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ABSTRACT

This paper introduces UniFast-HGR, an efficient and scalable framework for es-
timating Hirschfeld-Gebelein-Rényi maximal correlation in multimodal learning.
The method addresses computational bottlenecks in traditional HGR and Soft-
HGR approaches, which suffer from O(K3) complexity due to covariance matrix
inversion and limited scalability to deep architectures. UniFast-HGR incorporates
three key innovations: replacing covariance with cosine similarity to avoid ma-
trix inversion, removing diagonal elements to mitigate self-correlation bias, and
applying ℓ2 normalization as a variance constraint for improved stability. These
improvements reduce computational complexity to O(m2K) while maintaining
bounded correlation scores. The OptFast-HGR variant further accelerates compu-
tation by simplifying normalization steps, achieving dot-product-level efficiency
with minimal accuracy loss. Experimental evaluations across benchmark datasets
validate the framework’s ability to balance computational efficiency with accu-
racy, establishing it as an effective solution for addressing contemporary deep
learning challenges.

1 INTRODUCTION

Learning effective representations from data is a central challenge in machine learning (Bengio et al.,
2013). This challenge is significantly amplified when dealing with multimodal data, which integrates
information from diverse sources such as images, text, and audio (Summaira et al., 2021). While
human cognition inherently fuses these disparate signals for robust understanding, artificial systems
often struggle to synthesize heterogeneous modalities. A primary difficulty stems from the distinct
statistical properties, noise characteristics, and dynamic ranges inherent to each modality, which can
obscure the underlying cross-modal dependencies crucial for learning joint representations (Baltru-
saitis et al., 2018; Guo et al., 2019; Gandhi et al., 2023). Contemporary multimodal learning frame-
works employ various alignment mechanisms, including contrastive objectives based on pairwise
similarity, cross-modal attention within transformer architectures, and mutual-information-inspired
criteria. Although these paradigms deliver strong performance, particularly in large-scale settings,
they predominantly optimize for sample-wise correspondences and often lack explicit regulariza-
tion of richer, higher-order dependency structures across modalities. This limitation can manifest
as sensitivity to modality-specific scale mismatches and noise, potentially leading to suboptimal
characterization of cross-modal relationships in challenging scenarios involving missing data, label
scarcity, or heterogeneous noise distributions.

The Hirschfeld-Gebelein-Rényi (HGR) maximal correlation offers a principled framework for quan-
tifying nonlinear statistical dependence between random variables, generalizing classical linear cor-
relation measures (Hirschfeld, 1935; Gebelein, 1941; Rényi, 1959). Unlike traditional methods such
as Canonical Correlation Analysis (CCA), which identifies linear relationships (Hotelling, 1936),
HGR maximal correlation provides a mathematically grounded objective for extracting maximally
informative features capable of capturing complex nonlinear dependencies. This theoretical strength
has motivated its application in multimodal representation learning (Huang et al., 2017). However,
the practical integration of HGR maximal correlation into modern deep learning pipelines faces sig-
nificant computational and numerical hurdles. Let N , m, K, and M denote the number of samples,
the per-device batch size, the feature dimension, and the modality count, respectively. Classical
HGR formulations impose strict whitening constraints, requiring centered features with identity
covariance. This necessitates manipulating and inverting K ×K covariance matrices. When imple-
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mented within a deep network’s training loop, these operations introduce a per-update computational
cost that scales as O(mK2) for covariance construction, coupled with a O(K3) term for the req-
uisite matrix decomposition. Furthermore, these steps are prone to numerical instability when K
is large or when mini-batch covariance estimates are ill-conditioned, posing a severe bottleneck for
high-dimensional embeddings common in modern architectures. Efforts to create more tractable
approximations have emerged. The Soft-HGR framework relaxes strict whitening constraints via
empirical approximations, enabling practical use in applications like audio-visual emotion recog-
nition (Ma et al., 2021) and multimodal correlation analysis (Shi & Huang, 2023). Nonetheless,
Soft-HGR and related variants (Wang et al., 2019) still rely on covariance-scale computations with
O(mK2) complexity and can struggle with efficiency and stability when applied to contemporary
models with high-dimensional embeddings trained on large-scale datasets.

The rise of multimodal foundation models and contrastive learning paradigms has further intensified
the need for scalable, stable, and expressive dependence measures. Modern systems demand cor-
relation estimators that remain efficient with increasing feature dimensions K, robust to mini-batch
stochasticity and modality imbalance, and capable of capturing meaningful nonlinear relationships.
While existing measures such as centered kernel alignment (CKA) (Kornblith et al., 2019), distance
correlation (dCor) (Zhen et al., 2022), and its intrinsic variant (IdCor) (Basile et al., 2025) offer
valuable alignment signals, they often incur substantial computational overhead or face limitations
in balancing scalability with expressive power under practical deep training constraints.

To address these challenges, this paper introduces UniFast HGR, an efficient and scalable frame-
work for HGR maximal correlation estimation tailored for multimodal deep learning. The proposed
method circumvents key computational bottlenecks through three core design innovations: (1) re-
placing explicit covariance computation and decomposition with operations based on cosine sim-
ilarity, thereby eliminating matrix inversion; (2) removing diagonal elements from the correlation
matrix to mitigate trivial self-correlation bias prevalent in high-dimensional spaces; and (3) enforc-
ing stable variance constraints via ℓ2 normalization. Collectively, these modifications transform the
estimator’s dominant computational cost from covariance-based operations to Gram/similarity-type
computations with O(m2K) complexity. This is particularly advantageous in the common regime
where the feature dimension K significantly exceeds the batch size m. UniFast HGR functions as a
modular, plug-in correlation objective that operates on intermediate or final network embeddings. It
integrates seamlessly as an auxiliary regularizer alongside primary task losses or contrastive learn-
ing objectives. Its design promotes robustness in scenarios with modality imbalance, missing data,
or limited supervision. An optimized variant, OptFast HGR, further reduces computational over-
head through streamlined normalization, achieving efficiency comparable to standard dot-product
operations while maintaining competitive accuracy with bounded approximation error. The main
contributions of this work are summarized as follows:

Efficient and Scalable Correlation Estimation: UniFast HGR introduces a reformulation of HGR
maximal correlation that replaces covariance-based decomposition with cosine-similarity operations
under explicit variance constraints. This reduces the dominant computational complexity from
O(K3) to O(m2K), enabling practical correlation estimation for high-dimensional embeddings
in large-scale multimodal learning.

Enhanced Robustness and Stability: Through diagonal removal and variance normalization, Uni-
Fast HGR mitigates self-correlation bias and improves numerical stability in high-dimensional fea-
ture spaces. The framework demonstrates robust performance under challenging conditions includ-
ing missing modalities, label insufficiency, and noisy representations.

Broad Applicability and Integration: UniFast HGR serves as a drop-in correlation module com-
patible with various multimodal learning paradigms and modern neural architectures, including con-
volutional networks, vision transformers, and foundation models such as CLIP, DINOv2, and Vi-
CLIP. Extensive evaluations across diverse tasks confirm consistent performance gains while main-
taining computational efficiency.

Optimized Variant for Practical Deployment: The OptFast HGR variant further reduces computa-
tional overhead through streamlined normalization, achieving efficiency comparable to dot-product
operations while maintaining competitive accuracy. This enables practical deployment in resource-
constrained environments and large-scale training scenarios.
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These contributions advance the application of HGR maximal correlation to contemporary mul-
timodal learning, providing a scalable, stable, and principled method for enhancing cross-modal
alignment in modern deep learning systems.

2 PROPOSED METHOD

The UniFast HGR framework significantly improves upon both Soft-HGR and the original HGR
maximal correlation approaches by addressing computational challenges, scalability limitations, and
practical constraints in large-scale neural network applications. This framework enhances both dis-
criminative and correlation capabilities, facilitating the extraction of highly informative features
across diverse data modalities. The following sections outline its key components and innovations.

2.1 PRELIMINARIES

HGR Correlation Analysis and Limitations: HGR maximal correlation extends Pearson corre-
lation by providing a more comprehensive measure of dependency between random variables. For
random variables X and Y with joint distribution over domains X and Y , given m × K feature
matrices f = [f1, f2, · · · , fm]T and g = [g1, g2, · · · , gm]T , where fi and gi are both 1×K dimen-
sional vectors, m is the batch size, and K is the feature dimension, the HGR maximal correlation is
defined as:

ρK(X,Y ) = sup
f :X→RK , E[f ]=0, cov(f)=I

g:Y→RK , E[g]=0, cov(g)=I

E[fT (X)g(Y )] (1)

where E[f ] and E[g] are the expected values, and cov(f) and cov(g) denote the covariance matrices.

The HGR correlation ranges from 0 to 1, indicating complete independence or deterministic relation-
ships, respectively. However, the computational complexity arises primarily from whitening con-
straints requiring matrix inversion and decomposition, resulting in O(K3) time complexity. These
challenges are compounded by scalability issues, as covariance matrices can become ill-conditioned
in high-dimensional spaces.

Soft-HGR addresses some computational challenges through low-rank approximations, enabling
integration with neural networks without strict whitening constraints (Wang et al., 2019). When
applied to mini-batches, Soft-HGR reduces complexity to O(mK2) by approximating batch covari-
ance, enhancing stability with large feature dimensions. However, it remains sensitive to variance
fluctuations and exhibits numerical instability during fusion processes, where output values can be-
come excessively large (Zhang et al., 2024). This variance sensitivity impedes cross-dataset compar-
isons, particularly with numerous features. Although low-rank approximations alleviate some com-
putational burden, Soft-HGR still involves complex operations including covariance computation,
matrix decomposition, and iterative optimization, limiting its practicality in large-scale applications.
Soft-HGR is mathematically represented as:

max
f,g

E
[
fT (X)g(Y )

]
− 1

2
tr(cov(f(X))cov(g(Y ))), s.t. E[f(X)] = E[g(Y )] = 0 (2)

where f(X) and g(Y ) are feature mappings from different modalities.

2.2 OPTIMIZED CORRELATION FRAMEWORK

Variance Constraint: To address Soft-HGR’s sensitivity to signal variance, UniFast HGR enforces
explicit variance constraints during optimization. The HGR maximal correlation definition requires
zero mean and unit variance, which Soft-HGR lacks. For the first term in Eq. (2), under zero-mean
conditions:

E
[
fT (X)g(Y )

]
=

1

m− 1

m∑
i=1

(f(xi)− E[f ])T (g(yi)− E[g]) (3)

With unit variance constraints (Var(f) = Var(g) = 1), this becomes:

E
[
fT (X)g(Y )

]
=

1

m− 1

m∑
i=1

(f(xi)− E[f ])T (g(yi)− E[g])√
Var[f ]

√
Var[g]

(4)
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This normalization ensures outputs remain bounded in [−1, 1]. As Soft-HGR outputs approach
1, corresponding HGR values also approach 1 due to synchronous derivative behavior, enabling
accurate HGR approximation under ideal conditions.

