
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAYESIAN BINARY SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

We present Bayesian Binary Search (BBS), a novel probabilistic variant of
the classical binary search/bisection algorithm. BBS leverages machine learn-
ing/statistical techniques to estimate the probability density of the search space
and modifies the bisection step to split based on probability density rather than the
traditional midpoint, allowing for the learned distribution of the search space to
guide the search algorithm. Search space density estimation can flexibly be per-
formed using supervised probabilistic machine learning techniques (e.g., Gaussian
process regression, Bayesian neural networks, quantile regression) or unsuper-
vised learning algorithms (e.g., Gaussian mixture models, kernel density estima-
tion (KDE), maximum likelihood estimation (MLE)). We demonstrate significant
efficiency gains of using BBS on both simulated data across a variety of distribu-
tions and in a real-world binary search use case of probing channel balances in the
Bitcoin Lightning Network, for which we have deployed the BBS algorithm in a
production setting.

1 INTRODUCTION

The concept of organizing data for efficient searching has ancient roots. One of the earliest known
examples is the Inakibit-Anu tablet from Babylon (c. 200 BCE), which contained approximately 500
sorted sexagesimal numbers and their reciprocals, facilitating easier searches Knuth (1998). Similar
sorting techniques were evident in name lists discovered on the Aegean Islands. The Catholicon,
a Latin dictionary completed in 1286 CE, marked a significant advance by introducing rules for
complete alphabetical classification Knuth (1998).

The documented modern era of search algorithms began in 1946 when John Mauchly first men-
tioned binary search during the seminal Moore School Lectures Knuth (1998). This was followed
by William Wesley Peterson’s introduction of interpolation search in 1957 Peterson (1957). A lim-
itation of early binary search algorithms was their restriction to arrays with lengths one less than a
power of two. This constraint was overcome in 1960 by Derrick Henry Lehmer, who published a
generalized binary search algorithm applicable to arrays of any length Lehmer (1960). A significant
optimization came in 1962 when Hermann Bottenbruch presented an ALGOL 60 implementation
of binary search that moved the equality comparison to the end of the process Bottenbruch (1962).
While this increased the average number of iterations by one, it reduced the number of comparisons
per iteration to one, potentially improving efficiency. Further refinements to binary search contin-
ued, with A. K. Chandra of Stanford University developing the uniform binary search in 1971 Knuth
(1998). This variant aimed to provide more consistent performance across different input distribu-
tions. In the realm of computational geometry, Bernard Chazelle and Leonidas J. Guibas introduced
fractional cascading in 1986 Chazelle & Guibas (1986). This technique provided a method to solve
various search problems efficiently in geometric contexts, broadening the application of search al-
gorithms beyond simple sorted lists. More recently, (Mohammed et al., 2021), proposed a hybrid
search algorithm combining binary search and interpolated search to optimize search on datasets
with non-uniform distributions.

The bisection method, a fundamental technique in numerical analysis, shares conceptual similarities
with binary search. This method, also known as the interval halving method, binary chopping, or
Bolzano’s method, has origins of the bisection method can be traced back to ancient mathematics.
However, its formal description is often attributed to Bolzano’s work in the early 19th century Russ
(2004). Bolzano’s theorem, which guarantees the existence of a root in a continuous function that
changes sign over an interval, provides the theoretical basis for the bisection method. In the context
of root-finding algorithms, Burden & Faires (2015) provide a comprehensive treatment of the bisec-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

tion method, discussing its convergence properties and error bounds. They highlight the method’s
robustness and guaranteed convergence, albeit at a relatively slow linear rate. Variants of the bi-
section method have been developed to improve efficiency and applicability. Horstein (1963) first
introduced probabilistic bisection. Hansen & Walster (1991) employed interval analysis and bisec-
tion to develop reliable methods for finding global optima. Their work demonstrates how bisection
principles can be extended beyond simple root-finding to more complex optimization problems.

The connection between bisection and binary search in computer science was explored by Knuth
(1998), who discussed both methods in the context of searching and optimization algorithms. This
connection underlies our approach in leveraging probabilistic techniques to enhance binary search.
Recent work has focused on adapting bisection methods to handle uncertainty and noise. Waeber
et al. (2013) introduced a probabilistic bisection algorithm for noisy root-finding problems. Their
method, which updates a probability distribution over the root location based on noisy measure-
ments, shares conceptual similarities with our Bayesian Binary Search approach. In the context of
stochastic optimization, Jedynak et al. (2012) developed a probabilistic bisection algorithm for bi-
nary classification problems. Their work demonstrates how Bayesian updating can be incorporated
into the bisection process, providing a precedent for our probabilistic approach to binary search.
The bisection method has also found applications in various fields beyond pure mathematics. For
instance, Nievergelt (1964) discussed the use of parallel bisection methods in scientific computing,
highlighting the potential for algorithmic improvements through parallelization.

Probabilistic machine learning, as described by Ghahramani (2015), provides a framework for rea-
soning about uncertainty in data and models. Gaussian Processes (GPs), a cornerstone of many prob-
abilistic machine learning methods, were extensively explored by Rasmussen & Williams (2006).
GPs offer a flexible, non-parametric approach to modeling distributions over functions, making them
particularly suitable for tasks involving uncertainty quantification. In recent years, Bayesian deep
learning has emerged as a powerful approach to combining the expressiveness of deep neural net-
works with principled uncertainty quantification. Wang & Yeung (2016) provide a comprehensive
survey of Bayesian deep learning techniques, discussing various methods for incorporating uncer-
tainty into deep neural networks and their applications in complex, high-dimensional problems. The
field of Bayesian Optimization, which shares conceptual similarities with our work, has seen sub-
stantial growth. Shahriari et al. (2015) provide a comprehensive overview of Bayesian Optimization
techniques, highlighting their effectiveness in optimizing expensive-to-evaluate functions. These
methods typically use GPs, Bayesian Neural Networks (BNNs) or other probabilistic models to
guide the optimization process, analogous to our use of probability density estimates in Bayesian
Binary Search.

2 METHODOLOGY

2.1 CLASSICAL BINARY SEARCH/BISECTION

Binary search is an efficient algorithm for finding a target value in a defined search space. It repeat-
edly divides the search interval in half, eliminating half of the remaining space at each step. The
algorithm maintains two boundaries, low and high, and computes the midpoint mid = (low + high)
/ 2. By evaluating the midpoint and comparing it to the target value, it determines which half of
the search space to explore next, updating either low or high accordingly. This process continues
until the target is found or the search space is exhausted. The efficiency of binary search stems
from its ability to halve the potential search space with each iteration, resulting in a logarithmic time
complexity.

2.2 BAYESIAN BINARY SEARCH (BBS)
2.2.1 PROBLEM FORMULATION

Given a search space S and a target value t, our aim is to locate t in S, or produce a specified
range for t with a given tolerance. Unlike classical binary search, we assume that the distribution of
potential target locations is not uniform across S. We represent this non-uniform distribution using
a probability density function (PDF) p(x), where x ∈ S. We formulate the binary search algorithm
in two parts: search space density estimation, which produces a PDF that is fed into a modified
binary search algorithm which begins at the median of the PDF and bisects in probability density
space. BBS is equivalent to basic binary search when the search space PDF estimation process is
replaced with the assumption of a uniformly distributed target space. This formulation maps to a
binary search problem on a sorted array in the following way: the search space S corresponds to the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

sorted array, the target value t is the element being searched for, and the PDF p(x) represents the
probability of finding the target at each index in the array using interpolation.

