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Abstract

Benchmarks have emerged as the central ap-001
proach for evaluating Large Language Models002
(LLMs). The research community often relies003
on a model’s average performance across the004
test prompts of a benchmark to evaluate the005
model’s performance. This is consistent with006
the assumption that the test prompts within a007
benchmark represent a random sample from008
some real-world distribution of interest. We009
note that this is generally not the case; in-010
stead, we hold that the distribution of inter-011
est varies according to the specific use case.012
Hence, we analyze the robustness of LLM013
benchmarks to their underlying distributional014
assumptions. We find that (1) the correlation in015
model performance across test prompts is non-016
random, (2) accounting for correlations across017
test prompts can change model rankings on018
major benchmarks, (3) explanatory factors for019
these correlations include semantic similarity020
and common LLM failure points.021

1 Introduction022

Since the introduction of the Transformer architec-023

ture (Vaswani et al., 2017), Large Language Mod-024

els (LLMs) have progressed into sophisticated sys-025

tems with an outstanding ability to comprehend and026

generate text that mimic human language. Notable027

models in this domain include ChatGPT1, utiliz-028

ing the GPT-3.5-TURBO or GPT-4 architectures2,029

LLaMA (Touvron et al., 2023), ChatGLM (Zeng030

et al., 2023), Alpaca (Taori et al., 2023), and Fal-031

con (Penedo et al., 2023).032

Due to their effectiveness, LLMs are becoming033

very popular in both academia and industry, making034

their evaluation crucial. However, this effectiveness035

comes at the cost of increased complexity, which036

makes their evaluation very challenging. Although037

1New chat: https://chat.openai.com/
2Models - OpenAI API: https://platform.openai.

com/docs/models/

prior research has introduced benchmarks for dif- 038

ferent tasks along with evaluation measures, these 039

assessments often overlook potential biases. When 040

a benchmark includes multiple prompts with simi- 041

lar characteristics, it can increase or decrease the 042

average performance of a model, so model compar- 043

isons can become brittle with respect to benchmark 044

composition. In this work, we show that the in- 045

herent connections between the prompts in current 046

benchmarks impact the models’ performance and 047

their relative rankings. 048

The standard approach for evaluation on a bench- 049

mark is to (i) obtain model responses for each 050

prompt in the benchmark, (ii) compute the per- 051

formance metrics for each response, (iii) aggregate 052

(usually average) the performance metrics to obtain 053

a single performance metric over the benchmark, 054

and (iv) compare models by comparing their aggre- 055

gate performance. 056

When aggregating performance metrics in 057

step iii above, each prompt is generally weighted 058

equally (Yang and Menczer, 2023; Peña et al., 059

2023). However, using equal weights reflects the 060

assumption that prompts in the benchmark are 061

“equal”, in the sense that prompts are representa- 062

tive samples of a target distribution of interest. In 063

the case of LLMs, the notion of a target distribu- 064

tion (i.e., the distribution of all possible prompts 065

for a given use case) is usually not well-defined. 066

For example, different Natural Language Inference 067

(NLI) applications may have very different target 068

distributions, and we should not expect a single 069

benchmark to capture every one. Therefore, one 070

must ask: What distribution do the prompts in the 071

benchmark represent? Would considering different 072

distributions fundamentally change model compar- 073

isons? In this work, we present a novel approach to 074

assess the robustness and adequacy of benchmarks 075

used in evaluating LLMs, by analyzing the perfor- 076

mance of multiple LLMs on a set of four major 077

benchmarks. 078
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Our key contributions are outlined below:079

