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ABSTRACT

Kolmogorov–Arnold Networks (KANs) have recently gained attention as an alter-
native to traditional Multilayer Perceptrons (MLPs) in deep learning frameworks.
KANs have been integrated into various deep learning architectures such as convo-
lutional neural networks, graph neural networks, and transformers, with their per-
formance evaluated. However, their effectiveness within point-cloud-based neural
networks remains unexplored. To address this gap, we incorporate KANs into
PointNet for the first time to evaluate their performance on 3D point cloud classi-
fication and segmentation tasks. Specifically, we introduce PointNet-KAN, built
upon two key components. First, it employs KANs instead of traditional MLPs.
Second, it retains the core principle of PointNet by using shared KAN layers and
applying symmetric functions for global feature extraction, ensuring permutation
invariance with respect to the input features. In traditional MLPs, the goal is to
train the weights and biases with fixed activation functions; however, in KANs, the
goal is to train the activation functions themselves. We use Jacobi polynomials to
construct the KAN layers. We extensively and systematically evaluate PointNet-
KAN across various polynomial degrees and special types such as the Lagrange,
Chebyshev, and Gegenbauer polynomials. Our results show that PointNet-KAN
achieves competitive performance compared to PointNet with MLPs on bench-
mark datasets for 3D object classification and segmentation, despite employing a
shallower and simpler network architecture. We hope this work serves as a foun-
dation and provides guidance for integrating KANs, as an alternative to MLPs,
into more advanced point cloud processing architectures.

1 INTRODUCTION

Kolmogorov-Arnold Networks (KANs), introduced by Liu et al. (2024), have recently emerged as
an alternative modeling framework to traditional Multilayer Perceptrons (MLPs) (Cybenko, 1989;
Hornik et al., 1989). KANs are based on the Kolmogorov-Arnold representation theorem (Kol-
mogorov, 1957; Arnold, 2009). Unlike MLPs, which rely on fixed activation functions while train-
ing weights and biases, the objective in KANs is to train the activation functions themselves (Liu
et al., 2024).

The performance of KANs has been evaluated across various domains, including scientific machine
learning tasks (Wang et al., 2024b; Shukla et al., 2024; Abueidda et al., 2024; Koenig et al., 2024),
image classification (Azam & Akhtar, 2024; Cheon, 2024; Lobanov et al., 2024; Yu et al., 2024; Tran
et al., 2024), image segmentation (Li et al., 2024; Tang et al., 2024), image detection (Wang et al.,
2024a), audio classification (Yu et al., 2024), and other applications. Additionally, from a neural
network architecture perspective, KANs have been integrated into convolutional neural networks
(CNNs) (Azam & Akhtar, 2024; Bodner et al., 2024) and graph neural networks (Kiamari et al.,
2024; Bresson et al., 2024; Zhang & Zhang, 2024; De Carlo et al., 2024).

However, the efficiency of KANs for 3D point cloud data has not yet been explored. Point cloud data
plays a critical role in various domains, including computer graphics, computer vision, robotics, and
autonomous driving (Uy & Lee, 2018; Li et al., 2020; Guo et al., 2020; Zhang et al., 2023a;b). One
of the most successful neural networks for deep learning on point cloud data is PointNet, introduced
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by Qi et al. (2017a). Following this, several modified and advanced versions of PointNet have
been developed (Qi et al., 2017b; Shen et al., 2018; Thomas et al., 2019; Wang et al., 2019; Zhao
et al., 2021). To the best of our knowledge, the only existing work embedding KANs into PointNet
involves 2D supervised learning in the context of computational fluid dynamics (Kashefi, 2024).
In this work, we integrate KANs into PointNet for the first time to evaluate its performance on
classification and segmentation tasks for 3D point cloud data.

It is important to clarify that by embedding KANs into PointNet, we do not simply mean replacing
every instance of MLPs with KANs. While such an approach could be considered a research case,
our goal is to preserve and utilize the core principles upon which PointNet is built. First, we apply
shared KANs, meaning that the same KANs are applied to all input points. Second, we utilize a
symmetric function, such as the max function, to extract global features from the points. These two
elements are fundamental to PointNet, and by maintaining them, we ensure that the network remains
invariant to input permutations. Our objective is to propose a version of PointNet integrated with
KANs that retains these two essential properties, which we refer to as PointNet-KAN throughout
the rest of this article. Moreover, we focus on PointNet (Qi et al., 2017a) rather than more advanced
versions (Qi et al., 2017b; Shen et al., 2018; Thomas et al., 2019; Wang et al., 2019; Zhao et al., 2021)
to directly and explicitly investigate the effect of KANs on the network’s performance. Using more
complex versions of PointNet could introduce other factors that might obscure the direct influence
of KANs, making it challenging to determine whether any performance changes are due to the KAN
architecture or other components of the network.