2.3 SEARCH SPACE PROBABILITY DENSITY FUNCTION ESTIMATION

The effectiveness of BBS depends on the accuracy of the PDF estimation. Some methods for esti-
mating p(x) can include:

2.3.1 SUPERVISED LEARNING APPROACHES

• Gaussian Process Regression (GPR): GPR provides a non-parametric way to model the
PDF, offering both a mean prediction and uncertainty estimates.

• Bayesian Neural Networks (BNN): BNNs combine the flexibility of neural networks with
Bayesian inference, allowing for uncertainty quantification in the predictions.

• Quantile Regression: Quantile regression estimates the conditional quantiles of a response
variable, providing a more comprehensive view of the relationship between variables across
different parts of the distribution, without assuming a particular parametric form for the
underlying distribution.

2.3.2 UNSUPERVISED LEARNING APPROACHES

• Gaussian Mixture Models (GMM): GMMs (typically fit using the Expectation-
Maximization (EM) algorithm) can model complex, multimodal distributions by repre-
senting the PDF as a weighted sum of Gaussian components.

• Kernel Density Estimation (KDE): KDE is a non-parametric method for estimating PDFs,
which can capture complex shapes without assuming a specific functional form.

• Maximum Likelihood Estimation (MLE): MLE is a method of estimating the parameters
of a probability distribution by maximizing a likelihood function. It can be used to fit
various parametric distributions (e.g., normal, exponential, Poisson) to data, providing a
PDF that best explains the observed samples according to the chosen distribution family.

2.4 BINARY SEARCH WITH PROBABILISTIC BISECTION

BBS modifies the classical binary search by replacing the midpoint calculation with a probabilistic
bisection step. Instead of dividing the search space at the midpoint, BBS divides it at the median of
the current PDF. Formally, at each step, we find x∗ such that:

∫ x∗

low
p(x)dx =

∫ high

x∗
p(x)dx = 0.5 (1)

After each comparison, we update the PDF based on the result. If the target is found to be in the
lower half, we set p(x) = 0 for x > x∗ and renormalize the PDF. Similarly, if the target is in the
upper half, we set p(x) = 0 for x < x∗ and renormalize.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Algorithm 1: Bayesian Binary Search
Input: low ∈ Z, high ∈ Z, ϵ > 0
Output: Target bound with ϵ tolerance, or -1 if not found

1 p(x)← EstimatePDF(low, high)
2 while low ≤ high do
3 x∗ ← FindMedian(p(x), low, high)
4 s← Sign(x∗)
5 if high− low ≤ ϵ then
6 return low, high
7 else if s > 0 then
8 high← x∗
9 else

10 low← x∗
11 end
12 p(x)← UpdatePDF(p(x), low, high)
13 end
14 return −1;
15

Algorithm 2: Estimate Search Space Probability Density Function (PDF)
1 Function EstimatePDF(low, high):

// Estimate the initial PDF based on the search space
// This implementation can vary depending on the available

data but can include supervised probabilistic machine
learning algorithms or unsupervised statistical methods
for distribution estimation

2 return p(x)

Algorithm 3: FindMedian Function
1 Function FindMedian(p(x), low, high):
2 return argminx∈[low,high] |

∫ x
low p(t)dt − 0.5 |

Algorithm 4: UpdatePDF Function
1 Function UpdatePDF(p(x), low, high):
2 if x ∈ [low, high] then
3 pnew(x)← p(x)∫ high

low p(t) dt

4 else
5 pnew(x)← 0
6 end
7 return pnew(x)

Algorithm 5: Sign Function
1 Function Sign(x):

// This function should be implemented based on the specific
problem

// It should return -1 if x is less than or equal to the
target, 1 if x is greater than the target

2 if x > target then
3 return 1
4 else
5 return-1
6 end

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We evaluate BBS against basic binary search on both simulated data across several distributions
and a real world example of binary search/bisection of probing channels in the Bitcoin Light-
ning Network, for which accessing the search space is an expensive operations (time and liquidity)
Tikhomirov et al. (2020).

2.5 EXPERIMENTS ON SIMULATED DATA

We evaluate the performance of BBS against binary search on simulated data from several distri-
butions: normal, bimodal and exponential. The results of the normal distribution experiments are
shown below, while the results of the bimodal and exponential distributions can be found in the
appendix. We additionally show experiments for which the estimated search space density func-
tion does not match the target search space as measured by Kullback-Leibler (KL) Divergence. We
demonstrate how BBS performance degrades as the estimated search space density drifts further
from the target distribution, and eventually can cause the BBS to perform worse than basic binary
search.

2.5.1 EXPERIMENTAL SETUP

To evaluate the performance of BBS compared to the standard binary search in the context of normal
distributions, we conducted a series of experiments with the following setup:

2.5.2 DISTRIBUTION PARAMETERS

For the normal distribution experiments, we used the following parameters:

• Mean (µ): 0

• Standard Deviation (σ): 10000

2.5.3 TARGET VALUES GENERATION

We generated 1,000 target values by sampling from the specified normal distribution. Each target
value was obtained by drawing a random sample x from the distribution and applying the floor
function to ensure integer targets: target = floor(x).

2.5.4 SEARCH PROCEDURE

For each target value, both search algorithms attempt to locate the target within a specified precision
(ϵ), set to 8. The search space is initialized based on the properties of the normal distribution:

• Lower Bound (lo): floor(µ−4.2× σ)

• Upper Bound (hi): ceil(µ+4.2× σ)

The algorithms iteratively narrow down the search space until the target is found within the accept-
able error margin.

2.5.5 METRICS COLLECTED

We collected the following performance metrics:

• Number of Steps: Total iterations required to find each target.

• Bracket Size: The range (hi− lo) at each step of the search.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: µ = 0.0, σ = 10000.0,N = 500