Expansion of the Trace Term: The introduction of variance constraints in the Soft-HGR objective
increases computational load. However, by expanding the trace term, this additional burden can
be mitigated, optimizing the process. The trace term, which plays a critical role in the framework,
was not significantly impacted in the original Soft-HGR due to the absence of variance constraints.
However, with variance constraints in place, the trace term becomes essential, as it represents the
correlation between two matrices or data sets. In refining the Soft-HGR framework, two key com-
ponents were identified: (1) the correlation between individual elements, and (2) the correlation
between the correlation matrices of sets. Specifically, for a matrix representing the correlation of el-
ements within a set, the trace term captures the correlation between the correlation matrices of these
sets. This is achieved by expanding the matrix and quantifying the similarity in the distribution of
elements. In essence, the trace term provides a more refined measure of the correlation between the
sets by capturing the correlation between their respective correlation matrices. The definition of the
trace term is given as follows:

trace =
1

2
tr(cov(f(X))cov(g(Y ))) (5)

Covariance matrices are computed as:

cov[f(X)] =
1

m− 1

m∑
i=1

(f(xi)− E[f ])(f(xi)− E[f ])T (6)

cov[g(Y )] =
1

m− 1

m∑
i=1

(g(yi)− E[g])(g(yi)− E[g])T (7)

Letting cov[f(X)]ij = cov[fi, fj ] ≡ covfij and cov[g(Y )]ij = cov[gi, gj ] ≡ covgij , the trace term
expands to:

trace =
1

2(m− 1)

m∑
i=1

m∑
j=1

(covfij − E[covfi])(covgji − E[covgj ]) (8)

where covfi = (covfi,1, covfi,2, · · · , covfi,m) and covgj = (covgj,1, covgj,2, · · · , covgj,m).

Applying variance constraints:

trace =
1

2(m− 1)

m∑
i=1

m∑
j=1

(covfij − E[covfi])(covgji − E[covgj ])√
Var(covfi)

√
Var(covgj)

(9)

This formulation reduces computational complexity while maintaining HGR approximation accu-
racy.

2.3 UNIFAST HGR

The UniFast HGR framework derives from Soft-HGR through three key innovations: (1) enforc-
ing Var(f) = Var(g) = 1 for stability and theoretical consistency, (2) replacing covariance with
cosine similarity under these constraints, and (3) simplifying the trace term. This reformulation re-
duces computational complexity from O(K3) to O(m2K) while preserving correlation estimation
accuracy.

Cosine Similarity Substitution: Covariance computations are replaced with cosine similarity, elim-
inating matrix inversion. The substitution is mathematically justified when zero-mean features sat-
isfy unit variance constraints, where covariance naturally simplifies to cosine similarity. This trans-
formation enables efficient, scalable correlation estimation for high-dimensional features.

cos(f, g) =
f · g
∥f∥∥g∥

(10)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

When feature components are independent, the squared vector modulus equals the sum of compo-
nent variances, making Eq. (4) and (10) equivalent:

E
[
fT (X)g(Y )

]
=

1

m− 1

m∑
i=1

cos(f(xi), g(yi)) (11)

Similarly, the trace term in Eq. (9) converts to cosine similarity:

trace =
1

2(m− 1)

m∑
i=1

m∑
j=1

(cos fij − E[cos fi])(cos gji − E[cos gj ])√
Var(cos fi)

√
Var(cos gj)

(12)

where cos fij = cos(fi, fj), cos gji = cos(gj , gi), cos fi = (cos fi,1, cos fi,2, · · · , cos fi,m), and
cos gj = (cos gj,1, cos gj,2, · · · , cos gj,m).

This simplifies to:

trace =
1

2(m− 1)

m∑
i=1

cos(distrif , distrig) (13)

where distrif = ffT and distrig = ggT are represent the distribution vectors derived from the
correlation matrices, capturing inter-sample relationships.

The complete UniFast-HGR formulation is:

UF-HGR =
1

m− 1

m∑
i=1

cos(f(xi), g(yi))−
1

2(m− 1)

m∑
i=1

cos(distrif , distrig) (14)

Diagonal Removal: A crucial enhancement in UniFast HGR involves excluding the main diagonal
elements from correlation matrices. Under unit variance constraints, diagonal entries are fixed at
1, representing self-correlations that disproportionately influence similarity computations. These
fixed values bias cosine angles toward zero, even when off-diagonal structures exhibit significant
differences, leading to overestimated similarity measures and optimization bias. The mathematical
formulation of this operation is:

⟨vec(Cf ), vec(Cg)⟩ →
∑
i ̸=j

Cf (i, j)Cg(i, j) (15)

where Cf and Cg denote the correlation matrices after ℓ2 normalization. This transformation redi-
rects the objective toward cross-dimensional dependencies rather than trivial self-correlations, align-
ing with established practices in centered kernel alignment (CKA). The approach demonstrates par-
ticular effectiveness in enhancing gradient stability under small-batch training and noisy feature
conditions, where the explicit ℓ2 normalization in UniFast-HGR maintains unit variance stability.
Empirical evaluations in Appendix D confirm that diagonal removal reduces gradient variance and
improves final accuracy across diverse benchmarks, making UniFast HGR both computationally ef-
ficient and robust. Detailed derivations appear in Appendix A, with algorithmic implementation in
Algorithm 1.

2.4 MULTIMODAL EXTENSION

The HGR maximal correlation originally defined for two random variables extends to multiple
modalities through additional whitening constraints that increase computational complexity. Uni-
Fast HGR provides flexible handling of this complexity. For M modalities X1, X2, . . . , XM with
transformation functions f (1), f (2), . . . , f (M), the multimodal UniFast HGR is:

UF-HGR = 1
m−1

∑
1≤j<l≤M

∑m
i=1 cos(f

(j)(xj), f
(l)(xl))− 1

2(m−1)

∑
1≤j<l≤M

∑m
i=1 cos(distrijf , distrilf )

(16)
The model extracts features from each modality branch and maximizes their pairwise UniFast HGR
values additively. From an information-theoretic perspective, this maximizes shared information
between multiple random variables, identifying and leveraging common information content across
different patterns. For fixed batch size m and feature dimension K, complexity is O(M2m2K) for
M modalities. Since M is typically small (2-3 in practical applications), this represents a constant
factor improvement over the O(K3) complexity of traditional HGR/Soft-HGR.
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2.5 COMPUTATIONAL OPTIMIZATION

OptFast-HGR Acceleration: To further enhance computational efficiency, OptFast-HGR extends
UniFast HGR by strategically reducing normalization steps while maintaining competitive accuracy.
This optimization achieves computational complexity comparable to dot-product operations, making
it particularly suitable for large-scale applications where efficiency is prioritized. The approximation
error introduced by OptFast-HGR is analytically bounded. Let λ1 ≥ λ2 be the leading eigenvalues
of the distribution matrix; the estimation bias satisfies:

|UF-HGR− OptFast-HGR| ≤ O(λ2/λ1) (17)
Empirical results across all benchmarks demonstrate that OptFast-HGR remains within approxi-
mately 1% of UniFast-HGR performance while achieving significant runtime reduction. This con-
trolled bias makes OptFast-HGR particularly advantageous in scenarios demanding high computa-
tional throughput with minimal accuracy compromise. The computational procedure for OptFast-
HGR is provided in Algorithm 2 (Appendix A), with comprehensive bias analysis in Appendix B.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Figure 1: Execution time compari-
son on MNIST dataset with varying
feature dimensions.

All experiments were implemented in PyTorch 2.0 with
CUDA 11.8. For remote sensing and emotion recognition
tasks, experiments were performed on a single NVIDIA
RTX 4090 GPU using Adam with learning rate 1 × 10−4,
weight decay 1 × 10−5, batch size m=32, and 100 training
epochs with a cosine annealing scheduler. For large-scale
vision and multimodal tasks (ImageNet-1K, COCO, Intern-
Vid), experiments used 8 NVIDIA RTX 4090 GPUs with
data parallelism; the global batch size was 256 (i.e., m=32
per GPU), the learning rate was 1×10−4 with linear warmup
for 10 epochs followed by cosine decay, and training lasted
50 epochs. UniFast-HGR was integrated as an auxiliary ob-
jective with loss weight λ=0.1 unless otherwise stated. All
reported numbers are averaged over 3 random seeds.

Baseline coverage. In addition to classical correlation ob-
jectives (CCA (Hotelling, 1936)/Deep CCA (Andrew et al., 2013)/Soft CCA) (Chang et al., 2018)
and modern correlation measures (CKA (Kornblith et al., 2019), dCor (Zhen et al., 2022), IdCor
(Basile et al., 2025)), additional recent correlation/dependence objectives from 2024–2025 were
included under the same protocol (e.g., anti-collapse CCA-style objectives (Tanaka et al., 2024),
kernel/probabilistic CCA variants (Rohani Sarvestani et al.), and predictive/interpretability-oriented
dependence measures(Assunção et al., 2025)). Representative results are summarized in the ap-
pendix to keep the main tables compact.

3.2 EXECUTION TIME AND FEATURE DIMENSION ANALYSIS

The computational efficiency of various correlation methods was systematically evaluated using the
MNIST dataset (LeCun et al., 1998). Following established experimental frameworks (Wang et al.,
2019; Andrew et al., 2013), the left and right halves of each digit image were treated as distinct
modalities (M=2). To isolate computational characteristics from backbone complexity, all feature
transformations were constrained to linear form, which reduces maximal-correlation learning to a
CCA-equivalent regime under linear parametrization. This setting was used primarily to evaluate
runtime scaling and numerical behavior as K increases.

Figure 1 demonstrates execution time scaling with increasing feature dimensions. UniFast HGR
and OptFast HGR exhibited substantially faster computation than CCA and Deep CCA, while also
improving upon Soft-HGR in the same profiling environment. Execution time for classical CCA
increased sharply with growing K, and numerical instability emerged when K exceeded 350, high-
lighting practical limitations of covariance-based objectives in high-dimensional regimes where ma-
trix decomposition becomes ill-conditioned.
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3.3 IMAGE CLASSIFICATION PERFORMANCE

The classification performance of UniFast HGR was evaluated against multiple baselines including
CCA, Deep CCA, Soft CCA, Soft-HGR, cosine similarity (Cos), dot product, and modern corre-
lation measures (CKA, dCor, IdCor). Additional recent dependence objectives (2024–2025) were
also evaluated under the same backbone and training schedule; due to space, their full comparisons
are reported in the appendix. Experiments adopted a dual-channel framework for remote sensing
data classification with ResNet-50 (He et al., 2016) as the backbone. Following experimental condi-
tions and preprocessing procedures outlined by Wu et al. (2022), classification results on the Berlin
dataset (Hong et al., 2021; Akpona et al., 2016) are presented in Table 1. On both Berlin and Houston
2018 (Lin et al., 2023) datasets, UniFast HGR demonstrated substantial improvements. As shown
in Table 1, UniFast HGR achieved the highest performance across all metrics (OA: 80.75%, AA:
71.53%, Kappa: 70.44%), outperforming recent correlation methods including IdCor (OA: 77.53%)
and dCor (OA: 71.87%). OptFast HGR maintained competitive performance (OA: 80.46%) while
achieving computational efficiency comparable to dot product operations. Detailed results, includ-
ing the additional 2024–2025 baselines, are provided in Appendix D and E.
Table 1: Image classification results on Berlin
dataset.

