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Abstract
Code Sensitivity refers to the ability of Code001
LLMs to recognize and respond to details002
changes in problem descriptions. While cur-003
rent code benchmarks and instruction data fo-004
cus on difficulty and diversity, sensitivity is005
overlooked. We first introduce the CTF-Code006
benchmark, constructed using counterfactual007
perturbations, minimizing input changes while008
maximizing output changes. The evaluation009
shows that many LLMs have a more than 10%010
performance drop compared to the original011
problems. To fully utilize sensitivity, CTF-012
Instruct, an incremental instruction fine-tuning013
framework, extends on existing data and uses014
a selection mechanism to meet the three di-015
mensions of difficulty, diversity, and sensitivity.016
Experiments show that LLMs fine-tuned with017
CTF-Instruct data achieve over a 2% improve-018
ment on CTF-Code, and more than a 10% per-019
formance boost on LiveCodeBench, validating020
the feasibility of enhancing LLMs’ sensitivity021
to improve performance.022

1 Introduction023

Code generation is essential for enhancing soft-024

ware engineering efficiency (Zhu et al., 2024b),025

and also a crucial measure of intelligence (Ope-026

nAI, 2024). To increase code capabilities, Code027

Large Language Models (Code LLMs) are de-028

veloped by pre-training on large-scale code cor-029

pora (Hui et al., 2024; DeepSeek-AI et al., 2024).030

Successful generation requires Code LLMs to ac-031

curately map between requirements and algorith-032

mic logic (MacLennan, 1986; Pressman, 2005). A033

small mismatch will cause the whole task to fail. In034

Figure 1, changing the description from ‘add one’035

to ‘double one’ alters the underlying algorithmic036

logic entirely (see detailed explanation in the figure037

caption). As such, the model’s sensitivity to detail038

becomes a crucial measure of its ability.039

However, the ability of Code LLMs to cap-040

ture and address such fine-grained differences re-041

Sensitivety

DiversityDifficulty

… add one to exactly 
one of number, make 
the biggest product of 
an array possible… 

prod = math.prod(nums)

… double one of 
number, make the 
biggest product of an 
array possible… 

prod = math.prod(nums)

add double 

min_num = min(nums)
ans = prod + prod/
min_num

Original Problem

Solution

ans = prod * 2

Conterfactual Problem

Solution

Figure 1: While diversity and difficulty have been ex-
plored, sensitivity to problem details remains underex-
plored. In the original problem, the smallest number
should be increased, whereas in the counterfactual ver-
sion, no matter which number is modified, the result
remains the same—double the cumulative sum.

mains unclear. Existing code generation bench- 042

marks primarily emphasize difficulty and diversity. 043

For difficulty, tasks range from basic functions to 044

competition-level algorithms (Liu et al., 2023; Du 045

et al., 2024; Jain et al., 2024). For diversity, bench- 046

marks cover data science, system development, 047

and interdisciplinary applications and so many do- 048

mains (Zhuo et al., 2024; Lai et al., 2023a; Hu et al., 049

2024; Liu et al., 2024). However, these benchmarks 050

evaluate LLMs on isolated tasks without assessing 051

their sensitivity to subtle differences in requirement 052

details. This limitation extends to code instruction 053

fine-tuning. Most approaches augment training 054

data along the axes of difficulty and diversity: (1) 055

by incrementally introducing constraints to synthe- 056

size harder tasks (Luo et al., 2024b; Wang et al., 057
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2024a),(2) by rewriting or drawing inspiration from058