We use Jacobi polynomials to construct PointNet-KAN and investigate its performance across differ-
ent polynomial degrees. Additionally, we examine the effect of special cases of Jacobi polynomials,
including Legendre polynomials, Chebyshev polynomials of the first and second kinds, and Gegen-
bauer polynomials. The performance of PointNet-KAN is evaluated across classification and part
segmentation tasks. Overall, the summary of our key contributions is as follows:

• We introduce PointNet with KANs (i.e., PointNet-KAN) for the first time and evaluate its
performance against PointNet with MLPs.

• We embed KAN into a point-cloud-based neural network for the first time, for computer
vision tasks on unordered 3D point sets.

• We conduct an extensive evaluation of the hyperparameters of PointNet-KAN, specifically
the degree and type of polynomial used in constructing KANs.

• We assess the efficiency of PointNet-KAN on benchmarks for 3D object classification and
segmentation tasks.

• We demonstrate that PointNet-KAN achieves competitive performance to PointNet, despite
having a much shallower and simpler network architecture.

• We release our code to support reproducibility and future research.

2 KOLMOGOROV-ARNOLD NETWORK (KAN) LAYERS

Inspired by the Kolmogorov-Arnold representation theorem (Kolmogorov, 1957; Arnold, 2009),
Kolmogorov-Arnold Network (KAN) has been proposed as a novel neural network architecture by
Liu et al. (2024). According to the theorem, multivariate continuous function can be expressed as
a finite composition of continuous univariate functions and additions. To describe the structure of
KAN straightforwardly, consider a single-layer KAN. The network’s input is a vector r of size dinput,
and its output is a vector s of size doutput. In this configuration, the single-layer KAN maps the input
to the output as follows:

sdoutput = Adoutput×dinputrdinput , (1)

where the tensor Adoutput×dinput is expressed as:
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Adoutput×dinput =


ψ1,1(·) ψ1,2(·) · · · ψ1,dinput(·)
ψ2,1(·) ψ2,2(·) · · · ψ2,dinput(·)

...
...

. . .
...

ψdoutput,1(·) ψdoutput,2(·) · · · ψdoutput,dinput(·)

 , (2)

where each ψ(γ) (the subscript is removed to lighten notation) is defined as:

ψ(γ) =

n∑
i=0

ωif
(α,β)
i (γ), (3)

where f (α,β)i (γ) represents the Jacobi polynomial of degree i, n is the polynomial order of ψ, and
ωi are trainable parameters. Hence, the total number of trainable parameters embedded in A is
(n+ 1)× dinput × doutput. We implement f (α,β)n (γ) using a recursive relation (Szegő, 1939):

f (α,β)n (γ) = (anγ + bn)f
(α,β)
n−1 (γ) + cnf

(α,β)
n−2 (γ), (4)

where the coefficients an, bn, and cn are given by:

an =
(2n+ α+ β − 1)(2n+ α+ β)

2n(n+ α+ β)
, (5)

bn =
(2n+ α+ β − 1)(α2 − β2)

2n(n+ α+ β)(2n+ α+ β − 2)
, (6)

cn =
−2(n+ α− 1)(n+ β − 1)(2n+ α+ β)

2n(n+ α+ β)(2n+ α+ β − 2)
, (7)

with the following initial conditions:

f
(α,β)
0 (γ) = 1, (8)

f
(α,β)
1 (γ) =

1

2
(α+ β + 2)γ +

1

2
(α− β). (9)

Since f (α,β)n (γ) is recursively constructed, the polynomials f (α,β)i (γ) for 0 ≤ i ≤ n are computed
sequentially. Additionally, because the input to the Jacobi polynomials must lie within the interval
[−1, 1], the input vector r needs to be scaled to fit this range before being passed to the KAN layer.
To achieve this, we apply the hyperbolic tangent function. Finally, setting α = β = 0 yields the
Legendre polynomial (Abramowitz, 1974; Szegő, 1939), while the Chebyshev polynomials of the
first and second kinds are obtained with α = β = −0.5 and α = β = 0.5, respectively (Abramowitz,
1974; Szegő, 1939). Additionally, the Gegenbauer (or ultraspherical) polynomials arise when α = β
(Szegő, 1939).

