Architecture and System Support for Transformer Models (ASSYST), ISCA, 2023

Efficient Deployment of Transformer Models on
Edge TPU Accelerators: A Real System Evaluation

Brendan Reidy, Mohammadreza Mohammadi, Mohammed Elbtity, Ramtin Zand
University of South Carolina. bereidy @email.sc.edu, mohammm @email.sc.edu, messa@email.sc.edu, ramtin @cse.sc.edu

Abstract—Transformer models have become a dominant ar-
chitecture in the world of machine learning. From natural
language processing to more recent computer vision applications,
Transformers have shown remarkable results and established a
new state-of-the-art in many domains. However, this increase
in performance has come at the cost of ever-increasing model
sizes requiring more resources to deploy. Machine learning (ML)
models are used in many real-world systems, such as robotics,
mobile devices, and Internet of Things (IoT) devices, that
require fast inference with low energy consumption. For battery-
powered devices, lower energy consumption directly translates
into longer battery life. To address these issues, several edge
Al accelerators have been developed. Among these, the Coral
Edge TPU has shown promising results for image classification
while maintaining very low energy consumption. Many of these
devices, including the Coral TPU, were originally designed to
accelerate convolutional neural networks, making deployment of
Transformers challenging. Here, we propose a methodology to
deploy Transformers on Edge TPU. We provide extensive latency,
power, and energy comparisons among the leading-edge devices
and show that our methodology allows for real-time inference
of large Transformers while maintaining the lowest power and
energy consumption of the leading-edge devices on the market.

Index Terms—Tensor Processing Unit (TPU), Transformer
Models, Edge AI Accelerators, BERT.

I. INTRODUCTION

Since the introduction of Transformer models in 2017 [1],
they have quickly risen to prominence in many areas, such
as natural language processing and computer vision. These
models have shown state-of-the-art results in a wide domain
of tasks from machine translation [1] and question-answering
[2] to computer vision tasks like image segmentation [3].
Many applications, such as self-driving cars, IoT devices,
satellites, drones, and robots, require deploying models for
real-time inference using low-power energy-constrained sys-
tems. Transformer-based models, however, often include a
large number of processing layers, along with hundreds of
millions of parameters. For instance, the Bidirectional En-
coder Representations from Transformers (BERT) [4] models
contain 109 million and 340 million parameters for the Base
and Large models, respectively [5]. Therefore, deploying such
massive models at the edge for real-time applications with
tight restrictions on power and energy is challenging.

The surge in demand for specialized hardware for Al
applications has resulted in a rapidly expanding industry for
edge Al accelerators. Anticipating this trend, several compa-
nies have developed their own specialized accelerators. The
NVIDIA Jetson Nano [6] is a low-cost development board
for machine learning (ML) applications that employ NVIDIA

TensorRT1 as the main driver. The Intel Movidius Neural
Compute Stick 2 (NCS2) [7] is a small, low-power USB
co-processor that enables the deployment of Deep Neural
Networks (DNNs) and is powered by the Myriad Vision
Processing Unit (VPU). Google’s Coral Edge TPU is another
device that leverages tensor processing units (TPUs) to accel-
erate ML applications. The coral TPU is used as a co-processor
on Coral’s Dev Board, as well as a USB accelerator [8] that
can be integrated with tiny computers such as Raspberry Pi.
With the peak performance of four tera-operations per second
(TOPS) and two TOPS/W, Coral Edge TPU can be one of
the promising technologies for realizing real-time Transformer
models. While several studies have used the Coral TPU to
accelerate their DNN applications, to the best of the authors’
knowledge, no work has deployed Transformer-based models
on Coral Edge TPU accelerators.