real-world code to produce more diverse samples059

and broaden domain coverage (Wei et al., 2024;060

Luo et al., 2024a; Wei et al.; Yu et al., 2024). In061

contrast, constructing datasets that exploit models’062

sensitivity remains underexplored.063

In response to these gaps, we first introduce the064

CTF-Code benchmark. The inspiration is from065

counterfactual studies in NLP (Chen et al., 2023;066

Sachdeva et al., 2024; Wang et al., 2024c), which067

make minimal changes to inputs to produce out-068

puts that differ substantially. Concretely, some069

variations of original problems are sampled at first.070

Then, algorithm experts write solutions of solvable071

variations and select CTF problems which most072

preserve superficial task similarity and alter the al-073

gorithmic logic. After, the test inputs of original074

problems are executed on CTF solutions to gener-075

ate new outputs to construct CTF test cases. Last,076

mainstream LLMs are evaluated on the complete077

CTF-Code benchmark. Experiments reveal that078

state-of-the-art models like GPT-4o and Qwen2.5-079

Coder (Hurst et al., 2024; Hui et al., 2024) experi-080

ence performance drops exceeding 10% on CTF-081

Code compared to original problems, highlighting082

significant ‘blind spots’ in detail sensitivity.083

Furthermore, we introduce the CTF-Instruct084

pipeline for three-dimensional data construction.085

Starting from an existing dimension (such as dif-086

ficulty), CTF data are generate to cover the sensi-087

tivity dimension. Then, a selection mechanism is088

applied to the sensitivity-enhanced data to complete089

the third dimension (e.g., diversity). Finally, the090

original base-dimension data are merged with the091

selected sensitivity data to obtain a dataset that is092

complete across all three dimensions. Experiments093

show that LLMs fine-tuned with CTF-Instruct data094

achieve a 2.6% improvement on CTF-Code, and095

gains on other benchmarks such as HumanEval+096

(+4.2%), BigCodeBench-hard (+5.2%), and Live-097

CodeBench (+11.6%) (Liu et al., 2023; Zhuo et al.,098

2024; Jain et al., 2024), confirming the help of099

sensitivity to code abilities.100

Our contribution is summarized below:101

• We propose CTF-Code, the first benchmark fo-102

cused on sensitivity, and the evaluation results103

expose the shortcomings of mainstream Code104

LLMs in understanding requirement details.105

• We design a three-dimensional-completed106

data generation framework, starting from one107

dimension, completing sensitivity by genera- 108

tion and the last dimension by selection. 109

• LLMs trained with CTF-Instruct data achieve 110

substantial performance improvements across 111

CTF-Code and other benchmarks compared 112

to existing methods. 113

2 Related Work 114

Code Benchmark Existing code generation 115

benchmarks primarily include two dimensions: (1) 116

Difficulty: from function-level (Austin et al., 2021; 117

Chen et al., 2021), to class-level (Du et al., 2023), 118

and to contest-level (Jain et al., 2024); (2) Diver- 119

sity: BigCodeBench (Zhuo et al., 2024) focuses 120

on Python package usage, DS-1000 (Lai et al., 121

2023b) targets data science, while MultiPLE (Cas- 122

sano et al., 2023) evaluates multilingual code gen- 123

eration. However, these benchmarks do not address 124

sensitivity, which evaluates a model’s ability to han- 125

dle subtle but critical changes in task requirements. 126

This differs from robustness, which measures the 127

model’s ability to produce stable outputs under non- 128

critical changes (e.g., noise or rephrasing) in in- 129

put (Li et al., 2025; Lin et al., 2025; Wang et al., 130

2023a) In this work, the first sensitivity benchmark, 131

CTF-Code is introduced. 132

Code Instruction Tuning Datasets Most meth- 133

ods on code instruction tuning data augmenta- 134

tion (Wang et al., 2023b) mainly focus on difficulty 135

enhancement and diversity expansion. Luo et al. 136

(2024b); Xu et al. (2023) increase the difficulty of 137

data by adding constraints to seed data (Chaudhary, 138

2023). Considering that the seed data may limit the 139

diversity of generated data, Wei et al. (2024); Yu 140

et al. (2024) rewrite real-world data to better align 141

real distributions, thereby avoiding model bias and 142

enhancing the diversity. To combine both dimen- 143

sions, existing approaches typically adopt multi- 144

stage training (Wei et al., 2024; Wang et al., 2024a) 145

or data mixing strategies (Zheng et al., 2024; Yu 146

et al., 2024; Wu et al., 2024b). While these meth- 147

ods have achieved significant success, the usage 148

and combination of sensitivity is overlooked. 149

Counterfactual in NLP Counterfactuals in NLP 150

aim to explore the model’s output variation pat- 151

terns through minimal input perturbations (Robeer 152

et al., 2021; Nguyen et al., 2024; Sachdeva et al., 153

2024; Wang et al., 2024c). Unlike adversarial at- 154

tacks, which introduce subtle, malicious inputs to 155
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Choose an index i in the string, and let c be
the character in position i. 

Delete the closest occurrence of c to the left
of i (if any) and the closest occurrence of c to
the right of i (if any).

…minimize the length of s by performing the
above operation any number of times.

Delete all occurrences
of all c from the string.

…minimize the length
of s by performing the
above operation once.

Delete the closest
occurrence of a different
character to the left of i
(if any) and ...

Original Problem

Counterfactual Problems

...Delete the farthest
occurrence of c...

Check & Fix

Original Solution
class Solution:
    def minimizedStringLength(self, s: str) -> int:
        # The minimized string will have at most one occurrence of each character.
        # So, we can simply return the number of unique characters in the string.
        return len(set(s))

Counterfactual Solutions
from collections import Counter
freq = Counter(s)
return min(freq.values())

is unsolvable / too difficult/ ... 

return len(set(s))

from collections 
import Counter
freq = Counter(s)
max_c = max(freq.va
lues())
return len(s) - max_c

Original Testcase

Calculate
Similarity

Input
"aaabc"

"cbbd"

"dddaaa"

Output
"3"

"3"

"2"

Counterfactual 
Testcase

Output
"1"

"1"

"3"

Figure 2: The pipeline of CTF-Code benchmark construction. First, original problems are sent to LLMs to sample
semantic permutations on the problem description. Algorithmic experts will carefully check the CTF problems and
decide to drop or fix them to generate CTF solutions. After selecting the most suitable CTF problem, its testcases
are constructed by executing its solution on the inputs from the original testcases.

mislead the model into producing incorrect or un-156

safe outputs (Jenko et al., 2025), counterfactuals157

refer to make small but critical semantic changes158

in the input and prompt the model to detect and159

adjust output accordingly. Existing studies in the160

code domain mainly focus on local modifications161

to code (Hooda et al., 2024), such as flipping con-162

ditional statements or modifying logical operators,163

testing the model’s ability to differentiate and un-164

derstand counterfactual code (Gu et al., 2024; Cito165

et al., 2022). To the best of our knowledge, no prior166

work has leveraged counterfactual perturbations at167

the problem level to study models’ sensitivity to168

requirement details.169

3 CTF-Code Benchmark170

3.1 Formal Definition171

Evaluation for code tasks is test-driven, with its ba-172

sic unit formalized as a tupleP = (Q,T, S), where173

Q is the problem description, T = {ti}ni=1 is a set174

of test cases, with each ti = (inputi, outputi), and175

S is a solution that satisfies ∀ti ∈ T, S(inputi) =176

outputi. Based on this, the goal of generating coun-177

terfactual problem can be formulated as an opti-178

mization problem. Given the original problem P ,179

generate P ′ = (Q′, T ′, S′) such that180

maximize
Q′,S′

DS(S, S
′)

subject to DQ(Q,Q′) ≤ ϵ
(1)181

where DQ is the description similarity function,182

DS is the solution difference function, and ϵ is the183

Acc. Problems Length

Humaneval 96.3 164 71.6
LCB-Easy 95.6 215 210.5

Table 1: Comparison between HumanEval and Live-
CodeBench (LCB) -Easy. Acc. represents the Pass@1
score of o1-mini on both benchmarks. Problems indi-
cates the number of problems, Length represents the
average word count per problem description.

