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Abstract

User simulation has long been vital to AI research, enabling the development, training, and
evaluation of interactive systems without constant human participation. The recent emer-
gence of large language models (LLMs) has fundamentally transformed the capabilities and
approaches to simulating user behavior. This paper presents the first comprehensive survey
focused on LLM-based user simulation, examining how LLMs connect to and extend classical
approaches. We propose a taxonomy that organizes the field along four key dimensions:
Simulation Methodologies, User Behavior Modeling, Evaluation Frameworks,
& Application Domains. Our analysis reveals how LLMs have enabled unprecedented
advances in simulation fidelity, including more natural language variation, complex behav-
ioral patterns, and cognitive modeling that was previously unattainable. We systematically
compare LLM-based simulations with traditional rule-based and statistical approaches, high-
lighting their relative strengths and limitations across different application domains. This
survey identifies unique challenges posed by LLM-based user simulation, including issues of
controllability, alignment with specific user profiles, and the need for specialized evaluation
metrics. Our work bridges classical and emerging approaches, providing researchers and
practitioners with a unified framework for understanding and advancing this rapidly evolving
field.
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1 Introduction

User simulation has emerged as a critical technology in artificial intelligence research, enabling developers
to model, analyze, and evaluate interactive AI systems without constant human participation. While user
simulation has a rich history spanning decades, the advent of LLMs has fundamentally transformed both
the capabilities and methodologies in this field. This survey examines the intersection of LLMs and user
simulation, providing a comprehensive analysis of how these powerful models are revolutionizing our ability
to simulate human behavior.

The ability to simulate users serves multiple crucial functions in AI development: it enables researchers to
understand and model complex user behaviors, facilitates the generation of synthetic interaction data for
training, and allows for controlled, reproducible evaluation of interactive systems. Traditional approaches
to user simulation have relied on rule-based systems, statistical models, and early neural networks, each
with inherent limitations in capturing the complexity and naturalness of human behavior. LLMs, with
their unprecedented language capabilities and emergent reasoning abilities, offer solutions to many of these
limitations while introducing new possibilities and challenges.

Previous surveys have examined user simulation from different perspectives, including HCI frameworks
(Biswas & Robinson, 2010), information retrieval evaluation (Erbacher et al., 2022; Brajnik et al., 1987; Balog,
2021; Labhishetty, 2023), and dialogue system development (Schatzmann et al., 2006). However, these works
either predate the LLMs or address user simulation as part of broader discussions. Our survey specifically
focuses on how LLMs are transforming user simulation methodologies by integrating and extending classical
approaches rather than replacing them.

In this survey, we systematically categorize and analyze the landscape of LLM-based user simulation
through a carefully constructed taxonomy. We organize user simulation methodologies into three primary
categories—rule-based methods, statistical models, and neural approaches—with particular attention to how
LLMs have enhanced each approach. We examine the relationships between these methodologies across
dimensions of knowledge representation, learning mechanisms, generation approaches, and data requirements,
highlighting the unique capabilities that LLMs bring to each dimension.

Additionally, we explore how LLM-based simulation is being applied across different domains, from dialogue
systems to recommendation platforms and specialized applications in education and healthcare. We analyze
evaluation frameworks for assessing simulation fidelity and effectiveness, providing researchers with practical
guidance for developing and validating user simulators.

Looking beyond current applications, we discuss the broader implications of LLM-based user simulation for
AI research. As these technologies continue to advance, user simulation will increasingly serve as a bridge
between traditional AI approaches and the pursuit of systems that can model and understand human behavior
with greater fidelity. The remainder of this survey is organized as follows: Figure 1 presents our taxonomy
of simulation methodologies. We conclude by discussing open challenges and opportunities at this exciting
intersection of language models and user simulation.

2 Background

2.1 Fidelity Dimensions

"Fidelity dimensions" in the context of user modeling, refer to distinct attributes or characteristics that
describe how accurately and realistically the simulation replicates or represents the real-world phenomenon it
aims to model. Our formulation of fidelity dimensions for user simulation draws inspiration from foundational
work in simulation theory, human-computer interaction, and cognitive modeling. While the terminology
varies across domains, the underlying goal remains consistent: to evaluate how closely a simulation replicates
essential aspects of real-world phenomena.