1. For each considered benchmark, we observe080

that the correlation of model performance across081

prompts is significant (p-value < 0.05). This082

demonstrates the existence of relationships be-083

tween prompts within the investigated benchmarks.084

2. We explore the robustness of model compar-085

isons to different distributional assumptions based086

on correlation structure, and we observe shifts in087

performance as large as 10% and rank changes as088

large as 5 (out of 14 models).089

3. We provide a characterization of performance090

over the distribution of all possible prompt weights.091

This constitutes a robustness check that can be in-092

corporated in comparative studies.093

4. We show that model performance similarity094

across prompts can be explained by semantic sim-095

ilarity, but it is most likely derived by common096

failure points of the LLM.097

2 Related work098

Evaluating the performance of LLMs has become099

a critical area of research, drawing significant at-100

tention in recent years. Comprehensive surveys101

of LLM evaluation can be found in Chang et al.102

(2023); Guo et al. (2023), and Liang et al. (2022).103

When assessing the quality of LLMs, the ro-104

bustness aspect is becoming of increasing impor-105

tance (Wang et al., 2022; Goel et al., 2021). Ro-106

bustness investigates the stability of a model when107

confronted with unforeseen prompts. Robustness108

research can be divided into three main lines of109

work (Li et al., 2023): (i) robustness under distri-110

bution shift (Wang et al., 2021; Yang et al., 2023),111

(ii) robustness to adversarial input (Zhu et al., 2023;112

Wang et al., 2023a), and (iii) robustness to dataset113

bias (Gururangan et al., 2018; Le Bras et al., 2020;114

Niven and Kao, 2019). Our work falls into the115

latter category.116

Reducing bias on benchmarks is a long-standing117

area of research spanning many diverse fields. Ap-118

plications range from weighing survey responses119

to match a target population (DeBell, 2018), to120

accounting for language biases in visual question-121

answering (Goyal et al., 2017). In the context of122

NLI, researchers have looked into improving the123

quality of prompts in order to mitigate certain types124

of biases. Work in this area has focused on deter-125

mining the quality of prompts by generating op-126

timal prompts (Pryzant et al., 2023; Deng et al.,127

2022) or by clustering prompts based on semantic128

similarity (Kuhn et al., 2023). Additionally, re- 129

searchers have investigated data leakage between 130

benchmarks and LLM training data (Zhou et al., 131

2023; Oren et al., 2023). 132

Limited research has been conducted to study 133

inherent biases in LLM benchmarks. Among ex- 134

isting works, Gururangan et al. (2018) and Niven 135

and Kao (2019) have shown that models leverage 136

spurious statistical relationships in the benchmark 137

datasets and, thus, their performance on the bench- 138

marks is overestimated. In the same spirit, Le Bras 139

et al. (2020) propose to investigate AFLITE (Sak- 140

aguchi et al., 2019), an iterative approach to filter 141

datasets by removing biased data points to mitigate 142

overestimation of language models’ performance. 143

More recently, Alzahrani et al. (2024) show that 144

performance of LLMs is highly sensitive to mi- 145

nor changes in benchmarks with multiple-choice 146

questions. 147

Our work is orthogonal yet complementary to 148

previous work. In particular, we propose a new 149

method to identify biases in a benchmark by look- 150

ing at the performance of multiple recent LLMs 151

on that benchmark. We show that similarity in per- 152

formance correlates with similarity in prompts. To 153

the best of our knowledge, our work is the first 154

approaching benchmark biases by analyzing and 155

leveraging the performance of a collection of mod- 156

els on a set of major benchmarks; as well as inves- 157

tigating the impact of inherent distributional biases 158

in benchmarks used on LLM comparative studies. 159

3 Proposed method 160

In this section, we outline the problem setup and 161

introduce the notation and expressions that will 162

be employed throughout the paper. Second, we 163

present the approach to evaluate whether relation- 164

ships between prompts (based on models’ perfor- 165

mance) are statistically non-random. Furthermore, 166

we describe our method for analyzing how sensitive 167

model comparisons are with respect to different dis- 168

tributional assumptions of the benchmark. Finally, 169

we present our proposed methodology for explor- 170

ing the origins of relationships between prompt 171

performance vectors. 172

3.1 Problem setup 173

Consider a benchmark containing n prompts 174

{p1, . . . , pn}, and a set of k LLMs {m1, . . . ,mk} 175

being evaluated. We define the performance matrix 176

Q as an n× k matrix, where every cell Q[i, j] rep- 177
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resents the performance of model mj on prompt178