3 OVERVIEW OF POINTNET AND ITS KEY PRINCIPLES

Consider a point cloud X as an unordered set with N points, defined as X =
{
xj ∈ Rd

}N

j=1
. The

dimension (or number of features) of each xj is shown by d. According to the Theorem 1 proposed
in Qi et al. (2017a), a set function g : X → R can be defined to map this set of points to a vector as
follows:

g(x1,x2, . . . ,xN ) = τ

(
max

j=1,...,N
{h(xj)}

)
, (10)
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Table 1: Classification results on ModelNet40 (Wu et al., 2015). In PointNet-KAN, the Jacobi
polynomial degree is set to 4 (i.e., n = 4) with α = β = 1.0. Time complexity for PointNet-KAN
and PointNet is provided. ‘M’ stands for million.

normal vector number of points Mean class accuracy Overall accuracy FLOPs/sample

PointNet++ (Qi et al., 2017b) no 2048 - 90.7 -
PointNet++ (Qi et al., 2017b) yes 2048 - 91.9 -
DGCNN (Wang et al., 2019) no 2048 90.7 93.5 -

Point Transformer (Zhao et al., 2021) yes - 90.6 93.7 -
PointMLP (Ma et al., 2022) no 1000 91.4 94.5 -
ShapeLLM (Qi et al., 2024) no 1000 94.8 95.0 -

PointNet (baseline) (Qi et al., 2017a) no 1024 72.6 77.4 148M
PointNet (Qi et al., 2017a) no 1024 86.2 89.2 440M

PointNet-KAN no 1024 82.7 87.5 60M
PointNet-KAN yes 1024 87.2 90.5 110M

where max is a vector-wise max operator that takes N vectors as input and returns a new vector,
computed as the element-wise maximum. In PointNet (Qi et al., 2017a), the continuous functions
τ and h are implemented as MLPs. In this work, we replace τ and h with KANs, resulting in
PointNet-KAN. Note that the function g is invariant to the permutation of input points. Details of
this theorem and its proof can be found in Qi et al. (2017a).

4 ARCHITECTURE OF POINTNET-KAN

Classification branch The top panel of Fig. 1 demonstrates the classification branch of PointNet-
KAN. The architecture of the classification branch is explained as follows. The PointNet-KAN
model accepts input with dimensionality corresponding to 3D spatial coordinates (i.e., d = 3) and
possibly the 3D normal vector as part of the point set representation (i.e., d = 6). A shared KAN
layer maps the input feature vector from its original space to an intermediate feature space of di-
mension 3072. Following the first shared KAN layer, batch normalization (Ioffe & Szegedy, 2015)
is applied. After normalization, a max pooling operation is performed to extract global features by
computing the maximum value across all points in the point cloud. Next, the global feature is passed
through a KAN layer, which reduces the dimensionality to the number of output channels (i.e., k),
corresponding to the classification task. A softmax function is applied to the output to convert the
logits into class probabilities. The concept of shared KANs is analogous to the shared MLPs used
in PointNet (Qi et al., 2017a). It means that the same functional tensor, A, is applied uniformly
to the input or intermediate features in PointNet-KAN. The use of the shared KAN layers and the
symmetric max-pooling function ensure that PointNet-KAN is invariant to the order of the points in
the point cloud.

Part segmentation branch As shown in the bottom panel of Fig. 1, the part segmentation branch
of the PointNet-KAN is described as follows. The input is first passed through a shared KAN
layer, transforming it to an intermediate feature space of size 640, followed by batch normalization.
These local features are then processed by a second shared KAN layer, mapping them to a higher-
dimensional space of size 5120, and another batch normalization step is applied. A max pooling
operation extracts a global feature representing the entire point cloud, which is then expanded to
match the number of points. The one-hot encoded class label, representing the object category,
is concatenated with the local features and the global feature. This combined feature, consisting of
local features of size 640, global features of size 5120, and the class label, is passed through a shared
KAN layer to reduce the feature size to 640, followed by batch normalization. A final shared KAN
layer generates the output, delivering point-wise segmentation predictions, followed by a softmax
function to convert the logits into class probabilities.