similarity threshold. We use the normalized Lev- 184

enshtein distance (Levenshtein et al., 1966) as DQ, 185

and define DS as one minus the cosine similarity 186

between code embeddings. This optimization ob- 187

jective ensures that Q′ is highly similar to Q, while 188

S′ and S differ significantly. After obtaining Q′ 189

and S′, the new test cases T ′ are constructed. 190

3.2 Benchmark Construction 191

As shown in Figure 2, the construction of CTF- 192

Code follows a three-phase paradigm: First, select 193

problems that have a large semantic space as the 194

original problem P . Then, apply semantic pertur- 195

bations to generate CTF description Q′ and derive 196

the CTF pairs Q′, S′ based on the optimization ob- 197

jective. Finally, construct the new test cases T ′ 198

while ensuring no data bias. 199

Original Data Selection The easy subset of Live- 200

CodeBench (LCB) (Jain et al., 2024) is selected 201

as P . Table 1 shows that LLMs can solve nearly 202

all problems in this subset, minimizing the impact 203
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of difficulty. Additionally, the problem length is204

210.5 words, could give more semantic space for205

perturbations. Furthermore, algorithmic competi-206

tion problems require participants to carefully con-207

sider every detail and boundary condition, where208

even small deviations can lead to wrong answers.209

This aligns perfectly with the goal of sensitivity.210

CTF Pair Generation This step aims to gener-211

ate Q′ and S′. Given the complexity, a heuristic212

generation-selection strategy is proposed to approx-213

imate the solution of Equation 1. Based on Q, sev-214

eral LLMs sample K candidates {Q̂′
k}Kk=1 using215

the prompt in Figure 15 in Appendix C. Specif-216

ically, after comparing to other LLMs, the best-217

performing LLMs, including gpt-4o, gpt-4turbo,218

and o1-mini, each generate five samples, as fur-219

ther sampling primarily yielded duplicates. Af-220

ter reviewing all Q̂′
k, we empirically set ϵ =221

0.13, which balances formal similarity with al-222

lowance for semantic divergence. Only Q̂′
k sat-223

isfied DQ(Q, Q̂′
k) ≤ ϵ are retained.224

However, retained Q̂′
k may be unsolvable or too225

difficult. Four competition programmers are invited226

to annotate, each of whom has at least a bronze227

medal in ICPC 1. The detailed annotation process228

is in Appendix B. Annotators are required to read229

Q̂′
k and judge:(1)solvability, (2) if it is a CTF prob-230

lem (filter problems which different descriptions231

yielding identical solutions), and (3) if its diffi-232

culty changed from Q′. Prior to the annotation, a233

10-problem trial is conducted to ensure annotator234

consistency. Each problem is then independently235

annotated by two programmers. Where annota-236

tions disagree, a third annotator provides a new237

judgment, and the outcome is determined by major-238

ity vote. For the passed Q̂′
k, annotators then write239

Ŝ′
k. The pair (Q̂′

k, Ŝ
′
k) that maximizes Equation 2240

is selected as (Q′, S′).241

argmax
(Q̂′

k,Ŝ
′
k)

[
DS(S, Ŝ

′
k)− λDQ(Q, Q̂′

k)
]
. (2)242

λ is a scaling factor that ensures DS and DQ can243

compute. It is set as 1.2. Through this heuristic244

rule, we obtain an approximate optimal Q′ and S′.245

CTF Testcase Completion To ensure the per-246

formance change of LLMs latter only from details247

change between (Q,Q′), a dual-constraint test case248

generation mechanism is designed to avoid the in-249

fluence from (T, T ′). Input Space Inheritance:250

1International Collegiate Programming Contest

We retain the original testcases’ input distribution, 251

i.e., T ′
input = Tinput = {inputi}ni=1. Output Space 252

Reconstruction: The expected output is gener- 253

ated based on the new solution S′, i.e., for each 254

inputi ∈ Tinput, output′i = S′(inputi). Finally, 255

T ′ = {(inputi, output′i)}ni=1 is constructed. The 256

data distribution interference is eliminated by fix- 257

ing the input variables, and the correctness of the 258

test case is ensured by the correctness of S′. Addi- 259

tionally, fixed inputs enable backtracking when the 260

LLM behavior differs between Q,Q′. 261

Compared to the traditional code benchmarks 262

that evaluate isolated problems, CTF-Code intro- 263

duces paired data with only details differences to 264

enable analysis of sensitivity for the first time, as 265

shown in Figure 11 and Figure 13. Ultimately, 266

CTF-Code curated a set of 186 problems. 267

4 CTF-Instruct 268

Unlike difficulty and diversity, detail sensitivity has 269

not been explored in existing instruction datasets. 270

To address the gap, an incremental data construc- 271

tion approach, CTF-Instruct, is proposed. Starting 272

with datasets that satisfy a single dimension (e.g., 273

difficulty), sensitivity data are generated through 274

counterfactual perturbations. Then, a selection al- 275

gorithm based on the third dimension (diversity) is 276

applied, ultimately constructing a dataset that cover 277

all three dimensions. 278

4.1 Generation 279

We first tried generating paired sensitivity data 280

from scratch, but we found that the generated prob- 281

lems are too easy and repetitive. As the existence of 282

high-quality data like Evol-Instruct (110k), which 283

satisfies the difficulty dimension, incrementally ex- 284

panding the data is more effective and efficient. 285

Prompt 16 with gpt-4-turbo is applied to gener- 286

ate sensitivity pair Dsens based on the difficulty 287

data Ddiff . After generation, duplicates found in 288

existing benchmarks are removed to avoid data 289

leakage following Luo et al. (2024b). 290

The 102k generated Dsens are evaluated on diffi- 291

culty and diversity. For difficulty, we follow Wang 292

et al. (2024b) and use their trained scorer to assign 293

1–5 scores to Q ∈ Ddiff , Q′ ∈ Dsens. 99% of the 294

absolute score difference of Q′ and its seed Q is 295

less than 1 in Table 2, indicating minimal difficulty 296

shift. For diversity, we compute the cosine similar- 297

ity between embeddings of (Q,S) and (Q′, S′), ex- 298

tracted by DeepSeek-Coder 1.3B (Guo et al., 2024). 299
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Figure 3: The evaluation results of Code LLMs on CTF-Code.