pi. We refer to the i-th row of that matrix, qi, as a179

performance vector for prompt pi. To measure how180

similar two prompts are with respect to model per-181

formance, we compute the similarity between their182

performance vectors sperf (pi, pj) := s(qi,qj),183

where s(·, ·) is a similarity function. Here, we184

consider cosine, Jaccard, and Hamming similar-185

ity. Given a performance matrix Q and a simi-186

larity function s, we compute a n × n similarity187

matrix Ts(Q), where every cell T [i, j] is the per-188

formance similarity for prompts pi, pj : T [i, j] =189

sperf (pi, pj).190

Semantic meaning from text is commonly un-191

derstood through the use of embeddings. An em-192

bedding of a prompt is a numerical vector that con-193

tains the learned representations of semantic mean-194

ing. Measuring semantic similarity between two195

prompts is achieved by measuring the distance be-196

tween their embeddings. In this paper, we use ada-2197

embeddings from OpenAI3. For a set of prompts198

{p1, . . . , pn}, we compute a matrix of embeddings199

E = {e1, . . . , en}. E is a n × s matrix, where s200

is the size of the embedding vectors. To measure201

semantic similarity between pairs of prompts, we202

compute similarity metrics between the correspond-203

ing rows: ssem(pi, pj) = s(ei, ej).204

3.2 Determining if performance vectors are205

correlated206

Given a benchmark, we assess whether the ob-207

served similarity among performance vectors is208

significant. If the observed similarity is signifi-209

cantly high, this implies the existence of specific210

connections between prompts. These connections211

lead to similar model behavior when responding to212

these prompts.213

To test this hypothesis, we perform permutation214

tests. We generate permutations of the performance215

matrix Q by randomly shuffling the cells of each216

column. In this way, we permute the values of217

the model responses across prompts, while holding218

constant the overall performance of each model219

(i.e., the column averages of Q). We then compute220

a similarity matrix Ts(Q) for the observed perfor-221

mance matrix Q, as well as for each permutation Q′222

of the performance matrix: [Ts(Q
′
1), Ts(Q

′
2), . . .].223

We compare the distribution of values from Ts(Q)224

with the distribution of values from the permuted225

tables [Ts(Q
′
1), Ts(Q

′
2), . . .]. We conduct a permu-226

3
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tation test to compare the average, 75th, and 95th 227

percentiles of these distributions. The p-value of 228

the permutation test is calculated as the proportion 229

of permuted tables for which the statistic is greater 230

than the one obtained with the observed table. Ad- 231

ditionally, we use the Kolmogorov-Smirnov (KS) 232

test to compare the entire distribution of values be- 233

tween observed and permuted similarity matrices. 234

To further support our findings, we cluster the 235

observed and permuted performance vectors. If 236

there are non-random correlations between perfor- 237

mance vectors, we would expect the clustering of 238

the observed vectors to have higher clustering qual- 239

ity metrics, such as silhouette score. 240

3.3 Effect of non-uniform weights in 241

aggregate performance metrics 242

So far, we have focused on aggregate performance 243

measures that treat prompts as if they are inde- 244

pendent and identically distributed (i.i.d.) samples 245

from some real-world distribution of interest—i.e., 246

each prompt is given equal weight in calculating 247

aggregate performance metrics. In this section, we 248

examine the implications of relaxing this assump- 249

tion for ranking models based on their performance. 250

Generally, there is no universally correct distribu- 251

tion of interest—it depends on each user’s appli- 252

cation. Here, we look into three different ways of 253

capturing distributional assumptions (i.e., of defin- 254

ing weights) for a given benchmark. 255

Cluster-based: We leverage the clustering of per- 256

formance vectors described above. We consider the 257

following variants for evaluating performance: 258

1. Only include prompts that are cluster repre- 259

sentatives (i.e., the medoids of the clusters). This 260

effectively decreases the size of the benchmark. 261

2. Include all prompts, but weigh them based on 262

their distance from their cluster representative. We 263

employ two types of weights: 264

(i) Distance-based: The further away a prompt is 265

from the cluster representative, the larger its weight. 266

This setting gives more emphasis on diversity of 267

the benchmark. More formally, let pi be a prompt 268

in cluster Cj , prj be the representative prompt of 269

cluster Cj , and d(·, ·) the distance function between 270

two prompts. The weight w for pi is: 271

w(pi) =
d(pi, p

r
j)∑

pk∈Cj

(
d(pk, p

r
j)
) |Cj |∑

i |Ci|
272

The first factor is the within-cluster weight of the 273

prompt (normalized within cluster). The second 274
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factor weighs all prompts of a given cluster propor-275

tionally to the cluster’s size.276

(ii) Inverse-distance weights: The closer a prompt277

is to the cluster representative, the larger its weight.278

This setting effectively smooths out the hard clus-279

tering we produced: all data points contribute to280

the performance, not just the cluster representatives.281

The weight w for pi is computed as:282

w(pi) =
d−1(pi, p

r
j)∑

pk∈Cj

(
d−1(pk, p

r
j)
) |Cj |∑

i |Ci|
283

Increasing benchmark size We start with a ran-284

dom prompt and iteratively add new prompts into285

the benchmark. To select the next prompt to add,286

we use two methods: (i) most informative: select287

the prompt with the largest cosine distance (low-288

est cosine similarity) from the previously selected289

ones in order to obtain an informative test set with290

a reduced semantic similarity between prompts,291

(ii) random: select a random prompt.292

Random distributions of weights We weigh293

each prompt and compute weighted performance,294

with weights drawn uniformly at random. To295

achieve that, we sample uniformly at random from296

the unit simplex using the sampling technique de-297

scribed in Smith and Tromble (2004). This ap-298

proach aims to provide a characterization over all299

possible weight configurations.300

3.4 Comparing performance vectors with301

semantic embeddings of prompts302

Having established that model performance is sim-303

ilar across prompts, we next investigate where this304

similarity stems from. Our hypothesis is that for305

a pair of prompts, similar model performance can306

occur if the prompts are semantically similar.307

We use linear regression to determine if there
exists a significant relationship between semantic
similarity and model performance similarity:

sperf (pi, pj) = ssem(pi, pj)β + ϵ

where β is the coefficient of how much semantic308

similarity contributes to the model and ϵ is error.309

Using all prompt pairs raises concerns about the310

data being i.i.d., given that each observation is a311

pairwise comparison and each member of a pair312

appears in many observations. To avoid that, we313

estimate one model for each prompt, including all314

the pairwise observations of which that prompt315

is a part. We collect p-values for the coefficients316

across all models and perform multiple hypothe- 317

ses adjustment to generate False Discovery Rate 318

(FDR) values. We repeat the same approach for 319

1000 permutations as described in Section 3.2 for 320

both pairwise performance and semantic similarity 321

vectors. Finally, we compare the distribution of 322

coefficients and FDRs between original data and 323

permutations using the KS test. 324

4 Experimental setup 325

In this section, we describe the setting of our ex- 326

periments. Specifically, we provide details on the 327

benchmarks and evaluation metrics we use, the 328

LLMs we consider, and how we evaluate perfor- 329

mance of the LLMs on the benchmarks. 330

4.1 Benchmarks 331

We investigate four major benchmarks that are de- 332

signed for different tasks. 333

ANLI The Adversarial Natural Language Infer- 334

ence (ANLI) dataset4 is a large-scale dataset for 335

natural language inference (NLI) (Nie et al., 2020). 336

It is collected via an iterative, adversarial human- 337

and-model-in-the-loop procedure, making it more 338

difficult than its predecessors. The dataset used 339

here comprises approximately 100K samples for 340

the training set, 1,200 for the development set, and 341

1,200 for the test set. Each sample contains a con- 342

text, a hypothesis, and a label. The goal is to deter- 343

mine the logical relationship between the context 344

and the hypothesis. The label is the assigned cat- 345

egory indicating that relationship. In the context 346

of NLI, the labels typically include “entailment”, 347

“contradiction”, or “neutral”. Finally, ANLI makes 348

available a reason (provided by the human-in-the- 349

loop), explaining why a sample was misclassified. 350

HellaSwag This is a commonsense natural lan- 351

guage inference dataset (Zellers et al., 2019), task- 352

ing machines with identifying the most probable 353

followup for an event description. Comprising 354

70,000 instances, each scenario presents four po- 355

tential outcomes, with only one being accurate. En- 356

gineered to be challenging for cutting-edge mod- 357

els, the dataset employs Adversarial Filtering to 358

incorporate machine-generated incorrect responses, 359

frequently misclassified by pretrained models. Cov- 360

ering diverse domains, HellaSwag demands a fu- 361

sion of world knowledge and logical reasoning for 362

successful interpretation. 363

4
https://huggingface.co/datasets/anli
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CommonsenseQA This is a multiple-choice364

question-answering dataset that requires different365

types of commonsense knowledge to predict the366

correct answers (Talmor et al., 2019). It con-367

tains 12,102 questions with one correct answer and368

four distractor answers. The questions are crowd-369

sourced and cover a wide range of topics such as370

open-domain-qa, real-life situations, elementary371

science, social skills.372

CNN/Daily Mail The CNN/Daily Mail dataset373

is a widely used benchmark for text summariza-374

tion (Nallapati et al., 2016). The dataset com-375

prises news stories from CNN and Daily Mail web-376

sites. In total, the corpus contains 286,817 training,377

13,368 validation, and 11,487 test pairs.378

4.2 Evaluation measures379

For ANLI, HellaSwag, and CommonsenseQA, the380

performance matrix contains binary values (correct381

/ incorrect answer). Hence, we use average accu-382

racy to evaluate the performance of each model, as383

commonly done with these benchmarks (Nie et al.,384

2020; Wei et al., 2022; Zellers et al., 2019; Talmor385

et al., 2019). For CNN/Daily Mail, following pre-386

vious work (See et al., 2017), we measure model387

performance using the ROUGE score.388

4.3 Considered LLMs389

In order to have a diverse collection of LLMs, we390

include models from several developers, such as391

OpenAI and Meta. Table 1 shows the various mod-392

els used for each benchmark5.393

4.4 Performance evaluation394

For ANLI, we evaluate each model on the test395

dataset, which contains 1200 prompts. For each396

sample, we use 7 few-shot samples extracted from397

the ANLI dev set. For the remaining benchmarks,398

we randomly sample 10% of each benchmark for399

test and use the rest for few-shot selection. This400

results in 1005, 1221, and 1150 test samples for401

HellaSwag, CommonsenseQA, and CNN/Daily402

Mail respectively. For HellaSwag, we use 10 few-403

shot examples, while for CommonsenseQA and404

CNN/Daily Mail we use 5 few-shots.405

5Due to constraints in LLMs’ availability, we use different
LLMs for each benchmark. This does not impact on our work,
as each benchmark analysis is independent.