4
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Figure 1: Architecture of PointNet-KAN. The classification network is shown in the top panel, and
the segmentation network is shown in the bottom panel. N is the number of points in a point cloud.
d indicates the number of input point features (e.g., spatial coordinates, normal vectors, etc.). k
indicates the number of classes (e.g., for the ModelNet40 (Wu et al., 2015) benchmark, k = 40;
see Sect. 5.1). m indicates the total number of possible parts (e.g., for the ShapeNet part (Yi et al.,
2016) benchmark, m = 50; see Sect. 5.2).

5 EXPERIMENT AND DISCUSSION

5.1 3D OBJECT CLASSIFICATION

We evaluate PointNet-KAN on the ModelNet40 (Wu et al., 2015) shape classification benchmark,
which contains 12,311 models across 40 categories, with 9,843 models allocated for training and
2,468 for testing. Similar to Qi et al. (2017a), we uniformly sample 1,024 points from the mesh
faces and normalize them into a unit sphere. We also conduct an experiment with included normal
vectors as input features, computed using the trimesh library (Dawson-Haggerty et al.). Table 1
presents the classification results of PointNet-KAN, with a polynomial degree of 4 (i.e., n = 4 in
Eq. 3) and α = β = 1. Training details are provided in A.1. The obtained results can be interpreted
from two perspectives.

First, comparing PointNet-KAN with PointNet (baseline) (Qi et al., 2017a) and PointNet (Qi et al.,
2017a) shows that PointNet-KAN (with or without normal vectors) achieves higher accuracy than
PointNet (baseline). Additionally, PointNet-KAN with normal vectors as input features outperforms
PointNet. The number of trainable parameters for PointNet-KAN with n = 4, PointNet (baseline),
and PointNet in the classification branch is approximately 1M, 0.8M, and 3.5M, respectively. It is
worth noting that PointNet-KAN with n = 2 has only roughly 0.6M trainable parameters, making
it lighter than PointNet (baseline) while still achieving an overall accuracy of 89.9 (see Table 4).
Notably, despite its simpler architecture—lacking the input and feature transforms found in Point-
Net, as shown in Fig. 2 of Qi et al. (2017a), and having only 3 hidden layers compared to the 8
hidden layers of PointNet—PointNet-KAN still delivers competitive results, with overall accuracy
of 90.5% versus 89.2%. From a time complexity perspective, the number of floating-point opera-
tions required for one forward pass of the PointNet-KAN model is significantly lower than that of
PointNet, as shown in Table 1.

From the second perspective, we observe that other advanced point-cloud-based deep learning
frameworks, such as PointNet++ (Qi et al., 2017b), DGCNN (Wang et al., 2019), Point Trans-
form (Zhao et al., 2021), PointMLP (Ma et al., 2022), and ShapeLLM (Qi et al., 2024), outperform
PointNet-KAN, as listed in Table 1, though these models employ more advanced and complex ar-
chitectures involving MLPs. This raises the question of whether redesigning these networks using
KANs instead of MLPs could improve their accuracy. While the current article focuses on evaluating
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KAN within the simplest point-cloud-based neural network, PointNet, we hope that the promising
results of PointNet-KAN motivate future efforts to embed KANs into more advanced architectures.

While ModelNet40 (Wu et al., 2015) is a widely recognized benchmark for evaluating and compar-
ing different methods for classification tasks, this dataset only contains synthetic data. To further
assess the robustness and real-world applicability of PointNet-KAN, we extended our evaluation
to the ScanObjectNN (Uy et al., 2019) dataset, which comprises real-world data. The dataset in-
cludes approximately 15,000 objects across 15 categories. Specifically, we utilized the PB T50 RS
variant of ScanObjectNN (Uy et al., 2019). The results are summarized in Table 2. Accordingly,
PointNet-KAN (with α = β = 1, n = 4) with normal vectors as input outperforms PointNet (Qi
et al., 2017a), whereas without normal vectors, this performance advantage is not observed. We
observed a similar trend in the classification task on ModelNet40 (Wu et al., 2015), as seen in Table
1. Incorporating normal vectors generally enhances performance by providing additional geometric
information, as reported in prior studies (Qi et al., 2017b; Wang et al., 2019). However, it increases
the computational cost of preprocessing. Furthermore, the method used to compute normal vectors
might influence the performance.