Percentile Similarity Difficulty Difference

25% 0.99 0.00
50% 0.97 0.01
75% 0.92 0.14
95% 0.64 0.89

Table 2: Percentile values for the semantic embedding
similarity and difficulty difference distributions of origi-
nal and sensitive data. The Similarity column indicates
the percentage of values greater than the given threshold,
while the Difficulty Difference column represents the
percentage of values less than the given threshold.

The model is tuned on Code-Feedback (Zheng300

et al., 2024) for one epoch for alignment. Each301

embedding is the average of the final-layer token302

hidden states of S. As shown in Table 2, 75% of303

samples have similarity above 0.92. These results304

suggest that counterfactual generation preserves305

difficulty and diversity, and more importantly, that306

the sensitivity dimension is relatively independent307

of the other two dimensions.308

4.2 Selection309

Since Dsens is generated based on Ddiff , they nat-310

urally share similar diversity limitations. Directly311

merging them would amplify this bias. However,312

we can select a subset of Dsens that maximizes313

diversity relative to Ddiff . This introduces a distri-314

bution shift, partially mitigating the diversity defi-315

ciency. We use the semantic embeddings computed316

in Section 4.1, and apply the k-center greedy (Algo-317

rithm 1) to select the most diverse subset of Dsens.318

Notably, some outlier samples (meaningless or cor-319

rupted) exhibit extremely large semantic distances.320

These are excluded by sorting based on distance321

and removing the tail. We empirically set the subset 322

size |Dsub
sens| = 30k. By merging Dsub

sens with Ddiff , 323

we obtain the dataset CTF-Instruct that satisfies all 324

three dimensions. An example of this distributional 325

adjustment is shown in Figure 8 in Appendix A. 326

A similar process is applied when starting from 327

diversity data, Oss-Instruct (75k). After 73k sen- 328

sitivity data generated by gpt-3.5-turbo, we ap- 329

ply the difficulty scorer in Section 4.1 and retain 330

only the 10k-size subset with the highest difficulty 331

scores. After combined the subset with the Oss- 332

Instruct, we get CTF-Instructoss. In both cases, 333

sensitive data is first generated from the existing 334

dimension, and a selection algorithm is used to fill 335

the remaining missing dimension. 336

5 Experiment 337

5.1 CTF-Code Benchmark 338

Models We evaluate Qwen 2.5 Coder, Deepseek 339

Coder v1 & 2, OpenCoder, Qwen 2.5, Llama 340

3.1 & 3.3, GPT-4o (gpt-4o-2024-08-06), Claude 341

3.5 Sonnet (claude-3.5-sonnet-20240620), o1- 342

mini, o1-preview and Deepseek-R1 (Hui et al., 343

2024; Guo et al., 2024; Qwen et al., 2025; Zhu 344

et al., 2024a; Huang et al., 2024; Grattafiori et al., 345

2024; Guo et al., 2025). 346

Evaluation As shown in Figure 3, most LLMs 347

exhibit a significant performance drop on CTF- 348

Code, often exceeding 15%. Reasoning-oriented 349

LLMs such as R1 and O1 experience notably 350

smaller drops, suggesting a stronger ability to cap- 351

ture fine-grained variations in problem require- 352

ments. This gap is especially obvious in problems 353

that can be simplified or transformed. Reasoning 354

LLMs tend to abstract key properties to reformu- 355

late the problem, whereas other LLMs are more 356
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Base Model
EvalPlus LiveCodeBench BigCodeBench CTF-Code

HumanEval (+) All Easy Full Hard Ori CTF

DeepSeek
Coder 6.7B

DC-6.7B-Instruct 74.4 (71.3) 18.9 45.3 35.5 10.1 45.8 38.1
Wavecoder 75.0 (69.5) 18.9 46.0 33.9 12.8 47.7 39.2

Inversecoder 76.2 (72.0) 18.1 43.1 35.9 10.8 47.8 39.1
Magicoder 76.8 (71.3) 19.2 46.6 36.2 13.5 48.8 43.4
CTFCoder 78.7 (75.0) 21.4 53.3 37.6 14.2 52.8 44.5

CTFCodeross 71.3 (65.9) 18.3 46.6 37.0 12.2 51.4 43.1

Qwen2.5
Coder 14B

Evol 85.4 (79.3) 23.9 71.5 43.7 14.2 76.3 59.9
CTF 88.4 (80.5) 24.6 74.1 44.1 17.6 79.5 60.8

w/o select 85.4 (78.0) 24.1 72.8 44.2 16.2 76.4 60.2

Oss 84.1 (77.4) 20.6 61.8 42.0 12.2 75.5 58.6
CTFoss 86.0 (79.9) 22.3 67.9 42.5 18.9 78.2 60.0

w/o select 86.6 (80.5) 20.8 67.2 42.5 14.9 76.8 59.2

Table 3: Performance comparison of CTFCoder with other models. To avoid environmental discrepancies, the
official leaderboard results are presented. Only when results are missing, local testing are conducted. ‘w/o select’
means original data mix random selected sensitive data, without methods in Section 4.2.

