFast HGR, complex long-distance
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Table 6: Comparison of various methods on the Berlin HIS-SAR dataset(%)
Class CCA Deep CCA Soft CCA Dot Product Cosine Similarity Soft HGR UniFast HGR OptFast HGR

OA 70.93 71.54 72.74 75.20 75.51 65.80 80.75 80.46
AA 64.35 61.14 65.08 66.22 65.53 64.30 71.53 71.51

Kappa 58.28 58.33 60.23 62.77 62.53 52.99 70.44 70.21

Forest 81.90 87.16 64.17 76.68 79.92 67.54 87.61 82.18
Residential area 72.81 75.59 76.38 82.57 85.63 63.87 86.85 85.10
Industrial area 23.05 53.61 76.00 48.15 49.11 64.07 40.20 62.67

Low plants 71.44 62.68 89.08 65.08 54.31 82.05 73.70 89.23
Soil 85.97 78.01 72.10 82.53 82.88 88.16 82.42 78.63

Allotment 69.87 51.72 58.73 70.73 69.07 55.79 65.35 65.65
Commercial area 56.76 42.81 20.40 35.88 23.77 37.97 54.30 27.61

Water 52.98 37.53 63.78 68.15 79.58 54.95 81.85 81.01

Table 7: Comparison of various methods on the Houston 2018 HSI-LiDAR dataset(%)
Class CCA Deep Soft Dot Cosine Soft UniFast OptFast

CCA CCA Product Similarity HGR HGR HGR

OA 88.28 89.82 88.81 91.59 92.04 85.86 93.65 93.25
AA 92.20 93.92 93.14 93.85 94.67 91.01 96.15 95.71
Kappa 84.89 86.89 85.62 89.13 89.65 81.91 91.77 91.25

Healthy grass 95.62 97.84 97.97 78.15 98.24 98.76 95.18 97.66
Stressed grass 86.77 83.27 89.16 97.58 89.66 83.84 93.57 93.27
Artificial turf 100.00 99.83 100.00 100.00 100.00 100.00 100.00 100.00
Evergreen trees 99.05 98.28 97.81 96.15 98.95 97.80 99.37 98.45
Deciduous trees 96.05 95.18 95.92 94.94 97.57 96.69 98.75 98.01
Bare earth 100.00 100.00 100.00 99.99 100.00 99.99 100.00 99.99
Water 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Residential buildings 94.02 97.90 97.42 96.88 91.92 98.49 97.04 98.20
Non-residential buildings 94.80 94.53 93.48 95.92 97.47 91.40 98.89 96.86
Road 56.85 69.52 62.37 74.35 69.20 50.99 82.82 79.26
Sidewalks 81.24 78.02 71.27 73.72 83.17 65.75 82.75 78.53
Crosswalks 76.18 95.93 87.92 91.78 91.40 74.92 96.82 92.96
Major thoroughfares 73.24 79.62 82.78 85.45 86.32 78.80 85.47 87.16
Highways 98.90 95.04 96.08 97.65 99.47 96.73 98.24 99.67
Railways 99.77 99.87 99.87 99.60 99.50 99.40 99.94 99.90
Paved parking lots 92.95 96.88 94.18 97.46 92.83 93.98 97.02 95.53
Unpaved parking lots 100.00 100.00 100.00 100.00 100.00 94.07 100.00 100.00
Cars 99.13 97.41 97.17 97.45 97.65 98.53 99.16 98.70
Trains 99.95 99.41 99.57 100.00 100.00 100.00 99.99 100.00
Stadium seats 99.57 99.94 99.83 100.00 100.00 100.00 99.98 100.00

Table 8: Execution time comparison on the Berlin and Houston2018 datasets (Time(s/epoch))

Method ResNet 50 Vision Transformer

Berlin dataset Houston2018 dataset Berlin dataset Houston2018 dataset

CCA 2967.52 / 307.82 1243.23
Deep CCA 250.51 1158.42 379.82 1520.09
Soft CCA 314.93 1751.98 211.03 929.50
Dot Product 23.18 106.05 20.85 48.89
Cosine Similarity 23.40 106.14 20.93 49.34
Soft-HGR 25.83 110.53 21.62 58.03
UniFast HGR 24.53 108.56 21.23 57.00
OptFast HGR 23.54 106.27 21.02 52.41
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semantic information can be more accurately recognized, and precise edges of the recognized object
can be obtained, thereby achieving more accurate semantic segmentation of remote sensing imagery.

