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ABSTRACT

In psychology, relational learning refers to the ability to recognize and respond to
relationship among objects irrespective of the nature of those objects. Relational
learning has long been recognized as a hallmark of human cognition and a key
question in artificial intelligence research. In this work, we propose an unsuper-
vised learning method for addressing the relational learning problem where we
learn the underlying relationship between a pair of data irrespective of the nature
of those data. The central idea of the proposed method is to encapsulate the rela-
tional learning problem with a probabilistic graphical model in which we perform
inference to learn about data relationships and other relational processing tasks.

1 INTRODUCTION

American Psychological Association defines relational learning as (VandenBos & APA, 2007):

Definition 1.1 (Relational learning). Learning to differentiate among stimuli on the basis of rela-
tional properties rather than absolute properties.

In other words, relational learning refers to the ability to recognize and respond to relationship
(called relational property) among objects irrespective of the nature of those objects (called absolute
property). Relational learning has long been recognized as a hallmark of human cognition, and there
has been substantial research showing that adequate cognitive capacity is necessary for relational
processing (Biederman, 1987; Medin et al., 1993; Holyoak, 2012; Doumas & Hummel, 2013;
Gentner, 2016). As a machine learning application, relational learning can provide new insight into
data analysis by dissecting information in the data into relational property and absolute property.
However, in order to discover relationship patterns among raw and unknown data, relational learning
is only truly useful if it can be achieved without supervised data. A key challenge in learning relational
property with machine learning-based methods is that relational property is an abstract construct;
unlike absolute property, which is based on observable data and can be quantitatively measured,
relational property is an abstract quantity that is difficult to objectively quantify, especially when the
learning is unsupervised.

In this work, we propose an unsupervised learning method—variational relation learning (VRL)—for
addressing the relational learning problem. The proposed method is completely unsupervised, which
means that the learning does not require a labeled training dataset nor training examples that have
the same (or different) relational property. At its core, VRL encapsulates the relational learning
problem with a probabilistic graphical model (PGM) in which we perform inference to learn about
relational property and other relational processing tasks. Furthermore, our main learning algorithm
is derived from the PGM using first principles, which gives us the flexibility to use any compatible
computational inference method and still retains the desired properties of the proposed method. Our
contribution in this paper is threefold. First, we propose a PGM that encapsulates the relational
learning problem. Second, we formulate various relational processing tasks as performing inference
and learning in the PGM. Third, we propose an efficient and effective learning algorithm that can be
trained end-to-end and unsupervised.

2 PROBLEM DEFINITION

We begin with formulating the relational learning problem as a machine learning problem: we
observed a paired dataset X= { (a(i),b(i)) | i∈ [1..N ] } consisting of N i.i.d samples generated
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from a joint distribution p(a∈A,b∈B ); our goal is to learn a relational property between a(i) and
b(i) irrespective of their absolute property. Furthermore, we want the learning to be unsupervised,
e.g., we do not require a labeled dataset, such as (a(i),b(i), z(i)) where z(i) is a target variable
indicating (a(i),b(i))’s relational property, nor do we require training examples that have the same
(or different) relational property. There are two distinct features that separate our problem formulation
from other unsupervised learning problem formulations:

1. We dissect the information in X into relational property and absolute property; relational
property characterizes the relationship between a(i) and b(i), whereas absolute property
represents specific features that independently describe a(i) and b(i).

2. Our goal is to learn a relational property among X irrespective of its absolute property, i.e.,
we want to learn a relational property that is decoupled from the absolute property.

In addition, we are interested in two related relational processing tasks: relational discrimination1 and
relational mapping2 (VandenBos & APA, 2007).Relational discrimination allows us to differentiate
(a(i),b(i)) from (a(j),b(j)) based on their relational properties, while relational mapping allows us
to apply the relational property of (a(i),b(i)) to a different set of data, for example, deduce that b(j)

is related to a(j) in the same way that b(i) is related to a(i).

3 METHOD

Here we introduce the proposed VRL method for addressing the relational learning problem and
discuss various optimization challenges unique to VRL.

3.1 VARIATIONAL RELATION LEARNING

The proposed VRL method consists of two parts: first, we encapsulate the relational learning problem
with a PGM, called VRL-PGM; we then formulate various relational processing tasks as performing
inference and learning in VRL-PGM.

b

a z θ

N

Figure 1: VRL-PGM: a probabilistic graphical model for representing the relational learning problem;
the observed random variables a and b are generated from some random process (parameterized by
θ) involving an unobserved random variable z.

The VRL-PGM model, shown in Fig. 1, generates data a, z, and b by sampling from PDFs that come
from parametric families of distributions— pθ(a ), pθ( z ), pθ(b|a, z )—that are differentiable almost
everywhere with respect to (w.r.t.) a, z, and θ. In practice, we observe only a set of independent
realizations { (a(i),b(i)) | i ∈ [1..N ] } while the true parameter θ∗ and the corresponding latent
variables z(i) are unobserved. A well-known property of the PGM shown in Fig. 1 is that random
variables a and z are independent with no variables observed, but not conditionally independent when
b is observed, i.e., pθ(a, z ) = pθ(a )pθ( z ), pθ(a, z |b ) 6= pθ(a |b )pθ( z |b ) (Bishop, 2006). In
VRL-PGM, the absolute property can be interpreted as representing the dependency between a and

1Definition (Relational discrimination in condition). A discrimination based on the relationship between
or among stimuli rather than on absolute features of the stimuli.

2Definition (Relational mapping) The ability to apply what one knows about one set of elements to a
different set of elements.

2



Under review as a conference paper at ICLR 2021

b, i.e., features in a that can be used to predict b, while the relational property, represented by the
latent variable z, can be interpreted as any additional information not found in a but can help to better
predict b. The key requirement that the learned relational property be decoupled from the absolute
property is enforced by VRL-PGM’s construction where z, which represents the relational property,
and a, from which the absolute property is derived, are independent. The proposed VRL-PGM
reflects our priority and compromise for using a PGM to represent the abstract relational learning
problem: we sacrifice some identifiability of the original abstract problem (e.g., VRL-PGM artificailly
introduces causal relationship between a,b and z,b) but we gained a rigorous and mathematical
tractable PGM while achieving our primary objective of learning a decoupled (independent) relational
property. Additional discussions on the connection between VRL-PGM and the relational learning
problem is provided in appendix D.1.

Having established VRL-PGM, our primary learning objective is to approximate the unknown true
likelihood function pθ(b |a, z ) and posterior pθ( z |a,b ) (note that by observing b, random variables
z and a are no longer independent). Learning pθ( z | a,b ) provides us a way to infer (a(i),b(i))’s
relational property z(i); moreover, it serves as a basis for performing relational discrimination where
we compare relational properties between different pairs of data. Learning pθ(b | a, z ) allows us to
perform relational mapping where we use the relational property of (a(i),b(i)) to map from a(j) to
b(j), i.e., b(j) ∼ pθ(b | a(j), z(i) ) where z(i) ∼ pθ( z | a(i),b(i) ).

3.2 VARIATIONAL LOWER BOUND

We estimate the parameter for pθ(b |a, z ) by following the maximum-likelihood (ML) principle, and
approximate the true posterior pθ( z | a,b ) with variational Bayesian approach. More specifically,
we use a variational distribution qφ( z | a,b ), parameterized by φ, to approximate the unknown (and
often intractable) true posterior through maximizing a variational lower bound (Bishop, 2006). To
derive such a lower bound, we first write the log-evidence as log pθ(X ) = log pθ( { (a(i),b(i)) | i∈
[1..N ] } ) =∑N

i=1 log pθ(a
(i),b(i) ), where each term in the summation can be expressed as:

log pθ(a
(i),b(i) ) = DKL

(
qφ( z | a(i),b(i) )

∥∥∥ pθ( z | a(i),b(i) )
)

+ Eqφ(z|a(i),b(i))

[
log pθ( z,a

(i),b(i) )− log qφ( z | a(i),b(i) )
]
. (1)

The first term on the RHS is the KL-divergence from pθ( z | a(i),b(i) ) to qφ( z | a(i),b(i) ), which
provides a measure of dissimilarity between the two distributions; the second term on the RHS
continues as:

Eqφ(z|a(i),b(i))

[
log pθ( z,a

(i),b(i) )− log qφ( z | a(i),b(i) )
]

= Eqφ(z|a(i),b(i))

[
log pθ(b

(i) | a(i), z )pθ( z )pθ(a(i) )− log qφ( z | a(i),b(i) )
]