5 Results 406

In this section, we present the results of the experi- 407

ments described in Section 3 on the benchmarks. 408

Table 1: LLMs used for ANLI, HellaSwag (HS),
CommonsenseQA (CSQA), and CNN/Daily Mail
(CNN/DM). These include GPT LLMs (Brown et al.,
2020; OpenAI, 2023), Llama LLMs (Touvron et al.,
2023), and other popular LLMs, such as Falcon-
180b (Almazrouei et al., 2023), Koala 13B (Geng et al.,
2023), Alpaca 7B (Wang et al., 2023b).

TypeModel ANLIHSCSQACNN/DM

G
PT

ChatGPT-Turbo-Base-0516 ✓ ✓
ChatGPT-Turbo-0301 ✓ ✓
ChatGPT-Turbo-0613 ✓
ChatGPT-202301 ✓
DaVinci (GPT-3) ✓
Text-Davinci-002 ✓
Text-Davinci-003 ✓
GPT-4-0314 ✓
GPT-4-0314 (Chat) ✓ ✓ ✓
GPT-4-0613 (Chat) ✓
GPT-4-Turbo-1106 (Chat) ✓ ✓ ✓
GPT-4-Turbo-1106 ✓
Text-Alpha-002-Current ✓ ✓
DV3-FP8 ✓
Babbage-0721 ✓
ChatGPT-202301 ✓

L
L

A
M

A

Llama-13B ✓
Llama-2-13B ✓ ✓
Llama-30B ✓ ✓
Llama-65B ✓
Llama-2-70B ✓ ✓ ✓

O
th

er

Persimmon 8B1 ✓ ✓ ✓
Vicuna 13B2 ✓ ✓
Claude-23 ✓ ✓ ✓
Falcon-180b ✓ ✓
Koala 13B ✓ ✓
Mistral7b4 ✓ ✓
Alpaca 7B ✓

Total 12 13 14 8
1 https://www.adept.ai/blog/persimmon-8b
2 https://lmsys.org/blog/2023-03-30-vicuna/
3 https://www.anthropic.com/index/claude-2
4 https://mistral.ai/news/announcing-mistral-7b/

409

5.1 Performance vectors are correlated 410

To determine if prompt performance vectors are 411

correlated, we perform the permutation tests de- 412

scribed in Section 3.2, using different correlation 413

measures. The obtained p-values for ANLI, Hel- 414

laSwag, and CommonsenseQA are depicted in Ta- 415

ble 2. On ANLI and CommonsenseQA, the per- 416

mutation tests show strong evidence that the cor- 417

relations between the prompt performance vectors 418

are significant. For HellaSwag, our findings re- 419

veal consistently low p-values across all correlation 420

measures when using the 75th percentile, as well 421

as a low p-value when averaging Jaccard similari- 422

ties. For the three benchmarks above, the KS test 423
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Table 2: p-values obtained with permutation tests and
the KS test using different correlation measures and
aggregation functions for ANLI, HellaSwag (HS), and
CommonsenseQA (CSQA).

Hamming Cosine Jaccard

A
N

L
I Average 0.60 0.59 0.0009

75th percentile 0.66 0.0009 0.67
95th percentile 0.0009 0.0009 0.0009
KS test 2e-5 2e-5 2e-5

H
S

Average 0.52 0.57 0.0009
75th percentile 0.0009 0.0009 0.0009
95th percentile 0.88 0.85 0.87
KS test 2e-5 2e-5 2e-5

C
SQ

A

Average 0.53 0.52 0.0009
75th percentile 0.0009 0.0009 0.0029
95th percentile 0.0009 0.0009 0.0009
KS test 2e-5 2e-5 2e-5

Table 3: Average silhouette score of clustering observed
performance vectors and a random permutation of per-
formance vectors for the various benchmarks.