Table 9: Comparison of various methods on the Vaihingen dataset(%).

Class CCA Deep Soft Dot Cosine Soft UniFast OptFast
CCA CCA Product Similarity HGR HGR HGR

OA 91.15 91.39 91.41 92.61 92.56 90.10 93.01 92.95
mIoU 79.37 81.35 81.44 83.65 83.34 76.87 84.62 84.57

Imp. 91.43 92.57 92.52 94.97 93.38 91.39 93.62 93.47
Building 97.37 96.94 97.19 95.55 97.62 95.93 97.86 97.92
Low. 80.19 79.51 79.62 80.36 81.94 73.08 82.03 81.86
Tree 91.03 91.53 91.24 94.93 92.67 93.41 93.82 93.79
Car 76.94 82.94 83.76 83.41 88.53 73.86 90.15 89.95

Table 10: Comparison of various methods on the Globe230k dataset (%).

Class CCA Deep Soft Dot Cosine Soft UniFast OptFast
CCA CCA Product Similarity HGR HGR HGR

OA 87.92 88.27 87.60 90.92 90.81 86.46 91.48 91.23
mIoU 67.49 67.85 66.71 75.67 75.53 64.82 76.36 76.15

Cropland 83.27 91.86 79.12 89.76 90.19 91.75 92.15 90.32
Forest 91.60 95.51 90.20 95.24 96.32 93.46 96.73 96.89
Grassland 58.75 65.44 61.48 79.93 78.47 54.83 80.68 80.31
Shrubland 62.49 73.07 55.34 72.89 71.50 57.63 75.41 72.62
Wetland 73.08 71.80 42.76 77.54 76.72 42.09 77.92 78.49
Water 85.22 89.62 90.83 94.65 94.26 83.69 95.62 95.35
Tundra 9.31 0.00 5.32 38.58 36.82 0.00 43.07 41.27
Impervious surface 80.92 86.59 81.50 93.17 92.90 80.78 93.50 94.10
Bareland 72.43 87.37 74.57 91.10 90.64 73.15 91.46 91.07
Ice/ snow 91.25 97.53 91.82 97.62 98.21 90.76 98.39 97.85

(a)NIRRG images (b) Ground truth (c) CCA (d) Deep CCA (e) Soft CCA

(f) Dot Product (g) Cosine Sim. (h) Soft-HGR (i) UniFast HGR (j) OptFast HGR

Figure 3: Experimental images on the Vaihingen test set
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D.3 MULTIMODAL EMOTION RECOGNITION

The emotion recognition experiments on the IEMOCAP dataset, as detailed in Table 11, indicate that
the UniFast HGR and OptFast HGR methods generally excel over conventional CCA and similarity-
based approaches. This suggests their enhanced capability for multimodal emotion recognition.
UniFast HGR and OptFast HGR demonstrate superior performance across all classifications, show-
casing their capacity to effectively capture the nuanced patterns associated with various emotions.
Thus, the proposed methods are highly appropriate for emotion recognition tasks and could be ap-
plied to other datasets and domains. Future research could integrate these methods with additional
modalities like facial expressions and physiological signals to further refine emotion recognition
performance.

Table 11: Comparison of various methods on the IEMOCAP dataset(%)

Class CCA Deep Soft Dot Cosine Soft UniFast OptFast
CCA CCA Product Similarity HGR HGR HGR

W-F1 67.51 67.82 68.57 69.87 69.60 71.43 73.57 73.32
ACC 67.41 67.78 68.58 70.14 69.50 71.29 73.66 73.43

Happy 50.77 49.81 46.77 50.51 53.85 54.92 66.63 59.67
Sad 79.65 81.82 79.29 81.96 81.39 81.53 84.79 85.23
Neutral 68.11 69.58 69.59 71.24 71.89 70.84 74.30 73.00
Angry 61.98 62.53 64.60 65.90 65.82 70.32 70.46 71.04
Excited 76.70 76.56 75.00 74.48 74.91 75.00 77.14 77.09
Frustrated 60.66 59.35 65.62 67.32 63.17 69.45 71.22 70.36

D.4 IMAGE CLASSIFICATION ON CIFAR-100

To evaluate the scalability of UniFast HGR and OptFast HGR on standard visual classification tasks,
we conducted experiments on the CIFAR-100 dataset using five representative backbone architec-
tures: ViT-B/32, ResNet50, CLIP, SigLIP, and DINOv2. We compared these with nonlinear correla-
tion baselines (CKA, dCor, IdCor) and Soft-HGR, reporting results as top-1 accuracy (%) in Table
12.