In traditional simulation research, particularly in domains such as military training, aviation, and medical
simulation, fidelity is often decomposed into physical, functional, and cognitive dimensions. These frameworks
assess the realism of environmental representation, task behavior, and cognitive workload, respectively, and
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Classic Schatzmann et al. (2005), Keskustalo et al. (2008),
Georgila et al. (2006), Shen et al. (2012)

LLM-Based
IEEF (Lei et al., 2025), SOTOPIA (Zhou et al., 2024a),
PMIYC (Bozdag et al., 2025), Sun et al. (2023),
Smallville (Park et al., 2023)

Figure 1: Taxonomy of user simulators.

are central to evaluating transferability of skills from simulation to real-world settings Rehmann et al. (1995);
Alexander et al. (2005). We build on these principles and adapt them to the domain of user modeling, where
realism is expressed not through environmental detail, but through linguistic, behavioral, and cognitive
alignment with real users. In this survey, we identify three core dimensions as shown in Fig 3 that jointly
capture the depth, variability, and human-likeness of simulated interactions: These dimensions include first
functionality, which captures the linguistic realism, complexity, and diversity of natural language. It reflects
the simulator’s ability to generate natural, diverse, and contextually appropriate natural language while acting
as a proxy user. Second, Behavioral authenticity, reflecting varied and nuanced user behaviors, it addresses
the simulation of nuanced and varied user behaviors, essential for capturing real-world interaction dynamics.
Finally, Cognitive plausibility focuses on replicating genuine human thought processes, decision-making
strategies, and adaptive reasoning. In dialogue systems and user simulation research, related dimensions
are often discussed through evaluation of surface-level utterance quality (linguistic fluency and contextual
relevance), behavioral variability (goal shifts, hesitations), and model-based reasoning (intent prediction,
decision-making) Schatzmann et al. (2006); El Asri & et al. (2016). These align closely with our proposed
dimensions.

2.2 Simulation Methodologies

The methodologies for simulating user behavior have evolved rapidly, particularly with the advent of
LLMs. Simulations enable a systematic analysis and replication of human-like interactions in computational
frameworks, providing valuable insights into user behavior across various interactive systems. Our taxonomy
organizes simulation methodologies into four broad paradigms: Rules-based methods, Statistical Models,
Neural Models, and Hybrid approaches. This categorization reflects both the historical evolution of the
field and the fundamental differences in how these approaches conceptualize and implement user simulation.
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Figure 2: An overview of the evolution of user simulation methodologies from rule-based systems to large
language model (LLM)-based approaches, aligned with four key design dimensions: knowledge representation,
learning mechanisms, generation approach, and data requirements. The illustration integrates a historical
timeline with a comparative breakdown of core methodological characteristics.

Each paradigm addresses specific challenges inherent in user simulation, ranging from interpretability and
controllability to flexibility and realism. The categorization is based on several key dimensions:

• Knowledge Representation

• Learning Mechanisms

• Generation Approach

• Data Requirements

We specifically discuss LLM-based user simulations separately in Section 4, where we pay particular attention
to how LLMs have transformed this space.

Historically, user simulation methodologies have evolved across four main paradigms: rule-based, statistical,
neural, and hybrid approaches, each offering unique advantages and facing specific challenges.

2.2.1 Rule-based methods

Rule-based user simulators have long served as foundational tools across domains such as dialogue systems,
education, and recommendation. These approaches rely on clearly defined heuristics, with behavior encoded
via scripts or state machines. In task-oriented dialogue, early work by Schatzmann et al. (2007) introduced an
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agenda-based simulator that maintained a stack of pending user intentions derived from a hidden goal. Even
with manually set parameters, this simulator was effective enough to train a dialogue policy that achieved
over 90% task completion with real users—demonstrating the viability of rule-based simulation in the absence
of data. Similarly, Li et al. (2016) proposed a hybrid simulator for a movie-booking task, combining rules
and corpus-derived behavior, which has since been widely used to benchmark RL-based dialogue agents.