Benchmark observed permuted
ANLI 0.52 0.21
HellaSwag 0.54 0.24
CommonsenseQA 0.61 0.29
CNN/Daily Mail 0.25 0.21

is significant across all correlation measures.424

For CNN/Daily Mail the performance matrix425

contains ROUGE scores, which are continuous val-426

ues. Thus, we use cosine similarity to compare the427

average correlations obtained from the original and428

permuted performance matrices. The results show429

that the correlations among original performance430

vectors are significantly greater.431

To further support this finding, we cluster the432

model responses using spherical k-means (Dhillon433

and Modha, 2001). We choose the optimal num-434

ber of clusters to maximize the average silhouette435

score, computed using cosine distance. Table 3436

contains the average silhouette scores of clustering437

the performance vectors and a random permutation438

of them. For all benchmarks, the performance vec-439

tors produce higher silhouette scores compared to440

the permuted performance vectors. This provides441

additional evidence to support the outcome of the442

hypothesis tests presented above: the performance443

vectors are similar.444

5.2 Impact of prompt weights on performance445

and relative ranking of models446

In this section, we present the results of different447

weighting schemes for the prompts of a benchmark,448

as described in Section 3.3.449

5.2.1 Cluster-based evaluation 450

First, we cluster the performance vectors of each 451

benchmark as described earlier. Then, we compute 452

the average accuracy of models for each bench- 453

mark, using only the cluster representatives of that 454

benchmark. We also compute weighted perfor- 455

mance using distance-based and inverse-distance- 456

based weights. Figure 1 illustrates how these 457

weighting schemes affect the relative ranking of 458

models for each benchmark. The rows correspond 459

to different weighting schemes, while the columns 460

correspond to the different models and are ordered 461

by increasing original performance (i.e., decreas- 462

ing rank). Every cell contains the ranking change 463

(compared to the original benchmark) of the model 464

of that column for the method of that row. If there 465

were no ranking changes, all values would be 0. 466

However, we observe that there are multiple rank- 467

ing changes as great as 5 (model is ranked 5 posi- 468

tions above the original benchmark). 469

5.2.2 Increasing size of benchmark 470

Next, we study how performance is affected by the 471

size and diversity of the benchmark. We start with 472

a random prompt and iteratively add new prompts 473

to the benchmark, either by adding the most in- 474

formative prompt (i.e., the one with the maximum 475

average distance from the current benchmark), or 476

a random one. Figure 2 shows the average per- 477

formance for each model as the benchmark size 478

increases (maximum benchmark size corresponds 479

to the original benchmark). Looking at the most 480

informative method for ANLI (Figure 2a), the first 481

400 prompts result in random performance (0.5) for 482

all models. This suggests that the initial prompts 483

chosen with this method are the most “difficult”, in 484

that the models are exhibiting performance close 485

to random (accuracy 50%). Similar results are ob- 486

served for HellaSwag and CommonsenseQA (see 487

Appendix C, Figure 9), but not for CNN/Daily 488

Mail (Figure 2b), where the performance on the 489

reduced benchmark follows a similar pattern as the 490

performance on the original benchmark. The ran- 491

dom method tracks the original performance for all 492

benchmarks (see Appendix C, Figure 10). 493

5.2.3 Random distributions of weights 494

We explore the distribution of all weighting 495

schemes and the effect they have on the weighted 496

accuracy and relative ranking of the models. As 497

described in Section 3.3, we sample 100,000 ran- 498

dom weight configurations. For each model, we 499
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Figure 1: Visualization of ranking changes (compared to original benchmark) for various benchmark modifications.
Rows show different weighting methods, columns show the models. Each cell contains the ranking change (original
ranking minus new ranking) of the column-model for the row-method. We observe rank changes as great as 5.
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Figure 2: Average performance as benchmark size in-
creases. Prompts are added to maximize average cosine
distance. Maximum benchmark size corresponds to per-
formance on the original benchmark.