likely to mimic the problem description, often be-357

coming misled by the counterfactual phrasing. For358

LLMs families such as Qwen2.5-Coder, we ob-359

serve that the sensitivity gap narrows with increas-360

ing model size, indicating a positive correlation361

between model scale and the sensitive ability. Inter-362

estingly, Claude-3.5-Sonnet even outperforms its363

original performance on CTF-Code, highlighting364

its strong generalization capabilities and practical365

robustness in code-related scenarios.366

To further understand these results, we analyze367

common failure cases. The most frequent error is368

that models fail to recognize the semantic change369

in the CTF variant and instead solve it as if it were370

the original problem. This may be due to that the371

original or similar problems exist in the LLM’s372

training data. Even when LLMs capture the details373

change, their performance often degrades on solv-374

able yet uncommon CTF variants. Common issues375

include incorrect ordering of logical operators in if376

statements, confusion between data structures (e.g.,377

lists and sets), and failure to handle boundary con-378

ditions. These problems are especially frequent in379

tasks that require case-by-case reasoning or involve380

numerous conditional branches.381

Overall, our findings suggest that current LLMs382

still have substantial room for improvement in sen-383

sitivity to details. Misinterpreting such details not384

only leads to incorrect solutions but also disrupts385

the generation process itself. Enhancing sensitiv-386

ity remains a crucial direction for advancing the387

performance and reliability of code LLMs. 388

5.2 Instruction Tuning 389

Setup CTFCoder and CTFCodeross are obtained 390

from using CTF-Instruct, CTF-Instructoss, respec- 391

tively, finetuned on Deepseek Coder 6.7B base for 392

3 epochs. Qwen 2.5 Coder 14B Base (Hui et al., 393

2024) is also tuned. During training, the batch size 394

is 512 and the sequence length is 2048. The initial 395

learning rate is 2e-5 with 10 warmup steps, and the 396

learning rate scheduler is cosine. 397

Baseline & Benchmark Other LLMs tuned 398

on Deepseek Coder 6.7B Base are compared, 399

including Deepseek Coder 6.7B Instruct (Guo 400

et al., 2024), Magicoder (Wei et al., 2024), Wave- 401

coder (Yu et al., 2024), and Inversecoder (Wu et al., 402

2024a). Qwen 2.5 Coder finetuned on the original 403

Evol-Instruct and Oss-Instruct are the baselines. 404

The benchmarks cover a range of difficulty lev- 405

els, including Humaneval(+) (Chen et al., 2021; Liu 406

et al., 2023), and LiveCodeBench (Jain et al., 2024). 407

Humaneval+ adds a lot of test cases to Humaneval 408

to cover corner cases. LiveCodeBench collects al- 409

gorithm problems from Online Judges and includes 410

three difficulty levels: easy, medium, and hard. 411

Since GPT-4-turbo’s training data ends in Decem- 412

ber 2023, we test LiveCodeBench questions after 413

January 2024. For diversity, BigCodeBench (Zhuo 414

et al., 2024) is selected for Python package usage, 415

and MultiPLE is for multilingual generation, in- 416
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Model C# C++ Java PHP TypeScript Bash JavaScript Avg

DC-6.7b-Instruct 67.7 66.5 69.0 46.6 70.4 41.8 73.9 62.3
Wavecoder 69.0 57.8 69.0 52.2 74.2 39.9 70.8 61.8
Inversecoder 69.6 68.3 63.9 41.6 72.3 43.3 73.3 61.8
Magicoder 67.7 69.6 65.8 44.7 69.2 41.1 72.0 61.4
CTFCoder 72.2 67.1 65.2 53.4 73.0 43.7 74.5 64.2

Table 4: Performance comparison of various LLMs on different programming languages in MultiPLE.

cluding C#, C++, Java, PHP, TypeScript, Bash, and417

JavaScript. Additionally, BigCodeBench selects418

high-difficulty sub-data to form a Hard subset.419

5.3 Results420

Table 3 shows the performance comparison be-421

tween CTFCoder and other LLMs. CTFCoder422

demonstrates consistent performance improve-423

ments across all benchmarks. Although previous424

models already cover difficulty and diversity and425

achieve strong performance, the addition of sensi-426

tivity acts like a further “activation”. CTFCoder427

shows significant improvements across all three428

dimensions. On sensitivity, it has a nearly 3%429

improvement on CTF-Code, indicating that CTF430

indeed helps the model pay more attention to de-431

tails. On difficulty, Humaneval+, BigCodeBench-432

Hard, and LiveCodeBench, CTFCoder achieves433

over 4%, 5%, and 11% performance improvements,434

respectively. On diversity, although CTF-Instruct435

is not explicitly designed for multilingual program-436

ming, it exhibits strong cross-language generaliza-437

tion. CTFCoder achieves the best performance on438

C#, PHP, Bash, and JavaScript in MultiPL-E, with439

a notable improvement of nearly 4% on C# and an440

average gain of 3% across languages in Table 4.441

Combined with results on BigCodeBench, these442

demonstrate that CTFCoder generalizes well across443

diverse domains and programming languages.444

CTF-Instruct, building upon the difficulty dimen-445

sion of Evol-Instruct, results in comprehensive en-446

hancement. This illustrates that generating sensi-447

tivity data using existing data as seeds not only448

preserves the original data dimensions but can even449

trigger further improvements.450

Even though CTFCodeross has a relatively small451

amount of SFT data, CTFoss helps it outper-452

form other models on LiveCodeBench-Easy and453

BigCodeBench-Full, reflecting the ‘activation’ ef-454

fect on diversity works, too. On Qwen 2.5 Coder455

14B, compare the baseline, random selection of456

CTF-Instruct data (‘w/o select’) and CTF generally457
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Figure 4: The change in model performance as sensitiv-
ity data joined into Evol-Instruct.