Despite their utility, such simulators often follow idealized user patterns and lack behavioral diversity,
potentially leading to simulator bias. In educational settings, simulated students—such as those in Fahid
et al. (2024)—are designed using heuristic models of learning and error patterns to support RL-based tutor
training. In recommender systems, rule-based platforms like RecSim (Ie et al., 2019) provide configurable
user models for studying sequential and conversational recommendation. Similarly, scripted agents are used
in interactive environments and games to test mechanics or train learning agents.

Across domains, rule-based simulators offer key advantages: controllability, reproducibility, and the ability
to encode expert knowledge. However, despite their wide adoption and early success, rule-based simulators
face several notable limitations that constrain their applicability in increasingly complex, real-world settings
including:

• Limited behavioral diversity: Rule-based simulators often reflect a narrow set of expecteder
behaviors, failing to capture the rich variability and unpredictability of human interactions.

• Expensive Hand-engineering: Designing high-fidelity rules for each task and user profile is labor
intensive and does not scale well to new domains or dynamic environments.

• Lack of adaptability: These simulators typically follow fixed heuristics and do not update their
behavior based on past interactions or evolving contexts, unlike real users who learn, adapt, or
explore.

As a result, downstream systems trained solely on rule-based interactions may fail to generalize to real-world
deployment settings where users act unpredictably or suboptimally.

To address these limitations, the community began exploring data-driven alternatives, giving rise to statistical
user simulation methods. These approaches model user behavior probabilistically—drawing from interaction
logs or behavioral traces—to better match observed human patterns.

2.2.2 Statistical Models

Statistical approaches to user simulation shifted explicit rules to probabilistic models learned from data.
These methods represent user behavior as probability distributions, typically using techniques such as Markov
models and Bayesian approaches. Between rule-based systems and fully learned neural models, statistical user
simulators aim to strike a balance between data-driven flexibility and interpretability. These methods use
probabilistic models to simulate user behavior, typically trained or parameterized from observed interaction
logs. Statistical user simulators offer greater behavioral variation than rule-based models while avoiding the
complexity and opacity of deep neural networks. In spoken dialogue systems, early research recognized the
need to simulate users for training dialog policies and evaluating system performance. Levin et al. (2000)
formalized dialogue as a sequential decision process and used a stochastic model of human–machine interaction
to train an optimal dialogue policy. In their approach, the dialogue system is modeled as a Markov Decision
Process (MDP) with states (representing dialogue context), actions (system moves), and a reward function;
importantly, a user model supplies the state transition probabilities – essentially simulating how a user
would respond to system actions. An important aspect of these early simulators is that they operated at an
abstract dialogue-act level. These data-driven approaches were a clear improvement over fixed rule-based
user scripts, offering higher coverage of user behavior and variability. As dialogue corpora became available,
researchers explored n-gram models to simulate user act sequences. Pietquin & Dutoit (2006) applied bigram
or trigram models for user behavior in simple information-seeking dialogs. Interactive environments and
games have leveraged classical user simulation primarily to model player behavior patterns and evaluate or
adapt game content. Bunian et al. (2017) allow researchers to encapsulate how players progress, when they
make decisions, and what types of mistakes or changes of mind they have. While classical statistical models
such as n-grams, HMMs, POMDPs, and Bayesian networks have provided a principled and interpretable
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framework for simulating user behavior, they suffer from a number of well-documented limitations that have
driven the field toward more expressive modeling paradigms.

• Limited Expressiveness and Feature Dependence Classical models often rely on simplified
state spaces and strong independence assumptions. For instance, n-gram models condition only on a
limited history of dialogue acts, ignoring long-range dependencies or goal consistency.