UniFast HGR consistently outperformed all baselines across architectures. For ResNet50, it
achieved 76.8% accuracy—2.3% higher than the baseline (74.5%) and 1.0% higher than the
strongest baseline (IdCor, 75.8%). On ViT-B/32, UniFast HGR reached 86.4%, surpassing IdCor
(86.1%) and Soft-HGR (85.5%) by 0.3% and 0.9%, respectively. With state-of-the-art vision mod-
els like SigLIP and DINOv2, UniFast HGR achieved top performance: 88.9% (SigLIP) and 89.3%
(DINOv2)—improving by 0.7% and 0.6% over IdCor (88.2% and 88.7%), respectively.

OptFast HGR balanced efficiency and accuracy, achieving results close to UniFast HGR. For in-
stance, on DINOv2, OptFast HGR attained 88.5%—0.8% below UniFast HGR but still 0.2% higher
than IdCor. Across all models, the accuracy gap between UniFast and OptFast HGR remained
within 1.0%, showing OptFast HGR’s effectiveness in reducing computational overhead with mini-
mal performance loss. These results highlight the frameworks’ ability to enhance feature correlation
learning across diverse architectures, confirming their scalability for large-scale image classification.

Table 12: The experimental results on CIFAR-100 Datasets
Dataset Model Baseline CKA dCor IdCor Soft-HGR UniFast HGR OptFast HGR

ViT-B/32 85.3 85.6 85.8 86.1 85.5 86.4 86.2
CIFAR-100 ResNet50 74.5 75.1 75.2 75.8 75.3 76.8 76.1
Accuracy (%) CLIP 80.5 81.2 81.4 81.6 81.3 82.5 81.5

SigLIP 87.1 87.5 87.8 88.2 87.4 88.9 88.4
DINOv2 87.5 87.8 88.3 88.7 87.7 89.3 88.5
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D.5 COMPARISON WITH STATE-OF-THE-ART FOUNDATION MODELS

Our work focuses on optimizing the calculation of HGR’s maximum correlation to enhance feature
alignment in multimodal learning tasks. We integrated our method into models such as CLIP (ViT
- B/32), SigLIP, and DINOv2 (ViT - L/14), and measured the similarity of ImageNet embeddings
across different models. In Table 13, we report the correlation results obtained with our method,
along with the correlation scores from dCor, IdCor, and soft-HGR. UniFast HGR improved the
correlation score when applied to the base model, validating its efficacy as a supplementary module.

Table 13: Correlation results on ImageNet representations.
Methods Models EfficientNet ResNet50 ViT-B/32 CLIP SigLIP DINOv2

EfficientNet 1. 0.45 0.42 0.29 0.34 0.41
ResNet50 0.45 1. 0.43 0.54 0.58 0.56

dCor ViT-B/32 0.42 0.43 1. 0.46 0.49 0.48
CLIP 0.29 0.54 0.46 1. 0.82 0.78
SigLIP 0.34 0.58 0.49 0.82 1. 0.80
DINOv2 0.41 0.56 0.48 0.78 0.80 1.

EfficientNet 1. 0.91 0.85 0.77 0.81 0.82
ResNet50 0.91 1. 0.86 0.80 0.83 0.81

IdCor ViT-B/32 0.85 0.86 1. 0.92 0.92 0.90
CLIP 0.77 0.80 0.92 1. 0.91 0.89
SigLIP 0.81 0.83 0.92 0.91 1. 0.92
DINOv2 0.82 0.81 0.90 0.89 0.92 1.

EfficientNet 1. 0.63 0.61 0.55 0.57 0.60
ResNet50 0.63 1. 0.62 0.71 0.74 0.73

Soft-HGR ViT-B/32 0.61 0.62 1. 0.66 0.70 0.68
CLIP 0.55 0.71 0.66 1. 0.85 0.82
SigLIP 0.57 0.75 0.70 0.85 1. 0.85
DINOv2 0.60 0.73 0.68 0.82 0.85 1.