= Eqφ(z|a(i),b(i))

[
log pθ(b

(i) | a(i), z ) + log pθ( z )− log qφ( z | a(i),b(i) )
]
+ log pθ(a

(i) ), (2)

where in the second line we use the fact that random variables a and z are independent. Substitute
Eq. (2) back in (1) and rearrange terms gives us:

log pθ(b
(i) | a(i) ) = DKL

(
qφ( z | a(i),b(i) )

∥∥∥ pθ( z | a(i),b(i) )
)
+ L(θ, φ;a(i),b(i)) (3)

where

L(θ, φ;a(i),b(i)) = Eqφ(z|a(i),b(i))

[
log pθ(b

(i)|a(i), z ) + log pθ( z )− log qφ( z|a(i),b(i) )
]
. (4)

Since KL-divergence is non-negative, L(θ, φ;a(i),b(i)) (abbreviated as L(i) for notation compact-
ness) serves as a lower bound for the conditional log-likelihood log pθ(b

(i) | a(i) ). Maximizing L(i)

w.r.t. φ and θ gives us both a ML estimate for pθ(b | a, z ) (by maximizing the first term inside the
expectation in Eq. (4)) and a lower KL-divergence (the better qφ( z | a(i),b(i) ) approximates the true
posterior pθ( z |a(i),b(i) )) as the conditional log-likelihood log pθ(b

(i) |a(i) ) does not depend on φ.
The lower bound L(i) can be maximized with gradient ascend methods; however, its gradients w.r.t. φ
is difficult to obtain: the expectation in Eq. (4) is taken w.r.t. the distribution qφ( z | a(i),b(i) ), which
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is a function of φ (Paisley et al., 2012). To obtain efficient estimators for both L(i) and its gradients,
we adopt the reparameterization trick developed in Kingma & Welling (2014) where the random
variable z is expressed as a transformation of another random variable ε ∼ p( ε ) that is independent
of a, b, and φ: z = g(ε,a(i),b(i), φ) where g is some differentiable and invertible transformation.
Given such a change of variable, the lower bound L(i) can be rewritten as:

L(i) = Ep(ε)
[
log pθ(b

(i) | a(i), z ) + log pθ( z )− log qφ( z | a(i),b(i) )
]
, (5)

where z = g(ε,a(i),b(i), φ) and ε ∼ p( ε ). Note that the expectation in Eq. (5) is taken w.r.t. p( ε )
and we can now approximate L(i) with a Monte Carlo estimator:

L̃(i) =
1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ) + log pθ( z

(i,l) )− log qφ( z
(i,l) | a(i),b(i) ), (6)

where z(i,l)= g(ε(i,l),a(i),b(i), φ) and ε(i,l) ∼ p( ε ). The lower bound for a minibatches of data
XM = { (a(i),b(i)) | i ∈ [1..M ] } can be approximated by L̃(θ, φ;XM ) = N

M

∑M
i=1 L̃(i). And

finally, the gradients ∇θ,φL̃(θ, φ;XM )= N
M

∑M
i=1∇θ,φL̃(i) can be computed in a straightforward

manner and used to update the parameters θ and φ with stochastic optimization methods, such as SGD.
Finally, additional discussion is provided in appendix D.2 where we explain how the optimization of
the variational lower bound in Eq. 4 naturally encourages the indpendence of z and a; we also discuss
possible extensions to Eq. 4 to explicitly safeguard against introducing dependency between z and a.

3.3 OPTIMIZATION CHALLENGES

The proposed VRL method introduces unique challenges to the variational lower bound optimization
problem (see Sønderby et al. (2016) and Bowman et al. (2016) for other known challenges). To
explain these challenges, we first break down VRL’s parameter updating process into the following
steps (using a single datapoint as an example): (1) a datapoint (a(i),b(i)) is selected; (2) sample
z(i) ∼ qφk( z | a(i),b(i) ) by using the current parameter φk; (3) evaluate L̃(i) by using φk, θk; (4)
calculate gradients g = ∇θk,φk L̃(i); (5) use gradients g to update φk, θk and get new parameters
φk+1, θk+1. This parameter updating process can be depicted with an information flow diagram
shown in Fig. 2a. Ideally, we would like every path in Fig. 2a to contribute to the evaluation of all
the terms in its reachable nodes in order to obtain meaningful gradients for updating its associated
parameters; however, there are two situations where this is not the case. The first situation, called

pθ(b
(i)|a(i), z(i)), pθ(z

(i))

z(i) ∼ qφ(z|a(i),b(i))

b(i)

φ

a(i)

φ

θ

a(i)

θ

(a)

pθ(b
(i)|a(i), z(i)), pθ(z

(i))

z(i) ∼ qφ(z|a′(i),b′(i))

b′(i)

φ

a′(i)

φ

θ

a(i)

θ

(b)

Figure 2: Information flow diagrams depicting VRL’s parameter updating process, where each path
uses its associated parameters to propagate information in the forward direction and gradients in
the backward direction: (a) Unmodified parameter updating process, where overfitting occurs when
the learning of pθ(b(i)|a(i), z(i)) rely only on the dash-dotted path (deterministic-mapping) or the
dashed path (information-shortcut); (b) Parameter updating process improved with RPDA.

information-shortcut, occurs when the learning of pθ(b(i) | a(i), z(i) ) rely entirely on the dashed
path in Fig. 2a; more specifically, the dashed (shortcut) path directly propagates b(i) through z(i)
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to pθ(b(i) | a(i), z(i) ) and, as a result, the relational property z(i) may learn only to encode the
absolute property of b(i). The second situation, called deterministic-mapping, occurs when b(i)

can be fully characterized by a(i); in this case, the learning of pθ(b(i) | a(i), z(i) ) may rely only
on the dash-dotted path in Fig. 2a. While both situations can be viewed as a overfitting problem,
deterministic-mapping says more about the data itself and exposes a potential limitation of VRL:
a decoupled relational property is primarily learned through exploring information not found in a
but can help to better predict b, and when a fully characterizes b, VRL no longer need to explore
information beyond a to predict b and this may prevent VRL from learning a meaningful relational
property. On the other hand, information-shortcut is caused by short-cutting the parameter updating
process, which we may overcome with additional regularization techniques.

Here we propose two approaches for mitigating the information-shortcut problem by disrupting the
flow of information passing through the shortcut path. In the first approach, we restrict the flow of
information by constraining the expressiveness of the latent variable z; for example, by adopting an
informative prior with restrictive constraint, such as pθ( z ) = N (z; 0, σ2I), σ�1, or representing
z with a discrete random variable (assuming we know a priori the underlying relational proproty
are discrete). In the second approach, we propose a novel data augmentation strategy—relation-
preserving data augmentation (RPDA)—that aims to eliminate the shortcut path. First, we define
a set of relation preserving functions D={ d(a,b; r) | r∈R(some index set), d :A×B→A×B }
where the data relationship is preserved in the following sense: pθ( z | a,b ) = pθ( z | a′,b′ ) for
(a′,b′)= d(a,b; r),∀r. Assuming we have access to such a D, the proposed RPDA strategy then
seek to optimize a modified lower bound estimator L̃(i)

RPDA:

L̃(i)
RPDA =

1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ) + log pθ( z

(i,l) )− log qφ( z
(i,l) | a′(i),b′(i) ), (7)

where (a′
(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R),

and z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ), ε(i,l) ∼ p( ε ). Note that due to the relation preserving property

of D, we have qφ( z(i,l) | a′(i),b′(i) ) = qφ( z
(i,l) | a(i),b(i) ) and, therefore, L̃(i)

RPDA is equivalent to
L̃(i) in Eq. (6). When we optimize with L̃(i)

RPDA, the parameter updating process can be redrawn in
Fig. 2b, where now the learning of pθ(b(i) | a(i), z(i) ) can no longer rely solely on the shortcut
path to propagate b′

(i) since it differs from b(i) by a non-deterministic factor r(i). In practice, it
may seem unrealistic to assume that we can construct a set of RPDA functions D without extensive
knowledge of the underlying relational property. However, we can treat data augmentation as a form
of regularization and construct a D that reflects our prior knowledge and belief of the underlying
system (Ronneberger et al., 2015; Perez & Wang, 2017). For example, if we want the learning to
be rotation invariance (a common theme in computer vision applications), we can construct a D
that consists of image rotation augmentations, e.g., d(a,b; r)=(rot(a, r), rot(b, r)) where rot(x, r)
rotates the image x by r ∈R = [0, 360) degrees (note that both a and b are rotated by the same
amount). Additional remarks on the practical applicability of RPDA is provided in appendix D.3, and
a detailed ablation study is provided in appendix C.