ϵ Percent Decrease Basic Mean Steps BBS Mean Steps

1 6.30% 16.47 ± 0.50 15.43 ± 1.19
2 6.36% 15.68 ± 0.47 14.68 ± 1.15
3 6.17% 15.00 ± 0.00 14.07 ± 1.15
4 8.76% 15.00 ± 0.00 13.69 ± 1.11
5 5.06% 14.15 ± 0.36 13.43 ± 1.02
6 6.16% 14.00 ± 0.00 13.14 ± 1.09
7 8.07% 14.00 ± 0.00 12.87 ± 1.16
8 9.39% 14.00 ± 0.00 12.69 ± 1.12
9 10.27% 14.00 ± 0.00 12.56 ± 1.08
10 6.14% 13.28 ± 0.45 12.47 ± 1.01
11 4.63% 13.00 ± 0.00 12.40 ± 0.99
12 5.88% 13.00 ± 0.00 12.24 ± 1.05
13 7.43% 13.00 ± 0.00 12.03 ± 1.13
14 8.51% 13.00 ± 0.00 11.89 ± 1.15
15 9.32% 13.00 ± 0.00 11.79 ± 1.15
16 9.89% 13.00 ± 0.00 11.71 ± 1.12
17 10.49% 13.00 ± 0.00 11.64 ± 1.11
18 11.03% 13.00 ± 0.00 11.57 ± 1.09
19 11.42% 13.00 ± 0.00 11.52 ± 1.05
20 8.38% 12.53 ± 0.50 11.48 ± 1.03
21 4.52% 12.00 ± 0.00 11.46 ± 1.01
22 4.80% 12.00 ± 0.00 11.42 ± 0.97
23 5.07% 12.00 ± 0.00 11.39 ± 0.95
24 5.83% 12.00 ± 0.00 11.30 ± 1.01
25 7.12% 12.00 ± 0.00 11.15 ± 1.10
26 8.03% 12.00 ± 0.00 11.04 ± 1.13
27 8.43% 12.00 ± 0.00 10.99 ± 1.14
28 9.17% 12.00 ± 0.00 10.90 ± 1.15
29 9.55% 12.00 ± 0.00 10.85 ± 1.15
30 10.02% 12.00 ± 0.00 10.80 ± 1.15
31 10.33% 12.00 ± 0.00 10.76 ± 1.14
32 10.57% 12.00 ± 0.00 10.73 ± 1.13

0 5 10 15 20 25 30
Epsilon

11

12

13

14

15

16

M
ea

n
St

ep
s

Normal: Mean Steps vs. Epsilon

Binary Search
BBS

Figure 1: Normal Distribution: Basic vs. BBS Convergence Comparison

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.6 EXPERIMENTS ON LIGHTNING NETWORK CHANNEL PROBING

Probing a channel in the Lightning Network is the construction of a fake payment to be sent through
the network to obtain information on the balance of a channel. Typically, it is currently performed
using a basic binary search/bisection. The response of a given probe can be viewed as an oracle,
which is a continuous and monotonic function, making it suitable for the bisection method as it
guarantees there is only one root of the function.

Each probe is computationally expensive and fundamentally constrained in this domain due to the
max HTLC (Hashed Timelock Contract) limit (483 on Lightning Network Daemon (LND), the
most popular Lightning Node implementation) on each channel in the Lightning node software
implementation for security purposes. Probes occupying this limit fundamentally constrain network
throughput, which could otherwise process real payments.

To demonstrate the computational complexity of executing probes on the Lightning Network, we
probed 1500 channels from our Lightning node, with an average hop length of 2.26. The probe
time average for each channel had a mean of 3.1 seconds and a standard deviation of 0.7 seconds.
The density estimation step per channel here in comparison (random forest inference and KDE)
takes 0.18 seconds, and only needs to be done once per channel. The added overhead of density
estimation here is significantly outweighed by the probing computational cost and the domain max
HTLC constraint.

For search space density estimation in the Lightning Network channel probing experiment, we detail
a random forest model to predict the search target (channel balance in this case). We construct a PDF
from the prediction of the random forest using kernel density estimation (KDE) on the predictions
of individual predictors (trees) in the ensemble. We alternatively could use Bayesian Neural Net-
works or a Gaussian Process Regressor (results in appendix), but the random forest yielded superior
predictive performance in our experiments (Rossi et al., 2024).

2.6.1 DESCRIPTION OF CHANNEL BALANCE PREDICTION TASK

The Lightning Network can be modeled as a directed graph G = (V,E), where V represents the
set of nodes and E represents the set of edges. Each node u and each edge (u, v) have associated
features, denoted by xu ∈ Rk for nodes and e(u,v) for edges, which contain specific information about
those nodes and edges. Additionally, each edge (u, v) has a scalar value y(u,v) ≥ 0, representing the
pre-allocated balance for transactions from u to v.

Graph G has the constraint that if an edge exists in one direction, it must also exist in the opposite
direction, i.e., (u, v) ∈ E ⇔ (v, u) ∈ E. The set of two edges between any two nodes is called
a channel, denoted as {(u, v), (v, u)}. For simplicity, we represent a channel by the set of its two
nodes: {u, v}. The total capacity of the channel {u, v} is defined as c{u,v} = y(u,v) + y(v,u).

We are provided with the total channel capacities c{u,v} for all channels in the graph, but we only
know the individual values y(u,v) for a subset of edges. Note that knowing y(u,v) allows us to deter-
mine y(v,u), since y(v,u) = c{u,v} − y(u,v). Therefore, we can focus on predicting y(u,v).

Moreover, since we are given c{u,v} for all edges, and we know 0 ≤ y(u,v) ≤ c{u,v}, we also have
that y(u,v) = p(u,v)c{u,v}, where 0 ≤ p(u,v) ≤ 1. Intuitively, p(u,v) is the proportion of the channel
capacity which belongs to the (u, v) direction. From this, we see that we focus on predicting p(u,v),
and then use it to obtain y(u,v).

Therefore, our primary task is to predict p(u,v) for all edges where it is not observed.

2.6.2 DATA COLLECTION AND PREPROCESSING

The data used in this experiment is a combination of publicly available information from the Light-
ning Network and crowdsourced information from nodes in the network. A snapshot of the network
from December 15th, 2023 is used in this experiment. Balance information for each node is rep-
resented by its local balance, recorded at one-minute intervals over the preceding hour. This data
is converted into a probability density function (PDF) through kernel density estimation. Subse-
quently, a balance value is sampled from each PDF, serving as the representative local balance for
the corresponding channel within the dataset.

2.7 METHODOLOGY

The following section outlines the details of our modeling approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2.7.1 MODELING

We will predict p(u,v) by learning a parametric function:

p̂(u,v) = fΘ(u, v,G, xu, xv, e(u,v), c{u,v})

where Θ are learnable weights, xu, xv and e(u,v) are the node and edge features respectively, while
c{u,v} is the capacity of the channel. While several choices are possible for fΘ, such as multi-layer
perceptrons (Rosenblatt (1957)) or Graph Neural Networks, we focus on Random Forests for this
work given their simplicity and efficacy. In particular, our Random Forest (RF) model operates on
the concatenation of the features of the source and destination nodes as well as the edge features:

p̂(u,v) = RF(xu || zu || xv || zv || e(u,v))

The model is trained using a Mean Squared Error loss.

2.7.2 NODE FEATURES

• Node Feature Flags
0-1 vector indicating which of the features each node supports. For example, feature flag
19, the wumbo flag.

• Capacity Centrality
The node’s capacity divided by the network’s capacity. This indicates how much of the
network’s capacity is incident to a node.

• Fee Ratio
Ratio of the mean cost of a nodes outgoing fees to the mean cost of its incoming fees.

2.7.3 EDGE FEATURES

• Time Lock Delta The number of blocks a relayed payment is locked into an HTLC.

• Min HTLC The minimum amount this edge will route. (denominated in millisats)

• Max HTLC msat The maximum amount this edge will route. (denominated in millisats)

• Fee Rate millimsat Proportional fee to route a payment along an edge. (denominated in
millimillisats)

• Fee Base msat Fixed fee to route a payment along an edge. (denominated in millisats)

2.7.4 POSITIONAL ENCODINGS

Positional encoding is essential for capturing the structural context of nodes, as graphs lack inher-
ent sequential order. Utilizing eigenvectors of the graph Laplacian matrix as positional encodings
provides a robust solution to this challenge. These eigenvectors highlight key structural patterns, en-
riching node features with information about the overall topology of the graphDwivedi et al. (2020).
By integrating these spectral properties, machine learning models can effectively recognize and uti-
lize global characteristics, enhancing performance in tasks like node classification and community
detection.