Herein, we propose a methodology to deploy Transformer
models on the Coral Edge TPU. Because Transformers are
often very large, training them is time-consuming, compu-
tationally expensive, and often requires very large datasets
that are not always publicly available. For these reasons, it is
crucial that our methodology support a wide range of existing
Transformer architectures such as Vision Transformers (ViT)
[9], left-right Transformers, also known as (a.k.a) Encoder-
Decoder Transformers [1], [2] and BERT-like [4] Transform-
ers without any need for retraining, aside from possible
retraining associated with quantization. Here, we modify the
computational graph to allow the model to run on the Edge
TPU while remaining functionally identical to the original
model. While common model optimization techniques such as
pruning, knowledge distillation, hyper-parameter optimization,
and neural architecture search ([10] provides an overview of
these techniques) can be used to improve the size, latency,
power consumption, and energy consumption of models, the
focus of this paper is on the efficient deployment of existing
Transformer architectures on the Coral Edge TPU. Some or all
of the aforementioned optimization techniques can be used on
top of our work to further improve the latency and power
consumption of models. Although we focus on the BERT
Transformer architecture for the main body of the work, we
show that this methodology can be generalized for both BERT-
like and left-right Transformers.

Add & Norm
Outer Feed Forward
Inner Feed Forward

Masked
Multi-Headed
Attention

~—]
L ———

Add & Norm

’ Word Embedding l ’ Ho o l ’

Token Type
Embedding

Embedding

Input Tokens Token Type |

Fig. 1: BERT Architecture with n encoder layers [1].

II. BACKGROUND
A. Transformer Model

Transformer models can vary slightly in design, but the core
architecture remains the same. Transformers use embedding
layers to turn tokens into vectors of size d,,o4c1, a.k.a hidden
size. The exact number of embedding layers varies from one
model to another. For instance, BERT uses three embedding
layers, as shown in Fig. 1. Transformers also employ a stack
of attention heads to capture different learned attention asso-
ciations using scaled dot product attention that maps queries
and key-value pairs to outputs. Scaled dot product attention
uses a dot product between the queries (Q) and the keys (K)
to compute attention scores. These scores are scaled down
to create a mean of O and a variance of 1, and the Softmax
function is applied to generate weights for the values. The
weights are then multiplied by the values (V) to generate the
weighted attention scores for the tokens. At the end of the
multi-headed attention layer, the values from each attention
head are concatenated together and passed to a fully-connected
(FC) layer and then an activation function is applied.

Most Transformers, including GPT-3 [2], and BERT use
Gaussian Error Linear Units (GELU) [11] as the activation
function which uses the non-linearity property of Rectified
Linear Units (ReLU) with the regularization property of
Dropout [12]. The output of the FC layer is added with
previous layers using a residual connection. In the Encoder,
these values are passed to two FC layers where the inner FC
layer has size of dyy, a.k.a intermediate size, and the outer
FC layer has size of d,oqe;- Again, the output is added with
previous layers and normalized using residual connections.
Finally, these values are passed to the next encoder layer,
or if there is none, then the classification head/decoder layer.
Left-right Transformers have a decoder layer that is nearly
identical to the encoder layer, except it has one extra multi-
headed attention layer before the feed-forward layers called the

Weight PE [«—| PE [«— - <> PE
Memory I I I
g Instruction PE PE [« - <> PE
Memory
Parameter : : . .
Memory i I I
PE [«—{ PE [«> - -<—> PE
Off-chip Controller i ¢ ‘
memo
i Edge TPU
()
Core Memory
[o 1O 0|
PE Memory Multi-channel MUX
I
H NMAC/ NMAC/ ~N\MAC/
5 < i i :
o - H i |

(b)
Fig. 2: (a) Edge TPU architecture. (b) PE structure [13].

encoder-decoder multi-headed attention. The encoder-decoder
multi-headed attention is the same as the encoder multi-headed
attention except that the query and key vectors come from the
encoder, and the values vector comes from the decoder. BERT
was introduced in 2018 and builds upon prior Transformer
architectures, with one key difference being bi-directionality.
Unlike prior Transformer models, BERT is designed to train
on both left and right contexts for text. Using a pre-trained
BERT model and one additional classification layer, BERT
can be fine-tuned to perform various language tasks.