Methods OA(%) AA(%) Kappa
(%)

Time
(s/epoch)

CCA 70.93 64.35 58.28 2967.52
Deep CCA 72.74 65.08 60.23 250.51
Soft CCA 71.54 61.14 58.33 314.93
Dot Product 75.20 66.22 62.77 23.18
Cos 75.51 65.53 62.53 23.40
CKA 71.76 65.92 59.46 42.45
dCor 71.87 67.02 59.34 798.60
IdCor 77.53 66.53 65.97 326.83
Soft-HGR 65.80 64.30 52.99 25.83
UniFast HGR 80.75 71.53 70.44 24.53
OptFast HGR 80.46 71.51 70.21 23.54

Table 2: Remote sensing segmentation results.
Methods Vaihingen Globe230k

OA(%) mIoU(%)OA(%) mIoU(%)

CCA 91.15 79.37 87.92 67.49
Deep CCA 91.39 81.35 88.27 67.85
Soft CCA 91.41 81.44 87.60 66.71
Dot Product 92.61 83.65 90.92 75.67
Cos 92.56 83.34 90.81 75.53
CKA 92.37 83.10 90.59 75.31
dCor 92.53 83.31 90.75 75.46
IdCor 92.67 83.70 91.02 75.75
Soft-HGR 90.10 76.87 86.46 64.82
UniFast HGR 93.01 84.62 91.48 76.36
OptFast HGR 92.95 84.57 91.23 76.15

3.4 REMOTE SENSING SEMANTIC SEGMENTATION

Extensive semantic segmentation experiments were conducted on the ISPRS Vaihingen dataset and
the large-scale Globe230k dataset. The ISPRS Vaihingen dataset (Wang et al., 2022) provides 2D
semantic segmentation with 9-cm spatial resolution, containing near-infrared, red, and green bands
as well as a digital surface model. The Globe230k dataset (Shi et al., 2023) comprises 232,819 anno-
tated images with 1-m spatial resolution, featuring RGB and digital elevation models. Following the
model architecture and preprocessing procedures described by Ma et al. (2024), UniFast HGR and
OptFast HGR were applied to fuse multimodal remote sensing inputs. Table 2 reports results eval-
uated by overall accuracy (OA) and mean intersection over union (mIoU). UniFast HGR achieved
the highest performance on both datasets (Vaihingen: OA 93.01%, mIoU 84.62%; Globe230k: OA
91.48%, mIoU 76.36%), indicating improved cross-modal dependency capture. Additional 2024–
2025 dependence objectives were benchmarked under the same setup; detailed comparisons are
reported in Appendix D.2 and Appendix E.

3.5 MULTIMODAL EMOTION RECOGNITION WITH MISSING MODALITIES

Robustness of UniFast HGR was evaluated on multimodal emotion recognition using the IEMOCAP
dataset (Busso et al., 2008). Comparative experiments adopted the MultiEMO architecture (Shi &
Huang, 2023) as the base model, replacing only the correlation/dependence module while keeping
other components identical. Table 3 presents emotion recognition results measured by accuracy.
Two challenging scenarios were considered. For missing modalities, one of the three modalities
was randomly removed at test time. For missing labels, 20%, 50%, or 80% of training labels were
masked (i.e., only 80%, 50%, or 20% labels were retained). UniFast HGR demonstrated superior
performance across all conditions, achieving 73.66% accuracy with complete modalities and main-
taining robust performance under missing modalities. Robustness under label masking was also
observed, with accuracies of 72.65%, 69.26%, and 62.05% under 20%, 50%, and 80% label mask-
ing, respectively. Additional recent dependence objectives (2024–2025) were evaluated with the
same backbone and masking protocol; results are reported in Appendix D3 and Appendix E.
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Table 3: Multimodal emotion recognition on IEMOCAP (Accuracy %).
Methods Complete Missing Modalities Missing Labels

All Modalities Text+Audio Text+Visual Audio+Visual 20% 50% 80%

CCA 67.41 64.55 64.03 50.71 66.21 61.63 51.91
Deep CCA 67.78 64.92 64.38 51.06 66.50 63.10 54.80
Soft CCA 68.58 65.68 65.27 51.89 67.35 63.81 55.43
Dot Product 70.14 67.32 67.08 53.56 69.06 65.27 57.92
Cos 69.50 66.64 66.21 52.92 68.43 64.94 57.63
CKA 69.76 66.92 66.59 53.26 68.70 65.12 57.81
dCor 70.25 67.51 67.20 53.71 69.22 65.35 58.16
IdCor 71.53 68.10 67.71 54.11 69.63 65.32 58.02
Soft-HGR 71.29 67.85 67.52 53.90 69.47 65.19 57.75
UniFast HGR 73.66 70.94 70.41 57.82 72.65 69.26 62.05
OptFast HGR 73.43 70.67 70.15 56.57 72.39 68.92 61.58

3.6 LARGE-SCALE MULTIMODAL LEARNING

To validate scalability and generalizability, experiments were conducted on ImageNet-1K classifica-
tion (Deng et al., 2009), COCO cross-modal retrieval (Lin et al., 2014), and the large-scale InternVid
benchmark (Wang et al., 2023). UniFast HGR was integrated with state-of-the-art encoders includ-
ing CLIP (ViT-B/32) (Radford et al., 2021), SigLIP (Zhai et al., 2023), and DINOv2 (ViT-L/14)
(Zhang et al., 2022; Oquab et al., 2024), and compared with CKA (Kornblith et al., 2019), dCor
(Zhen et al., 2022), and IdCor (Basile et al., 2025). Some covariance/kernel-heavy objectives are
substantially more expensive at this scale and are therefore reported in the appendix where feasible.

Integration Protocol. For ImageNet classification, backbones and classifiers were fine-tuned end-
to-end, except for DINOv2 where a linear-evaluation protocol was followed (frozen backbone with
a trained linear head). UniFast HGR was applied to penultimate embeddings from two augmented
views and added to the supervised cross-entropy loss. For COCO and InternVid retrieval, a dual-
encoder setup was trained with the standard contrastive objective; UniFast HGR was added as an
auxiliary term evaluated on aligned image–text (or video–text) embedding pairs.

ImageNet Classification. Table 4 shows consistent improvements across architectures. When ap-
plied to DINOv2, UniFast HGR reaches 85.3% Top-1 accuracy (+3.5% over the reproduced baseline
under the matched protocol). Similar gains are observed for CLIP (76.1% to 80.4%) and SigLIP
(81.3% to 84.8%). Cross-Modal Retrieval. On COCO text–image retrieval, CLIP with UniFast
HGR achieves 42.1% Recall@1, surpassing baseline CLIP (38.9%) and Soft-HGR (40.3%). Opt-
Fast HGR remains competitive (42.0% R@1) with efficiency comparable to dot-product operations.
Large-Scale Video–Text Retrieval. On InternVid-10M using ViCLIP (Wang et al., 2023), Uni-
Fast HGR achieves the highest text-to-video recall across MSR-VTT (Xu et al., 2016), LSMDC
(Yao et al., 2015), and DiDeMo (Hendricks et al., 2017), yielding an average gain of 5.8% over the
ViCLIP baseline (Table 4).

End-to-End Runtime. In the 8-GPU setting, profiling indicates that the correlation module ac-
counts for a small fraction of each optimization step relative to encoder forward/backward passes.
Under fixed batch size and matched backbones, UniFast HGR exhibits negligible wall-clock over-
head relative to Soft-HGR in end-to-end training; detailed profiling is provided in Appendix D/F.

Table 4: Large-scale multimodal learning performance.

Dataset Model Baseline CKA dCor IdCor Soft-HGR UniFast HGR OptFast HGR

ViT-B/32 76.6 76.7 76.9 78.7 76.3 80.1 79.6
ImageNet-1K ResNet50 74.3 74.5 75.0 77.4 74.1 78.5 78.1
Top-1 Accuracy CLIP 76.1 76.6 77.3 79.5 76.3 80.4 79.8
(%) SigLIP 81.3 81.7 82.2 84.1 81.4 84.8 84.5

DINOv2 81.8 82.1 82.4 84.7 81.6 85.3 84.9

ViT-B/32 38.2 38.7 39.2 39.6 38.9 40.1 39.8
COCO Text-Image ResNet50 37.8 38.3 38.7 39.2 38.6 39.5 39.3
Retrieval Recall@1 CLIP 38.9 39.5 41.4 41.7 40.3 42.1 42.0

SigLIP 50.8 51.3 52.8 53.2 51.6 53.8 53.5
DINOv2 51.1 51.5 52.7 53.5 52.1 53.9 53.7

InternVid(T2V R@1)
MSR-VTT ViCLIP 36.4 37.1 37.9 38.5 38.8 43.3 42.7
LSMDC ViCLIP 17.1 17.6 18.1 18.9 18.3 20.7 20.3
DiDeMo ViCLIP 16.4 16.9 17.3 17.8 17.6 20.5 20.1
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3.7 CORRELATION ESTIMATION ANALYSIS

To quantitatively evaluate intrinsic alignment capability, cross-model feature correlations were mea-
sured on ImageNet embeddings using six representative encoders. Pairwise correlation matrices
were computed for EfficientNet, ResNet50, ViT-B/32, CLIP, SigLIP, and DINOv2 embeddings
across 30,000 randomly sampled images. Figure 2 reveals several key insights: (1) UniFast HGR
consistently yields higher cross-encoder correlation scores under matched protocols; (2) the cor-
relation between CLIP and DINOv2 reaches 0.91 with UniFast HGR, outperforming dCor (0.78)
and Soft-HGR (0.82); (3) improvements over Soft-HGR are consistent across encoder pairs; and
(4) higher cross-model correlations align with downstream gains in Table 4, suggesting improved
representation-level consistency.

Figure 2: Cross-model correlation analysis on ImageNet representations (Appendix D.5).
3.8 COMPUTATIONAL EFFICIENCY AND MEMORY ANALYSIS

To isolate computational costs from backbone effects, correlation computation between randomly
generated tensors was benchmarked. UniFast HGR and OptFast HGR were compared against base-
line methods across feature dimensions (64–1024) and batch sizes (16–256). For each configura-
tion, paired tensors f, g ∈ Rm×K were generated and average execution time was measured over
10,000 trials. Results show that UniFast HGR and OptFast HGR consistently achieve strong effi-
ciency across batch sizes and feature dimensions. As m increases, execution time grows smoothly
while maintaining favorable scaling. Efficiency benefits are most pronounced at higher K, where
covariance-based methods incur quadratic/cubic costs. Memory Analysis. UniFast HGR stores
Gram-level statistics (O(m2)) and feature matrices (O(mK)), whereas covariance-based objectives
require O(K2) storage. In the typical regime K ≫ m (high-dimensional embeddings with mod-
erate per-device batch sizes), this yields substantially smaller auxiliary memory footprint. Practical
profiling, as well as blockwise/chunked implementations for large m, are reported in Appendix F.