2.7.5 CONCATENATED PREDICTION ML MODEL

Our model predicts p(u,v) as a function of the concatenation of the features of the source and desti-
nation nodes as well as edge features:

p̂(u,v) = RF(xu || xv || e(u,v))

2.7.6 MODEL TRAINING DETAILS AND PERFORMANCE

We set aside 10% of the observed y(u,v) as our test set and 10% as our validation set. The RF model
trained for balance prediction has an MAE of 1.08, an R of 0.612 and R2 of 0.365. For the BBS
experiments, we use the predictions on the validation set (89 channels). For validation set channels,
we feed the predictions of each tree in the ensemble (100) into a kernel density estimation (KDE)
process to construct the search space PDF. Using these constructed PDFs, we compare BBS with
basic binary search in measuring how many probes it would take to ascertain the balance of a given
channel.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Lightning Channel Probing Comparison
ϵ Percent Decrease Basic Mean Steps BBS Mean Steps

128 3.07% 14.26 ± 2.26 13.82 ± 2.35
256 3.31% 13.26 ± 2.26 12.82 ± 2.35
512 3.57% 12.26 ± 2.26 11.82 ± 2.35
1024 3.89% 11.26 ± 2.26 10.82 ± 2.35
2048 4.27% 10.26 ± 2.26 9.82 ± 2.35
4096 4.73% 9.26 ± 2.26 8.82 ± 2.35
8192 5.03% 8.26 ± 2.26 7.84 ± 2.30
16384 5.73% 7.26 ± 2.26 6.84 ± 2.29

0 2000 4000 6000 8000 10000 12000 14000 16000
Epsilon

7

8

9

10

11

12

13

14

M
ea

n
St

ep
s

Lightning: Mean Steps vs. Epsilon

Binary Search
BBS

Figure 2: Lightning Probing Experiment: Basic vs. BBS Convergence Comparison

3 DISCUSSION

Our experimental results demonstrate the potential of Bayesian Binary Search (BBS) as a promis-
ing alternative to classical binary search/bisection, particularly in scenarios where the search space
exhibits non-uniform distributions and is costly to access. The performance improvements observed
in both simulated environments and real-world applications, such as probing payment channels in
the Bitcoin Lightning Network, highlight the promise of BBS. However, it is important to consider
these findings in a broader context and acknowledge the limitations and implications of our work.

3.1 THEORETICAL ALIGNMENT AND PERFORMANCE GAINS

The superior performance of BBS over classical binary search in non-uniform distributions aligns
with our theoretical expectations. By leveraging probabilistic information about the search space,
BBS can make more informed decisions at each step, leading to faster convergence on average.
This is particularly evident in our simulated experiments with skewed distributions, where BBS
consistently required fewer steps to locate the target. The ability of BBS to adapt to the underlying
distribution of the search space represents an advance in the design of search algorithms, and a
fusion of search theory and probabilistic machine learning/statistical learning.

3.2 REAL-WORLD APPLICATION AND IMPLICATIONS

In the context of the Bitcoin Lightning Network, the improvement in probing efficiency could have
significant practical implications. Faster and more accurate channel capacity discovery can enhance
routing algorithms, potentially leading to improved transaction success rates. Crucially, probes
in the Lightning Network consume network-wide computational resources, as each probe requires

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

processing by multiple nodes along potential payment routes. By using BBS to enhance probe ef-
ficiency, we effectively reduce unnecessary network load, akin to removing spam from the system.
This reduction in network overhead could lead to improved overall network performance and scala-
bility.

3.3 LIMITATIONS AND CHALLENGES

Despite the promising results, several limitations of our study should be acknowledged:

1. Computational Overhead: The improved search efficiency of BBS comes at the cost of
increased computational complexity, particularly in the PDF estimation step. This overhead
may offset the reduction in search steps for certain applications, especially those dealing
with small search spaces or requiring extremely fast operation.

2. PDF Estimation Accuracy: The performance of BBS is heavily dependent on the ac-
curacy of the PDF estimation. In scenarios where the underlying distribution is highly
complex or rapidly changing, the chosen PDF estimation method may struggle to provide
accurate probabilities, potentially leading to suboptimal performance.

3.4 FUTURE RESEARCH DIRECTIONS

Our findings open up several exciting avenues for future research:

1. Adaptive PDF Estimation: Developing methods to dynamically adjust the PDF estima-
tion technique based on the observed search space characteristics could further improve the
robustness and efficiency of BBS.

2. Theoretical Bounds: While we provide empirical evidence of BBS’s effectiveness, deriv-
ing tighter theoretical bounds on its performance under various distribution types would
strengthen its theoretical foundation.

3. Application to Other Domains: Exploring the applicability of BBS to other areas such as
database indexing, computational biology, or optimization algorithms could reveal new use
cases and challenges.

3.5 CONCLUSION

Bayesian Binary Search represents a significant step towards more adaptive and efficient search al-
gorithms. By incorporating probabilistic information, BBS demonstrates the potential to outperform
classical binary search in non-uniform distributions, as evidenced by our experiments in both sim-
ulated and real-world scenarios. In the context of the Lightning Network, BBS not only improves
search efficiency but also contributes to reducing unnecessary network load, potentially enhancing
the overall performance and scalability of the system. The promising results open up new possibil-
ities for optimizing search processes in various domains. As we continue to navigate increasingly
complex and data-rich environments, algorithms like BBS that can adapt to the underlying struc-
ture of the problem space will become increasingly valuable. Future work in this direction has the
potential to not only improve search efficiency but also to deepen our understanding of how prob-
abilistic approaches can enhance fundamental algorithms in computer science and their real-world
applications.

REFERENCES

Hermann Bottenbruch. Structure and use of algol 60. In Symbolic Languages in Data Processing,
pp. 121–140. Gordon and Breach, 1962.

Richard L Burden and J Douglas Faires. Numerical Analysis. Cengage Learning, 2015.

Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. a data structuring technique. In
Algorithmica, pp. 133–162. Springer, 1986.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. CoRR, abs/2003.00982, 2020. URL https://arxiv.
org/abs/2003.00982.

Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521(7553):
452–459, 2015.

10

https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Eldon Hansen and G William Walster. Global optimization using interval analysis: the multi-
dimensional case. Computers & Mathematics with Applications, 21(6-7):173–194, 1991.

Michael Horstein. Sequential transmission using noiseless feedback. IEEE Transactions on Infor-
mation Theory, 9(3):136–143, 1963.

Bruno Jedynak, Peter I Frazier, and Raphael Sznitman. Twenty questions with noise: Bayes optimal
policies for entropy loss. Journal of Applied Probability, 49(1):114–136, 2012.

Donald E Knuth. The Art of Computer Programming: Volume 3: Sorting and Searching. Addison-
Wesley Professional, 1998.