Table 2: Classification results on ScanObjectNN, the PB T50 RS dataset (Uy et al., 2019). In
PointNet-KAN, the Jacobi polynomial degree is set to 4 (i.e., n = 4) with α = β = 1.0.

Overall accuracy Mean accuracy bag bin box cabinet chair desk display door shelf table bed pillow sink sofa toilet

PointNet++ (Qi et al., 2017b) 77.9 75.4 49.4 84.4 31.6 77.4 91.3 74 79.4 85.2 72.6 72.6 75.5 81 80.8 90.5 85.9
DGCNN (Wang et al., 2019) 78.1 73.6 49.4 82.4 33.1 83.9 91.8 63.3 77 89 79.3 77.4 64.5 77.1 75 91.4 69.4
PointMLP (Ma et al., 2022) 85.4 83.9 - - - - - - - - - - - - - - -

PointNet (Qi et al., 2017a) 68.2 63.4 36.1 69.8 10.5 62.6 89.0 50.0 73.0 93.8 72.6 67.8 61.8 67.6 64.2 76.7 55.3

PointNet-KAN 66.5 61.1 33.2 66.5 9.2 62.7 86.1 45.3 70.1 90.4 70.4 67.2 62.1 62.9 63.0 74.9 52.2
PointNet-KAN with normal 69.2 63.9 36.3 68.5 10.8 63.4 89.5 50.2 73.1 94.7 73.4 68.2 63.3 68.5 65.1 77.4 57.2

5.2 3D OBJECT PART SEGMENTATION

For the part segmentation task, we assess PointNet-KAN on the ShapeNet part dataset (Yi et al.,
2016), which includes 16,881 shapes across 16 categories, with annotations for 50 distinct parts.
The number of parts per category ranges from 2 to 6. We adhere to the official train, validation, and
test splits as outlined in the literature (Chang et al., 2015; Qi et al., 2017a; Wang et al., 2019). In our
experiment, we uniformly sample 2,048 points from each shape within a unit ball. The input features
for PointNet-KAN consist solely of spatial coordinates, and normal vectors are not utilized (i.e., d =
3). The evaluation metric used is Intersection-over-Union (IoU) on points, as described by Qi et al.
(2017a). Training details are provided in A.1. Qualitative results for part segmentation are shown in
Fig. 2. The performance of PointNet-KAN compared to PointNet Qi et al. (2017a) is presented in
Table 3. Accordingly, PointNet-KAN demonstrates competitive results compared to PointNet, with
a mean IoU of 83.3% versus 83.7%. As shown in Table 3, for categories such as motorbike, pistol,
and table, PointNet-KAN provides more accurate predictions than PointNet Qi et al. (2017a). Based
on our machine learning experiments, adding normal vectors as input features does not improve the
performance of PointNet-KAN. A comparison between the segmentation branch of PointNet-KAN,

Table 3: Mean IoU results for part segmentation on ShapeNet part dataset (Yi et al., 2016). In
PointNet-KAN, the Jacobi polynomial degree is set to 2 (i.e., n = 2) with α = β = −0.5. Results
of other models allocated, Wu et al. (2014), 3DCNN (Qi et al., 2017a), Yi et al. (2016), PointNet
(Qi et al., 2017a), DGCNN (Wang et al., 2019), KPConv (Thomas et al., 2019), TAP (Wang et al.,
2023). PN-KAN stands for PointNet-KAN in this table.

Mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
IoU phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

Wu et al. - 63.2 - - - 73.5 - - - 74.4 - - - - - 74.8
3DCNN 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1
Yi et al. 81.4 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3
DGCNN 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6
KPConv 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6
TAP 86.9 84.8 86.1 89.5 82.5 92.1 75.9 92.3 88.7 85.6 96.5 79.8 96.0 85.9 66.2 78.1 83.2

PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

PN-KAN 83.3 81.0 76.8 79.8 74.6 88.7 65.4 90.9 85.3 79.9 95.0 65.3 93.0 83.0 54.3 71.9 81.6
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Aero, gt Bag, gt Cap, gt Chair, gt Lamp, gt