• Rigid, Hand-Defined Structures Many statistical models require careful manual specification
of model structure, including state definitions, goal sets, agenda templates, or dependency graphs.
While some parameters can be learned from data, the structure itself is often predefined, limiting
generalization across domains or tasks. For example, Bayesian networks require expert-defined
topologies, which can be brittle or biased.

• Data Sparsity and Scalability Issues Statistical simulators are still sensitive to data sparsity,
particularly when conditioning on high-dimensional feature spaces (e.g., multiple dialogue history
features or user attributes). Parameter estimation in models like n-grams, HMMs, and POMDPs
suffers when the space of possible transitions grows large.

2.2.3 Neural Models

Creating user simulators with large language models is incredibly convenient. One simply needs to describe
the requirements for the user in natural language. Due to the increased generalizable capabilities of language
models, they are able to take on the given role with the given specification very well. In the medical domain,
user simulators are used to help medical professionals acquire practical medical knowledge before entering the
workforce (Li et al., 2025; Schmidgall et al., 2024; Holderried et al., 2024). In these works, user simulators are
usually given some basic information (name and gender) and a specific diagnosis. The diagnosis can be simply
a list of symptoms (Holderried et al., 2024), a medical history from a medical knowledge base paired with
symptoms (Li et al., 2025), or a random subset of diagnostic questions from medical license examinations
(Schmidgall et al., 2024). These works have shown to be effective in training medical professionals in history
taking and diagnosis.

User simulators also have been shown to exhibit social behaviors. One way this has been shown is through
games (Xu et al., 2024; Xie et al., 2024; Hua et al., 2023). Similar to the works in the medical domain, these
works provide LLM-based agents the rules of the games, their role in the game (if applicable), or even some
starting strategies. These works show that language models can exhibit human-like strategizing, collaboration,
and trust during these games.

Neural models can capture subtleties in user behavior that are hard to script—such as ambiguous responses,
multiturn dependencies, or evolving goals. However, they also bring challenges.

• Data-hungriness: Training robust simulators often requires large-scale labeled logs, which may not
be available in many domains.

• Interpretability trade-offs: Neural simulators act as black-boxes, making it difficult to debug or
diagnose failure modes compared to rule-based models.

• Simulation instability: Without proper regularization or grounding, neural simulators may
generate incoherent or invalid behaviors, especially in long interaction rollouts.

2.2.4 Hybrid Approaches

Some works use a mixture of these methods. For example, (Liu et al., 2024) develop conversational tutoring
systems that adapt to a student’s personality, which is defined by one of five different traits: openness
(curiosity in learning, and open to new ideas), conscientiousness (well-organized and logical), extraversion
(talkative and willing to communicate), agreeableness (being polite and showing empathy), neuroticism (being
nervous or having dramatic shifts in mood). While one personality trait is assigned to each student simulator
(which guides the interaction style with the educator agent), the trait is described with natural language to
the language-model.
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Figure 3: Categorization of user simulations in terms of behavior modeling.

3 User Behavior Modeling

An emergent capability of LLMs enables a flexible simulation of target users tailored to a wide range of
applications. Depending on the intended use case, user simulators are designed to capture varying levels
of human behaviors. As illustrated in Figure 3, we formally define user behavior modeling in simulation,
structured into the following hierarchy:

1. Functional Simulation: Represents the essential capabilities required for user simulators, including
actions such as requesting predefined information and responding to system outputs.

2. Behavioral Simulation: Extends beyond functional roles by incorporating personalized behavior patterns
that reflect how users respond to specific tasks or contextual variations.

3. Cognitive Simulation: Represents the most advanced level, modeling the internal cognitive processes
that guide user decision-making, including goal prioritization, adaptation, and reasoning under uncertainty.

3.1 Functional Simulation

Functional user simulators imitate users that serve a specific operational purpose, providing an essential tool
for system testing and validation (Biswas & Robinson, 2010). This level of simulation focuses on replicating
the minimal, yet critical, interactions between a user and the system under test. By emulating predefined
user actions, such as requesting particular pieces of information, submitting queries, or providing standard
responses, functional simulators help researchers and practitioners assess system robustness, responsiveness,
and reliability under controlled conditions. To be further specific, functional simulation is designed to replicate
the basic interaction patterns required to test end-to-end system workflows. These interactions typically
include:

• Information Requests: Simulated users initiate communication with the system by asking for specific
data.