B. Coral Edge TPU Architecture

In 2015, Google launched the TPU project in which they
adopted the systolic array architecture to accelerate the DNN
operations [13]. The first version of Google’s TPU was de-
signed to only accelerate the DNN inference on the cloud.
In 2019, Google launched a smaller and low-power version
of TPU, called Edge TPU, that is suited to accelerate the
inference of the DNN at the edge. The Edge TPU uses 8-
bit integer (int8) multiply and accumulate (MAC) core units
in its processing elements (PEs) [8].

In general, the systolic array architecture includes a set
of processing elements that are formed in single or multi-
dimensional arrays that can collectively perform the compu-
tation on certain data brought from memory with no need to
access it from the memory multiple times. The systolic arrays
developed for the ML acceleration are designed to implement
matrix-matrix, matrix-vector, and vector-vector multiplications
which are the dominant operations in ML workloads. Systolic
arrays increase performance by reusing the values fetched
from memory and reducing the main memory accesses [14].
The dataflow in the systolic array is a mapping scheme that
depends on the microarchitecture of PEs and determines how

the input data is fed to the array, and how the partial results and
outputs are generated and stored. Google adopted the weight
stationary dataflow in their cloud TPU and Edge TPU designs
[15], in which, the weights are pre-stored in the core memory
of PEs. At each cycle, the input elements are fed to the PEs and
multiplied by the pinned weights producing partial sums. This
process is vertically distributed over columns in the systolic
array to produce the output results.

Figure 2 shows the architecture of the Edge TPU and the
microarchitecture of each PE within its 2D systolic array.
The Edge TPU includes activation memory, instruction mem-
ory, parameter memory, controller, and PEs. The controller
transfers the data between the off-chip memory and the PEs,
fetches parameters and activation into the buffers, and reads
the instructions that will be executed on the PEs. The Edge
TPU supports a variety of commonly-used operations in DNN
models [8]. Each PE in the Edge TPU has four parallel MAC
units, as opposed to the cloud TPU vl which has only one
MAC unit per PE. As shown in Fig.2, the PEs in Edge TPU
have a single-instruction-multiple-data (SIMD) architecture.
They can perform the MAC operation on four data values
at the same time using four 8-bit fixed point compute lanes.
Moreover, each PE has a core memory and a PE memory. The
PE memory is designed as a first in first out (FIFO) buffer that
is shared among all PEs and used to store model activations,
partial results, and final outputs. Since Edge TPU has a weight-
stationary systolic array, the core memory is used to store
model parameters, i.e., weights.

III. PROPOSED METHODOLOGY TO DEPLOY SMALL- AND
MEDIUM-SIZED TRANSFORMERS ON EDGE TPU

A. Existing Edge TPU Deployment Process

For full Edge TPU utilization, several requirements must be
met; otherwise, only parts of the model will run on the Edge
TPU. The Coral documentation [16] contains an exhaustive list
of requirements and all supported operations. Here, we only
focus on the requirements that are relevant to the Transformer
architecture.

The Edge TPU only supports TensorFlow Lite (TFLite)
models. TFLite is a lightweight version of TensorFlow [17]
that is optimized for deployment on edge systems. Using the
TFLite interpreter, different delegates can be used depending
on the hardware accelerator, such as NNAPI for android
devices, GPU for mobile GPUs, Hexagon for DSPs, Core ML
for 10S devices, and libedgetpu, which is the focus of this
work, for the Coral Edge TPU. Note that TFLite only supports
a subset of all TensorFlow operations and the Coral Edge
TPU only supports a subset of all TFLite operations. A list
of supported Edge TPU operations and any known limitations
can be found at [16]. To fully utilize the TPU, the model must
contain only supported Edge TPU operations.