To summarize this section, the proposed VRL method with RPDA is described in Algorithm 1.

4 RELATED WORK

Machine learning approaches for relational processing have gained increasing interest and attention
in the literature. Most of these methods focus on high-level cognitive tasks, such as visual Q&A and
state prediction for complex-physics systems, and derive their relational processing capabilities from
learning with clever designed neural networks (Hill et al., 2019; Santoro et al., 2017; Raposo et al.,
2017; Battaglia et al., 2018; 2016; Wu et al., 2015; Reed et al., 2015; van Steenkiste et al., 2018;
Chang et al., 2016; Fragkiadaki et al., 2015). Our work differ from these methods in two ways: (1)
our primary focus is addressing the relational learning problem where we want to learn a decoupled
relational property; (2) we enforce the decoupling requirement on the learned relational property
with a PGM, which gives us the flexibility to use any compatible inference method or function
approximation and still satisfy the decoupling requirement.
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Algorithm 1 VRL with RPDA

procedure VRL(X, p( ε ), D) . If RPDA not available, D={ id(·) | (a,b) = id(a,b) }
Initialize parameters θ, φ
while not convergence of parameters (θ, φ) do

Sample minibatch XM ={ (a(i),b(i)) | i∈ [1..M ] } from X.
Sample ε(i,l) ∼ p( ε ), r(i) ∼ U(R), i=1, ...,M, l=1, ..., L.
Run RPDA and obtain (a′

(i)
,b′

(i)
) = d(a(i),b(i); r(i)), i=1, ...,M .

Compute gradients g = ∇θ,φL̃
(
θ, φ;XM

)
= N

M

∑M
i=1∇θ,φL̃

(i)
RPDA (see Eq. (7)).

Update parameters θ, φ using gradients g (e.g. SGD).
end while
return θ, φ

end procedure

Conventional unsupervised learning methods can also be appied to our problem setting (Kingma
& Welling, 2014; Goodfellow et al., 2014; Mikolov et al., 2013a;b; Song et al., 2007); however,
these methods learn a single representation for the data with superimposing information about their
relational and absolute property. The difficulty of decoupling the relational property from the learned
representation constitute a major obstacle to relational reasoning.

Other related work include methods on learning a disentangled representations with applications in
style-transfer, image-to-image translation, domain adaptation, etc. (Huang et al., 2018; Chen et al.,
2016; Tenenbaum & Freeman, 1997; Higgins et al., 2017; Bousmalis et al., 2016; Mathieu et al.,
2016; Tulyakov et al., 2017; Denton & Birodkar, 2017; Villegas et al., 2017; Donahue et al., 2017;
Shen et al., 2017) Most of these methods strive to learn a disentangled representations of content
and style (or pose for video sequence data) where content is generically defined as the underling
spatial structure, and style as the rendering of the structure. In comparison, our work can be viewed
as learning a disentangled representations of relational and absolute property; however, we argue
that style-content separation is fundamentally different from relational-absolute separation. More
specifically, we consider both style and content information as absolute property (both describe
features of an individual data), while relational property provides new information on the (abstract)
relationship between the paired data.

5 EXPERIMENT

In this section, we present experimental results from applying the proposed VRL method to a set of
relational learning tasks designed with the MNIST dataset (LeCun & Cortes, 2010).

5.1 MNIST RELATIONAL LEARNING TASK

To setup a relational learning task, a paired dataset X= { (a(i),b(i)) | i∈ [1..N ] } was generated
by the following steps: (1) the MNIST dataset { (x(i), y(i)) | i∈ [1..T ] }, where x(i) and y(i) are
the digit images and their labels, was augmented with applying five evenly-spaced rotations to each
of the image x(i) to get { (x(i,j), y(i)) | i∈ [1..T ], j ∈ [1..5] } (examples of augmented images are
shown in Fig. 3); (2) individual datapoint (a(i),b(i)) of X was chosen to be randomly rotated images
of x(i), i.e., X = { (a(i) = x(j,k),b(i) = x(j,l)) | j ∼ U([1..T ]), k, l ∼ U([1..5]) }. Note that

Figure 3: Examples of a MNIST digit augmented with five evenly-spaced rotations (from left to right:
x(i,1) :0◦, x(i,2) :72◦, x(i,3) :144◦, x(i,4) :216◦, x(i,5) :288◦).

there are five uniquely defined rotational relationships between (a(i),b(i)) in X and since they are
randomly selected, the rotational relationship (relational property) is decoupled from the absolute
properties of (a(i),b(i)). Here, we use X to assess VRL’s capability of discovering the underlying
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relational property (rotational relationships) irrespective of their absolute property. Additional MNIST
relational learning tasks are introduces in appendix B.1.

The MNIST relational learning experiment presented above may seem contrived at first glance but,
upon deeper examination, represents a novel and unique problem setting that exemplifies a key
relational learning challenge—learning a decoupled relational property—for existing unsupervised
learning methods (see Sec. 4 for related work). We argue that any unsupervised method that can
successfully solve the above problem (or any relational learning problem) must, at a minimum,
simultaneously accomplish the following two goals:

1. An unsupervised learning mechanism that captures and preserves the data relationships
(relational property), e.g, capturing and preserving the rotational relationship between
(a(i),b(i)) during learning.

2. An unsupervised learning mechanism that decouples absolute property from the learned
data relationships, e.g., learning a rotational relationship between (a(i),b(i)) that does not
depend on the absolute property (digit representation, rotation, etc.) of individual a(i), b(i).

While most existing unsupervised methods are well-equipped to accomplish the first goal, we argue
that the second goal presents itself as a major challenge; more specifically, to the best of our
knowledge, most existing unsupervised methods focus on modeling all aspect of (a(i),b(i)) and
learn data relationships either jointly with the absolute properties of a(i),b(i) or as their derivatives
(including graph-based methods that use edges to represent relationships). For such methodology,
the learned data relationships necessarily entangle/couple with the absolute properties of the data,
and therefore, the fundamental relational learning challenge—decoupling relational property—is
still unresolved. A key insight into why the proposed VRL framework is capable of overcoming this
challenge is recognizing that VRL takes a more targeted approach and learns data relationships as a
stand-alone entity (represented by the latent variable z) that is designed, through the construction of
VRL-PGM, to be independent of a (however, we note that in VRL the learned relational property
z is only independent of a but not b; a discussion of this compromising fact and its implications is
provided in appendix D.1).

5.2 IMPLEMENTATION

For these experiments, we adopted a two-dimensional latent variable z ∈ R2 and let the prior pθ( z )
be the bivariate normal distribution. We let pθ(b | a(i), z(i,l) ) be a multivariate Bernoulli distribution
whose probability parameters are computed from a given a(i) and z(i,l) with an autoencoder-like
neural network f dec

θ

(
f enc
θ (a(i)), z(i,l)

)
. We let the approximated posterior qφ( z | a′(i),b′(i) ) be a

bivariate Gaussian distribution with a diagonal covariance N (z;µ(i), (σ(i))2I) where µ(i) and σ(i)

are the output of a neural network fqφ(a
′(i),b′

(i)
). For RPDA, we constructed a D that consists of

image rotation augmentations: D= { (rot(a, r), rot(b, r)) | r∈ [0, 360) }. Detailed experimental
setup is described in appendix A.