compute the weighted performance based on these500

weights.501

For ANLI, HellaSwag, and CommonsenseQA502

the performance of a model can change up to 10%.503

For CNN/Daily Mail, the range is smaller, up to 3%.504

Detailed results are included in Appendix D. We505

note that the range is similar for all models within506

a benchmark, indicating that it is a property related507

to the benchmark and not the specific models.508

To further demonstrate changes in relative rank-509

ing of models, we take a closer look at the pair-510

wise ranking differences. Figure 3 depicts a pair- 511

wise comparison of weighted performance for each 512

benchmark. Every cell shows how often the model 513

in the row outperforms the model of the column. 514

For ANLI, approximately for half of the weight 515

configurations the ranking of the top two models is 516

reversed! However, for the CNN/Daily Mail data, 517

there are effectively no reversals (less than 0.01%). 518

5.3 Relationship between model performance 519

and semantic similarity of prompts 520

Having established that model performance is cor- 521

related across prompts, we investigate what can 522

explain these correlations. Our hypothesis is that it 523

is driven by semantic similarity. We use the method 524

described in Section 3.4 to assess if there is a sig- 525

nificant relationship between semantic similarity 526

and model performance similarity. 527

Our findings show that only CNN/Daily Mail 528

presents a significant relationship between prompt 529

semantic similarity and prompt performance simi- 530

larity (see Figure 4d). This benchmark is a text sum- 531

marization task, where the success of the ROUGE 532

metric highly depends on the ability to extract rele- 533

vant entities from text. For example, we find that 534

prompts referring to the economy or global warm- 535

ing have high correlation in model performance 536

(see Appendix B, Table 5). 537

ANLI also makes available a reason component: 538

what human agents state as the explanation for why 539

the LLM gave a wrong answer. We find a sig- 540

nificant relationship between semantic similarity 541
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Figure 3: Pairwise comparison of weighted perfor-
mance. Each cell is the percentage of times the model
of the row outperforms the model of the column.

using the reason component and prompt perfor-542

mance similarity (as seen in Figure 4a). The input543

prompt—consisting of the context, hypothesis and544

label components—shows no relationship, which is545

most likely because the creators of ANLI put great546

effort into ensuring diversity in the benchmark (Nie547

et al., 2020). This is also evident in Figure 2. The548

significance of the reason component indicates that549

the model performance vectors correlate because550

of how the model generates a response. We observe551

prompts where the reasons for similar model per-552

formance indicate that the model cannot do math,553

e.g., “The system may have missed this as it did not554

add up the losses from both sets” and “the model555

might not know math” (see Appendix B, Table 4).556

Hellaswag and CommonsenseQA use a multiple-557

choice format. The lack of strong evidence sup-558

porting the correlation in these benchmarks (see559

Figures 4b and 4c) is likely due to the embed-560

dings picking up similarities between the different561

choices, rather than the logic the LLMs employ to562

arrive at their conclusion. This is consistent with563

our findings for ANLI, where a significant relation-564

ship does not stem from inputs to the model, but565

from the LLMs’ failure points.566
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Figure 4: Distribution of semantic similarity coefficients
and FDRs for all benchmarks. Red is original data, blue
is permutations. KS tests for all distributions shown
have p-values < 2e-5.

Our findings indicate there is a larger question 567

about why the model performance vectors are corre- 568

lated, and investigating this is central to understand- 569

ing model performance. Semantic similarity can be 570

a factor, but it depends on the task the benchmark 571

is designed for. Based on our results for ANLI, it 572

appears that the reasoning required for the task (i.e., 573

reasoning types that cause models to fail), can be 574

even more important than semantic similarity. 575

6 Conclusion and future work 576

LLMs are commonly evaluated on benchmarks that 577

may include multiple prompts testing similar skills. 578

In this work, we demonstrate this bias on major 579

benchmarks, by showing that model performance 580

across different prompts is significantly correlated. 581

Furthermore, we demonstrate that LLM compara- 582

tive studies can be significantly altered when using 583

non-uniform weights for prompts during evaluation. 584

The suggested approach can serve as a consistency 585

check in comparative studies of LLMs, ensuring 586

that the results take into consideration benchmark 587

biases. Finally, we show that similar model per- 588

formance across prompts can be explained by se- 589

mantic similarity, but is most likely derived from 590

common failure points of the LLM. 591

Our findings could influence a larger diagnos- 592

tics tool for evaluating the robustness of model 593

quality comparisons with respect to distributional 594

assumptions of benchmarks. Future work also in- 595

cludes identifying additional factors that may ex- 596

plain these biases. This information can give rise 597

to solutions for improving benchmarks robustness. 598

These findings could help researchers generating 599

novel benchmarks to identify and eliminate biases. 600
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7 Limitations601

Our study requires access to multiple LLMs to gen-602

erate model performance vectors for each prompt603

in a benchmark. This can be computationally ex-604

pensive and require GPUs. Some models, such as605

OpenAI’s GPT-4, have limited API calls, making606

data collection time consuming.607

While we provide a novel approach for re-608

searchers to investigate bias in their own studies,609

providing a comprehensive de-biasing methodol-610

ogy is not within the scope of this work.611

Finally, we have only touched the surface on why612

prompts have similar performance across multiple613

LLMs. There are many other components to inves-614

tigate, such as the length of the prompt and prompt615

complexity. This information could be leveraged to616

propose solutions on improving benchmarks, with-617

out running prompts through multiple LLMs.618
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A Prompt structure866

The prompts used for inference are depicted in867

Figures 5, 6, 7 and 8 for ANLI, HellaSwag, Com-868

monsenseQA and CNN/Daily respectively.869

Given the following context: {premise}
Question:{hypothesis}

True, False or Neither?
The answer is:

Figure 5: Prompt used during inference for ANLI.