Derrick Henry Lehmer. Teaching combinatorial tricks to a computer. Proceedings of Symposia in
Applied Mathematics, 10:179–193, 1960.

Adnan Saher Mohammed, Şahin Emrah Amrahov, and Fatih V Çelebi. Interpolated binary search:
An efficient hybrid search algorithm on ordered datasets. Engineering Science and Technology,
an International Journal, 24(5):1072–1079, 2021.

Jürg Nievergelt. Parallel methods for integrating ordinary differential equations. Communications
of the ACM, 7(12):731–733, 1964.

W Wesley Peterson. Addressing for random-access storage. IBM Journal of Research and Develop-
ment, 1(2):130–146, 1957.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning.
MIT press, 2006.

F. Rosenblatt. The perceptron - a perceiving and recognizing automaton. Technical Report 85-460-1,
Cornell Aeronautical Laboratory, Ithaca, New York, January 1957.

Emanuele Rossi, Vikash Singh, et al. Channel balance interpolation in the lightning network via
machine learning. arXiv preprint arXiv:2405.12087, 2024.

Steve Russ. The Mathematical Works of Bernard Bolzano. Oxford University Press, 2004.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2015.

Sergei Tikhomirov, Rene Pickhardt, Alex Biryukov, and Mariusz Nowostawski. Probing channel
balances in the lightning network. arXiv preprint arXiv:2004.00333, 2020.

Rolf Waeber, Peter I Frazier, and Shane G Henderson. A bayesian approach to stochastic root
finding. Proceedings of the 2013 Winter Simulation Conference, pp. 4033–4043, 2013.

Hao Wang and Dit-Yan Yeung. Towards bayesian deep learning: A framework and some existing
methods. IEEE Transactions on Knowledge and Data Engineering, 28(12):3395–3408, 2016.

A APPENDIX

A.1 BBS ON IMPERFECT SEARCH SPACE DENSITY ESTIMATION

The performance of BBS depends on the accuracy of the search space density estimation. To demon-
strate the performance of BBS on varying degrees of accuracy in search space density estimation,
we run experiments in which the estimated search space probability density function is a given
Kullback-Leibler (KL) divergence from the target normal distribution of the search space.

We derive a new normal distribution with a specified KL divergence to a target distribution below:

Given:

• Target distribution: N(µ1, σ
2
1)

• Desired KL divergence: D

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

We want to find parameters µ2 and σ2 for a new distribution N(µ2, σ
2
2) such that:

KL(N(µ1, σ
2
1) || N(µ2, σ

2
2)) = D

The KL divergence between two normal distributions is given by:

KL(N(µ1, σ
2
1) || N(µ2, σ

2
2)) = log σ2

σ1
+

σ2
1+(µ1 −µ2)

2

2σ2
2

− 1
2

For simplicity, let’s assume σ2 = σ1. Then the equation simplifies to:

D =
(µ1 −µ2)

2

2σ2
1

Solving for µ2:

D =
(µ1−µ2)

2

2σ2
1

2Dσ2
1 = (µ1−µ2)

2√
2Dσ2

1 =| µ1−µ2 |

µ2 = µ1±
√

2Dσ2
1

We choose the positive solution:

µ2 = µ1 +
√
2Dσ2

1

Therefore, the parameters of the new distribution are:

µ2 = µ1 +
√

2Dσ2
1

σ2 = σ1

This ensures that:

KL(N(µ1, σ
2
1) || N(µ2, σ

2
2)) = D

Table 3: µ = 0.0, σ = 1000.0,ϵ=10, N=200
KLD Percent Decrease Basic Mean Steps Bayesian Mean Steps

0.0 9.40% 10.00 ± 0.00 9.06 ± 0.95
0.05 8.85% 10.00 ± 0.00 9.12 ± 1.07
0.1 7.70% 10.00 ± 0.00 9.23 ± 1.12
0.15 6.95% 10.00 ± 0.00 9.30 ± 1.19
0.2 6.35% 10.00 ± 0.00 9.37 ± 1.26
0.25 6.15% 10.00 ± 0.00 9.38 ± 1.34
0.3 4.90% 10.00 ± 0.00 9.51 ± 1.40
0.35 4.35% 10.00 ± 0.00 9.56 ± 1.44
0.4 3.00% 10.00 ± 0.00 9.70 ± 1.42
0.45 2.25% 10.00 ± 0.00 9.78 ± 1.56
0.5 1.20% 10.00 ± 0.00 9.88 ± 1.62
0.55 0.60% 10.00 ± 0.00 9.94 ± 1.65
0.6 0.60% 10.00 ± 0.00 9.94 ± 1.66
0.65 -0.20% 10.00 ± 0.00 10.02 ± 1.77
0.7 -0.90% 10.00 ± 0.00 10.09 ± 1.80
0.75 -1.90% 10.00 ± 0.00 10.19 ± 1.87
0.8 -2.75% 10.00 ± 0.00 10.28 ± 1.94
0.85 -3.35% 10.00 ± 0.00 10.34 ± 2.00
0.9 -4.10% 10.00 ± 0.00 10.41 ± 2.00
0.95 -4.85% 10.00 ± 0.00 10.48 ± 2.03

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8
KLD

9.0

9.2

9.4

9.6

9.8

10.0

10.2

10.4

M
ea

n
St

ep
s

Normal: Mean Steps vs. KLD

Binary Search
BBS

Figure 3: Basic vs BBS Convergence with KLD Separation of Estimated Search Space PDF and
Actual PDF

Table 4: Bimodal Params, µ1 = 0, σ1 = 1000, µ2 = 4000, σ2 = 1000,w1 = 0.5

ϵ Percent Decrease Basic Mean Steps Bayesian Mean Steps

1 3.14% 13.38 ± 0.49 12.96 ± 0.99
2 2.38% 12.58 ± 0.50 12.28 ± 0.90
3 2.67% 12.00 ± 0.00 11.68 ± 0.79
4 4.22% 11.86 ± 0.35 11.36 ± 0.72
5 0.36% 11.00 ± 0.00 10.96 ± 0.78
6 2.91% 11.00 ± 0.00 10.68 ± 0.82
7 4.55% 11.00 ± 0.00 10.50 ± 0.74
8 5.27% 11.00 ± 0.00 10.42 ± 0.64
9 1.53% 10.48 ± 0.50 10.32 ± 0.51
10 0.40% 10.00 ± 0.00 9.96 ± 0.78
11 2.80% 10.00 ± 0.00 9.72 ± 0.81
12 3.80% 10.00 ± 0.00 9.62 ± 0.75
13 4.40% 10.00 ± 0.00 9.56 ± 0.76
14 5.00% 10.00 ± 0.00 9.50 ± 0.71
15 5.60% 10.00 ± 0.00 9.44 ± 0.67
16 5.80% 10.00 ± 0.00 9.42 ± 0.64
17 6.40% 10.00 ± 0.00 9.36 ± 0.56
18 6.60% 10.00 ± 0.00 9.34 ± 0.52
19 -1.98% 9.08 ± 0.27 9.26 ± 0.56
20 0.00% 9.00 ± 0.00 9.00 ± 0.78
21 1.78% 9.00 ± 0.00 8.84 ± 0.84
22 2.67% 9.00 ± 0.00 8.76 ± 0.74
23 3.78% 9.00 ± 0.00 8.66 ± 0.75
24 4.00% 9.00 ± 0.00 8.64 ± 0.75
25 4.00% 9.00 ± 0.00 8.64 ± 0.75
26 4.44% 9.00 ± 0.00 8.60 ± 0.76
27 4.44% 9.00 ± 0.00 8.60 ± 0.76
28 5.11% 9.00 ± 0.00 8.54 ± 0.76
29 6.00% 9.00 ± 0.00 8.46 ± 0.68
30 6.22% 9.00 ± 0.00 8.44 ± 0.67
31 6.44% 9.00 ± 0.00 8.42 ± 0.64
32 6.67% 9.00 ± 0.00 8.40 ± 0.61