Aero, p Bag, p Cap, p Chair, p Lamp, p

Motor, gt Mug, gt Rocket, gt Earphone, gt Table, gt

Motor, p Mug, p Rocket, p Earphone, p Table, p

Laptop, gt Skateboard, gt Car, gt Pistol, gt Knife, gt

Laptop, p Skateboard, p Car, p Pistol, p Knife, p

Figure 2: A few qualitative results obtained by PointNet-KAN for part segmentation on the
ShapeNet Part dataset (Yi et al., 2016). The results correspond to PointNet-KAN using a Jacobi
polynomial of degree 2 with α = β = −0.5. In the labels, ‘gt’ represents the ground truth, and ‘p’
represents prediction.
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Table 4: Effect of Jacobi polynomial degree on classification performance of PointNet-KAN with
the choice of α = β = 1.0 on ModelNet40 (Wu et al., 2015). Normal vectors are included as part
of the input features.

Jacobi polynomial degree (n) 2 3 4 5 6

Number of trainable parameters 620928 823680 1026432 1229184 1431936
Mean class accuracy 86.7 87.0 87.2 86.8 86.1

Overall accuracy 89.9 90.4 90.5 89.9 89.9

Table 5: Effect of the choice of α and β in Jacobi polynomials on the classification performance of
PointNet-KAN, using a polynomial of degree 2 (i.e., n = 2 in Eq. 3), on ModelNet40 (Wu et al.,
2015). Note that α = β = 0 corresponds to the Legendre polynomial, α = β = −0.5 corresponds to
the Chebyshev polynomial of the first kind, α = β = 0.5 corresponds to the Chebyshev polynomial
of the second kind, and, in general, α = β corresponds to the Gegenbauer polynomial. Normal
vectors are included as part of the input features.

Polynomial type α = β = 0 α = β = −0.5 α = β = 0.5 α = β = 1 2α = β = 2 α = 2β = 2

Mean class accuracy 85.6 86.0 86.7 86.7 85.4 86.2
Overall accuracy 89.5 89.9 90.1 89.9 89.4 89.8

shown in Fig. 1, and the part segmentation branch of PointNet, shown in Fig. 9 of Qi et al. (2017a),
highlights the simplicity of the PointNet-KAN architecture, which consists of only 4 layers and
uses a single local feature, whereas PointNet has 11 layers and uses 5 local features. Additionally,
while PointNet includes input and feature transform networks, the PointNet-KAN architecture does
not. Overall, PointNet-KAN outperforms earlier methodologies such as those in Wu et al. (2014),
3DCNN (Qi et al., 2017a), and Yi et al. (2016). However, more recent architectures, including
DGCNN (Wang et al., 2019), KPConv (Thomas et al., 2019), and TAP (Wang et al., 2023), surpass
PointNet-KAN. As discussed in Sect. 5.1, incorporating KANs into the core of these networks as a
replacement for MLPs could potentially enhance their performance.

5.3 ABLATION STUDIES

Influence of polynomial type and polynomial degree Concerning the classification task dis-
cussed in Sect. 5.1, Table 4 illustrates the effect of varying the polynomial degree from 2 to 6, with
α = β = 1 held constant. While increasing the degree does not significantly affect accuracy, it does
increase the number of trainable parameters. Moreover, Table 5 reports the results of varying α and
β with a fixed polynomial degree of 2, showing that different Jacobi polynomial types do not signifi-
cantly impact performance. Concerning the segmentation task discussed in Sect. 5.2, we investigate
the effect of the Jacobi polynomial degree and the roles of α and β on performance. The results are
tabulated in Table 6 and 7. Similar to the classification task discussed in Sect. 5.1, no significant
differences are observed. As shown in Table 6, increasing the degree of the Jacobi polynomial does
not improve prediction accuracy. According to Table 7, the best performance is achieved with the
Chebyshev polynomial of the first kind when α = β = −0.5.