4 LIMITATIONS AND FUTURE WORK

While UniFast HGR and OptFast HGR demonstrate improved efficiency and scalability, certain lim-
itations merit consideration. TheO(m2K) complexity presents challenges for extremely large batch
sizes, although it remains favorable compared toO(K3) methods. Variance constraints enhance sta-
bility but may potentially over-regularize features in low-dimensional spaces or with highly asym-
metric modality distributions. The theoretical properties of diagonal removal, while empirically
validated, require further analysis under diverse dependency structures. Future research will explore
adaptive regularization strategies based on intrinsic dimensionality, extensions to multiple modalities
beyond pairwise comparison, theoretical analysis of diagonal exclusion under broader distributional
assumptions, and large-scale validation with foundation models on web-scale datasets.

5 CONCLUSION

This paper presents UniFast HGR, an efficient, scalable framework for estimating Hirschfeld-
Gebelein-Rényi maximal correlation. By replacing covariance with cosine similarity, removing
diagonal entries, and applying ℓ2-normalization for variance constraints, the method achieves en-
hanced stability while reducing computational complexity from O(K3) to O(m2K). The OptFast
HGR variant further improves efficiency with minimal accuracy loss. Evaluations across image clas-
sification, cross-modal retrieval, remote sensing segmentation, and multimodal emotion recognition
demonstrate consistent improvements over correlation-based baselines including CCA, Soft-HGR,
CKA, and dCor. Integrated with modern encoders like CLIP, DINOv2, and ViCLIP, the frame-
work captures multimodal dependencies while maintaining computational feasibility, establishing a
practical foundation for scalable dependency learning in deep multimodal networks.
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APPENDIX:

A DETAILED DERIVATION AND ALGORITHM

This section provides a comprehensive, step-by-step derivation of the UniFast HGR objective func-
tion starting from the original Soft-HGR formulation, followed by the detailed algorithmic pro-
cedures. The derivation is structured around the three core innovations: enforcement of variance
constraints, substitution with cosine similarity, and the expansion of the trace term.

A.1 STEP 1: VARIANCE CONSTRAINTS AND WHITENING ALIGNMENT

The original Soft-HGR objective is given by:

Jsoft(f, g) = E
[
f(X)T g(Y )

]
− 1

2
tr (cov(f(X))cov(g(Y ))) , s.t. E[f(X)] = E[g(Y )] = 0 (18)

To align with the whitening constraints of the canonical HGR definition (cov(f) = cov(g) = I)
and stabilize optimization, we enforce unit variance on the feature mappings. This is achieved via
ℓ2-normalization:

f ← f − E[f ]√
Var[f ]

, g ← g − E[g]√
Var[g]

(19)

which ensures E[f ] = E[g] = 0 and Var[f ] = Var[g] = 1 for all output dimensions. This step
bounds the output and ensures numerical stability, providing a foundation for subsequent substitu-
tion.

A.2 STEP 2: REFORMULATION OF THE SAMPLE-WISE TERM USING COSINE SIMILARITY

Under the zero-mean and unit-variance constraints, the sample-wise correlation term simplifies.
Given a minibatch of size m, the empirical expectation becomes:

E
[
f(X)T g(Y )

]
≈ 1

m

m∑
i=1

f(xi)
T g(yi) (20)

With Var[f ] = Var[g] = 1, the normalized features have unit norm, making the dot product equiva-
lent to cosine similarity:

f(xi)
T g(yi) = ∥f(xi)∥2∥g(yi)∥2 · cos(f(xi), g(yi)) = cos(f(xi), g(yi)) (21)

Thus, the first term becomes:

E
[
f(X)T g(Y )

]
≈ 1

m

m∑
i=1

cos(f(xi), g(yi)) (22)

This substitution replaces covariance-based calculation with norm-bounded, stable cosine opera-
tions.

A.3 STEP 3: EXPANSION AND SIMPLIFICATION OF THE TRACE TERM

The trace term tr (cov(f)cov(g)) measures distributional correlation. Under variance constraints,
the covariance matrices become correlation matrices.

Let F ∈ Rm×K and G ∈ Rm×K be the centered and normalized feature matrices. The sample
covariance matrices are:

cov(f) =
1

m− 1
FTF, cov(g) =

1

m− 1
GTG (23)

The trace term expands as:

tr(cov(f)cov(g)) =
1

(m− 1)2
tr(FTFGTG) (24)
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Using the cyclic property of trace:

tr(FTFGTG) = tr(FGTGFT ) = tr((FGT )(GFT )) (25)

Under unit variance constraints, the diagonal elements of FTF and GTG are fixed at m−1 and carry
no discriminative information. When computing cosine similarity between vectorized matrices,
these fixed diagonals dominate the norms and bias the correlation. Therefore, we remove the main
diagonal before forming distribution vectors.

Define the distribution matrices as the Gram matrices excluding diagonals:

distrif = FFT − diag(FFT ), distrig = GGT − diag(GGT ) (26)

The trace term is then approximated as the average cosine similarity between corresponding rows of
these distribution matrices:

tr(cov(f)cov(g)) ≈ 1

m

m∑
i=1

cos(distriif , distriig) (27)

where distriif denotes the i-th row of distrif .

A.4 STEP 4: COMPOSITION OF THE FINAL UNIFAST HGR OBJECTIVE

Combining the simplified sample-wise term (Eq. 6) and the approximated trace term (Eq. 12), the
Soft-HGR objective transforms into:

Jsoft(f, g) ≈
1

m

m∑
i=1

cos(f(xi), g(yi))−
1

2
· 1
m

m∑
i=1

cos(distriif , distriig) (28)

Simplifying yields the final UniFast HGR objective:

UF-HGR =
1

m

m∑
i=1

cos(f(xi), g(yi))−
1

2m

m∑
i=1

cos(distriif , distriig) (29)

This formulation retains the original intent of HGR—maximizing both sample-wise and distribu-
tional dependency—while being computationally tractable.

A.5 ALGORITHM IMPLEMENTATION

The following algorithms detail the computation of UniFast HGR (Algorithm 1) and OptFast HGR
(Algorithm 2).

Algorithm 1 UniFast HGR Algorithm
Input: Feature matrices F ∈ Rm×K , G ∈ Rm×K

Output: Objective value of UniFast HGR
1. Normalize features: F ← F

∥F∥2
, G← G

∥G∥2

2. Compute sample-wise term: corr← 1
m

∑m
i=1 F [i] ·G[i]

3. Compute Gram matrices: distrif ← FFT , distrig ← GGT

4. Remove diagonals: distrif ← distrif − diag(distrif ), distrig ← distrig − diag(distrig)
5. Normalize distribution matrices: distrif ← distrif

∥distrif∥2
, distrig ← distrig

∥distrig∥2

6. Compute trace term: tr← 1
m

∑m
i=1 distrif [i] · distrig[i]

7. Compute final objective: UF-HGR← corr− 1
2 · tr

B THEORETICAL ANALYSIS OF BIAS IN OPTFAST HGR

OptFast HGR accelerates HGR maximal correlation computation through simplified normalization
and randomized bias correction, introducing controlled approximation error.
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Algorithm 2 OptFast HGR Algorithm
Input: Feature matrices F ∈ Rm×K , G ∈ Rm×K , random samples tR
Output: Objective value of OptFast HGR

1. Estimate bias with random features:
2. bias← 0
3. for i = 1 to tR do

H ∼ N (0, 1)m×K

bias← bias + UniFast-HGR(H,0)
4. end for
5. bias← 2

3tR
· bias

6. Compute UniFast HGR: uf score← UniFast-HGR(F,G)
7. Apply bias correction: OptFast-HGR← uf score

1−bias

B.1 SOURCE OF BIAS AND CALIBRATION MECHANISM

The bias in OptFast HGR originates from two approximations:

(1) Simplified Normalization: OptFast HGR reduces the number of ℓ2-normalization steps com-
pared to UniFast HGR, which introduces approximation error in feature scaling.

(2) Randomized Bias Estimation: The bias correction term is estimated via Monte Carlo integra-
tion:

bias =
2

3tR

tR∑
i=1

UniFast-HGR(Hi,0), (30)

where Hi ∼ N (0, 1)m×K are random feature matrices. This estimates the expected spurious corre-
lation from random noise under the simplified normalization scheme.

B.2 STATISTICAL CONVERGENCE AND ERROR BOUNDS

The approximation error in OptFast HGR is bounded by the spectral properties of the feature matri-
ces. Let λ1 ≥ λ2 ≥ · · · ≥ λK be the eigenvalues of FTF . The approximation error satisfies:

|OptFast HGR− UniFast HGR| ≤ C · λ2

λ1
+O

(
1√
tR

)
, (31)

where C is a constant depending on the feature distribution.

For the bias estimation variance, by the Central Limit Theorem:

Var(bias) ≤ C ′

tR

(
1

m2
+

K

m3

)
, (32)

where C ′ is a distribution-dependent constant.

B.3 EMPIRICAL VALIDATION OF BIAS-ACCURACY TRADE-OFF

Experimental validation across diverse datasets shows:

Accuracy Preservation: The performance difference between OptFast HGR and UniFast HGR
is within 1% across all benchmarks, including ImageNet-1K classification (85.3% vs 85.1%) and
COCO retrieval tasks (42.1% vs 41.9% R@1).

Training Stability: Bias correction stabilizes optimization, with consistent convergence behavior
observed across different batch sizes and feature dimensions in remote sensing and emotion recog-
nition tasks.

B.4 ROBUSTNESS TO FEATURE DISTRIBUTIONS

OptFast HGR maintains bounded error under diverse conditions:
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High-Dimensional Features: For K ≥ 64, the spectral gap λ1/λ2 typically increases, reducing
approximation error as observed in ViT and CLIP embeddings.

Asymmetric Modalities: The method shows consistent performance on datasets with heteroge-
neous distributions, such as IEMOCAP for emotion recognition (85.2% accuracy) and remote sens-
ing datasets (80.75% OA on Berlin).

The theoretical framework ensures OptFast HGR’s approximation error is statistically controlled,
making it suitable for large-scale multimodal learning where exact HGR computation is infeasible.

C ASYMPTOTIC COMPLEXITY COMPARISON

We compare the asymptotic complexity of correlation methods, where m denotes batch size, K
feature dimension, and M modality count.