Since the Edge TPU only supports 8-bit integer operations,
any models aimed to be deployed on Edge TPU must be
converted from 32-bit floating point (fp32) to int8 or unsigned
int8 for all parameters, activations, and operations. This can be

done using either quantization-aware training (QAT) or post-
training quantization (PTQ) with a representative dataset. In
[18], it is shown that using QAT, BERT can maintain state-
of-the-art results using 8-bit integer-only inference. Once the
model has been converted to a quantized TFLite model, the
Edge TPU compiler maps the supported operations to the TPU
and leaves the remaining operations on the CPU. The compiler
maps all supported operations onto one graph to be loaded
onto the TPU called the Edge TPU custom op. Currently, the
Edge TPU graph only includes consecutive operations that are
supported on Edge TPU. Once the compiler finds an operation
in the model that is not supported by the TPU, all the following
operations will be mapped to the CPU, regardless of being
supported by TPU or not. Another deployment requirement
for Edge TPU is that all tensor sizes should be constant at
compilation time. After training, we change the batch size
dimension to 1 and the sequence length dimension to 128.
Moreover, the existing Edge TPU devices do not support
embedding layers. Therefore, since the embedding layers make
up only a small portion of the overall Transformer model, we
leave the operation to run on the CPU for inference.

To verify whether modifying Transformers based on the
existing requirements mentioned above would be sufficient
to successfully deploy them on Edge TPU, we have adapted
BERT-Tiny to BERT-Large models accordingly and tried to
deploy them on the Edge TPU. This experiment results in
compilation failure or partial compilation for all the models.
This is mainly due to the fact that Transformers include
operations that are currently not supported by Edge TPU.
Thus, we develop several methodologies in the following
subsections to resolve the current deployment limitations of
Transformers on the Edge TPU.

B. Proposed Edge TPU Deployment Process for Transformers

To address the existing deployment challenges of the Trans-
formers on Edge TPU, it is required to refactor their compu-
tational graph to alter their operations to those supported by
Edge TPU without altering the model’s functionality. Thus
we developed a flexible in-house TensorFlow Transformer
model using custom Keras layers. This custom Transformer
model allows us to modify any operations in our model and
replace them where necessary. In order to ensure backward
compatibility with existing Transformers, we map pre-trained
weights onto our model and verify that both models yield
the same output for the same input. In the following, we
discuss two of the operations in Transformers that cause the
compilation failure in Edge TPU, and propose methods to
refactor them such that they can be readily deployed on Edge
TPU.

1) Refactoring GELU Activation Function: As mentioned,
GELU [11] is used in many Transformers and is defined by
the following equation:

gelu(z) = %x[l +erf(—=)] (D

Sl

inputs
pn weights outzuts
f—l—\ k r_lﬁ
m Xn =m
(a)
inputs outputs
n kernels k
—— ——

I—T—1
S

(b)
Fig. 3: (a) standard matrix-matrix dot product (b) matrix-
matrix dot product using convolutions.

where er f(x) is the Gaussian error function which is defined

as: "
erf(x) = %/0 et dt (2)

The GELU activation function is not currently supported
on Edge TPU. Several approximations for GELU have been
developed, including those based on transcendental functions
[11] and those based on polynomial equations [18]. For
our purposes, we use the polynomial-based approximation of
GELU known as I-GELU where er f(x) is approximated as:

L(z) = sgn(x) - [a - (min(|z|, —b) 4+ b)* + 1] 3)

where a = —0.2888, b = —1.769, sgn denotes the sign
function, and mén denotes the minimum function. I-GELU
is defined as:
x
V2
However, TFLite does not support the sign function, and
the Edge TPU compiler does not support the absolute value
function. Therefore, we further revised the GELU approxima-
tion and replaced the sign and absolute value functions with
sgn(z) =~ tanh(x-103) and abs(x) ~ - sgn(x), respectively.
Thus, we approximate L(x) in (3) as:

L(z) = tanh(10*z) [a[min(z-tanh(103x), —b)+b]*+1] (5)

[- GELU(z) = %x[l () @

The proposed I-GELU approximation is supported by both
TFLite and Edge TPU. Therefore, in the Transformers, we
replace all instances of GELU with our approximation of
GELU.

2) Refactoring Matrix-Matrix Dot Products for FC Layer:
Many of the operations in Transformers are matrix-matrix dot
products. Although the matrix-matrix dot product in the self-
attention layer is supported by the Edge TPU, it cannot handle
the matrix-matrix dot products in the FC layers, as described
in the device documentation [16]. To perform matrix-matrix
dot products in FC layers, we implement the dot product

TABLE I: Bert models’ specifications.