5.3 RESULTS

Relational discrimination. We trained VRL on X and used the approximated posterior qφ( z | a,b )
to infer the relational property of a hold-out dataset. Figure 4a shows a scatter plot of the re-
lational property inferred by VRL where we can see that the approximated posterior accurately
cluster(discriminate) data with the same(different) rotational relationship together(apart). Here,
we compared VRL with variational autoencoder (VAE) (Kingma & Welling, 2014) and InfoGAN
(Chen et al., 2016), both of which can learn data representations of X in a completely unsupervised
manner. In the application of VAE, we adopted a 2-D latent space and use the encoder trained on
X to inferred the latent varible of a hold-out dataset; the resulting scatter plot is shown in Fig. 4b
where we see that VAE failed to discriminate data based on their relational property (rotational
relationship). Next, InfoGAN has demonstrated its ability to learn disentangled representations
(represented by structured latent codes c1, c2, ..., cL) through generative modelling. Although in-
ferring latent codes for a given data point is a non-trivial task for InfoGAN, we can examine the
learned latent representation by manipulating the latent codes and visually inspect the generated
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(a) Relational properties inferred by VRL
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(b) Latent variable inferred by VAE

Figure 4: Scatter plots of the 2-D latent variable (showing only the mean µ) of hold-out datasets
inferred by VRL in (a) and VAE in (b) (relationship labels: # : 0◦, O : 72◦, + : 144◦, × : 216◦,
♦ :288◦).

random samples. We followed the examples in Chen et al. (2016) and modeled the latent codes
with one categorical code c1 ∼ Cat(K = 10, p = 0.1) (model discontinuous variation in data) and
two continuous codes c2, c3 ∼ Unif(−1, 1) (capture continuous variations in style). Figure 5 shows
examples of generated images from manipulating the latent codes; it is clear that none of the latent
codes (or a combination of them) distinctively capture the full range of relational property (rotational
relationship). Figures 4b and 5 illustrate a major challenge of using VAE and InfoGAN (and other
related methods) for relational learning: these methods learn a single representation that encodes
both relational and absolute property of X and it is difficult to dissect the relational property from
the learned representation. Detailed experimental setup for both VAE and InfoGAN is described in
appendix A.

(a) Varying c2 from −2 to 2 on InfoGAN

(b) Varying c3 from −2 to 2 on InfoGAN

Figure 5: Manipulating latent codes of InfoGAN on MNIST where each row represents random
samples from varying continuous latent code c2 in (a) and c3 in (b) while other latent codes and noise
are fixed; different rows correspond to different categorical code c1.

Relational mapping. We evaluated VRL’s learned likelihood function pθ(b |a, z ) by visualizing the
predicted images given a and z. We chose a from a hold-out dataset and z from: (1) direct sampling
in the latent space; (2) relational property inferred from a source datapoint (as,bs). Figure 6a shows
predicted images with z sampled from the latent space shown in Fig. 4a. Figure 6b shows examples
of relational mappings from a(c) to b(r,c) by applying the relational property inferred from a source
datapoint (as,b

(r)
s ). At first glance, the results in Fig. 6b resemble that of style-transfer, but they are

fundamentally different: in style-transfer, the image b(r,c) is generated by applying the style of b(r)
s

to the content of a(c), whereas VRL generates image b(r,c) by applying the relationship of (as,b
(r)
s )

to the image a(c). It is evident from Fig. 6b that predicted images b(r,c) do not share similar style to
b
(r)
s , but rather the same rotational relationship w.r.t. a(c) and as.
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z(1)

z(2)

z(3)

z(4)

z(5)

(a) (b)

Figure 6: Examples of images predicted by VRL: (a) images predicted from sampled latent variables
(sampling the centroid of each cluster in Fig. 4a: “#”→ z(1), “O”→ z(2),“+”→ z(3), “×”→
z(4), “♦”→ z(5)) and each image b(r,c), 1≤ r≤ 5, 1≤ c≤ 10, was predicted from an image a(c)

(shown in the top row) and a pre-selected latent variable z(r) using b(r,c) ∼ pθ(b | a(c), z(r) ); (b)
examples of relational mappings of top row images by applying relationships inferred from pairs of
source images (as,b

(r)
s ) (shown in the left-most column with as,b

(1)
s , ...,b

(5)
s arranged from top

to bottom) and each image b(r,c), 1≤r≤5, 1≤c≤10 was generated by b(r,c) ∼ pθ(b | a(c), z(r) )
where z(r) ∼ qφ( z | as,b(r)

s ).

Additional experimental results and discussion are provided in appendix B and D.4, respectively.

6 DISCUSSION AND CONCLUSION

A core component of the proposed VRL method is approximating the intractable posterior with
variational inference (VI) methods. There is a vast literature on the subject of VI that we can leverage
to further improve and extend VRL; for example, prior works have proposed flexible and complex
approximated posterior distributions that we can use to learn a rich posterior approximations for
characterizing the relational property (Rezende & Mohamed, 2015; Dinh et al., 2014). Another
interesting idea to explore is learning a generative model for VRL: in this work, the primary learning
objective is maximizing a variational lower bound derived from VRL-PGM; however, with the advent
of computationally efficient methods for learning a generative model, it would be interesting to
include another learning objective that directly models the data generating aspect of VRL-PGM
(Goodfellow et al., 2014; Larsen et al., 2015).

The proposed method comes with both advantages and disadvantages: the main advantage of VRL
lies in its relational learning capabilities; however, this may also be one of its disadvantages. More
specifically, VRL can learn a decoupled relational property even when it is coupled with the absolute
property, i.e., VRL is oblivious to the coupling information between the two properties (an example
with coupled relational property is provided in appendix B.1.1). Nevertheless, such information may
be of interest to the user, and in this regard, VRL provides only a partial view of the data.

In conclusion, the proposed VRL method is an efficient and effective unsupervised learning method
for addressing the relational learning problem where our goal is to learn a decoupled relational
property. By dissecting the data information into decoupled relational and absolute property, we
hope VRL can bring new insight into everyday data analysis and ultimately find applications for a
wide variety of problems.
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A EXPERIMENTAL SETUP

Recall that we adopted a two-dimensional latent variable z ∈ R2 and let the prior pθ( z ) be the
bivariate normal distribution. For binary valued data (e.g., MNIST dataset), we let the likelihood
function pθ(b ∈ B | a(i), z(i,l) ) of VRL be a multivariate Bernoulli distribution whose probability
parameters p(i,l) are computed from a given a(i) and z(i,l) with an autoencoder-like neural network
f dec
θ

(
f enc
θ (a(i)), z(i,l)

)
:

f enc
θ :a(i) → Conv(3x3x8)→ Conv(3x3x32)→ Conv(3x3x128)→ FC(20)→ h(i)∈R20

f dec
θ :[h(i)∈R20, z(i,l)∈R2]→ FC→ ConvT(3x3x128)→ ConvT(3x3x32)→ ConvT(3x3x8)

→ Conv(1x1x1)
Sigmoid−−−−→ [0, 1]dim(B),

where Conv(·) is a strided (stride 2) convolutional layer and ConvT (·) is a transposed convolutional
layer. We used batch-normalization after most layers and leaky rectified linear units (with leaky rate
0.01) as nonlinear activation function. We let the approximated posterior qφ( z | a′(i),b′(i) ) of VRL
be a bivariate Gaussian distribution with a diagonal covariance N (z;µ(i), (σ(i))2I) where µ(i) and
σ(i) are the output of a neural network fqφ(a

′(i),b′
(i)
):

fqφ : [a′
(i)
,b′

(i)
]→ Conv(3x3x8)→ Conv(3x3x32)→ Conv(3x3x128)→ FC(4)→ [µ(i),σ(i)].

We sampled from the posterior z(i,l) ∼ N (z;µ(i), (σ(i))2I) using z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ) =

µ(i) + σ(i) � ε(i,l) where ε(i,l) ∼ p( ε ) = N (0, I) and set L = 1. We used image rotation
augmentations: D={ (rot(a, r), rot(b, r)) | r∈ [0, 360) } for constructing RPDA. In this case, the
learning objective L̃(i)

RPDA in Eq. (7) can further be derived as (see next section for the derivation):

L̃(i)
RPDA =

1

2

2∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
+
∑
k

b
(i)
k log p

(i,1)
k + (1− b(i)k ) log(1− p(i,1)k ). (8)

where (µ(i),σ(i)) = fqφ(a
′(i),b′

(i)
), p(i,l) = f dec

θ

(
f enc
θ (a(i)), z(i,1)

)
,

z(i,1) = µ(i) + σ(i) � ε(i,1), ε(i,1) ∼ N (0, I),

(a′
(i)
,b′

(i)
) = (rot(a(i), r(i)), rot(b(i), r(i))), r(i) ∼ U([0, 360)).

Parameters θ and φ were jointly trained to maximize Eq. (8) using Adam optimizer (learning rate =
0.0001, β1=0.9, β2=0.999) (Kingma & Ba, 2014); minibatches of size M=100 were used.

In our VAE implementation we used the following network architecture for encoder, Enc(a(i),b(i)),
and decoder, Dec(z(i,l)):

Enc :[a(i),b(i)]→ Conv(3x3x16)→ Conv(3x3x64)→ Conv(3x3x256)→ FC(4)

→ [µ(i)∈R2,σ(i)∈R2]

Dec :[z(i,l)∈R2]→ FC→ ConvT(3x3x256)→ ConvT(3x3x64)→ ConvT(3x3x16)

→ Conv(1x1x1)
Sigmoid−−−−→ [0, 1]dim(B).