EfficientNet 1. 0.92 0.87 0.84 0.87 0.86
ResNet50 0.92 1. 0.86 0.85 0.88 0.84

UniFast HGR ViT-B/32 0.87 0.86 1. 0.93 0.94 0.92
CLIP 0.84 0.85 0.93 1. 0.92 0.91
SigLIP 0.87 0.88 0.94 0.92 1. 0.94
DINOv2 0.86 0.84 0.92 0.91 0.94 1.

EfficientNet 1. 0.91 0.85 0.82 0.83 0.83
ResNet50 0.91 1. 0.85 0.82 0.83 0.83

OptFast HGR ViT-B/32 0.84 0.85 1. 0.91 0.92 0.91
CLIP 0.79 0.82 0.91 1. 0.91 0.90
SigLIP 0.82 0.83 0.92 0.91 1. 0.92
DINOv2 0.82 0.83 0.91 0.90 0.92 1.

E ABLATION STUDIES

Comprehensive ablation studies were conducted to evaluate the contributions of key components in
the proposed framework, including variance constraints, diagonal removal, cosine similarity formu-
lation, and the OptFast optimization strategy.

For variance constraints, Table 14 demonstrates that without proper variance normalization, co-
variance calculations become numerically unstable, leading to gradient explosions and significant
performance degradation. On the Berlin dataset, the absence of variance constraints reduces OA
to 68.53% and AA to 67.26%. In contrast, UniFast HGR with variance constraints maintains out-
put values within the bounded range of [-1, 1], significantly reducing sensitivity to signal variance
variations. This stabilization enables improved feature learning efficiency and accuracy, achieving
80.75% OA and 71.53% AA on the Berlin dataset.
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Regarding main diagonal removal, the cosine similarity matrix exhibits symmetry and positive def-
initeness, with main diagonal elements representing autocorrelation values fixed at 1. These diago-
nal entries provide no inter-sample discriminative information as they solely capture self-similarity
rather than meaningful pairwise relationships between distinct samples. The removal of main diag-
onal elements from the correlation matrix is justified by the trivial nature of these self-correlations,
which does not compromise the method’s capability to capture meaningful inter-sample dependen-
cies. Results in Table 14 confirm that retaining the diagonal (”w/ Main Diagonal”) consistently
underperforms the complete UniFast HGR formulation. For instance, Houston 2018 OA decreases
from 93.65% to 93.46% with diagonal retention. This performance gap becomes more pronounced
in smaller batch sizes, where diagonal removal significantly improves gradient stability and con-
vergence speed. Even with larger batches (e.g., size 256), performance remains competitive post-
removal, demonstrating no accuracy loss. Both theoretical analysis and experimental results confirm
that diagonal elements contribute no discriminative value while their removal enhances training sta-
bility without sacrificing performance. While the impact of removal lessens with larger batches, the
estimator remains stable across all batch sizes post-removal. This makes diagonal removal especially
crucial for smaller batches, where it significantly enhances numerical stability and convergence.

The comparison between covariance and cosine similarity formulations reveals significant com-
putational advantages. The cosine-based implementation in UniFast HGR achieves approximately
2× faster computation compared to covariance-based Soft-HGR, while maintaining competitive ac-
curacy across all evaluated datasets. This efficiency improvement stems from eliminating complex
matrix operations required for covariance calculation and whitening.

The OptFast variant provides an optimized speed-accuracy trade-off, achieving 5-10% faster com-
putation with minimal accuracy degradation. For instance, on ImageNet-1K, OptFast HGR main-
tains 79.6% Top-1 accuracy compared to UniFast HGR’s 80.1%, representing a favorable trade-off
for applications prioritizing inference speed.

Table 14: Comprehensive ablation study results across multiple datasets (%)
Methods Berlin Houston 2018 Vaihingen Globe230k IEMOCAP

OA AA OA AA OA mIoU OA mIoU W-F1 ACC

w/o Variance
Constraints

68.53 67.26 86.72 92.24 90.82 77.55 87.41 66.96 71.62 71.49

w/ Main Diago-
nal

80.62 71.39 93.46 95.97 92.85 84.57 91.32 76.27 73.41 73.38

Covariance-based 79.83 70.92 92.87 95.43 92.26 83.89 90.75 75.64 72.95 72.87
OptFast HGR 80.41 71.28 93.52 96.02 92.91 84.48 91.38 76.29 73.46 73.42
UniFast HGR 80.75 71.53 93.65 96.15 93.01 84.62 91.48 76.36 73.57 73.66

The ablation studies demonstrate that each component contributes uniquely to the overall perfor-
mance: Variance constraints prevent gradient instability and enable stable optimization Diagonal
removal eliminates trivial self-correlations and focuses learning on meaningful cross-sample re-
lationships Cosine similarity provides computational efficiency while maintaining representation
quality OptFast variant offers a practical speed-accuracy trade-off for time-sensitive applications
The complete UniFast HGR framework achieves the best balance between computational efficiency
and representation quality across all evaluated datasets and metrics.