• Action Confirmation: The simulator provides confirmations, acknowledgments, or error messages based
on system responses, ensuring that the interaction loop is complete.

• Predefined Response Patterns: These interactions are often based on a limited script that has been
carefully curated to cover common use cases and edge cases.

Most works before the advent of LLMs have adopted the functional simulation in their scenarios. For example,
Schatzmann et al. (2007) build a probabilistic agenda-based user simulator to test the prototype dialogue and
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recommender systems. Furthermore, fine-tuning based neural models are utilized to functionally simulate
users in goal-oriented dialogue systems (Gür et al., 2018; Tseng et al., 2021; Kim & Lipani, 2022).

Functional user simulators can be also effectively leveraged across various application domains to replicate
real-world interactions. For instance, in medical training, they generate standardized patient profiles to aid
in developing diagnostic and interviewing skills (Holderried et al., 2024; Schmidgall et al., 2024; Kuhlmeier
et al., 2025). For urban planning, simulators model resident interactions with city infrastructure, providing
feedback that informs more resilient design (Zhou et al., 2024b). Moreover, in accessibility testing, they can
simulate interactions between users with disabilities and assistive technologies (Albert & Hall, 2024), ensuring
compatibility with diverse input methods like voice or touch.

3.2 Behavioral Simulation

Behavioral simulation advances beyond the basic interaction patterns by incorporating richer, context-sensitive
representations of how users typically behave. This approach emphasizes the imitation of personalized behavior,
incorporating detailed personas and scenario-based designs to capture variations in user reactions and decision-
making processes. In short, behavioral simulation is designed to mirror the nuances of human behavior by
integrating:

• Emotion and Personality Representation: Simulated users are endowed with personality traits that
influence how they respond to various stimuli. For example, a student simulator may be modeled to be
highly receptive to new information or, alternatively, exhibit anxiety when presented with chellenging
concepts.

• Context-Aware Response Patterns: Behavioral simulation incorporates contextual variables, such as
prior interactions, environmental factors, and the specific scenarios in which behaviors unfold. This allows
for dynamic adjustments in behavior, leading to more authentic interactions.

• Scenario-Driven Dynamics: Rather than following static scripts, behavioral simulators adapt responses
based on scenario-specific cues. This can include shifting attitudes during a narrative or displaying
fluctuating engagement levels in response to feedback.

For example, Zhang & Balog (2020); Afzali et al. (2023) reflect user preference information by incorporating
individual preference based on knowledge graph, thereby generating distinct responses. While these line of
works mainly adopt heuristic or statistical approaches, behavioral simulation becomes universal after leveraging
language modeling techniques. Specifically, Liu et al. (2024) leverage LLMs to simulate different kinds of
student learners and use a set of personality traits to model how amenable a student is to new information
(e.g., the student can be open-minded and open to new information, or they can be neurotic and feel anxious
when presented with challenging concepts). In addition, Yoon et al. (2024) employs LLMs to simulate
key properties for realistic users, such as item selection, preference expression, recommendation request,
and providing feedback. Likewise, a flexible understanding capability of LLMs enables more sophisticated
simulator design.

3.3 Cognitive Simulation

Cognitive simulation represents the most advanced level in user simulation by modeling the internal mental
processes that guide user decision-making. Drawing upon insights from Human-Computer Interaction (HCI),
cognitive simulation leverages models such as GOMS (Goals, Operators, Methods, and Selection) to frame
how a user formulates goals and strategically selects actions to achieve them (Al Seraj et al., 2018; Biswas &
Robinson, 2010). Moreover, the incorporation of Theory of Mind (ToM) concepts (Baron-Cohen et al., 1985)
can enhance these models by enabling simulators to infer, predict, and reason about the mental states of
other agetns, thereby providing a richer, more dynamic simulation of human recognition (Kim et al., 2023).
Cognitive simulation focuses on replicating the deeper layers of human reasoning and goal-directed behavior.
Its key capabilities include:
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• Goal Formulation and Adaptation: Simulators are designed to set and revise objectives as they
interact with the system or other agents.