We used Adam optimizer with the same hyperparameter setup as before.

For InfoGAN implementation, we followed the setup described in Chen et al. (2016) except that each
datapoint consists a paired MNIST image (a(i),b(i)).
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A.1 DERIVATION OF TRAINING OBJECTIVE FUNCTION

Our derivation for Eq. (8) largely follow the work of Kingma & Welling (2014); here for completeness
we outline the key steps. First, Eq. (4) in Section 3.2 can equivalently be expressed as:

L(i) = −DKL

(
qφ(z|a(i),b(i))

∥∥∥ pθ( z ))+ Eqφ(z|a(i),b(i))

[
log pθ(b

(i)|a(i), z )
]

= −DKL

(
qφ(z|a(i),b(i))

∥∥∥ pθ( z ))+ Ep(ε)
[
log pθ(b

(i) | a(i), z )
]
, (9)

where z = g(ε,a(i),b(i), φ), ε ∼ p( ε ), and g is some differentiable and invertible transformation.
We can approximate L(i) in Eq. (9) with a Monte Carlo estimator L̃(i):

L̃(i) = −DKL

(
qφ(z|a(i),b(i))

∥∥∥ pθ( z ))+ 1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ), (10)

where z(i,l) = g(ε(i,l),a(i),b(i), φ) and ε(i,l) ∼ p( ε ). Based on the RPDA functions D =

{ d(a,b; r) | r∈R } and its relation preserving assumption that qφ( z|a(i),b(i) ) = qφ( z|a′(i),b′(i) )
for (a′(i),b′(i))= d(a(i),b(i); r),∀r (see Section 3.3), we can express L̃(i) in Eq. (10) equivalently
as L̃(i)

RPDA:

L̃(i)
RPDA = −DKL

(
qφ( z|a′(i),b′(i) )

∥∥∥ pθ( z ))+ 1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ), (11)

where z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ), ε(i,l) ∼ p( ε ),

(a′
(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R).

The first term in Eq. (11) is the KL-divergence from pθ( z ) to qφ( z|a′(i),b′(i) ), which can
be computed analytically given that we assume pθ( z ) = N (0, I) and qφ( z|a′(i),b′(i) ) =

N (z;µ(i), (σ(i))2I):

−DKL

(
qφ( z|a′(i),b′(i) )

∥∥∥ pθ( z )) =
1

2

2∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
. (12)

The likelihood function pθ(b(i) | a(i), z(i,l) ) is defined as a multivariate Bernoulli distribution whose
probability parameters p(i,l) are computed from the neural network f dec

θ

(
f enc
θ (a(i)), z(i,l)

)
and we

have:
log pθ(b

(i) | a(i), z(i,l) ) =
∑
k

b
(i)
k log p

(i,l)
k + (1− b(i)k ) log(1− p(i,l)k ). (13)

By substituting Eq. (12) and (13) back in (11) and recall that z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ) =

µ(i) + σ(i) � ε(i,l), p( ε ) = N (0, I), D={ (rot(a, r), rot(b, r)) | r∈ [0, 360) }, L=1, we arrive
at Eq. (8).

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 ADDITIONAL MNIST RELATIONAL LEARNING EXPERIMENTS

Here, we provide additional experimental results based on the paired MNIST dataset constructed in
Section 5.

B.1.1 MNIST EXAMPLE WITH COUPLED RELATIONAL PROPERTY

First, to further test the robustness of the proposed method, we considered a scenarios where the
underlying relational property is coupled with the absolute property. An example dataset X2 was
constructed with the rotational relationship between each of the datapoint completely determined
by its digit label: X2 = { (a(i) = x(j,k),b(i) = x(j,l+1)) | j ∼ U([1..T ]), k ∼ U([1..5]), l =
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(k + by(j)/2c) mod 5 }. In this case, it is possible to infer the relational property solely based on
the image representation of the digit (absolute property of a(i)), for example, a(i)∈ [’0’, ’1’]→0◦

(read: if a(i) is recognized as either digit 0 or 1, the rotational relationship between (a(i),b(i)) is
0◦) ,a(i) ∈ [’2’, ’3’]→ 72◦,a(i) ∈ [’4’, ’5’]→ 144◦,a(i) ∈ [’6’, ’7’]→ 216◦,a(i) ∈ [’8’, ’9’]→ 288◦.
The question then arise: is VRL capable of learning a decoupled relational property even when it is
coupled with the absolute property? To test this idea, we trained VRL (with the same setup as that
described in appendix A) on X2 but validated it on a hold-out dataset with a decoupled relational
property (much like how X was constructed). The resulting scatter plot is shown in Fig. 7, where
we can see that the approximated posterior qφ( z | a,b ) accurately cluster(discriminate) data with
the same(different) rotational relationship together(apart). This result shows that VRL was indeed
capable of learning a decoupled relational property irrespective of the digit representation of a(i).
If this were not the case, we would expect to see a scatter plot with heavily overlapped relationship
labels since the validation dataset was constructed with random rotational relationships. Examples

−2 −1 0 1 2 3
z1

−3

−2

−1

0

1

2

3

z 2

+0 +72 +144 +216 +288

Figure 7: Scatter plot of the relational property (showing only the mean µ) of a hold-out dataset
inferred by a VRL model that was trained on X3 (relationship labels: # : 0◦, O : 72◦, + : 144◦,
× :216◦, ♦ :288◦).

of images predicted by the learned likelihood function pθ(b | a, z ) are shown in Fig. 8, where
Fig. 8a shows predicted images based on direct sampling in the latent space (shown in Fig. 7), and
Fig. 8b shows examples of relational mappings. Figures 8a and 8b further corroborate our claim that

z(1)

z(2)

z(3)

z(4)

z(5)

(a) (b)

Figure 8: Examples of images predicted by a VRL model that was trained on X2: (a) images predicted
from sampled latent variables (sampling the centroid of each cluster in Fig. 7: “#”→z(1), “O”→
z(2),“+”→z(3), “×”→z(4), “♦”→z(5)); (b) examples of relational mappings of top row images by
applying relationships inferred from pairs of source images (as,b

(r)
s ) shown in the left-most column

with as,b
(1)
s , ...,b

(5)
s arranged from top to bottom.
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VRL is capable of learning a decoupled relational property and generalizing it to unseen data, e.g.,
VRL trained on X2 learned to rotate any digit by any amount despite not having seen most of the
digit-rotation pairs during training. Note that this experiment is an example of deterministic-mapping
discussed in Section 3.3, nevertheless VRL was able to utilize all paths in Fig. 2b effectively to learn
about the data.

B.1.2 MNIST EXAMPLE WITH MULTIPLE RELATIONAL PROPERTY

Next, we setup a more complex relational learning task that includes both rotational and resizing
relationships between (a(i),b(i)): each MNIST image x(i) was augmented with five evenly-spaced
rotations and three different resizing transformations to get { (x(i,j,k), y(i)) | i∈ [1..T ], j∈ [1..5], k∈
[1..3] }. Examples of augmented images are shown in Fig. 9, where top, middle, and bottom row
images are resized by a factor of ×0.66, ×1, and ×1.5, respectively. We considered a relational

Figure 9: Examples of a MNIST digit augmented with rotational and resizing transformations (from
left to right: x(i,1,k) : 0◦, x(i,2,k) : 72◦, x(i,3,k) : 144◦, x(i,4,k) : 216◦, x(i,5,k) : 288◦; from top to
bottom: x(i,j,1) :×0.66, x(i,j,2) :×1, x(i,j,3) :×1.5).

learning task where each datapoint (a(i),b(i)) has a decoupled rotational and/or resizing relational
property; more specifically, we constructed a dataset X3 in the following way:

{ (a(i) = x(j,k,m),b(i) = x(j,l,n)) | j ∼ U([1..T ]), k, l ∼ U([1..5]),m ∼ U([1, 2]), n ∼ U(V ) }

where V =

{
[1, 2], if m = 1

[2, 3], if m = 2

Note that in this case, b(i) is either the same size as a(i) or is ×1.5 larger than a(i), and there are
a total of 10 different relationships between (a(i),b(i)) in X3 (combinations of 5 rotational and 2
resizing transformations). We trained VRL on X3 with the same model setup as that described in
appendix A and used the trained model to infer the relational property of a hold-out dataset. The
inference result is shown in Fig. 10, where we can see that the approximated posterior qφ( z | a,b )
accurately cluster(discriminate) data with the same(different) relationship together(apart). Examples
of images predicted by the learned likelihood function pθ(b | a, z ) are shown in Fig. 11, where
Fig. 11a shows predicted images based on direct sampling in the latent space (shown in Fig. 10),
and Fig. 11b shows examples of relational mappings. These results are consistent with the findings
presented and discussed in Section 5.3.