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Epsilon

9

10

11

12

13

M
ea

n
St

ep
s

Bimodal: Mean Steps vs. Epsilon

Binary Search
BBS

Figure 4: Bimodal Distribution: Basic vs. BBS Convergence Comparison

Table 5: Exponential Params, scale=10000
ϵ Percent Decrease Basic Mean Steps Bayesian Mean Steps

1 12.86% 16.87 ± 0.34 14.70 ± 1.41
2 13.03% 16.00 ± 0.00 13.91 ± 1.34
3 14.40% 15.55 ± 0.50 13.31 ± 1.37
4 13.07% 15.00 ± 0.00 13.04 ± 1.33
5 15.10% 15.00 ± 0.00 12.73 ± 1.35
6 17.17% 15.00 ± 0.00 12.43 ± 1.36
7 13.01% 14.03 ± 0.16 12.20 ± 1.37
8 13.75% 14.00 ± 0.00 12.07 ± 1.34
9 14.39% 14.00 ± 0.00 11.98 ± 1.31
10 15.54% 14.00 ± 0.00 11.82 ± 1.34
11 16.89% 14.00 ± 0.00 11.63 ± 1.36
12 18.11% 14.00 ± 0.00 11.46 ± 1.36
13 19.00% 14.00 ± 0.00 11.34 ± 1.35
14 13.83% 13.05 ± 0.23 11.25 ± 1.36
15 14.27% 13.00 ± 0.00 11.14 ± 1.37
16 14.62% 13.00 ± 0.00 11.10 ± 1.37
17 15.00% 13.00 ± 0.00 11.05 ± 1.34
18 15.38% 13.00 ± 0.00 11.00 ± 1.32
19 15.65% 13.00 ± 0.00 10.96 ± 1.32
20 16.42% 13.00 ± 0.00 10.87 ± 1.34
21 17.35% 13.00 ± 0.00 10.74 ± 1.36
22 18.19% 13.00 ± 0.00 10.63 ± 1.36
23 18.50% 13.00 ± 0.00 10.60 ± 1.37
24 19.08% 13.00 ± 0.00 10.52 ± 1.34
25 19.81% 13.00 ± 0.00 10.43 ± 1.35
26 20.15% 13.00 ± 0.00 10.38 ± 1.34
27 20.77% 13.00 ± 0.00 10.30 ± 1.34
28 15.42% 12.13 ± 0.34 10.26 ± 1.36
29 14.92% 12.00 ± 0.00 10.21 ± 1.37
30 15.42% 12.00 ± 0.00 10.15 ± 1.37
31 15.58% 12.00 ± 0.00 10.13 ± 1.37
32 15.75% 12.00 ± 0.00 10.11 ± 1.37

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Epsilon

10

11

12

13

14

15

16

17

M
ea

n
St

ep
s

Exponential: Mean Steps vs. Epsilon

Binary Search
BBS

Figure 5: Exponential Distribution: Basic vs. BBS Convergence Comparison

Table 6: Beta Params a=1, b=5, scale=10000 n=500
ϵ Percent Decrease Basic Mean Steps Bayesian Mean Steps

1 4.26% 13.25 ± 0.43 12.68 ± 0.92
2 4.36% 12.39 ± 0.49 11.85 ± 0.89
3 5.43% 12.00 ± 0.00 11.35 ± 0.79
4 6.20% 11.62 ± 0.49 10.90 ± 0.85
5 4.04% 11.00 ± 0.00 10.56 ± 0.82
6 5.44% 11.00 ± 0.00 10.40 ± 0.76
7 6.67% 11.00 ± 0.00 10.27 ± 0.73
8 9.42% 11.00 ± 0.00 9.96 ± 0.84
9 3.65% 10.08 ± 0.27 9.71 ± 0.85
10 4.24% 10.00 ± 0.00 9.58 ± 0.85
11 5.14% 10.00 ± 0.00 9.49 ± 0.81
12 5.84% 10.00 ± 0.00 9.42 ± 0.77
13 6.28% 10.00 ± 0.00 9.37 ± 0.74
14 6.74% 10.00 ± 0.00 9.33 ± 0.71
15 7.44% 10.00 ± 0.00 9.26 ± 0.72
16 9.50% 10.00 ± 0.00 9.05 ± 0.81
17 11.44% 10.00 ± 0.00 8.86 ± 0.86
18 4.50% 9.15 ± 0.36 8.74 ± 0.86
19 3.80% 9.00 ± 0.00 8.66 ± 0.86
20 4.56% 9.00 ± 0.00 8.59 ± 0.86
21 5.09% 9.00 ± 0.00 8.54 ± 0.83
22 5.64% 9.00 ± 0.00 8.49 ± 0.82
23 5.98% 9.00 ± 0.00 8.46 ± 0.79
24 6.31% 9.00 ± 0.00 8.43 ± 0.77
25 6.53% 9.00 ± 0.00 8.41 ± 0.76
26 6.84% 9.00 ± 0.00 8.38 ± 0.75
27 7.24% 9.00 ± 0.00 8.35 ± 0.72
28 7.47% 9.00 ± 0.00 8.33 ± 0.70
29 7.58% 9.00 ± 0.00 8.32 ± 0.69
30 7.84% 9.00 ± 0.00 8.29 ± 0.68
31 8.36% 9.00 ± 0.00 8.25 ± 0.71
32 10.36% 9.00 ± 0.00 8.07 ± 0.80

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Epsilon

8

9

10

11

12

13

M
ea

n
St

ep
s

Beta: Mean Steps vs. Epsilon

basic
enhanced

Figure 6: Beta Distribution: Basic vs. BBS Convergence Comparison

Table 7: Lognorm Params s=1, scale=10000, n=500
ϵ Percent Decrease Basic Mean Steps Bayesian Mean Steps