• Strategic Decision-Making: Simulators not only base their decisions on their internal goals but also
anticipate and adapt to the potential actions and intentions of other agents in the environment.

• Dynamic Reasoning: These models capture both predefined cognitive strategies and emergent behaviors
that arise from complex interactions. This dynamic aspect is critical for simulating scenarios where users
must continuously evaluate and modify their actions in response to changing contexts.

Yet there still remains a room for implementing cognitive simulation, recent works are extending the scope of
traditional user simulation. For example, Kargupta et al. (2025) simulate author personas based on scientific
papers, tasking them with debating the novelty and contributions of their work. Each agent draws from
paper snippets to guide argumentation, showcasing both goal-oriented debate tactics and emergent reasoning.
Another work by (Bozdag et al., 2025) employ LLM-based agents that are provided with either objective or
subjective claims. These agents, given a stance on a Likert scale, engage in persuasive exchanges aimed at
altering the opinion of their counterpart. This setup relies on the simulation of internal cognitive processes
where agents evaluate, argue, and adjust their positions. The study by Xu et al. (2024) uses LLM-based
agents in rounds of the strategy game Werewolf. Each agent, assigned a specific role and provided with
strategic guidelines, develops its own tactics during gameplay. This illustrates the potential of cognitive
simulation to capture and produce emergent strategic behaviors akin to human decision-making in competitive
environments.

4 LLM-based Simulation Methodologies

With the introduction of language models, the methodologies to develop user simulators have changed to
address the limitations of the pre-LLM methodologies.

Prompting. A lot of user simulator works use prompting to describe a persona and define action spaces
that the user simulator can take (Bozdag et al., 2025; Dongre et al., 2024; Holderried et al., 2024; Hua et al.,
2023; Kargupta et al., 2025; Kuhlmeier et al., 2025; Li et al., 2025; Kargupta et al., 2024; Park et al., 2023;
Luo et al., 2024; Lattimer et al., 2024; Gao et al., 2024; Herlihy et al., 2024; Zhang et al., 2024; de Wit,
2023; Paek et al., 2024; Cao, 2024). Because language models have been trained to follow instructions, they
can generalize well enough to the system prompts provided and generated user utterances that match the
described persona well. The prompts are either manually crafted (Holderried et al., 2024; Kuhlmeier et al.,
2025; Kargupta et al., 2024; Herlihy et al., 2024; Kargupta et al., 2025) or they are randomly sampled from
existing datasets (Lattimer et al., 2024; Gao et al., 2024; Zhang et al., 2024). Prompting language models is a
very easy and quick way to develop a user simulator reliably. However, it can be unreliable at times because
researchers have very little control over what the model will output. To begin to help with this, researchers
employ in-context learning with example demonstrations (Kargupta et al., 2024) or use dynamic prompting
(Dongre et al., 2024) to add more context to the user simulator to control the output. Still, these techniques
cannot fully ameliorate the issue of unreliability.

Parameter-Efficient Fine-Tuning. Due to the unreliability of prompt-based user simulators, many works
have shifted to rely on fine-tuning language models to act as user simulators to add more controllability
to the user simulator (Clarke et al., 2024; Ferreira et al., 2024; Dhole, 2024; Wang et al., 2025). Although
a bit more expensive than prompting, PEFT-based user simulators show good performance. Additionally,
fine-tuning can be used to introduce new capabilities into user simulators (such as new actions, different
ways of thinking and stronger chain-of-thought reasoning, and structured outputs). Still, fine-tuning can
only achieve so much in terms of generalizability and learning without catastrophic forgetting. To mitigate
these issues generally, works employ online continual learning (Kim et al., 2024) to iteratively add in new
knowledge – this, however, has remained relatively unexplored in the context of user simulation.