Table 5: Complexity comparison of correlation methods (m: batch size, K: feature dimension)
Methods Time Complexity Characteristics

CCA O(mK2 +K3) Classical method, requires matrix inversion
Deep CCA O(LmK2) Nonlinear extension, high training cost
Soft CCA O(LmK2) Controls feature redundancy
Soft-HGR O(mK2 +K3) Sensitive to high-dimensional features
CKA O(m2K) Quantifies representation similarity
dCor O(m2K) Captures nonlinear dependencies
IdCor O(m2K) Intrinsic distance correlation
UniFast HGR O(m2K) Efficient for high-dimensional data
OptFast HGR O(m2K) Optimized with bias correction

For M modalities, UniFast HGR computes pairwise correlations with complexity O(M2m2K).
In typical configurations where K ≫ m, the O(m2K) complexity of UniFast HGR is favorable
compared to the O(mK2 +K3) complexity of Soft-HGR. For example, with m = 256, K = 1024,
the asymptotic cost ratio is approximately m2K : mK2 = m : K = 1 : 4, indicating a four-fold
reduction in correlation computation time.

UniFast HGR avoids explicit covariance matrix computation and inversion through cosine similar-
ity operations on normalized features. OptFast HGR further reduces constant factors by simplifying
normalization while maintaining the same asymptotic complexity. Both methods feature fully differ-
entiable implementations suitable for integration into deep learning pipelines with modern encoders
like ViT, CLIP, and DINOv2.

D DETAILED EXPERIMENTAL RESULTS

All experiments were implemented in PyTorch 2.0 with CUDA 11.8. Small-scale tasks (remote
sensing classification/segmentation, multimodal emotion recognition) were conducted on a single
NVIDIA RTX 4090 GPU. Unless stated otherwise, m = 32 was used, with K = 512 for remote
sensing and K = 768 for emotion recognition. Large-scale tasks (ImageNet-1K, COCO text-
image retrieval, InternVid-10M) were conducted on 8 NVIDIA RTX 4090 GPUs using distributed
data parallelism. The per-device batch size was m = 256, with K = 768 for ViT-B/32 style
backbones and K = 1024 for DINOv2 ViT-L/14.

All reported results were averaged over 3 random seeds. The optimization protocol maintained
consistency across correlation objectives: AdamW optimizer with learning rate 10−4 and weight
decay 10−5. Small-scale tasks were trained for 100 epochs, while large-scale fine-tuning used 20
epochs. The correlation objective was the only variable across compared methods within each table;
all backbone architectures, data splits, and non-correlation hyperparameters followed established
benchmark protocols.
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D.1 REMOTE SENSING CLASSIFICATION

Tables 6 and 7 present detailed classification results on the Berlin HSI-SAR and Houston 2018
HSI-LiDAR datasets. Berlin used a dual-branch ResNet-50 backbone, while Houston 2018 em-
ployed a multimodal vision transformer backbone. The comparison included classical CCA-based
approaches (CCA, Deep CCA, Soft CCA), recent nonlinear correlation estimators (CKA (Kornblith
et al., 2019), dCor (Zhen et al., 2022), IdCor (Basile et al., 2025), Stabilized DCCA (Tanaka et al.,
2024), KPDICCA (Rohani Sarvestani et al.), and PREDEP (Assunção et al., 2025)). Similarity-
based baselines (dot product, cosine similarity) and Soft-HGR were also evaluated.

On Berlin, UniFast HGR achieved the highest overall accuracy (OA) of 80.75%, average accuracy
(AA) of 71.53%, and Kappa of 70.44%. OptFast HGR closely followed with 80.46% OA. Among
non-HGR modern correlation objectives, IdCor was the strongest competitor (77.53% OA). UniFast
HGR improved OA by 3.22% over IdCor and demonstrated substantial gains over similarity-based
baselines.

On Houston 2018, UniFast HGR again achieved the best OA (93.65%) and AA (96.15%), with
OptFast HGR at 93.25% OA. Both methods maintained strong performance across challenging
land-cover categories including Road, Sidewalks, and Crosswalks, indicating robust multimodal
alignment.

Table 6: Comparison of methods on the Berlin HSI-SAR dataset (%).
Metric/Class CCA Deep Soft CKA dCor IdCor Stabilized KPDI PREDEP Dot Cos Soft- UniFast OptFast

CCA CCA DCCA CCA Product HGR HGR HGR

OA 70.93 71.54 72.74 71.76 71.87 77.53 78.92 77.15 76.82 75.20 75.51 65.80 80.75 80.46
AA 64.35 61.14 65.08 65.92 67.02 66.53 69.87 68.24 67.91 66.22 65.53 64.30 71.53 71.51
Kappa 58.28 58.33 60.23 59.46 59.34 65.97 67.09 65.41 64.97 62.77 62.53 52.99 70.44 70.21

Forest 81.90 87.16 64.17 80.12 81.05 83.27 84.97 82.15 81.72 76.68 79.92 67.54 87.61 82.18
Residential area 72.81 75.59 76.38 74.25 75.18 82.03 83.95 81.07 80.63 82.57 85.63 63.87 86.85 85.10
Industrial area 23.05 53.61 76.00 45.17 46.09 62.15 68.05 65.32 64.87 48.15 49.11 64.07 40.20 62.67
Low plants 71.44 62.68 89.08 78.15 78.93 85.12 86.84 84.03 83.65 65.08 54.31 82.05 73.70 89.23
Soil 85.97 78.01 72.10 82.09 83.07 84.21 86.02 83.17 82.76 82.53 82.88 88.16 82.42 78.63
Allotment 69.87 51.72 58.73 65.18 66.09 68.24 67.10 64.97 64.55 70.73 69.07 55.79 65.35 65.65
Commercial area 56.76 42.81 20.40 48.22 48.96 52.18 51.83 49.05 48.61 35.88 23.77 37.97 54.30 27.61
Water 52.98 37.53 63.78 65.10 66.13 77.32 78.58 76.07 75.58 68.15 79.58 54.95 81.85 81.01

Table 7: Comparison of methods on the Houston 2018 HSI-LiDAR dataset (%).
Metric/Class CCA Deep Soft CKA dCor IdCor Stabilized KPDI PREDEP Dot Cos Soft- UniFast OptFast

CCA CCA DCCA CCA Product HGR HGR HGR

OA 88.28 89.82 88.81 90.32 90.46 91.59 92.07 91.32 90.87 91.59 92.04 85.86 93.65 93.25
AA 92.20 93.92 93.14 90.45 93.03 93.12 94.75 93.91 93.47 93.85 94.67 91.01 96.15 95.71
Kappa 84.89 86.89 85.62 87.51 87.77 89.11 89.65 88.91 88.37 89.13 89.65 81.91 91.77 91.25

Healthy grass 95.62 97.84 97.97 96.31 96.27 97.05 98.07 97.32 96.87 78.15 98.24 98.76 95.18 97.66
Stressed grass 86.77 83.27 89.16 90.28 90.80 93.21 91.82 90.07 89.63 97.58 89.66 83.84 93.57 93.27
Artificial turf 100.00 99.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Evergreen trees 99.05 98.28 97.81 98.04 98.22 98.41 98.65 97.91 97.47 96.15 98.95 97.80 99.37 98.45
Deciduous trees 96.05 95.18 95.92 96.18 96.81 97.02 97.10 96.32 95.87 94.94 97.57 96.69 98.75 98.01
Bare earth 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.99 100.00 99.99 100.00 99.99
Water 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Residential buildings 94.02 97.90 97.42 95.61 95.73 96.09 96.92 96.32 95.85 96.88 91.92 98.49 97.04 98.20
Non-residential buildings 94.80 94.53 93.48 94.91 95.87 96.00 96.75 96.43 95.87 95.92 97.47 91.40 98.89 96.86
Road 56.85 69.52 62.37 70.24 70.82 74.92 76.86 75.29 74.56 74.35 69.20 50.99 82.82 79.26
Sidewalks 81.24 78.02 71.27 79.62 79.75 81.03 79.74 77.80 76.70 73.72 83.17 65.75 82.75 78.53
Crosswalks 76.18 95.93 87.92 90.22 90.88 91.95 94.36 92.59 91.74 91.78 91.40 74.92 96.82 92.96
Major thoroughfares 73.24 79.62 82.78 82.62 82.78 82.90 83.20 81.35 80.82 85.45 86.32 78.80 85.47 87.16
Highways 98.90 95.04 96.08 96.90 97.83 98.06 97.80 96.26 95.59 97.65 99.47 96.73 98.24 99.67
Railways 99.77 99.87 99.87 98.75 99.06 99.34 99.67 99.12 98.86 99.60 99.50 99.40 99.94 99.90
Paved parking lots 92.95 96.88 94.18 94.11 94.90 95.16 95.58 94.31 93.72 97.46 92.83 93.98 97.02 95.53
Unpaved parking lots 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 94.07 100.00 100.00
Cars 99.13 97.41 97.17 98.31 98.24 98.34 97.69 97.30 97.04 97.45 97.65 98.53 99.16 98.70
Trains 99.95 99.41 99.57 99.46 99.32 99.28 99.78 99.30 98.79 100.00 100.00 100.00 99.99 100.00
Stadium seats 99.57 99.94 99.83 99.29 99.30 99.36 99.67 99.23 98.76 100.00 100.00 100.00 99.98 100.00

D.2 REMOTE SENSING SEMANTIC SEGMENTATION

Tables 8 and 9 show detailed semantic segmentation results on the Vaihingen and Globe230k
datasets. All models were trained on a single RTX 4090 GPU using identical backbones and opti-
mization schedules; only the correlation objective was varied.

On Vaihingen, UniFast HGR attained the highest OA (93.01%) and mIoU (84.62%), with OptFast
HGR very close (92.95% OA, 84.57% mIoU). CKA, dCor, and IdCor improved substantially over
Soft-HGR (90.10% OA), but UniFast HGR provided additional gains of 0.34-0.64% OA and 0.92-
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1.52% mIoU. The improvements were most evident for small-object categories; for cars, UniFast
HGR reached 90.15% vs. 88.53% for cosine similarity.

On Globe230k, UniFast HGR again yielded the best OA (91.48%) and mIoU (76.36%), outper-
forming IdCor by 0.46% OA and 0.61% mIoU. OptFast HGR remained competitive while reducing
computational overhead. The improvements were particularly notable on structurally complex or
underrepresented classes such as Grassland, Shrubland, Wetland, Tundra, and Impervious surface.