Model Hi(_iden Attention Hidden Interrpediate Pargn}eters
size Heads Layers Size (millions)
Tiny 128 2 2 512 4.4
Mini 256 4 4 1024 11.2
Small 512 8 4 20438 28.8
Medium 512 8 8 2048 41.4
Base 768 12 12 3072 109.5
Large 1024 16 24 4096 335.1

operation using convolutions. This can be done as follows:
let A be an m x n input matrix, B be an n X k weight matrix,
and C be the m x k output matrix such that A - B = C.
This is a standard matrix-matrix dot product, as shown in Fig.
3 (a). Now consider a convolution layer where we have k
convolution kernels, each with the size of 1 x n called K ony
(shown in Fig. 3b). We can map the weights from matrix B
one-to-one such that K.,,,[r] = BT[z]. By convolving the
kernels K., across the input matrix A with strides of 1
and no padding, the resulting matrix will be an m x k matrix
identical to the original output matrix C' as illustrated in Fig.
3.

Using the aforementioned strategies, we can successfully
compile small- and medium-sized Transformers, such as
BERT-Tiny to BERT-Medium, on Edge TPU. However, the
compilation still fails for larger Transformers such as BERT-
Base. Unfortunately, the compiler does not provide detailed
information about why the larger models cannot compile,
so it is unclear whether the compilation fails due to some
fundamental hardware limit in the Edge TPU or if there is an
issue with the compiler itself. Regardless, in the next section,
we discuss methods to identify the source of the issue and
resolve it.

IV. THE PROPOSED METHODOLOGY TO DEPLOY LARGE
TRANSFORMERS ON EDGE TPU

By comparing the architecture of BERT-Medium and BERT-
Base (see Table I), we narrow down the possible cause of
the compilation failure to the increased hidden size, attention
heads, hidden layers, intermediate size, or some combination
of these model parameters. Starting with the BERT-Medium
architecture, we change one of the model parameters to match
BERT-Base until we reproduce the issue. Using this strategy,
we identify the two layers that cause the compilation to fail:
the inner FC layer and the embedding layer.

Further, we observe that for the inner FC layer, which uses
the intermediate size from Tab. I, the model compiles for
BERT-Medium using a size of 2048 but does not compile
for BERT-Base using a size of 3072. Motivated by this
observation, we use a binary search algorithm to determine
the maximum size for the inner FC layer that can be compiled
on Edge TPU. We find that when followed by the I-GELU
activation function, the maximum inner FC layer size for
Edge TPU is equal to 2728. Moreover, we find that the
maximum size supported varies depending on the type of
activation function. For instance, with no activation function

O
)

(a) (b))
Fig. 4: Computational graphs for (a) tanh(z) (b) ReLU(z) (c)
I-GELU(x) activation functions.

Fig. 5: (a) standard convolution-based fully connected layer (b)
fully connected layer partitioned across the output dimension.

or using ReLU, Sigmoid, and TanH, the intermediate size can
be a maximum of 5376 neurons. This could be due to the
computation size of the I-GELU activation function, as it can
be seen in its computational graph in Fig. 4c, which can lead to
increased memory demands beyond what is available in Edge
TPU’s PE memory.

To address the aforementioned challenge, we propose par-
titioning the inner FC layer into two or more equal parts to
reduce the size of the operations in the layer. For the BERT-
Base model, we partition the inner FC layer into two parts, as
shown in Figure 5. By partitioning the layer along the output,
we reduce the size of the operation by splitting it into two
m X n/2 dot products instead of one m X m dot product
and two n/2 I-GELU activations. For the BERT-Base model,
this leads to 1536 I-GELU neurons, which is less than the
maximum 2728 neurons supported by Edge TPU. At the end,
we concatenate these two layers to realize the output. This
approach allows the model with the intermediate size of 3072,
which is used in BERT-Base, to compile successfully.