1 21.08% 19.53 ± 0.50 15.41 ± 1.90
2 22.52% 18.78 ± 0.41 14.55 ± 1.89
3 21.72% 18.00 ± 0.00 14.09 ± 1.86
4 24.10% 18.00 ± 0.00 13.66 ± 1.89
5 23.51% 17.46 ± 0.50 13.36 ± 1.89
6 22.42% 17.00 ± 0.00 13.19 ± 1.85
7 23.78% 17.00 ± 0.00 12.96 ± 1.82
8 25.28% 17.00 ± 0.00 12.70 ± 1.90
9 26.40% 17.00 ± 0.00 12.51 ± 1.91
10 26.44% 16.85 ± 0.36 12.39 ± 1.91
11 23.15% 16.00 ± 0.00 12.30 ± 1.88
12 23.64% 16.00 ± 0.00 12.22 ± 1.86
13 24.19% 16.00 ± 0.00 12.13 ± 1.85
14 24.68% 16.00 ± 0.00 12.05 ± 1.82
15 25.88% 16.00 ± 0.00 11.86 ± 1.87
16 26.69% 16.00 ± 0.00 11.73 ± 1.89
17 27.36% 16.00 ± 0.00 11.62 ± 1.93
18 27.84% 16.00 ± 0.00 11.55 ± 1.93
19 28.34% 16.00 ± 0.00 11.47 ± 1.90
20 28.69% 16.00 ± 0.00 11.41 ± 1.90
21 27.63% 15.71 ± 0.45 11.37 ± 1.90
22 24.44% 15.00 ± 0.00 11.33 ± 1.89
23 24.84% 15.00 ± 0.00 11.27 ± 1.88
24 25.07% 15.00 ± 0.00 11.24 ± 1.87
25 25.37% 15.00 ± 0.00 11.19 ± 1.86
26 25.65% 15.00 ± 0.00 11.15 ± 1.85
27 25.93% 15.00 ± 0.00 11.11 ± 1.84
28 26.09% 15.00 ± 0.00 11.09 ± 1.84
29 26.44% 15.00 ± 0.00 11.03 ± 1.81
30 27.21% 15.00 ± 0.00 10.92 ± 1.85
31 27.95% 15.00 ± 0.00 10.81 ± 1.88
32 28.24% 15.00 ± 0.00 10.76 ± 1.89

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Epsilon

12

14

16

18

M
ea

n
St

ep
s

Lognorm: Mean Steps vs. Epsilon

basic
enhanced

Figure 7: Lognorm Distribution: Basic vs. BBS Convergence Comparison

A.2 BINARY SEARCH TREE VISUALIZATION COMPARISON

To visualize the difference between the execution of BBS and standard binary search in a normally
distributed search space µ = 5, σ = 1.15, we show binary search trees (BSTs) for basic binary
search and BBS over 10000 iterations of the experiment. We observe a significantly higher per-
centage of BBS searches terminating at a depth of 2, where all basic searches in this experiment
terminate at depth 3 or 4. The bracket represents the search interval, and the number below for
internal nodes represents the median of that search interval. The number below the bracket for the
green leaf nodes represent how many times the search terminated at that leaf.

[0, 10)
5

[0, 5)
3

x < 5

[5, 10)
8

x >= 5

[0, 3)
2

x < 3

[3, 5)
4

x >= 3

[0, 2)
1

x < 2

[2, 3)
383x

x >= 2

[0, 1)
4x

x < 1

[1, 2)
47x

x >= 1

[3, 4)
1491x

x < 4

[4, 5)
3083x

x >= 4

[5, 8)
7

x < 8

[8, 10)
9

x >= 8

[5, 7)
6

x < 7

[7, 8)
356x

x >= 7

[5, 6)
3075x

x < 6

[6, 7)
1514x

x >= 6

[8, 9)
44x

x < 9

[9, 10)
3x

x >= 9

Figure 8: Binary Search Tree

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

[0, 10)
5

[0, 5)
4

x < 5

[5, 10)
6

x >= 5

[0, 4)
3

x < 4

[4, 5)
3083x

x >= 4

[0, 3)
2

x < 3

[3, 4)
1491x

x >= 3

[0, 2)
1

x < 2

[2, 3)
383x

x >= 2

[0, 1)
4x

x < 1

[1, 2)
47x

x >= 1

[5, 6)
3075x

x < 6

[6, 10)
7

x >= 6

[6, 7)
1514x

x < 7

[7, 10)
8

x >= 7

[7, 8)
356x

x < 8

[8, 10)
9

x >= 8

[8, 9)
44x

x < 9

[9, 10)
3x

x >= 9

Figure 9: Bayesian Binary Search Tree

A.3 THEORETICAL ANALYSIS

Terms:
Domain/Search Space: x ∈ [a0, b0], where a0, b0 ∈ R and a0 ≤ b0

Unknown Target: t ∈ [a0, b0]

Sign Function: s(x) =
{
1 x > t
−1 x ≤ t

Boundary Conditions: s(a0) = −1, s(b0) = 1
Tolerance: ϵ > 0

PROOF OF CONVERGENCE OF BISECTION METHOD ON DOMAIN SPACE

ALGORITHM DESCRIPTION

The bisection method starts with an initial interval [a0, b0] such that s(a0) = −1 and s(b0) = 1.
The interval is halved at each step, and the new interval is chosen based on the sign of the function
s at the midpoint. This process is repeated until the length of the interval is less than or equal to a
specified tolerance ϵ, where ϵ > 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Let the length of the initial interval be N = b0− a0. At each iteration, the interval is halved, so after
k iterations, the length of the interval becomes:

Length of interval after k iterations = N
2k

STOPPING CONDITION

The method stops when the length of the interval is less than or equal to ϵ, i.e., when:
N
2k ≤ ϵ

Solving for k, we get:

2k ≥ N
ϵ

Taking the logarithm (base 2) of both sides:

k ≥ log2
(N
ϵ

)
Thus, the number of iterations k required to achieve the desired tolerance ϵ is:

k =
⌈
log2

(N
ϵ

)⌉

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

PROOF OF CONVERGENCE OF BISECTION METHOD ON PROBABILITY DENSITY SPACE

ALGORITHM DESCRIPTION

Given the same framework of terms as above, plus:

p
percentile

= F(x) = CDF(x) =
∫ x

−∞
pdf (x)dx, p ∈ (0, 1) (2)

x
domain value

= Q(p) = F−1(p) (3)

Bisecting on probability density space is similar to the above method where we bisect on the domain
space.

The key difference is that rather than bisecting the domain space with an initial interval of [a0, b0],
we will bisect probability space with an initial interval of (0, 1), i.e. (plo0 , phi0) where s(Q(plo0)) =
−1 and s(Q(phi0)) = 1. Our search space then becomes p ∈ (0, 1), and at each iteration we will cut
the percentile interval in half.

Our stopping condition then becomes: Q(phin)− Q(plon) ≤ ϵ

STOPPING CONDITION

Define the length of the interval as phin − plon . At iteration 0, 1− 0 = 20. At iteration 1, the interval
could be (0, 0.5] or [0.5, 1), where the length of both ranges is 21. Because the percentile interval
gets cut in half at each iteration, we know that the length of the interval at iteration k is 2−k. So
at iteration k, the interval is equivalent to [plok , plok + 2−k]. Note that the left or right side of the
interval may remain open if plo remains 0 or phi remains 1 throughout the duration of the algorithm,
respectively.

We can then rewrite our stopping condition of Q(phin)−Q(plon) ≤ ϵ as Q(plon +2−n)−Q(plon) ≤ ϵ.

To prove that this algorithm converges, we know that as n approaches∞, 2−n approaches 0. Thus,
as n approaches∞, the length of the interval approaches 0. Therefore, because ϵ > 0, we know this
algorithm converges.