F COMPUTATIONAL EFFICIENCY

To evaluate the impact of feature dimension and batch size on computational performance, we
measured the execution times of UniFast HGR, OptFast HGR, and baseline methods (CCA, Deep
CCA, SoftCCA, CKA, dCor, IdCor, Soft-HGR) using randomly generated tensor pairs (f, g) ∈
Rbz×el. Each method’s correlation computation was repeated 10,000 times across batch sizes
bz ∈ {16, 32, 64, 128, 256} and feature dimensions el ∈ {10, 50, 100, 150, 200, 300, 400, 500}. The
average execution times are visualized in Figure 4 . Figure 4 presents runtime comparisons across
four representative batch sizes (bz = 16, 64, 128, 256):
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1. OptFast HGR: Linear Scaling with Feature Dimension. At bz = 256, OptFast HGR shows
a gentle increase in runtime from 0.000265 seconds (el = 10) to 0.000877 seconds (el = 500),
indicating near-linear complexity due to vectorized operations. This represents a significant speedup
over CCA, which exhibits substantially higher runtimes due to its cubic complexity from covariance
matrix decomposition.

(a) bz=16 (b) bz=16(Zoomed-in View)

(c) bz=64 (d) bz=64(Zoomed-in View)

(e) bz=128 (f) bz=128(Zoomed-in View)

(g) bz=256 (h) bz=256(Zoomed-in View)
Figure 4: Comparison of execution time for correlation methods across different batch sizes and
dimensions without interference
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2. UniFast HGR: Balanced Efficiency and Accuracy. UniFast HGR has slightly higher runtimes
than OptFast HGR due to its full distribution matrix computation but still outperforms baseline
methods. At bz = 128, its runtime increases from 0.000419 seconds (el = 10) to 0.000537 seconds
(el = 500), while CCA’s runtime increases dramatically.

3. Baseline Methods: Suboptimal Scalability. CCA and dCor: Show superlinear growth in ex-
ecution time. CCA’s runtime increases substantially from el = 10 to el = 500 at bz = 256.
dCor, though simpler, still exhibits cubic growth. SoftCCA and IdCor: SoftCCA’s runtime plateaus
at higher el due to kernel-based computation but remains significantly higher than OptFast HGR.
IdCor is the slowest, with runtimes exceeding 0.2 seconds at bz = 256, el = 500.

4. Batch Size Robustness: At smaller batch sizes (bz = 16), OptFast HGR maintains the fastest
execution times, while CKA and Soft-HGR show minimal batch size sensitivity but have higher
absolute runtimes. As batch size increases, the performance gap between UniFast/OptFast HGR and
baseline methods widens.

Figure 5 further compares execution times for a fixed dimension (dim = 300) across varying batch
sizes. OptFast HGR consistently achieves low execution times with only a slight increase as batch
size grows, highlighting its efficiency and robustness. UniFast HGR also shows relatively low ex-
ecution times, increasing much more slowly than many baseline methods. For example, CCA’s
execution time rises significantly with increasing batch size, reflecting its high computational com-
plexity and inefficiency in processing large-batch data. Methods like dCor and IdCor show a rapid
increase in execution time with batch size, underscoring their inefficiency in handling batch-size
variations. In contrast, OptFast HGR and UniFast HGR show much flatter execution-time curves,
emphasizing their stability and efficiency across different batch sizes.

The efficiency of UniFast and OptFast HGR arises prominently from avoiding matrix decompo-
sition. Unlike CCA and IdCor, which rely on computationally expensive SVD or PCA operations,
these methods focus on the upper triangular part of the distribution matrix and utilize cosine sim-
ilarity. This approach completely eliminates the need for those costly decomposition operations,
drastically reducing computational complexity. These results demonstrate that UniFast and OptFast
HGR offer substantial speedups over traditional correlation methods while maintaining accuracy,
making them ideal for real-world multimodal tasks requiring high computational efficiency.