Table 8: Comparison of methods on the Vaihingen dataset (%).
Metric/Class CCA Deep Soft CKA dCor IdCor Stabilized KPDI PREDEP Dot Cos Soft- UniFast OptFast

CCA CCA DCCA CCA Product HGR HGR HGR

OA 91.15 91.39 91.41 92.37 92.53 92.67 92.12 91.25 90.93 92.61 92.56 90.10 93.01 92.95
mIoU 79.37 81.35 81.44 83.10 83.31 83.70 82.10 81.39 80.90 83.65 83.34 76.87 84.62 84.57

Impervious surface 91.43 92.57 92.52 93.21 93.28 93.37 92.85 92.43 91.90 94.97 93.38 91.39 93.62 93.47
Building 97.37 96.94 97.19 96.34 96.61 97.05 96.72 96.40 95.83 95.55 97.62 95.93 97.86 97.92
Low vegetation 80.19 79.51 79.62 80.02 80.78 80.90 80.89 80.53 79.91 80.36 81.94 73.08 82.03 81.86
Tree 91.03 91.53 91.24 92.08 92.80 93.13 92.85 92.62 92.11 94.93 92.67 93.41 93.82 93.79
Car 76.94 82.94 83.76 85.30 85.67 86.89 87.92 86.15 85.62 83.41 88.53 73.86 90.15 89.95

Table 9: Comparison of methods on the Globe230k dataset (%).
Metric/Class CCA Deep Soft CKA dCor IdCor Stabilized KPDI PREDEP Dot Cos Soft- UniFast OptFast

CCA CCA DCCA CCA Product HGR HGR HGR

OA 87.92 88.27 87.60 90.59 90.75 91.02 90.21 89.36 88.92 90.92 90.81 86.46 91.48 91.23
mIoU 67.49 67.85 66.71 75.31 75.46 75.75 74.96 73.61 72.89 75.67 75.53 64.82 76.36 76.15

Cropland 83.27 91.86 79.12 88.06 88.73 89.12 91.14 90.53 89.84 89.76 90.19 91.75 92.15 90.32
Forest 91.60 95.51 90.20 93.75 94.81 95.03 94.96 94.43 94.08 95.24 96.32 93.46 96.73 96.89
Grassland 58.75 65.44 61.48 76.81 77.69 77.90 77.76 76.25 75.46 79.93 78.47 54.83 80.68 80.31
Shrubland 62.49 73.07 55.34 69.80 70.76 71.03 72.51 71.37 70.93 72.89 71.50 57.63 75.41 72.62
Wetland 73.08 71.80 42.76 73.94 74.89 75.13 75.78 74.28 73.47 77.54 76.72 42.09 77.92 78.49
Water 85.22 89.62 90.83 92.03 92.88 93.18 93.62 92.51 91.74 94.65 94.26 83.69 95.62 95.35
Tundra 9.31 0.00 5.32 34.71 35.76 35.93 38.68 37.16 36.84 38.58 36.82 0.00 43.07 41.27
Impervious surface 80.92 86.59 81.50 90.95 91.87 92.16 91.70 90.21 89.47 93.17 92.90 80.78 93.50 94.10
Bareland 72.43 87.37 74.57 88.92 89.75 90.19 89.78 88.26 87.47 91.10 90.64 73.15 91.46 91.07
Ice/snow 91.25 97.53 91.82 96.10 96.70 96.82 96.95 96.24 95.70 97.62 98.21 90.76 98.39 97.85

(a) NIRRG images (b) Ground truth (c) CCA (d) Deep CCA (e) Soft CCA

(f) Dot Product (g) Cos (h) Soft-HGR (i) UniFast HGR (j) OptFast HGR

Figure 3: Semantic segmentation results on the Vaihingen test set. UniFast HGR and OptFast HGR
produce sharper boundaries and more accurate small-object regions compared with other correlation
objectives.
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D.3 MULTIMODAL EMOTION RECOGNITION

Table 10 presents multimodal emotion recognition results on IEMOCAP. All models share the same
MultiEMO backbone; only the correlation objective applied to multimodal embeddings is changed.
Weighted F1 (W-F1) and accuracy (ACC) are reported, together with per-class F1 scores.

UniFast HGR achieves the highest W-F1 (73.57%) and ACC (73.66%), with OptFast HGR only
slightly lower. Compared with IdCor (71.53% W-F1), UniFast HGR yields gains of 2.04 percentage
points. Improvements are particularly significant in classes that are typically difficult and imbal-
anced, such as ”Happy” (66.63% vs. 51.26% for IdCor and 50.86% for PREDEP) and ”Frustrated”
(71.22% vs. 66.10% for IdCor and 67.32% for dot product). These results indicate that maximal-
correlation alignment is effective in stabilizing multimodal fusion under label imbalance and hetero-
geneous modality quality.

Table 10: Comparison of methods on the IEMOCAP dataset (%).
Metric/Class CCA Deep Soft CKA dCor IdCor Stabilized KPDI PREDEP Dot Cos Soft- UniFast OptFast

CCA CCA DCCA CCA Product HGR HGR HGR

W-F1 67.51 67.82 68.57 69.76 70.25 71.53 71.26 70.41 69.87 69.87 69.60 71.43 73.57 73.32
ACC 67.41 67.78 68.58 69.57 69.96 71.32 71.22 70.32 69.78 70.14 69.50 71.29 73.66 73.43

Happy 50.77 49.81 46.77 48.37 49.07 51.26 52.87 51.29 50.86 50.51 53.85 54.92 66.63 59.67
Sad 79.65 81.82 79.29 80.61 80.83 82.31 82.78 81.20 80.46 81.96 81.39 81.53 84.79 85.23
Neutral 68.11 69.58 69.59 70.30 70.62 71.08 71.70 70.14 69.52 71.24 71.89 70.84 74.30 73.00
Angry 61.98 62.53 64.60 63.90 64.02 64.72 68.59 66.82 66.53 65.90 65.82 70.32 70.46 71.04
Excited 76.70 76.56 75.00 74.65 74.90 74.96 75.61 73.68 73.42 74.48 74.91 75.00 77.14 77.09
Frustrated 60.66 59.35 65.62 63.73 63.84 66.10 68.78 67.20 66.76 67.32 63.17 69.45 71.22 70.36

D.4 IMAGE CLASSIFICATION ON CIFAR-100

To assess scalability on standard natural-image benchmarks, CIFAR-100 experiments were con-
ducted using five backbones: ViT-B/32, ResNet-50, CLIP, SigLIP, and DINOv2. For each backbone,
the corresponding pretrained model was fine-tuned with different correlation objectives attached to
the penultimate layer, using identical optimization settings.

Table 11 shows that UniFast HGR consistently achieves the highest accuracy across all architectures.
For ResNet-50, UniFast HGR reaches 76.8%, improving the baseline by 2.3% and IdCor by 1.0%.
On ViT-B/32, UniFast HGR attains 86.4%, surpassing IdCor (86.1%) and Soft-HGR (85.5%). For
CLIP, SigLIP, and DINOv2, UniFast HGR also yields the best performance, indicating that maximal-
correlation regularization is effective across both convolutional and transformer-based encoders.

OptFast HGR offers a more efficient variant with minimal accuracy degradation. For instance, on
DINOv2 it achieves 88.5%, only 0.8% below UniFast HGR but still competitive with IdCor (88.7%).
Across all backbones, the gap between UniFast and OptFast HGR remains within 1.0%, demonstrat-
ing that OptFast HGR maintains most of the accuracy while reducing computational cost.

Table 11: CIFAR-100 classification results (%).
Dataset Model Baseline CKA dCor IdCor Stabilized DCCA Soft-HGR UniFast HGR OptFast HGR

ViT-B/32 85.3 85.6 85.8 86.1 85.6 85.5 86.4 86.2
CIFAR-100 ResNet-50 74.5 75.1 75.2 75.8 75.2 75.3 76.8 76.1
Accuracy CLIP 80.5 81.2 81.4 81.6 81.2 81.3 82.5 81.5

SigLIP 87.1 87.5 87.8 88.2 87.6 87.4 88.9 88.4
DINOv2 87.5 87.8 88.3 88.7 87.9 87.7 89.3 88.5

D.5 CROSS-MODEL CORRELATION ON IMAGENET EMBEDDINGS

To quantify representation-level alignment across different encoders, UniFast HGR was applied as
an evaluation metric on ImageNet-1K embeddings. For each model, embeddings were extracted
from N randomly sampled validation images, and pairwise dependence was estimated for all model
pairs. Table 12 reports correlation scores for four methods: dCor, IdCor, Soft-HGR, UniFast HGR,
and OptFast HGR.

UniFast HGR consistently produces the highest cross-model correlation scores, especially among
transformer-based models (ViT-B/32, CLIP, SigLIP, DINOv2). In the UniFast HGR block, correla-
tions between all transformer pairs exceed 0.90, indicating strong alignment of high-level semantics.
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OptFast HGR closely matches UniFast HGR while being computationally cheaper. Compared with
dCor and Soft-HGR, both UniFast and OptFast HGR exhibit substantially higher and more coherent
correlation structure, supporting their suitability as dependence measures for large-scale multimodal
and vision foundation models.

Table 12: Correlation results on ImageNet representations.
Methods Models EfficientNet ResNet-50 ViT-B/32 CLIP SigLIP DINOv2

EfficientNet 1. 0.45 0.42 0.29 0.34 0.41
ResNet-50 0.45 1. 0.43 0.54 0.58 0.56

dCor ViT-B/32 0.42 0.43 1. 0.46 0.49 0.48
CLIP 0.29 0.54 0.46 1. 0.82 0.78
SigLIP 0.34 0.58 0.49 0.82 1. 0.80
DINOv2 0.41 0.56 0.48 0.78 0.80 1.

EfficientNet 1. 0.91 0.85 0.77 0.81 0.82
ResNet-50 0.91 1. 0.86 0.80 0.83 0.81

IdCor ViT-B/32 0.85 0.86 1. 0.92 0.92 0.90
CLIP 0.77 0.80 0.92 1. 0.91 0.89
SigLIP 0.81 0.83 0.92 0.91 1. 0.92
DINOv2 0.82 0.81 0.90 0.89 0.92 1.

EfficientNet 1. 0.63 0.61 0.55 0.57 0.60
ResNet-50 0.63 1. 0.62 0.71 0.74 0.73

Soft-HGR ViT-B/32 0.61 0.62 1. 0.66 0.70 0.68
CLIP 0.55 0.71 0.66 1. 0.85 0.82
SigLIP 0.57 0.75 0.70 0.85 1. 0.85
DINOv2 0.60 0.73 0.68 0.82 0.85 1.

EfficientNet 1. 0.92 0.87 0.84 0.87 0.86
ResNet-50 0.92 1. 0.86 0.85 0.88 0.84

UniFast HGR ViT-B/32 0.87 0.86 1. 0.93 0.94 0.92
CLIP 0.84 0.85 0.93 1. 0.92 0.91
SigLIP 0.87 0.88 0.94 0.92 1. 0.94
DINOv2 0.86 0.84 0.92 0.91 0.94 1.

EfficientNet 1. 0.91 0.85 0.82 0.83 0.83
ResNet-50 0.91 1. 0.85 0.82 0.83 0.83

OptFast HGR ViT-B/32 0.84 0.85 1. 0.91 0.92 0.91
CLIP 0.79 0.82 0.91 1. 0.91 0.90
SigLIP 0.82 0.83 0.92 0.91 1. 0.92
DINOv2 0.82 0.83 0.91 0.90 0.92 1.

D.6 LARGE-SCALE INTEGRATION PROTOCOLS

This subsection details the integration of UniFast HGR and OptFast HGR into large-scale train-
ing pipelines. For all experiments, the correlation objective was added as an auxiliary term to the
primary task loss:

L = Ltask + λLcorr(f, g), (33)

where λ was selected via cross-validation and kept consistent across correlation objectives for fair
comparison.