B.1.3 MNIST EXAMPLE WITH CONTINUOUS RELATIONAL PROPERTY

Finally, we present an example with a continuous relational property. Based on the MNIST dataset
{ (x(i), y(i)) | i∈ [1..T ] }, we constructed a paired dataset X4 in the following way:

X4 = { (a(i) = x(j),b(i) = rot(x(j), r(i))) | j ∼ U([1..T ]), r(i) ∼ U([0, 360)) },
where rot(x(j), r(i)) rotates the image x(j) by r(i)∈ [0, 360) degrees. In this case, b(i) is a random
rotation of a(i) and there is a continuous (and decoupled) rotational relationship between (a(i),b(i))
in X4. We trained VRL on X4 with the same model setup as that described in appendix A and used
the trained model to infer the relational property of a hold-out dataset. A scatter plot of the relational
property infered by the approximated posterior qφ( z | a,b ) is shown in Fig. 12, and examples of
images predicted by the learned likelihood function pθ(b | a, z ) are shown in Fig. 13, where Fig. 13a
shows predicted images based on direct sampling in the latent space (denoted by markers “×” in
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Figure 10: Scatter plot of the relational property (showing only the mean µ) of a hold-out dataset
inferred by a VRL model that was trained on X3 (relationship labels: #(blue) :0◦, O :72◦, +:144◦,
× :216◦,♦ :288◦,2 :0◦,×1.5,� :72◦,×1.5,� :144◦,×1.5,4 :216◦,×1.5,#(cyan) :288◦,×1.5).
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Figure 11: Examples of images predicted by a VRL model that was trained on X3: (a) images
predicted from sampled latent variables (sampling the centroid of each cluster in Fig. 10: “#”(blue)→
z(1), “O”→z(2),“+”→z(3), “×”→z(4), “♦”→z(5), “2”→z(6), “�”→z(7), “�”→z(8), “4”→
z(9), “#”(cyan) → z(10)); (b) examples of relational mappings of top row images by applying
relationships inferred from pairs of source images (as,b

(r)
s ) shown in the left-most column with

as,b
(1)
s , ...,b

(10)
s arranged from top to bottom.

Fig. 12), and Fig. 13b shows examples of relational mappings. From Fig. 12 and 13 we can see that
VRL learned a decoupled relational property that encodes a continuous data (rotational) relationship;
however, there is a small region in Fig. 12 with overlapping relational property that leads to an
ambiguous interpretation of the rotational relationship (120◦ vs. 240◦). This ambiguity is likely
caused by compressing the continuous data (rotational) relationship down to a two-dimensional latent
space, z ∈ R2, and motivates us to adopt a higher-dimensional latent space, e.g., z ∈ R3. Figure 14
shows inference result from repeating the previous experiment but with setting z ∈ R3; we can
see that VRL learned a three-dimensional relational property that unambiguously represents the
underlying continuous data (rotational) relationship.
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Figure 12: Scatter plot of the relational property (showing only the mean µ) of a hold-out dataset
inferred by a VRL model that was trained on X4; each point is color-coded (best viewed in color)
by the degrees of rotation between the corresponding datapoint (markers “×” denote sampled latent
varibles z(1), . . . , z(5) used for image prediction in Fig. 13a).
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Figure 13: Examples of images predicted by a VRL model that was trained on X4: (a) images
predicted from sampled latent variables (denoted by markers “×” in Fig. 12); (b) examples of
relational mappings of top row images by applying relationships inferred from pairs of source images
(as,b

(r)
s ) shown in the left-most column with as,b

(1)
s , ...,b

(5)
s arranged from top to bottom.

B.2 YALE FACE RELATIONAL LEARNING EXPERIMENTS

B.2.1 YALE FACE EXAMPLE WITH LEARNING EMOTION CHANGE

Here we present another relational learning example based on the Yale face dataset (Belhumeur
et al., 1997). The Yale face dataset consists of 15 subjects, each with 8 facial expressions and 3
lighting configurations. We extracted three facial expressions (happy, surprised, sad) of each subject
to form {x(i,j) | i∈ [1..15], j∈ [1..3] }. Examples of face images are shown in Fig. 15a, where we
center-cropped, resized to 64× 64, and normalized pixel values to be within [0, 5]. We constructed a
dataset XFe where each datapoint (a(i),b(i)) represents a subject with different facial expressions
(emotions):

XFe = { (a(i) = x(j,k),b(i) = x(j,l)) | j ∼ U([1..15]), k ∼ U([1..3]), l ∼ U([1..3] \ k) }.
Our initial intention was to apply VRL to XFe to learn about the “emotional change” between
(a(i),b(i)) irrespective of the subject; however, because XF is an extremely limited dataset that
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Figure 14: Scatter plot of the three-dimensional relational property (showing only the mean µ) of a
hold-out dataset inferred by a VRL model (with z ∈ R3) that was trained on X4; each plot shows a
different vantage point of the 3D scatter plot, and each point is color-coded (best viewed in color) by
the degrees of rotation between the corresponding datapoint.
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Figure 15: Learning emotional changes among the Yale face dataset: (a) examples of subjects with
different facial expressions: happy, surprised, and sad; (b) scatter plot of the relational property
(showing only the mean µ) inferred by the approximated posterior (relationship labels: O: “happy-
sad”, #: “happy-surprised”, +: “surprised-sad”).

consists of only 45 different images (15 subjects, each with 3 facial expressions), we settled for a less
ambitious goal of learning an undirected emotional change, i.e., “happy→sad” = “sad→happy” and
simply denoted as “happy-sad”. In this case, there are three different emotional changes between
(a(i),b(i)) in XF : “happy-sad”, “happy-surprised”, “surprised-sad”. To setup a VRL model for
training, we adopted a two-dimensional latent variable z ∈ R2 and let the prior pθ( z ) be the
bivariate normal distribution. Since this is a real-valued dataset, we let pθ(b(i) | a(i), z(i,l) ) be
a multivariate Gaussian distribution with a fixed diagonal covariance N (b(i);µ

(i,l)
b ,σ2I) where

σ = 0.1 and µ
(i,l)
b is computed from a given a(i) and z(i,l) with an autoencoder-like neural network
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f dec
θ

(
f enc
θ (a(i)), z(i,l)

)
:

f enc
θ : a(i) → Conv(3x3x4)→ Conv(3x3x16)→ Conv(3x3x64)→ FC(50)→ h(i)∈R50

f dec
θ : [h(i)∈R50, z(i,l)∈R2]→ FC→ ConvT(3x3x64)→ ConvT(3x3x16)→ ConvT(3x3x4)

→ Conv(1x1x1)→ µ
(i,l)
b

and we have:

log pθ(b
(i) | a(i), z(i,l) ) = −1

2

∥∥b(i) − µ
(i,1)
b

∥∥2
0.01

+ const. (14)

Again, we let the approximated posterior qφ( z | a′(i),b′(i) ) be a bivariate Gaussian distribution with
a diagonal covariance N (z;µ(i), (σ(i))2I) where µ(i) and σ(i) are the output of a neural network
fqφ(a

′(i),b′
(i)
):

fqφ : [a′
(i)
,b′

(i)
]→ Conv(3x3x4)→ Conv(3x3x16)→ Conv(3x3x64)→ FC(4)→ [µ(i),σ(i)]

Next, based on the premise that we are only interested in learning an undirected emotional change, we
have pθ( z | a,b ) = pθ( z | b,a ) and this prompted us to construct RPDA functions D with random
image rotation and swapping operations: D={ swap (rot(a, r), rot(b, r)) | r∈ [0, 360) } where

swap(a,b) =

{
(a,b), p = 0.5

(b,a), p = 0.5

Finally, we combine the above settings with z(i,l) = µ(i) + σ(i) � ε(i,l), p( ε ) = N (0, I), L=1,
and substituting Eq. (12) and (14) back in (11) to derive the following lower bound estimator:

L̃(i)
RPDA =

0.01

2

2∑
j=1

(
1 + log((σ

(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)
− 1

2

∥∥b(i) − µ
(i,1)
b

∥∥2 + const. (15)

where (µ(i),σ(i)) = fqφ(a
′(i),b′

(i)
), µ

(i,1)
b = f dec

θ

(
f enc
θ (a(i)), z(i,1)

)
,

z(i,1) = µ(i) + σ(i) � ε(i,1), ε(i,1) ∼ N (0, I),

(a′
(i)
,b′

(i)
) = swap

(
rot(a, r(i)), rot(b, r(i))

)
, r(i) ∼ U([0, 360)).