shows a progressive performance improvement, 458

highlighting the effectiveness of sensitivity data 459

and the importance of data selection. 460

6 Discussion 461

There exists an optimal range for the amount of 462

sensitivity data. Figure 4 shows the performance 463

trend when sensitivity data is gradually mixed into 464

Evol-Instruct (110K), with the performance evolv- 465

ing in three stages: an initial decline, a mid-stage 466

increase, and a final decline. The initial drop in- 467

dicates that a certain amount of sensitive data is 468

required to have an effect. The subsequent rise fol- 469

lowed by a decline suggests that there is an upper 470

limit for sensitivity data, confirming our observa- 471

tion that directly merging sensitivity and original 472

data dimensions exacerbates the lack of the third 473

dimension. Figure 7 in Appendix A also shows 474

the results for Oss-Instruct (75k). However, it does 475

not exhibit an initial performance drop. This may 476

be because the diversity-oriented data is relatively 477

easy to learn, and thus the addition of sensitive data 478

does not introduce huge interference. However, 479

when too much sensitive data is added, a decline 480

similar to that observed before emerges. 481

The effectiveness of the selection strategy is 482
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Figure 5: The performance change brought by the selec-
tion strategy on Evol-Instruct and Oss-Instruct. The
darker shade in Humaneval represents Humaneval+,
while in LCB, the darker shade represents LCB-All,
and the lighter shade represents LCB-Easy.

Epoch Strategy HE (+) LCB (Easy)

2

2+0 74.4 (69.5) 18.5 (46.8)
1+1 79.9 (75.0) 21.0 (51.8)

2+0 65.9 (61.0) 16.0 (40.4)
1+1 66.5 (61.6) 18.8 (46.9)

3

3+0 76.8 (72.6) 18.6 (46.4)
2+1 76.8 (73.2) 20.7 (51.3)

3+0 65.2 (59.8) 17.0 (42.5)
2+1 68.3 (62.2) 19.0 (47.2)

Table 5: The results of continual training with CTF.
Epoch is the total number of training epochs, and ‘x+y’
indicates that the model is first trained for x epochs
on the original data, followed by y epochs on CTF-
Instruct. HE represents Humaneval, and LCB refers to
LiveCodeBench-All, with ‘Easy’ inside the parentheses.

universal. Table 3 and Figure 5 compare the483

performance of different models and data using484

the selection strategy versus not using it (‘w/o se-485

lect’) with the same amount of data. Regardless486

of the original data or base model, the strategy487

generally leads to performance improvement. Fig-488

ure 5 shows that, with Evol-Instruct, performance489

on LiveCodeBench improved by over 17%, while490

for OSS-Instruct, performance on Humaneval in-491

creased by more than 7% compared to ‘w/o select’.492

This validates our hypothesis that data offset can493

effectively address the third dimension.494

Under a fixed data amount, incorporating sen-495

sitive data still brings improvements. Since the496

amount of data used for training the open-source497

models in the main experiment differs, we designed498

a controlled experiment to verify the independent499

gain from the sensitivity dimension. In Figure 6,500

40

42

44

46

48
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16
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20

Data Composition

Pe
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LCB Easy (Oss Only)
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Figure 6: Performance changes with the increase in
diversity data (Oss only) and the gradual injection of
sensitivity into the diversity data (CTF Mixed).

when the total training data volume is fixed, re- 501

placing 40% of the original Oss-instruct data with 502

randomly selected CTF data led to a 20% improve- 503

ment on LCB-All, whereas simply increasing the 504

Oss-instruct data volume caused a 9.5% perfor- 505

mance drop. 506

Sensitivity can be directly used for continual 507

training. Inspired by Magicoder (Wei et al., 2024), 508

in Table 5, after training on the original data for 1 509

or 2 epochs, an additional epoch of CTF-Instruct 510

is added. Compared to continuing training with 511

the original data alone, this approach shows a sig- 512

nificant performance improvement. Particularly 513

on LiveCodeBench, every setup achieves a 10% 514

gain. This further demonstrates the orthogonality 515

of the sensitivity dimension with the other two di- 516

mensions, as its benefit does not depend on joint 517

training, allowing for efficient and convenient con- 518

tinual training to achieve gains. 519

7 Conclusion 520

Beyond diversity and difficulty, we introduced sen- 521

sitivity as a key dimension for evaluating and im- 522

proving Code LLMs. By constructing the CTF- 523

Code benchmark, we revealed the shortcomings 524

of existing Code LLMs in understanding details. 525

To futher utilize sensitivity, we propose the CTF- 526

Instruct framework, which generates sensitivity 527

data based on existing dimensions to cover sen- 528

sitivity and employs a filtering algorithm to shift 529

towards the third dimension. Experiments show 530

that CTF-Instruct data fine-tuned LLMs improves 531

performance on CTF-Code and outperform exist- 532

ing open-source models on general code generation 533

benchmarks, validating the universal benefits of 534

sensitivity optimization for Code LLMs. 535
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Limitation536

Due to constraints in training resources and man-537

power, our work was limited to constructing a rela-538

tively modest set of CTF-Code problems, without539

exploring the potential for more complex or chal-540

lenging examples. Additionally, the CTF-Instruct541

framework was not tested with multi-round genera-542

tion, nor was it evaluated on larger, more advanced543

LLMs. While our experiments demonstrate the ef-544

fectiveness of the proposed approach on the models545

tested, we acknowledge that the full potential of546

CTF-Instruct could be realized by scaling up the547

dataset and conducting more extensive fine-tuning548

experiments, particularly on models with greater549

capacity. Furthermore, the impact of training on550

larger models with more rounds of fine-tuning re-551

mains an open question and is a promising direction552

for future work.553

Ethical Considerations554

The data for the proposed methods is drawn solely555

from publicly accessible project resources on rep-556

utable websites, ensuring that no sensitive informa-557

tion is included. Moreover, all datasets and baseline558

models used in our experiments are also available559

to the public. We have taken care to acknowledge560

the original authors by properly citing their work.561
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Figure 7: The performance varies with the amount of
sensitivity data mixed into OSS-Instruct.