Reinforcement Learning. It has been shown that in general language modeling, SFT cannot generalize
to different scenarios as well as RL can (Chu et al., 2025). Hence, some works in user modeling also use

10



RL to train language models (Liu et al., 2023a; Shamsezat et al.; Chen et al., 2024; Bernard & Balog, 2024;
Luo et al., 2025; Das et al.). These works use a mix of RL algorithms including PPO, DPO, and some even
formulate user simulators in multi-armed bandit settings. RL has been shown to be very good at preference
modeling (Lei et al., 2025; Liu et al., 2023b). RL-based user simulators tend to be more generalizable, but
training RL models involve either handling sparse rewards or incurring large data annotation costs.

5 Evaluation Frameworks

(Pietquin & Hastie, 2013) outline more traditional methods to evaluate user simulators that are still used
today: the ratio of user and system utterances; proportion of slot values provided when requested; task
completion; precision/recall/F1 scores (Schatzmann et al., 2005), distribution divergence (Keskustalo et al.,
2008), or perplexity over the action space between the predicted and actual, human-generated action space;
or human evaluation. Other classic, NLP methods involve calculating the similarity between user utterances
and the system prompt provided to the user simulator. These metrics include BLEU, ROUGE, BLEURT,
and other n-gram based metrics (Georgila et al., 2006; Shen et al., 2012), or semantic similarity scores (such
as the distance between embeddings of user utterance and system prompt).

These methods, while easily to compute (except human evaluation), are not reliable as they cannot generalize
to all kinds of user simulators – these metrics rely on word matching and will give low scores to user simulators
which do not use the exact words present in the ground truth output.

Similar to how user simulator developers have shifted their focuses to LLM-based user simulators, evaluation
has also shifted to LLM-based evaluation. To begin, evaluation can be done by LLMs (LLM-as-a-Judge) in
which it is given a rubric to score the quality of user simulator outputs (Lei et al., 2025). As a concrete
example, Zhou et al. (2024a) is a framework that systematically develops social agents. The agents are scored
across seven dimensions: goal completion, believability, knowledge, secret, relationship, social rules, and
financial/material benefits. They develop rubrics for these metrics and use GPT-4 to evaluate the agents on
these seven dimensions based on their interactions. Furthermore, Bozdag et al. (2025) uses an interview-style
evaluation where an agent is asked about their opinion on a certain claim (subjective or objective), and the
change in opinion across a conversation is measured.

Evaluation can also be domain specific, which uncovers other evaluation metrics. For example, Sun et al.
(2023) creates multiple variants of a dialogue system with varying capabilities, and the quality of the user
simulator is dependent on how well it is able to interact consistently even with the difference in dialogue
system capabilities. Next, Park et al. (2023) design a small environment of 25 agents and study how
social interactions causes information to spread throughout the network of the 25 agents. They also use
interview-based evaluation in which, at the end of an episode, they ask each agent whether they know a
certain person or piece of information.

6 Conclusion and Future Work

This survey has presented a comprehensive overview of large language model (LLM)-based user simulators,
demonstrating their transformative impact across various dimensions of user simulation, including simulation
methodologies, user behavior modeling, evaluation frameworks in diverse application domains. By system-
atically contrasting LLM-based simulations with classical rule-based, statistical, and neural methods, we
highlighted LLMs’ unique strengths—such as improved linguistic realism, richer behavioral variability, and
advanced cognitive modeling—alongside critical limitations including controllability, alignment with specific
user profiles, and evaluation complexity.

As the field progresses, several promising directions emerge. Future research should address the challenges
associated with aligning simulators closely with negative or neutral user traits, extending beyond the inherently
assistive tendencies of existing LLMs. Moreover, the development of dynamic, adaptive simulators capable of
reflecting evolving user behaviors through continuous learning remains a vital research frontier. Incorporating
methods such as online continual fine-tuning, reinforcement learning, and sophisticated memory mechanisms
will be crucial to achieving simulators that genuinely mirror dynamic human cognition.
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