The rest of the training setup remains the same as that described in appendix A. We trained VRL on
XFe and then used the approximated posterior qφ( z | a,b ) to infer the relational property of XFe .
The inference result is shown in Fig. 15b, where we can see that VRL learned a relational property
that accurately differentiates emotional changes irrespective of the subject.

B.2.2 YALE FACE EXAMPLE WITH LEARNING ILLUMINATION CONDITION CHANGE

Next, we present an experiment that learns relationship on “illumination condition changes” among
the Extended Yale Face Database B (Georghiades et al., 2001). The Extended Yale Face Database
B contains 16128 images of 28 human subjects under 9 poses and 64 illumination conditions. We
extracted four illumination conditions (source of illumination: left, front, right, top) of each subject
to form {x(i,j) | i∈ [1..28], j∈ [1..4] }. Examples of face images are shown in Fig. 16a, where we
center-cropped, resized to 64× 64, and normalized pixel values to be within [0, 5]. We constructed
a dataset XFl where each datapoint (a(i),b(i)) represents a subject with different illumination
conditions (lightings):

XFl = { (a(i) = x(j,k),b(i) = x(j,l)) | j ∼ U([1..28]), k ∼ U([1..4]), l ∼ U([1..4] \ k) }.
Like the “learning undirected emotional changes” example presented in appendix B.2.1, we apply

VRL to XFl to learn about the “undirected illumination changes” between (a(i),b(i)) irrespective of
the subject, i.e., “left→right” = “right→left” and simply denoted as “left-right”. In this case, there are
six different illumination changes between (a(i),b(i)) in XFl : “left-right”(“L-R”), “front-top”(“F-
T”), “left-front”(“L-F”), “left-top”(“L-T”), “front-right”(“F-R”), “right-top”(“R-T”). We trained VRL
on XFl with the exact same model and training setup as used in appendix B.2.1 and then used the
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Figure 16: Learning illumination condition changes among the Yale face dataset: (a) examples of
subjects with different illumination condition (source of illumination): left, front, right, and top;
(b) scatter plot of the relational property (showing only the mean µ) inferred by the approximated
posterior (relationship labels: O: “left-right”, ♦: “front-top”, #: “left-front”, +: “left-top”, ×:
“front-right”, 2: “right-top”).

approximated posterior qφ( z | a,b ) to infer the relational property of XFl . The inference result is
shown in Fig. 16b where we can see that VRL correctly identifies four relationships (“L-T”, “R-T”,
“F-R”, “L-F” each represented by a distinct cluster in Fig. 16b) but collapses “F-T” and “L-R” into
a single indistinguishable cluster. At first glance, this counterintuitive result—collapsing of “F-T”
and “L-R”—seems to indicate that VRL was not able to learn meaningful representations for “F-T”
and “L-R”; however, there is an elegant and logical explanation that justifies this unexpected result.
Upon closer examination, we argue that it is indeed possible to combine the relationships “F-T”,
“L-R” without loss of information. In fact, we can give the combined relationship a meaningful
name—“Opposite direction of illumination condition” or “Oppo.” for short (in this interpretation it is
more intuitive to rewrite “front” as “down”). With the newly formed compressed set of relationships
Rc = {“L-T”, “R-T”, “F-R”, “L-F”, “Oppo.”}, it is easy to see that Rc is a valid set of relationships
that fully and unambiguously characterizes the data (thus no loss of information) since: 1. any
(a(i),b(i)) can be characterized by one and only one relationship in Rc; 2. for any given a(i),
each compatible relationship in Rc applied to a(i) leads to a unique b(i). And while we lost the
identifiability of “F-T” and “L-R”, combining them into “Oppo.” is consistent with the relational
learning goal—“Oppo.” represents a relative relationship that does not depend on the illumination
condition (absolute property) of each individual image. We stress that the proposed VRL method
is not always guaranteed to learn a compact set of decoupled relationahips, and we will leave the
investigation of this idea to a future work. Finally, we note that although the initial expection of
learning a complete set of relationships is certainly reasonable and intuitive, it is quite surprising
and unexpected that VRL is capable of discovering—in a completely unsupervised manner—a
non-obvious set of relationships that is equally valid, and yet more compact.

To summarize the Yale face experiments presented in appendix B.2, we make the following two
observations. First, when comparing our results with existing unsupervised leanring methods on
face images (Song et al., 2007), we can see that existing methods cluster face images by its absolute
property (e.g., subject identity, individual emotion, individual illumination condition, etc.) while
the proposed VRL method clusters images by relationships (e.g., emotional change, illumination
condition change). Second, it is worth noting that VRL does not learn the facial expression or
illumination condition for each of (a(i),b(i)) independently and then classify them based on their
difference, but instead directly learns the emotional/lighting relationship between (a(i),b(i)).
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C ABLATION STUDY ON RPDA

In this work, we introduced relation-preserving data augmentation (RPDA) as a practical data
augmentation strategy for overcoming the information-shortcut problem—an unique overfitting
problem introduced by VRL (see Section 3.3). In order to evaluate the contribution of RPDA, we
performed ablation study on the paired MNIST dataset X constructed in see Section 5.1. First,
recall that in Section 5.2 we constructed RPDA functions D with image rotation augmentations and
optimized the following lower bound estimator (cf. Eq. (7)):

L̃(i)
RPDA =

1

L

L∑
l=1

log pθ(b
(i) | a(i), z(i,l) ) + log pθ( z

(i,l) )− log qφ( z
(i,l) | a′(i),b′(i) ), (16)

where z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ), ε(i,l) ∼ p( ε ),

(a′
(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R).

In the first ablation study, we experimented with removing RPDA from the VRL training, which
amounts to optimizing with the original lower bound estimator L̃(i) in Eq. (6). With the rest of the
training setup remained unchanged (see appendix A), we trained VRL on X without RPDA and used
the trained model to infer the relational property of a hold-out dataset; the inference result is shown
in Fig. 17a. In the second ablation study, we repeated the VRL training, but instead of following the
proposed RPDA strategy, we applied RPDA functions D in a conventional data augmentation routine.
More specifically, we optimized the lower bound L̃(i) in Eq. (6) over a minibatch of data augmented
with D, X′M = { (a′(i),b′(i)) | i∈ [1..M ] }, which leads to optimizing with the following lower
bound estimator:

L̃(i)
DA =

1

L

L∑
l=1

log pθ(b
′(i) | a′(i), z(i,l) ) + log pθ( z

(i,l) )− log qφ( z
(i,l) | a′(i),b′(i) ), (17)

where z(i,l) = g(ε(i,l),a′
(i)
,b′

(i)
, φ), ε(i,l) ∼ p( ε ),

(a′
(i)
,b′

(i)
) = d(a(i),b(i); r(i)), r(i) ∼ U(R).

With the rest of the training setup remained unchanged (see appendix A), we trained VRL on X with
maximizing L̃(i)

DA and used the trained model to infer the relational property of a hold-out dataset; the
inference result is shown in Fig. 17b. Comparing the results from both ablation studies, shown in
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Figure 17: Scatter plots of the relational properties (showing only the mean µ) generated from VRL
ablation studies (relationship labels: # : 0◦, O : 72◦, + : 144◦, × : 216◦, ♦ : 288◦): (a) relational
property inferred by a VRL model that was trained without RPDA; (b) relational property inferred by
a VRL model that was trained with applying RPDA functions D in a conventional data augmentation
routine.

Fig. 17, with inference result from VRL training with RPDA, shown in Fig. 4a, we can make the
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following observations: first, RPDA is a critical component necessary for VRL to learn a meaningful
and decoupled relational property, especially when flexible function approximations such as deep
neural networks are used; second, by looking at the difference between L̃(i)

DA and L̃(i)
RPDA (observe that

L̃(i)
DA applies RPDA functions D to every term in Eq. (17), whereas L̃(i)

RPDA applies D only to selected
terms in Eq. (16) according to the RPDA strategy), we can draw the conclusion that the improvements
brought by RPDA (and its key innovation) comes not from what data augmentation functions are
applied but how they are applied.