### System: You are an AI assistant. Pro-
vide a detailed answer so user do not need
to search outside to understand the answer.

### User: Category: {activity_label}
Text: {ctx}

Completion options:
(1) {choice_1}
(2) {choice_2}
(3) {choice_3}
(4) {choice_4}

### Assistant: The most
likely text completion is:

Figure 6: Prompt used during inference for HellaSwag.

Question: {{question}}
Answer options:
(A) {{choiceA}}
(B) {{choiceB}}
(C) {{choiceC}}
(D) {{choiceD}}
(E) {{choiceE}}
The answer is:

Figure 7: Prompt used during inference for Common-
senseQA.

### Article:
{Text to summarize}

### Summary:

Figure 8: Prompt used during inference for CNN/Daily
Mail.

B Results: Semantically similar prompts870

For the statistical tests in Section 3.4, we describe871

a set of linear regression models being generated872

where each model contains the prompt pairs of a873

specific single prompt. Here, we display semanti- 874

cally similar prompts from these models where the 875

semantic similarity coefficient is high and signifi- 876

cant in explaining the model performance depen- 877

dent variable. 878

In Table 4, the ANLI reason component demon- 879

strates that the prompts are adversarial because the 880

model is unable to perform simple math operations. 881

In other words, the prompts elicit the same mathe- 882

matical operation task. For CNN/Daily Mail data, 883

the prompts either refer to the economy or global 884

warming as seen in Table 5. This entails that the 885

models’ performance had similar capabilities in 886

extracting text about these subjects. 887

C Results: Increasing size of benchmark 888

Figure 9 shows results for all benchmarks for our 889

experiments on increasing size of benchmark us- 890

ing the most informative method, as described in 891

Section 5.2.2. Figure 10 shows results for all bench- 892

marks when adding prompts in random order. 893

D Results: Distributions of weighted 894

performance 895

Figure 11 shows distribution of weighted perfor- 896

mance and pairwise ranking changes for all bench- 897

marks. 898
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Table 4: List of ANLI reasons having high semantic similarity with model performance.

Reason Text
1 it says osaka beat williams 6-2, 6-4. So osaka lost 6 games total. The system may have

missed this as it did not add up the losses from both sets
2 The 1972–73 California Golden Seals had a 13–55–10 record - so they lost about 4 times

as many [55] as they won [13]; the model might not know math.
3 Although Shigeko Sasamori was interviewed about this event, it’s uncertain if she wit-

nessed it personally. I think the system is confused because of so many matching words.
4 It does not state whether she was rebound leader - although her points total was tied with

another player - which might have confused the model.
5 his record is 6-5 not 5-5

Table 5: List of Daily/CNN grounded truth summaries having high semantic similarity with model performance.

Label Text
1 Jeffrey Sachs : Raw capitalism is the economics of greed . Last year was the Earth’s

hottest year on record, he says.
2 Adam Sobel : California’s steps against drought are a preview for rest of U.S. and world.

Tying climate change to weather doesn’t rest on single extreme event, Sobel says. The big
picture should spur us to prepare for new climates by fixing infrastructure, he says.

3 India predicted to outpace China as as world’s fastest-growing economy in next year.
China’s economy is slowing after over 25 years of breakneck growth. But experts say
India simply can’t size up against China ’s raw economic might.

4 Bill Richardson : U.S announced plan to cut greenhouse gas emissions by 26 to 28 percent
below 2005 levels by 2025. He says China, India, major corporations, cities among those
already setting goals for cutting emissions. U.S. must lead in this effort.
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Figure 9: Average performance as benchmark size increases. Prompts are added to maximize average cosine
distance. Maximum benchmark size corresponds to performance on the original benchmark.
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Figure 11: Left column: Distribution of weighted performance for randomly sampled weights. The black dot
corresponds to performance when using uniform weights. Right column: Pairwise comparison of weighted
performance. Every cell corresponds to the proportion of times the model in the row outperforms the model of the
corresponding column.

15


	Introduction
	Related work
	Proposed method
	Problem setup
	Determining if performance vectors are correlated
	Effect of non-uniform weights in aggregate performance metrics
	Comparing performance vectors with semantic embeddings of prompts

	Experimental setup
	Benchmarks
	Evaluation measures
	Considered LLMs
	Performance evaluation

	Results
	Performance vectors are correlated
	Impact of prompt weights on performance and relative ranking of models
	Cluster-based evaluation
	Increasing size of benchmark
	Random distributions of weights

	Relationship between model performance and semantic similarity of prompts

	Conclusion and future work
	Limitations
	Prompt structure
	Results: Semantically similar prompts
	Results: Increasing size of benchmark
	Results: Distributions of weighted performance