(a) dim = 300 (b) dim = 300(Zoomed-in View)

Figure 5: Execution time comparison across methods for fixed dimension = 300 with varying batch
sizes

G ROBUSTNESS TO REAL-WORLD CHALLENGES

To evaluate the robustness of UniFast HGR in practical scenarios, experiments were conducted
across three challenging conditions: high noise, modality imbalance, and spurious correlations. Pro-
tocols for each dataset (IEMOCAP for audio noise, Flickr30K for modality imbalance, and Berlin
for spurious correlations) align with prior work, and performance metrics follow established bench-
marks.

High Noise Perturbation: Gaussian noise with a standard deviation of 30% was added to audio
features in the IEMOCAP dataset. Performance was compared against CLIP-based fusion (relying
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on text-audio alignment) and Soft-HGR. CLIP-based fusion achieved 65.8% accuracy, a 5.5% de-
crease from clean data. Soft-HGR dropped to 63.1% accuracy, an 8.2% reduction. UniFast HGR
retained 70.2% accuracy, with only a 3.5% decline—outperforming CLIP and Soft-HGR by 4.4 and
7.1 percentage points, respectively.

Modality Imbalance: To simulate extreme label scarcity, only 10% of text labels were preserved
for 99% of images in the Flickr30K dataset. CLIP (dependent on aligned text-image pairs) and
Deep CCA (a classic multimodal method) were evaluated. CLIP achieved 62.3% Recall@1, limited
by reliance on paired text. Deep CCA reached 59.7% Recall@1. UniFast HGR attained 68.9%
Recall@1, exceeding CLIP and Deep CCA by 6.6 and 9.2 percentage points, respectively.

Spurious Correlations: To test resistance to misleading associations, 20% of training labels in the
Berlin dataset were corrupted to introduce false ”building→forest” mappings. Soft-HGR, which
lacks mechanisms to mitigate self-correlation bias, overfit to spurious pairs and achieved 69.2%
overall accuracy (OA). UniFast HGR, leveraging diagonal removal to focus on cross-modal depen-
dencies, reached 77.3% OA—an 8.1 percentage point improvement over Soft-HGR.

Table 15: Performance under real-world challenges
Scenario Method Metric Value
High Noise CLIP-based fusion Accuracy (%) 65.8
(IEMOCAP) Soft-HGR Accuracy (%) 63.1

UniFast HGR Accuracy (%) 70.2

Modality Imbalance CLIP Recall@1 (%) 62.3
(Flickr30K) Deep CCA Recall@1 (%) 59.7

UniFast HGR Recall@1 (%) 68.9

Spurious Correlations Soft-HGR OA (%) 69.2
(Berlin) UniFast HGR OA (%) 77.3

These results demonstrate that UniFast HGR maintains strong performance under noise, label
scarcity, and spurious correlations. Its design—via variance constraints, diagonal removal, and co-
sine similarity—effectively prioritizes robust cross-modal relationships, outperforming baselines in
challenging real-world settings.

H DISCUSSION

The proposed methods offer several significant advancements for multimodal feature extraction and
related applications. First, they provide a more efficient and stable approach for extracting rele-
vant features from multimodal data. The UniFast HGR method reduces computational complexity
from O(K3) to O(m2K) while improving convergence speed, making it well-suited for large-scale
datasets and real-time applications. Second, its capacity to integrate multiple modes increases its
flexibility and applicability across various multimodal scenarios, enabling it to handle datasets with
diverse patterns. Furthermore, the OptFast HGR approach is optimized by reducing the number
of normalization steps, achieving a level of efficiency and computational cost comparable to dot
product and cosine similarity operations.

The three core innovations—cosine similarity substitution, diagonal removal, and simplified vari-
ance constraints—collectively address longstanding computational bottlenecks in HGR maximal
correlation estimation. These advancements enable the framework to scale effectively to high-
dimensional features (e.g., K = 1024 in vision transformers) while maintaining robustness to real-
world challenges such as noise, modality imbalance, and spurious correlations.

Overall, the results indicate that the improved methods not only enhance computational efficiency
but also maintain competitive performance in both image classification and multimodal emotion
recognition tasks. These attributes position UniFast HGR and OptFast HGR as promising ap-
proaches for multimodal feature extraction in a range of applications, from large-scale remote sens-
ing to resource-constrained edge computing scenarios.
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