D ADDITIONAL REMARKS

D.1 REMARKS ON VRL-PGM

The central idea of the proposed VRL method is to encapsulate the relational learning problem with a
probabilistic graphical model—VRL-PGM—and then formulate various relational processing tasks
as performing inference and learning in the graphical model. Here we discuss aspects of the original
relational learning problem (see Section 2) that differ from the proposed VRL-PGM (see Section 3.1).
First, the original problem specifies that the relational property be decoupled from both a’s and b’s
absolute properties; however, the latent variable z that is used to represent relational property in
VRL-PGM is only independent of a but not b. Second, we note that the original problem is inherently
undirected with no cause-effect relationship between a and b, whereas VRL-PGM is based a directed
acyclic graph (DAG) that artificially introduces conditional dependency between a and b. However,
we argue that the application of VRL does not require the true conditional dependency between (a,b)
be known in advance only that it is maintained consistently throughout learning and inference, i.e.,
VRL can be applied in the same way to learn about the relational property between (b,a), where
we swap a and b. The above-mentioned two discrepencies represent the compromises we made
with adopting VRL-PGM in exchage for a riorous and tractable method for learning a decoupled
relational property. We can futher view VRL’s optimization challenges—deterministic-mapping
and information-shortcut (introduced in Section 3.3)—as the consequence of these compromises:
deterministic-mapping can viewd as caused by the causal relationship VRL-PGM introduced between
a and b, and information-shortcut can be viewed as caused by the causal relationship VRL-PGM
introduced between z and b.

D.2 REMARKS ON INDEPENDENCE BETWEEN z AND a

Recall that the assumption of independence between z and a is central to the VRL learning of a
decoupled relational property, and in this work we rely on the construction of VRL-PGM to support
such assumption; however, the learning objective (Eq. 4) derived from VRL-PGM does not explicitly
force z to be independent of a (nor penalize learning a dependent z). Here, we explain how optimizing
Eq. 4 affects the learning of independent z and a. The main learning objective of VRL is described in
Eq. 4, where we can further dissect its various terms and observe that the learning is heavily guided
by maximizing the likelihood term log pθ(b

(i)|a(i), z ) since this is the only term that is constrained
by the data while all other terms in Eq. 4 can be viewed as regularization on the unobserved z. Next,
when maximizing log pθ(b

(i)|a(i), z ) we are only learning to predict b(i) from a(i) and z(i); and
since a(i) is already been conditioned on, there is no incentive for z(i) to learn redundant (dependent)
information from a(i). This effect is further “encouraged” when the learning objective Eq. 4 also
includes additional regularization terms on z for learning a compact representation that “squeeze-out”
any redundant information that does not help with predicting b(i). In the information flow diagram
shown in Fig. 2a one may argue that since a(i) also propagate information through the latent variable
z it may introduce dependency between a and z; however, the information propagated from a(i)

through z(i) is mainly used to maximize the likelihood term for predicting b(i), and since there is
already a direct propagation path from a(i) to b(i) (as part of the likelihood function pθ(b(i)|a(i), z ))
there is, again through regularization on z, no incentive for z to carry redundant information from a
(only decoupled relationship information derived from a and b). In short, while there are no explicit
penalties on learning dependent z and a in VRL’s learning objective, the independence is naturally
encouraged through the interplay between the different terms in Eq. 4. This effect is also corroborated
by our experimental results where we can see that VRL can indeed learn a decoupled (independent)
relational property z through optimizing Eq. 4.
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Ideally, the learning of independent z and a can be achieved through VRL’s learning mechanism
discussed above; however, in practice there may be numerous reasons that could cause this to fail,
such as insufficient training data, failure to reach the global optimum, non-identifiability of the
model, etc. Therefore, for pragmatic reasons, it may be desirable to explicitly safeguard against
introducing dependency between z and a. Here, we propose a straightforward extension to VRL
for achieving this goal: we can append any non-positive function that measures the dependency
between a and z with maximum attained when they are independent to Eq. (4) without invalidating
the lower bound. For example, we can append the negative mutual information between z and a,
−I(z,a) = −DKL(pθ( z,a ) ‖ pθ( z )pθ(a )), to Eq. (4) to obtain:

L(i) = Eqφ(z|a(i),b(i))

[
log pθ(b

(i)|a(i), z ) + log pθ( z )− log qφ( z|a(i),b(i) )
]
− I(z,a). (18)

And since I(z,a) ≥ 0 and I(z,a) = 0 if and only if z and a are independent, the addition of
−I(z,a) in Eq. (18) not only does not invalidate the original bound in Eq. (4), but it also does not
sacrifice the quality of the lower bound (z and a are independent in VRL-PGM). We will leave the
investigation of this idea to a future work.

D.3 REMARKS ON RPDA

Here we would like to comment on the practical applicability of the proposed RPDA stratey. More
specifically, we would like to convey the idea that in many practical problem settings, the RPDA
functions D can be designed without any knowledge of the underlying relational property. For
example, as we have explained in Sec. 3.3, in many computer vision applications, rotation invariant is
a desirable property for the learned model; for example, in spectral imaging applications, oftentimes
the orientation of the images are not preserved or not enforced (only that they are consistent between
the same paired images) (Ronneberger et al., 2015). In such problem setting, we can safely use
image rotation function for constructing D. Another example may be: for a discrete time-series
data a[t],b[t] that represent the input and output of a linear time-invariant (LTI) system (commonly
assumed in signal processing and control theory (Oppenheim & Schafer, 2009)), and we want to
learn a relational property that characterize the system’s impulse response. We have αb[t − τ ] =
αa[t− τ ], ∀α ∈ R, τ ∈ Z, and we can construct D with d(a[t],b[t];α, τ) = (αa[t− τ ], αb[t− τ ]),
α, τ ∈ R = R × Z. In all of the above examples, the construction of RPDA functions D reflects
our prior knowledge and belief of the underlying system and not based on the data relationships;
therefore, in many instances, RPDA can be designed without any knowledge of the underlying
relational property. However, we would also note that RPDA is not central to the theory of the
proposed method—VRL can be applied without RPDA—but rather a practical data augmentation
strategy for addressing a unique optimization challenge (information-shortcut) of VRL learning. In all
of our experiments, we find RPDA to be effective and crucial in overcoming the information-shortcut
problem (as illustrated in appendix C). But just like any data augmentation, this is problem dependent
and we advocate to start without RPDA and only apply it when suspecting information-shortcut
occurs.

D.4 REMARKS ON EXPERIMENTAL RESULTS

Here we would like to give an overall summary and make general remarks on the experimental
results we have presented in this work (included in Sec. 5 and appendix B). First, we proposed four
MNIST experiments that represent a diverse set of relational learning problems: decoupled relational
property (Sec. 5.1), coupled relational property (appendix B.1.1), multiple relational properties
(appendix B.1.2), and continuous relational property (appendix B.1.3). Although these experiments
are introduced with well-controlled ground-truth relationships (so that we can easily validate and
interpret the results), the application of the proposed VRL method is completely unsupervised without
any prior knowledge of the underlying relationships. Furthermore, we deliberately design and
successfully solve all four MNIST tasks using the exact same model and training setup despite each
experiment represents a very different relational learning scenario (discrete vs. continuous, coupled
vs. decoupled). In addition, we presented two Yale face tasks with high-level perception relationships:
change of emotions (appendix B.2.1), and change of illumination conditions (appendix B.2.2). Again,
the application of VRL to the two Yale face tasks is completely unsupervised and we deliberately
design and successfully solve these two tasks using the exact same model and training setup.
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When comparing our model and training setups between the MNIST and Yale face experiments, their
differences can all be attributed to the need for accommodating different data types, e.g., increasing
nework size for larger face images (vs. smaller MNIST images), modifying learning objective to
adapt real-valued Yale dataset (vs. binay valued MNIST dataset), and not for accomodating different
relationships. Taking this into consideration, our results shows that we have solved both class of
problems with the exact same principled method despite each class of problems represents a very
different kind of relationships (the relationships in MNIST are geometric whereas the relationahips
in Yale are high-level perception, e.g., sentiment, external environmental factors). We believe our
results further demonstrates that the proposed VRL method is robust, stable, and generalizable to
many different relationships.
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