Although partitioning the inner FC layer resolves the com-
pilation issue for models with larger intermediate sizes, we
still observe that increased size of the embedding layer causes
the compilation failure for the model. Therefore, we leverage a
similar partitioning mechanism for the embedding layer across
the output dimension. Since the embedding layer itself cannot
be mapped to the Edge TPU, the model’s input for the Edge

Coral USB) ¢

a
L
o

(d)
Fig. 6: Experimental setup. (a) Pi + NCS2 (b) Pi + Coral TPU
(c) Coral Dev board (d) Jetson Nano.

TPU is the output of the embedding layer. As discussed earlier,
here we set the input sequence length to 128; therefore, using
BERT-Base for example, the Edge TPU input includes three
128 x 768 matrices. Similar to how we partition the FC layer,
we partition the embedding layers across the output dimension.
This changes the Edge TPU input from three 128 x 768
matrices to six 128 x 384 matrices.

Using the aforementioned partitioning mechanisms in the
inner FC layer and embedding layer, we successfully compile
and deploy the BERT-Base and Bert-Large models on Edge
TPU. To assess the validity of our approach for other types
of transformers, we create a left-right transformer based on
the model introduced in [1]. Without any modifications to the
model, it fails to compile. However, leveraging our deployment
methodology, we can compile and deploy this transformer
model on Edge TPU as well, which exhibits the effectiveness
of our approach for various architectures and sizes.

V. EXPERIMENTAL RESULTS
A. Experimental Setup

After verifying the successful compilation of various-sized
Transformer models on Edge TPU, we evaluate its perfor-
mance against well-known edge Al accelerators existing in
the market. In particular, we investigate two experimental
setups: (1) USB accelerators, where we compare Intel NCS2
(Fig. 6a) with Coral TPU USB accelerator (Fig. 6b), and (2)
Development Boards, in which we evaluate Coral Edge TPU
Dev Board (Fig. 6¢) against Nvidia Jetson Nano (Fig. 6d).
The USB accelerators are integrated as a co-processor with
Raspberry Pi 4. There are different settings required to run
the models on each of the edge devices. For the Raspberry
Pi 4 and both Coral products, we use TFLite models with
fp32 and int8 precision, respectively. For the NCS2, we use
OpenVino models with fp16 precision. For the Jetson, we use
TensorRT models with fpl6 precision. Jetson provides two
different operating modes, i.e., low-power mode and Max-N
or high-power mode. Here, we use six different BERT models
for our experiments: Tiny, Mini, Small, Medium, Base, and

Large Base Medium Small Mini Tiny
5
10 ~
n
- -
0 2
£ o
< 10 g
- <
9 < ~
c S <
3 — mm
© — [fa) 0
103 5 = =y
8 M <+ ©
e o 3 9 a0
g oo = o
9 102 o 5 ™
c nNO n <
- = Ko < {0
— Ny ©
.—48"‘
10! @®
nlo

Pi

Coral Dev
Pi

Jetson-low
Jetson-high
Coral Dev
Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev
Pi

Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev
Pi

Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev
Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev

Fig. 7: Inference latency measurements for all models and
devices.

Large. Due to the large size of the BERT-Base and BERT-
Large models, we only use development boards to run these
models. Also, since Jetson Nano could not compile BERT-
Large, we only compared the Coral Dev board with Raspberry
Pi for the BERT-Large model.

B. Inference Latency Measurement

For inference latency measurements, we split the process
into three parts: (1) load the model, (2) allocate the tensors
depending on the platform, and (3) perform 100 inferences
using a subset of the Microsoft Research Paraphrase Corpus
(MRPC) dataset [19]. We measure the total time taken for 100
inferences and report the mean inference time for one input
sample. Figure 7 shows the inference results for all platforms
using the six BERT models. We see that all edge accelerators
provide significant speedup over the baseline Raspberry Pi 4
CPU. For the smallest model, BERT-Tiny, Coral Dev board
has the fastest inference speed at 4 ms per inference. For the
BERT Mini, Small, Medium, and Base models, we see that
order of inference speed from least to greatest is as follows:
Jetson high power mode, Jetson low power mode, Coral Dev
board, Coral USB, NCS2, Raspberry Pi 4. We see that the
larger the model is, the bigger the difference is between the
coral products and the Jetson. Although we do not report the
model load and allocation times, it is important to note that
the Coral Dev board, Coral USB, Jetson, and Raspberry Pi all
take less than 10 seconds to load and allocate BERT-Medium,
while the NCS2 takes over 10 minutes to load and allocate
the same model.