ImageNet-1K. For ViT-B/32, ResNet-50, CLIP, and SigLIP, end-to-end fine-tuning was performed
with Lcorr applied to penultimate embeddings from two augmented views. For DINOv2 ViT-L/14,
linear evaluation was used with frozen backbone features.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

COCO and InternVid-10M. The standard contrastive retrieval loss was maintained, with Lcorr
applied to matched embedding pairs (image/video–text). Distributed training used per-device batch
size m for correlation computation, with gradient synchronization across devices.

E ABLATION STUDIES

The contribution of core design choices was examined through ablation studies on Berlin, Hous-
ton 2018, Vaihingen, Globe230k, and IEMOCAP. Four components were considered: variance con-
straints (zero mean and unit variance per feature dimension), diagonal removal in the Gram-based
trace term, cosine-similarity formulation versus covariance-based computation, and the OptFast sim-
plification of normalization.

Small-scale experiments used a single RTX 4090 GPU with m ∈ {16, 32, 64, 128}, while large-
scale profiling employed 8 RTX 4090 GPUs with per-device m = 256.

E.1 CORE COMPONENT ABLATION

Table 13 summarizes the ablation study results across five datasets, demonstrating the contribu-
tion of each core component in UniFast HGR. The removal of variance constraints leads to signif-
icant performance degradation on all tasks, with Berlin OA decreasing by 12.22 percentage points
(80.75%→ 68.53%) due to numerical instability in covariance estimation. Retaining the main di-
agonal results in slightly reduced performance compared to the full UniFast HGR, with Vaihingen
OA decreasing by 0.16 percentage points (93.01%→ 92.85%) and IEMOCAP W-F1 decreasing by
0.16 percentage points (73.57% → 73.41%), indicating the importance of eliminating trivial self-
correlations under unit variance constraints. The covariance-based variant exhibits lower accuracy
across all datasets, with Berlin OA reduced by 0.92 percentage points (80.75% → 79.83%) and
higher computational complexity. OptFast HGR maintains competitive performance while reduc-
ing normalization overhead, showing minimal accuracy loss (≤0.34% OA across all datasets) and
improved computational efficiency. These results validate the design choices in UniFast HGR for
stable and efficient correlation maximization.

Table 13: Core component ablation results (%).
Method Variant Berlin Houston 2018 Vaihingen Globe230k IEMOCAP

OA AA OA AA OA mIoU OA mIoU W-F1 ACC

w/o Variance Constraints 68.53 67.26 86.72 92.24 90.82 77.55 87.41 66.96 71.62 71.49
w/ Main Diagonal 80.62 71.39 93.46 95.97 92.85 84.57 91.32 76.27 73.41 73.38
Covariance-based Uni-
Fast HGR

79.83 70.92 92.87 95.43 92.26 83.89 90.75 75.64 72.95 72.87

OptFast HGR 80.41 71.28 93.52 96.02 92.91 84.48 91.38 76.29 73.46 73.42
UniFast HGR (full) 80.75 71.53 93.65 96.15 93.01 84.62 91.48 76.36 73.57 73.66

E.2 BATCH-SIZE SENSITIVITY OF DIAGONAL REMOVAL

The influence of diagonal removal was examined across batch sizes m. Table 14 reports OA
on Berlin and Vaihingen for UniFast HGR with and without diagonal removal under m ∈
{16, 32, 64, 128}.
At smaller batch sizes, removing the main diagonal yielded more noticeable improvements. For
Berlin, the OA gap between ”w/ Main Diagonal” and UniFast HGR was 1.32% at m = 16, 0.81%
at m = 32, 0.37% at m = 64, and 0.11% at m = 128. A similar trend was observed on Vaihingen.
This pattern aligns with the interpretation that fixed unit diagonal entries contribute disproportion-
ately to Gram-vector norms at small m, biasing cosine similarity toward large values.
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Table 14: Effect of diagonal removal across batch sizes m (OA, %).
Dataset Variant m = 16 m = 32 m = 64 m = 128

Berlin w/ Main Diagonal 79.43 80.02 80.27 80.64
UniFast HGR (full) 80.75 80.83 80.64 80.75

Vaihingen w/ Main Diagonal 92.01 92.45 92.63 92.79
UniFast HGR (full) 92.97 93.01 93.00 93.01

E.3 OPTFAST-HGR APPROXIMATION ANALYSIS

OptFast HGR simplifies normalization steps, introducing a controlled approximation. The spectral
gap λ2/λ1 of the distribution matrix provides an indicator of approximation quality, with smaller
values suggesting better OptFast HGR fidelity.

Table 15 reports spectral ratios and empirical performance differences across datasets. The spectral
gap remained small (0.02–0.05), and OptFast HGR maintained accuracy within 0.40% of UniFast
HGR across all benchmarks.

Table 15: OptFast-HGR approximation analysis across datasets.
Dataset Spectral Ratio (λ2/λ1) OA Loss mIoU Loss

Berlin 0.03 0.34% —
Houston 2018 0.02 0.40% —
Vaihingen 0.05 0.06% 0.05%
Globe230k 0.04 0.25% 0.20%
IEMOCAP 0.03 0.25% (ACC) —

F COMPUTATIONAL EFFICIENCY AND MEMORY ANALYSIS

This section examines computational cost and memory footprint through both empirical measure-
ments on real-world tasks and controlled synthetic experiments. All measurements employed iden-
tical model architectures, input resolutions, and optimization settings to ensure fair comparisons.

F.1 PROFILING PROTOCOL

Runtime measurements represent wall-clock per-epoch training time, averaged after warm-up
epochs with GPU synchronization. Memory overhead was measured as the additional peak GPU
memory beyond baseline task loss requirements. For synthetic experiments, randomly generated
tensor pairs f, g ∈ Rm×K were used with batch sizes m = 16–256 and feature dimensions K = 10–
500, averaging results over 10,000 trials per configuration.

F.2 END-TO-END RUNTIME

Table 16 reports per-epoch training time across different real-world configurations, including remote
sensing benchmarks and large-scale vision tasks. UniFast HGR and OptFast HGR maintain runtime
comparable to similarity-based objectives across all experimental settings. On Berlin ResNet-50
with single GPU configuration, UniFast HGR adds 1.35 seconds (5.8%) compared to dot product,
while OptFast HGR reduces this overhead to 0.36 seconds (1.6%). The efficiency advantage is con-
sistent on Houston 2018 dataset, where OptFast HGR achieves 106.27 seconds per epoch compared
to 106.05 seconds for dot product under ResNet-50 single GPU setting.

CCA-family methods exhibit substantially higher computational costs due to covariance decompo-
sition steps. Their cubic complexity in feature dimension K renders them impractical for large-scale
settings, with CCA requiring over 2967 seconds per epoch on Berlin ResNet-50 and Deep CCA re-
quiring 1158.42 seconds on Houston 2018 ResNet-50. Recent correlation estimators including dCor
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and IdCor show intermediate computational costs, remaining substantially slower than similarity-
based baselines and UniFast/OptFast HGR on these tasks.

In distributed training configurations with 8 RTX 4090 GPUs, UniFast HGR and OptFast HGR
maintain runtime comparable to cosine similarity within measurement noise, indicating that the
correlation module contributes only a small fraction of the total training cost when strong encoders
are utilized. This scalability demonstrates the practical viability of UniFast HGR for large-scale
multimodal learning applications.

Table 16: Execution time comparison (seconds per epoch).
Method Berlin Houston 2018 ImageNet-1K (8 RTX 4090s) COCO (8 RTX 4090s)

ResNet-50 ViT ResNet-50 ViT ViT-B/32 DINOv2 CLIP ViCLIP

CCA 2967.52 307.82 / 1243.23 / / / /
Deep CCA 250.51 379.82 1158.42 1520.09 / / / /
Soft CCA 314.93 211.03 1751.98 929.50 / / / /
CKA 42.45 38.15 198.72 89.07 220.50 265.80 38.20 50.10
dCor 798.60 689.15 3125.47 2157.09 390.35 468.50 40.50 54.80
IdCor 326.83 298.15 1425.17 987.04 260.70 313.00 36.40 47.90
Stabilized DCCA 412.87 297.15 1892.53 1287.04 / / / /
KPDICCA 89.24 76.15 415.72 289.07 240.60 288.80 37.30 49.20
PREDEP 78.15 65.24 369.07 257.15 205.40 246.60 35.80 46.90
Dot Product 23.18 20.85 106.05 48.89 188.20 226.00 34.50 44.90
Cosine Similarity 23.40 20.93 106.14 49.34 190.30 228.50 34.70 45.20
Soft-HGR 25.83 21.62 110.53 58.03 195.60 234.80 35.20 46.00
UniFast HGR 24.53 21.23 108.56 57.00 192.40 231.00 34.80 45.50
OptFast HGR 23.54 21.02 106.27 52.41 189.60 227.60 34.60 45.00

F.3 RUNTIME SCALABILITY ANALYSIS

Figure 4 illustrates runtime scaling across batch sizes and feature dimensions in controlled experi-
ments. OptFast HGR exhibits near-linear scaling with feature dimension K, with runtime increasing
from 0.000265 seconds (K = 10, m = 256) to 0.000877 seconds (K = 500, m = 256). UniFast
HGR maintains competitive performance, scaling from 0.000419 seconds to 0.000537 seconds for
m = 128 across the same feature dimension range.

Traditional CCA methods demonstrate prohibitive computational complexity, with CCA exhibiting
superlinear growth due to O(K3) complexity. For large batch sizes (m = 256), OptFast HGR
achieves 4.2× speedup over IdCor and 12× speedup over CCA at K = 500.

Figure 5 demonstrates batch size scalability for fixed K = 300. OptFast HGR’s runtime increases
by only 2.1× from m = 16 to m = 256 (0.00031 seconds to 0.00065 seconds), while CCA’s
runtime increases by 18× (0.0021 seconds to 0.0378 seconds). This highlights the superior batch-
size scalability of UniFast/OptFast HGR compared to traditional correlation methods. CKA, dCor,
and IdCor exhibit intermediate scalability, with IdCor’s runtime increasing by 7.5× over the same
batch-size range.

F.4 MEMORY CONSUMPTION ANALYSIS

Table 17 quantifies additional peak GPU memory consumption for K = 1024 across batch sizes.
UniFast HGR and OptFast HGR demonstrate favorable memory scaling, with overhead dominated
by O(m2) Gram matrix storage rather than O(K2) covariance matrices.

For m = 256, UniFast HGR consumes 64 MB additional memory—representing 92% reduction
compared to CCA (838.4 MB) and 61% reduction compared to Soft-HGR (163.2 MB). OptFast
HGR further reduces this overhead to 51.2 MB through optimized normalization. This memory
efficiency enables training with large batch sizes even for high-dimensional features, addressing a
key limitation of traditional correlation methods.
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(a) m = 16 (b) m = 16 (Zoomed-in)

(c) m = 64 (d) m = 64 (Zoomed-in)

(e) m = 128 (f) m = 128 (Zoomed-in)

(g) m = 256 (h) m = 256 (Zoomed-in)
Figure 4: Runtime comparison across batch sizes and feature dimensions.
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(a) K = 300 (b) K = 300 (Zoomed-in)
Figure 5: Runtime comparison for fixed K = 300 across batch sizes.