Appendix893

A Supplement For CTF-Instruct894

Algorithm 1 K-Center Greedy Selection

1: Input: Sensitivity data Dsens, needed data
amount τ , original data Dbase

2: Output: Set Dsub ⊆ Dsens of τ data
3: C ← Dbase ▷ Initialize centers
4: for i = 1 to k do
5: distx ← miny∈Dbase∪Dsub

||ϕ(x)−ϕ(y)||2
6: x← argmaxx∈Dsens distx ▷ Select the

farthest data x
7: Dsub ← Dsub ∪ {x} ▷ Update centers
8: Dsens ← Dsens − {x} ▷ Update data
9: end for

10: Return Dsub ▷ Return the set of τ data
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B Annotation Process895

B.1 Mission Background896

Today, large language models (LLMs) demonstrate897

remarkable capabilities in code generation. How-898

ever, it remains unclear how well LLMs can cap-899

ture the nuances of programming problem details,900

such as the distinction between “swapping any two901

characters” and “swapping two adjacent charac-902

ters”. Can LLMs accurately capture the differences903

between these two concepts? To investigate this,904

we propose to modify a set of original problems905

(LeetCode Easy Level) to construct a new set of906

counterfactual (CTF) problems. These CTF prob-907

lems are designed to have minor textual differences908

from the original problems while yielding signifi-909

cantly different solutions. To avoid the bias from910

test cases, we aim to ensure that CTF problems911

can utilize the test cases of the original problems912

without the need for reconstruction.913

B.2 Annotation Content914

The annotation process does not involve modifying915

the problem itself, as this task has already been916

done by the LLMs. Instead, the annotator’s role is917

simply to evaluate whether the modified problem918

is correct and aligns with our requirements.919

B.3 Construction Workflow920

To illustrate the construction workflow in detail, we921

will supplement it with an example.922

1. Read the original problem and briefly explain923

the meaning of the original problem. As924

shown in Figure 11, the meaning of the orig-925

inal problem is: "Given a string consisting926

of three letters ’abc’ in any order, can ’abc’927

appear after swapping any two characters at928

most once?"929

2. Read and understand the newly automatically930

generated problem. If there are errors in the931

Sample Input/Output or in the Test Cases,932

correct them.933

3. In comparison with the original problem, clas-934

sify the new problem into three types (Bad,935

Robust, CTF) and explain what changes have936

been made.937

• Bad. The new problem has a signifi-938

cant vulnerability (logical vulnerability939

or conflict) and can not be a complete940

problem.941

• Robust. The new problem has only a 942

different wording from the original ques- 943

tion, i.e. the algorithm used by the new 944

problem and the answer is exactly the 945

same. As shown in Figure 12, this is a 946

robust version of the original problem. 947

After understand the meaning of the new 948

problem, we can tell that the change is 949

"any substring can be reversed". 950

For the new problem, the total length 951

of cards is 3. Reversing a substring of 952

length 3 is equivalent to swapping the let- 953

ters in positions 1 and 3, and position 2 954

will not be changed during the reversing 955

process; reversing a substring of length 2 956

is equivalent to swapping adjacent letters 957

in the original question. The operation 958

of the original problem and the opera- 959

tion of the new problem are exactly the 960

same. Therefore, the answers are com- 961

pletely consistent and do not need to be 962

modified. 963

• CTF. The new problem has only a small 964

difference from the original problem, but 965

it changes the meaning of the original 966

problem, making the answers not exactly 967

the same as the original problem (With 968

not too much variation in difficulty, the 969

more variation in answers the better). 970

Figure 13 and Figure 14 are two exam- 971

ple of CTF problems. The change of 972

the former problem is "only two adjacent 973

characters can be exchanged", and the 974

change of the latter problem is "cards 975

become abcd". 976

4. Determine whether new test cases need to be 977

added to the CTF problem. For example, the 978

annotator should determine whether the range 979

of data of the new problem is fully consistent 980

with the original problem, and whether the 981

input of test cases of the original problem can 982

be directly executed by the CTF problem. 983

For the first CTF problem, there is no need 984

to add new test cases, while for the second 985

CTF problem, some new test cases should be 986

added. 987

B.4 Annotation Tabular 988

As shown in Table 6, we provide an example of the 989

annotation table that the annotator should fill in. 990
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## Question Content:

There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can do the following operation at most once:

- Pick two cards, and swap them. Is it possible that the row becomes $\texttt{abc}$ after the
operation? Output "YES" if it is possible, and "NO" otherwise.

Input

The first line contains a single integer $t$ ($1 \leq t \leq 6$) the number of test cases.

The only line of each test case contains a single string consisting of each of the three
characters $\texttt{a}$, $\texttt{b}$, and $\texttt{c}$ exactly once, representing the
cards.

Output

For each test case, output "YES" if you can make the row $\texttt{abc}$ with at most one
operation, or "NO" otherwise.

You can output the answer in any case (for example, the strings "yEs", "yes", "Yes" and "YES"
will be recognized as a positive answer).Sample Input 1:

6

abc

acb

bac

bca

cab

cba

Sample Output 1:

YES
YES
YES
NO
NO
YES

Note

In the first test case, we don't need to do any operations, since the row is already
$\texttt{abc}$.