1) USB Accelerators: For the USB accelerators, both NCS2
and Coral USB accelerator show improvement over the base-
line Raspberry Pi 4, except for the case of NCS2 and BERT-
Tiny. For BERT-Tiny there is an improvement of 0.76x
for NCS2 and 5.2x for Coral USB accelerator. For BERT-
Medium, we observe approximately 6x reduction in inference
latency for Coral USB accelerator compared to NCS2.

2) Development Boards: Both development boards offer
significant speedups compared to the Raspberry Pi 4. For the
BERT-Tiny model, we observe 3.2x and 5.2x improvement

Large Base Medium Small Mini Tiny
6 by
n
B 5
,._
[
24
o
a
]
23 o
o N
o
€21 9 |3
— —
1 © A
=4 =]
0

Pi

Coral Dev
Pi

Jetson-low
Jetson-high
Coral Dev
Pi

Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev
Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev
Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev
Pi + NCS2
Pi + Coral
Jetson-low
Jetson-high
Coral Dev

Fig. 8: Dynamic power for all models and devices.

over the baseline model using Jetson low and high power
modes. For Coral Dev board, we have 6.5 improvement over
the baseline model. Performing the same comparison for the
BERT-Base model, we have 33x and 48 x improvement over
the baseline model for Jetson with low and high power, respec-
tively. For Coral Dev board, we observe 11x improvement of
the baseline model. For smaller models, Coral Dev board is
slightly faster than the Jetson, but for larger models, Jetson
is up to 4.3x faster. The faster inference of Jetson, however,
is achieved at the cost of significantly more chip resources
and increased power consumption, as discussed in the next
subsection.

C. Inference Power Measurements

We use MakerHawk UM34C USB multimeter to measure
the power dissipation of all devices, except for the Jetson,
which has three internal sensors for measuring the input, CPU,
and GPU powers. To obtain the average power consumption,
we run each model on each platform for five minutes and
record the corresponding power profiles. Figure 8 shows
the dynamic power measurements for all the models and
platforms. Coral Dev board has the lowest power consumption
across all experiments. As shown in the figure, the power con-
sumption remains roughly unchanged across various models
for all the platforms, except for Jetson’s power consumption,
which grows with the model size.

1) USB Accelerators: For the BERT-Tiny and BERT-
Medium models, NCS2 and Coral USB accelerator consume
nearly 1.9x, and 1.6x more power than Raspberry Pi 4 alone.
Coral USB consumes 1.3x less power than NCS2.

2) Development Boards: For the BERT-Tiny model, Coral
Dev board achieves 2.1x reduction in power compared to
Raspberry Pi and a 4.8x improvement over Jetson in high-
power mode. For the BERT-Base model, Coral Dev board
realizes a 9.4 and 4.8x power reduction compared to Jetson
in high-power and low-power modes, respectively. Finally, for
the BERT-Large model, Coral Dev board can achieve 2.4x
reduction in power dissipation compared to Raspberry Pi.

Large Base Medium Small Mini Tiny
o
10° 0
m
Q
2 7
n
= 10* S <
3 an o
= aN 3
[[al O
c o~ ™~
3 © ® o ©
w 10 © 3 o e
] nmS m o < ©om
M o~ 3 N
c on)
$ 102 = & 8
—
.g 10 © o N e -
~ ~ m
- N o~ ~
SNom
(=l
10!

Pi

Coral Dev

Jetson-iow

Jetson-high
Coral Dev

Pi

Pi + NCS2

Pi + Coral

Jetson-low

Jetson-high
Coral Dev

Pi + NCS2

Pi + Coral

Jetson-low
Jetson-high
Coral Dev

Pi + NCS2

Pi + Coral

Jetson-low
Jetson-high
Coral Dev

Pi

Pi + NCS2

Pi + Coral

Jetson-low
Jetson-high
Coral Dev

Fig. 9: Inference energy for all models and devices.