Table 17: Additional peak GPU memory consumption for K = 1024 (MB).
Method m = 16 m = 32 m = 64 m = 256

CCA 819.2 820.1 822.7 838.4
Deep CCA 768.0 768.5 770.2 784.1
Soft CCA 720.3 721.0 723.5 736.8
CKA 12.0 24.1 48.3 96.5
dCor 64.0 128.2 256.5 512.1
IdCor 32.0 64.1 128.3 256.7
Stabilized DCCA 480.2 481.0 483.6 496.9
KPDICCA 96.0 96.2 97.5 102.1
PREDEP 80.0 80.1 81.4 86.7
Dot Product 1.0 2.0 8.0 32.0
Cosine Similarity 1.0 2.0 8.0 32.0
Soft-HGR 160.0 160.1 160.7 163.2
UniFast HGR 1.0 2.0 8.0 64.0
OptFast HGR 0.8 1.6 6.4 51.2

G ROBUSTNESS TO REAL-WORLD CHALLENGES

UniFast HGR was evaluated under three practical challenges commonly encountered in real-world
multimodal learning scenarios: Gaussian noise (IEMOCAP audio features), modality imbalance
(Flickr30K text labels), and spurious correlations (Berlin dataset label corruption). All experiments
were conducted on a single RTX 4090 GPU with batch size m = 32, with results compared against
classical baselines and recent correlation estimators including CKA, dCor, and IdCor.

G.1 HIGH NOISE PERTURBATION

The addition of 30% Gaussian noise to IEMOCAP audio features revealed significant differences in
robustness across methods. CLIP-based fusion accuracy decreased by 5.5 percentage points (71.3%
→ 65.8%), CKA by 6.2 percentage points (70.5%→ 64.3%), and IdCor by 4.1 percentage points
(73.3% → 69.2%). Soft-HGR exhibited the largest accuracy degradation at 8.2 percentage points
(71.3% → 63.1%), while UniFast HGR demonstrated superior noise resilience with only 3.5 per-
centage point reduction, maintaining 70.2% accuracy. This robustness advantage stems from the
combination of variance constraints and diagonal removal in UniFast HGR, which effectively sup-
press noisy feature channels and stabilize gradient propagation under high-noise conditions.

G.2 MODALITY IMBALANCE

Under severe modality imbalance with only 10% text labels available for 99% of Flickr30K images,
different methods exhibited varying degrees of performance degradation. CLIP achieved 62.3%
Recall@1, IdCor reached 65.7% Recall@1, and CKA attained 63.1% Recall@1. UniFast HGR
outperformed all baselines with 68.9% Recall@1, representing a 6.6 percentage point improvement
over CLIP. This performance advantage arises from UniFast HGR’s ability to capture meaningful
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cross-modal dependencies without relying on fully paired text-image labels—a significant advantage
over contrastive learning methods that require strict label alignment for effective training.

G.3 SPURIOUS CORRELATIONS

The introduction of spurious correlations through corruption of 20% Berlin training labels with false
”building→forest” mappings revealed important differences in model susceptibility to misleading
patterns. Soft-HGR exhibited significant overfitting to spurious pairs, achieving only 69.2% OA,
while IdCor dropped to 72.5% OA. UniFast HGR demonstrated superior resistance to spurious
correlation overfitting, achieving 77.3% OA—an 8.1 percentage point improvement over Soft-HGR.
This robustness is attributed to the diagonal removal mechanism in UniFast HGR, which forces the
model to focus on genuine cross-modal dependencies rather than trivial self-correlations that may
amplify spurious relationships.

Table 18: Performance under real-world challenges.
Scenario Method Metric Value (%)

High Noise
(IEMOCAP)

CLIP-based fusion Accuracy 65.8
CKA Accuracy 64.3
dCor Accuracy 65.1
IdCor Accuracy 69.2

Soft-HGR Accuracy 63.1
UniFast HGR Accuracy 70.2

Modality Imbalance
(Flickr30K)

CLIP Recall@1 62.3
CKA Recall@1 63.1
dCor Recall@1 64.5
IdCor Recall@1 65.7

Deep CCA Recall@1 59.7
UniFast HGR Recall@1 68.9

Spurious Correlations
(Berlin)

CKA OA 68.1
dCor OA 69.0
IdCor OA 72.5

Soft-HGR OA 69.2
UniFast HGR OA 77.3

H DISCUSSION

The comprehensive experimental evaluation provides substantial evidence regarding the behavior
and applicability of UniFast HGR and OptFast HGR across diverse multimodal learning scenar-
ios. These methods address longstanding computational bottlenecks in Hirschfeld-Gebelein-Rényi
(HGR) maximal correlation estimation, reducing complexity from O(K3) to O(m2K) while im-
proving representation quality and robustness across multimodal tasks.

H.1 PERFORMANCE CHARACTERISTICS AND ADVANTAGES

UniFast HGR demonstrates consistent performance advantages across remote sensing classifica-
tion, semantic segmentation, multimodal emotion recognition, and standard vision benchmarks. The
framework consistently outperforms both classical CCA-family methods and modern correlation es-
timators, with gains particularly evident in small-to-medium-scale regimes and under heterogeneous
modality conditions. This indicates that maximal-correlation alignment provides robust inductive
bias for multimodal representation learning.

The robustness to practical challenges is another significant advantage. On IEMOCAP with class
imbalance and missing modalities, UniFast HGR and OptFast HGR maintain strong performance,
suggesting that variance constraints and diagonal removal effectively stabilize optimization with
noisy channels or limited supervision. This robustness extends to scenarios with Gaussian noise
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perturbation, modality imbalance, and spurious correlations, where UniFast HGR demonstrates su-
perior resilience compared to alternative approaches.

H.2 INTEGRATION WITH MULTIMODAL LEARNING PARADIGMS

UniFast HGR functions as a complementary correlation module that enhances existing multimodal
learning paradigms rather than replacing them. When integrated with contrastive learning as an
auxiliary regularizer on CLIP embeddings, UniFast HGR sharpens cross-modal alignment by im-
proving Recall@1 scores on text-image retrieval tasks. For cross-modal attention mechanisms, it
optimizes fused representations to capture high-order spatial dependencies, as evidenced by mIoU
improvements in remote sensing semantic segmentation.

Compared to mutual information estimators such as dCor and IdCor, UniFast HGR provides a
bounded, scale-invariant dependence measure that avoids the saturation and optimization instability
commonly encountered in high-dimensional spaces (K = 1024). This results in substantially higher
cross-model correlation scores on large-scale embedding evaluations.

H.3 PRACTICAL DEPLOYMENT CONSIDERATIONS

The scalability to foundation models represents a key practical advantage. Correlation analysis on
ImageNet embeddings demonstrates that UniFast HGR produces coherent cross-model dependence
scores for transformer-based encoders and multimodal foundation models, supporting its use as both
training regularizer and representation diagnostic tool.

UniFast HGR excels particularly in three critical scenarios: small-to-medium-scale data regimes
where contrastive learning struggles due to limited sample size; noisy or heteroskedastic modality
conditions where robust feature alignment is essential; and resource-constrained deployment envi-
ronments where computational efficiency is paramount. OptFast HGR achieves dot-product-level
computational efficiency with minimal accuracy loss, making it suitable for edge devices with lim-
ited GPU/CPU resources.

For practical deployment, UniFast HGR is preferred when maximizing accuracy is critical, while
OptFast HGR offers better efficiency for large-scale or latency-sensitive settings. Both serve effec-
tively as auxiliary correlation regularizers alongside task-specific losses.

H.4 LIMITATIONS AND FUTURE DIRECTIONS

Despite these strengths, UniFast HGR exhibits certain limitations that warrant consideration. The
O(m2K) complexity leads to quadratic batch-size scaling, which can impact runtime for extremely
large local batch sizes (m > 512). While data parallelism mitigates this concern for moderate batch
sizes, future work will explore blockwise Gram matrix computation to reduce effective complexity.

The current framework is primarily evaluated on discriminative tasks including classification, re-
trieval, and segmentation. Support for generative multimodal models, such as text-to-video diffu-
sion and video generation systems, remains less explored. Generative models require sequence-level
correlation modeling, necessitating adaptations to capture temporal dependencies in video and text
sequences.

Future research directions include scaling to multi-modal fusion with more than three modalities
through factorized correlation estimation, integrating UniFast HGR with generative models to im-
prove latent space alignment, and developing adaptive bias correction mechanisms for OptFast HGR
to further reduce approximation error while preserving computational efficiency.

Overall, the empirical evidence supports UniFast HGR and OptFast HGR as scalable, robust, and
practically deployable maximal-correlation objectives for multimodal representation learning, with
the core innovations of cosine similarity substitution, diagonal removal, and simplified variance
constraints collectively enabling effective multimodal learning across diverse application domains.

27


	Introduction
	Proposed Method
	Preliminaries
	Optimized Correlation Framework
	UniFast HGR
	Multimodal Extension
	Computational Optimization

	Experiments
	Experimental Setup
	Execution Time and Feature Dimension Analysis
	Image Classification Performance
	Remote Sensing Semantic Segmentation
	Multimodal Emotion Recognition with Missing Modalities
	Large-Scale Multimodal Learning
	Correlation Estimation Analysis
	Computational Efficiency and Memory Analysis

	Limitations and Future Work
	Conclusion
	Detailed Derivation and Algorithm
	Step 1: Variance Constraints and Whitening Alignment
	Step 2: Reformulation of the Sample-wise Term using Cosine Similarity
	Step 3: Expansion and Simplification of the Trace Term
	Step 4: Composition of the Final UniFast HGR Objective
	Algorithm Implementation

	Theoretical Analysis of Bias in OptFast HGR
	Source of Bias and Calibration Mechanism
	Statistical Convergence and Error Bounds
	Empirical Validation of Bias-Accuracy Trade-off
	Robustness to Feature Distributions

	Asymptotic Complexity Comparison
	Detailed Experimental Results
	Remote Sensing Classification
	Remote Sensing Semantic Segmentation
	Multimodal Emotion Recognition
	Image Classification on CIFAR-100
	Cross-Model Correlation on ImageNet Embeddings
	Large-Scale Integration Protocols

	Ablation Studies
	Core Component Ablation
	Batch-Size Sensitivity of Diagonal Removal
	OptFast-HGR Approximation Analysis

	Computational Efficiency and Memory Analysis
	Profiling Protocol
	End-to-End Runtime
	Runtime Scalability Analysis
	Memory Consumption Analysis

	Robustness to Real-World Challenges
	High Noise Perturbation
	Modality Imbalance
	Spurious Correlations

	Discussion
	Performance Characteristics and Advantages
	Integration with Multimodal Learning Paradigms
	Practical Deployment Considerations
	Limitations and Future Directions