In the second test case, we can swap $\texttt{c}$ and $\texttt{b}$: $\texttt{acb} \to
\texttt{abc}$.

In the third test case, we can swap $\texttt{b}$ and $\texttt{a}$: $\texttt{bac} \to
\texttt{abc}$.

In the fourth test case, it is impossible to make $\texttt{abc}$ using at most one operation.

## Starter Code:

## Test Cases:

"[{\"input\": \"6\\nabc\\nacb\\nbac\\nbca\\ncab\\ncba\\n\", \"output\":
\"YES\\nYES\\nYES\\nNO\\nNO\\nYES\\n\", \"testtype\": \"stdin\"}]"

Figure 11: An example of the original problem.

17



## Question Content:

There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in
some order. You can perform the following operation at most once:

- Choose any substring of the cards and reverse it.

Is it possible that the row becomes $\texttt{abc}$ after the operation? Output "YES" if it is
possible, and "NO" otherwise.

...

Figure 12: An example of the robust version of the original problem.

## Question Content:
There are three cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$ placed in a row in

some order. You can perform the following operation at most once:

- Pick two **adjacent** cards and swap them.

Is it possible that the row becomes $\texttt{abc}$ after the operation? Output "YES" if it is
possible, and "NO" otherwise.

...

Figure 13: The first example of the CTF version of the original problem.

## Question Content:

There are four cards with letters $\texttt{a}$, $\texttt{b}$, $\texttt{c}$, $\texttt{d}$ placed
in a row in some order. You can do the following operation at most once:

- Pick two cards, and swap them. Is it possible that the row becomes $\texttt{abcd}$ after the
operation? Output "YES" if it is possible, and "NO" otherwise.

...

Figure 14: The second example of the CTF version of the original problem.
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Original
Problem

Index

Original Problem
Meaning Model

New
Problem

Index

New Problem
Statement

Error

New
Problem

Type
Modification Add New

Test Cases

0 Given a string com-
posed of letters ’abc’
in any order, ex-
change any two char-
acters to see if string
’abc’ can occur.

o1-mini 0-0 Robust No

0 Given a string com-
posed of letters ’abc’
in any order, ex-
change any two char-
acters to see if string
’abc’ can occur.

o1-mini 0-1 CTF Only two adjacent
characters can be ex-
changed

No

1 Add 1 to a number
in an array of posi-
tive numbers, how to
maximise the array
product

o1-mini 1-1 CTF Replace a number in
an array with a num-
ber from 0-9, how to
make the array prod-
uct maximum

No

4 A string with a
phone number in
front and 2 digits in
the middle indicating
age. Find those over
60 years old

o1-mini 4-0 CTF How many people
are over 60 years
old and have unique
phone numbers?

Yes

4 A string with a
phone number in
front and 2 digits in
the middle indicating
age. Find those over
60 years old

o1-mini 4-1 CTF Age is hexadecimal No

Table 6: An example of the annotation table.
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C Prompt991

This section shows the prompt used to instruct992

LLMs to generate desired counterfactual question993

and instruction tuning data.994
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Please create a **counterfactual** version of the given original python programming problem.
Your goal is to **make a minimal change to the problem that leads to a significant change
in the solution**. Follow these detailed steps:

1. Carefully read and comprehend the original problem's context, conditions, constraints, and
requirements.

2. Identify a critical point in the original problem and think about a modification. **The
modification should be slight but cause a substantial change in the solution approach**.

3. Consider the influence of the modification. Ask yourself: Would it change data structures or
algorithms? Explain the influence before output the counterfactual problem. If the
influence does not impact the solution approach significantly, rethink another critical
point to modify. Repeat Step 2 and Step 3 until you find a point that satisfies the
requirement.

4. Modify the original problem based on the most influential point. The modified problem must
be consistent, clear, and requires a significantly different solution approach. Update the
sample inputs and outputs to match the new problem condition.

5. Output the counterfactual problem, ensuring the following format:
- Before the JSON format, include a section marker "###Counterfactual Problem".
- After the section marker, provide the counterfactual problem in the same JSON format as
the original, including "question_content", "starter_code", "public_test_cases", and
"metadata".

### Original Problem

Figure 15: The prompt used to generate CTF-Code Problem.

Refine a code generation task, initially presented as #Original_Sample#, which is a JSON dict
including three keys: a task instruction, and the output generated from the instruction.

Your task is to produce a #Modified_Sample# by altering the original task instruction in a way
that significantly changes the output, yet with minimal adjustments to the instruction
itself.

## Requirements:
1. **Minimal Instruction Change**: Achieve the code change with minimal alterations to the

instruction. The difference will be assessed through evaluated by the Rouge score,
indicating the high similarity in wording, sentence structure, and length to the original.

2. **No Trival Changes to Instruction**: Ensure the modification to the instruction is
semantic-relevant. Do not make trivial changes like adding or removing a word, changing the
order of words, or replacing synonyms.

3. **Maximal Code Change**: Your adjustments should lead to considerable changes in the output,
impacting aspects like algorithms, data structures, data and control flows, or boundary
conditions. The difference will be assessed through both the Rouge score and AST score,
indicating the output's functionality, implementation, and naming should substantially
diverge from the original.

4. **Encourage Trival Code Change**: The code output should be significantly different. Change
every aspect of the code, including the function name, variable names.

## Format:
1. Your output should be a #Modified_Sample# dict in **JSON format** as the #Original_Sample#

is.
2. Using **markdown code snippet syntax** in the instruction and the output.
3. Ensure all characters are **properly escaped** in the JSON string.

## Examples:
{seeds}

## Question:
- Original_Sample:

Figure 16: The prompt used to generate CTF-Instruct data.
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