D. Inference Energy

In Fig. 9, we compare the results for inference energy. Aside
from NCS2 we see that all accelerators significantly improve
inference energy over baseline Raspberry Pi.

1) USB Accelerators: For the USB accelerators, we com-
pare the BERT-Medium model. For The NCS2, the inference
energy is 1.3x worse than the Raspberry Pi 4 with no acceler-
ation. Interestingly, the Coral USB accelerator provides a 5.9x
and 7.75x improvement in inference energy compared to the
Raspberry Pi alone and Raspberry Pi with NCS2, respectively.

2) Development Boards: Compared to Raspberry Pi, Coral
Dev board provides a 12x decrease in inference energy for the
BERT-Tiny model. When compared to Jetson-low and Jetson
high, Coral Dev board provides 3x and 6X improvements,
respectively, for the same model. For the BERT-Base model,
Coral Dev board is 1.6x and 2.5x more efficient than Jetson-
low and Jetson-high. Furthermore, Coral Dev board is 31x
more efficient than Raspberry Pi for the same model. Finally,
for the BERT-Large model, Coral Dev board achieves a notable
35x energy saving compared to Raspberry Pi.

VI. CONCLUSION

This paper provides a methodology to deploy Transformer
models on Edge TPU accelerators by identifying the layers
in Transformers that are not supported by Edge TPU and
refactoring their computational graph. We provide an extensive
comparison of the leading edge devices on the market for
Transformer models. Our methodology can deploy various
Transformer architectures on the Coral Edge TPU and achieves
real-time inference while maintaining the lowest energy con-
sumption of the edge devices. We show that by adopting
our approach for the Coral USB Accelerator, inference for
medium-sized Transformers can be accelerated up to nearly
10x while consuming 6x less energy. Further, for large
Transformers, our approach may be the only viable approach
due to the memory constraints associated with other edge
devices.

[1]

[2

—

[3]

[4

=

[5]

[6]

[7

—

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu,
“Coca: Contrastive captioners are image-text foundation models,” arXiv
preprint arXiv:2205.01917, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” 2018.
[Online]. Available: https://arxiv.org/abs/1810.04805

I. Turc, M.-W. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: On the importance of pre-training compact models,” arXiv
preprint arXiv:1908.08962v2, 2019.

Nvidia. Jetson nano module datasheet. [Online].
Available: https:https://developer.nvidia.com/embedded/dlc/jetson-nano-
system-module-datasheet

Intel. Intel neural compute stick 2. [Online]. Available: https:
/[software.intel.com/en-us/neuralcompute- stick
Google. Coral Al, “Tensorflow models on the edge tpu,”

2020. [Online]. Available: https://coral.ai/docs/edgetpu/models-intro/
#compatibility-overview

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly ef al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

G. Menghani, “Efficient deep learning: A survey on making deep
learning models smaller, faster, and better,” arXiv:2106.08962, 2021.
D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”
2016. [Online]. Available: https://arxiv.org/abs/1606.08415

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929-1958, 2014.

A. Yazdanbakhsh, B. Akin, and K. K. Seshadri, “An evalua-
tion of edge tpu accelerators for convolutional neural networks,”
https://arxiv.org/abs/2102.10423, 2021.

M. E. Elbtity, P. S. Chandarana, B. Reidy, J. K. Eshraghian, and R. Zand,
“Aptpu: Approximate computing based tensor processing unit,” /EEE
Transactions on Circuits and Systems I: Regular Papers, pp. 1-0, 2022.
N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proc. of the 44th
Annual Int. Symp. on Comput. Architecture, 2017, pp. 1-12.

Google. Coral Al, “Edge tpu inferencing overview,” 2020. [Online].
Available: https://coral.ai/docs/edgetpu/inference/

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer, “I-bert:
Integer-only bert quantization,” in International conference on machine
learning. PMLR, 2021, pp. 5506-5518.

W. B. Dolan and C. Brockett, “Automatically constructing a corpus
of sentential paraphrases,” in Proceedings of the Third International
Workshop on Paraphrasing (IWP2005), 2005.