The rate of convergence depends on the probability distribution function.

The algorithm is described below:

Algorithm 6: Number of Steps Required for Bayesian Binary Search Convergence
1 Num-Steps(Q, s, ϵ)
2 i← 0
3 (plo, phi)← (0, 1)
4 while Q(phi)− Q(plo) > ϵ do
5 pmid ← phi+plo

2
6 m← Q(pmid)
7 if s(m) = −1 then
8 plo ← pmid

9 else
10 phi ← pmid

11 i← i + 1

12 return i

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

PROVING WORST CASE TIME COMPLEXITY OF BBS ON NORMAL DISTRIBUTION

The worst case of BBS on the normal distribution is when the target t approaches the left or right
tail of the normal distribution.

The proofs below assume that the target approaches Q(0). However, the same methods can be
trivially applied to t→ Q(1).

Given that the length of the probability interval is 2−k at iteration k, if target t → Q(0) then Nconv
can be found via:

Nconv = argmin
n

n∑
i=1

(
Q(2−(i−1))− Q(2−i)

)
≤ Q(1)− ϵ

= argmin
n

Q(2−n) ≤ ϵ

After the first iteration, phi1 becomes 2−1 and is repeatedly halved on each subsequent iteration.

At each iteration k, the searchable domain space is reduced by the quantity of the domain space to
the right of Q(phik .

Subtracting the length of the domain space by the summation of the domain space reduced up to
iteration k is equal to the length of the interval in terms of the domain space. Technically, Q(1)
extends to positive infinity for the normal distribution, however it is canceled out in the proof below.
The proof below proves that the summation is equivalent to the simplified expression below it.

Proof by Induction

Let P(n) be the statement
Q(1)−

∑n
i=1

(
Q(2−(i−1))− Q(2−i)

)
= Q(2−n) for all positive integers n.

Basis step: P(1) is true.

P(1) = Q(1)−
1∑

i=1

(
Q(2−(i−1))− Q(2−i)

)
= Q(1)−

(
Q(1)− Q(2−1)

)
= Q(2−1)

Inductive step: Assume P(k) is true for some integer k ≥ 1. Now we show P(k + 1) must also be
true:

P(1) = Q(1)−
k+1∑
i=1

(
Q(2−(i−1))− Q(2−i)

)
= Q(1)−

[
k∑

i=1

(
Q(2−(i−1))− Q(2−i)

)
+

(
Q(2−k)− Q(2−(k+1))

)]
= Q(2−k)− Q(2−k) + Q(2−(k+1))

= Q(2−(k+1))

∴ We have shown using the principle of mathematical induction that P(n) is true for all positive
integers n.

To prove t → Q(0) and t → Q(1) are the worst case in terms of time complexity for targets in the
normal distribution, we will prove that no other target takes longer to converge.
Theorem A.1. For a standard normal distribution with CDF F(x) and quantile function Q(x) =
F−1(x), the number of binary search steps required to achieve convergence within precision ϵ is
maximized when the target approaches Q(0) or Q(1).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. We proceed by establishing several key properties of the quantile function and showing how
they determine the convergence behavior of binary search.

Let us first establish our framework. For any target t = Q(p) where p ∈ (0, 1), the binary
search algorithm maintains an interval [plo, phi] in probability space, corresponding to the interval
[Q(plo),Q(phi)] in the domain space.

Lemma A.2. The derivative of the quantile function Q(x) is strictly increasing in magnitude as | x |
increases toward the tails of the distribution.

Proof of Lemma. The derivative of the quantile function can be expressed as:

Q′(x) =
1

F′(Q(x))
=

1

pdf(Q(x))
(4)

For the standard normal distribution:

pdf(x) =
1√
2π

e−x2/2 (5)

Therefore:
Q′(x) =

√
2πeQ(x)2/2 (6)

Since Q(x) is monotonic and | Q(x) |→ ∞ as x→ 0 or 1, Q′(x) strictly increases as x approaches 0
or 1 starting from x = 0.5.

Now, consider the binary search algorithm at iteration i. The width of the interval in probability
space is 2−i. Let [a, a + 2−i] be any such interval. The corresponding width in domain space is:

| Q(a + 2−i)− Q(a) |=
∫ a+2−i

a
Q′(x)dx (7)

By the mean value theorem:

| Q(a + 2−i)− Q(a) |= 2−iQ′(c) (8)

for some c ∈ (a, a + 2−i).

Due to the monotonicity of Q′(x) established in the lemma, this width is maximized when the inter-
val [a, a + 2−i] is positioned as close as possible to either 0 or 1.

When the target approaches Q(0) or Q(1):

1. The interval [plo, phi] always includes one of the endpoints (0 or 1)

2. The domain space interval [Q(plo),Q(phi)] is therefore maximized at each iteration

For convergence, we require:
| Q(phi)− Q(plo) |≤ ϵ (9)

The number of steps required to achieve this condition is determined by the width of the interval in
domain space. Since this width is maximized when targeting Q(0) or Q(1), these targets require the
maximum number of steps for convergence.

More formally, for any target t = Q(p) where p ∈ (0, 1), let Nconv(p) be the number of steps required
for convergence. Then:

Nconv(p) ≤ max{Nconv(0),Nconv(1)} (10)

Therefore, Q(0) and Q(1) represent the worst-case scenarios for convergence of the binary search
algorithm.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

A.3.1 ADDITIONAL EXPERIMENTS WITH GPR DENSITY ESTIMATION AND RUNTIME
APPROXIMATION

0 2000 4000 6000 8000 10000 12000 14000 16000
Epsilon

7

8

9

10

11

12

13

14

M
ea

n
St

ep
s

Lightning: Mean Steps vs. Epsilon

Binary Search
BBS
GPR

Figure 10: Lightning Probing Experiment: Basic vs. BBS Convergence Comparison

0 2000 4000 6000 8000 10000 12000 14000 16000
Epsilon

25

30

35

40

45

R
un

tim
e

(s
)

Lightning: Mean Runtime vs. Epsilon

Binary Search
BBS
GPR

Figure 11: Lightning Probing Experiment: Basic vs. BBS Convergence Comparison (Runtime)

23

	Introduction
	Methodology
	Classical Binary Search/Bisection
	Bayesian Binary Search (BBS)
	Problem Formulation

	Search Space Probability Density Function Estimation
	Supervised Learning Approaches
	Unsupervised Learning Approaches

	Binary Search with Probabilistic Bisection
	Experiments on Simulated Data
	Experimental Setup
	Distribution Parameters
	Target Values Generation
	Search Procedure
	Metrics Collected

	Experiments on Lightning Network Channel Probing
	Description of Channel Balance Prediction Task
	Data Collection and Preprocessing

	Methodology
	Modeling
	Node Features
	Edge Features
	Positional Encodings
	Concatenated Prediction ML Model
	Model Training Details and Performance

	Discussion
	Theoretical Alignment and Performance Gains
	Real-World Application and Implications
	Limitations and Challenges
	Future Research Directions
	Conclusion

	Appendix
	BBS on Imperfect Search Space Density Estimation
	Binary Search Tree Visualization Comparison
	Theoretical Analysis
	Additional Experiments with GPR Density Estimation and Runtime Approximation