Influence of the size of tensors and global feature We investigate the effect of the size of the
tensor A (see Eq. 2) and, consequently, the size of the global feature on prediction accuracy. In
the classification branch (see Fig. 1), choosing the shared KAN layer with the size of 1024 (i.e.,
A1024×6 and global feature size of 1024) and 2048 (i.e., A2048×6 and global feature size of 2048)
results in the overall accuracy of 89.7% and 90.3%, respectively, for the ModelNet40 (Wu et al.,
2015) benchmark. In the segmentation branch (see Fig. 1), there are four shared KAN layers, each
corresponding to a tensor. From left to right, we refer to them as B, C, D, and E. For example,
selecting the sets B128×3, C1024×128, D128×1153, E50×128 and B384×3, C3072×384, D3457×3457,
E50×384, respectively, results in a mean IoU of 82.6% and 82.2% for the ShapeNet part (Yi et al.,
2016) benchmark. Note that the size of the global feature in the segmentation branch is determined
by the number of rows (doutput) in tensor C.
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Table 6: Mean IoU results of PointNet-KAN for part segmentation on ShapeNet part dataset (Yi
et al., 2016) for different Jacobi polynomial degrees (n) with α = β = 1.

Mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
IoU phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

n = 2 82.8 81.1 76.8 78.7 74.4 88.4 64.8 90.5 84.5 78.8 95.0 66.9 93.0 82.3 56.8 73.5 80.7
n = 3 81.8 80.0 76.3 79.6 72.1 88.0 69.4 89.0 83.0 79.4 95.0 61.5 91.3 81.0 55.3 70.0 79.0
n = 4 82.4 81.2 71.2 75.6 70.7 87.9 68.3 90.0 81.8 78.4 94.0 60.7 90.7 80.1 51.3 70.8 81.7
n = 5 80.7 78.2 72.0 79.0 67.8 87.5 68.9 87.6 81.3 76.6 94.5 60.8 88.0 81.0 47.3 69.3 79.3
n = 6 82.2 80.5 70.8 78.0 71.7 87.5 62.5 88.0 82.7 76.8 94.6 62.8 92.0 78.9 48.7 65.9 81.6
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Figure 3: Robustness test for PointNet-
KAN on the ModelNet40 (Wu et al.,
2015) test case, where input points are
randomly dropped. See text for details.

Robustness Figure 3 shows the overall accuracy on the
ModelNet40 (Wu et al., 2015) benchmark when input
points from the test set are randomly dropped. PointNet-
KAN (with α = β = 1, n = 4) demonstrates rel-
atively stable performance as the number of points de-
creases from 1024 to 128, with accuracy gradually drop-
ping from 90.5% to 83.7% when using normal vectors
(d = 6), and from 87.5% to 77.5% without normal vectors
(d = 3). Interestingly, PointNet-KAN shows stronger sta-
bility compared to other models (Qi et al., 2017a;b; Wang
et al., 2019), as indicated in Fig. 3. We further investigate
the robustness of PointNet-KAN (with α = β = 1, n = 4)
compared to PointNet (Qi et al., 2017a) under input point
perturbations using Gaussian noise, focusing on overall
accuracy for the ModelNet40 (Wu et al., 2015) test case,
as illustrated in Fig. 4. Similar levels of robustness are
observed between PointNet-KAN and PointNet (Qi et al.,
2017a), with PointNet-KAN showing slightly greater re-
silience. Comparing PointNet-KAN with and without nor-
mal vectors, we observe that when normal vectors are included, PointNet-KAN demonstrates greater
robustness as the standard deviation of the Gaussian noise increases up to 0.06. However, beyond a
standard deviation of 0.06, both methods exhibit roughly the same performance, indicating that the
inclusion of normal vectors no longer provides a significant advantage.
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Figure 4: Robustness test for PointNet-
KAN on the ModelNet40 (Wu et al.,
2015) test case, where Gaussian noise
with varying standard deviations is in-
dependently added to each point to per-
turb it. See text for details.

Influence of input and feature transform networks and
deeper architectures In Sect. 5.1 and Sect. 5.2, we
pointed out that PointNet-KAN is effective, despite its
simple and shallow architecture, and the absence of in-
put and feature transform networks. A question arises:
if such a simple structure performs well, why not im-
prove PointNet-KAN’s performance by deepening the net-
work and adding input and feature transform networks
to achieve even better results? To answer this question,
a straightforward approach is to replace all MLPs in the
PointNet architecture (see Fig. 2 of Qi et al. (2017a) for
the classification branch and Fig. 9 of Qi et al. (2017a) for
the segmentation branch) with KAN to create an equiva-
lent model. We conduct this experiment as follows. We
utilize KAN layers with a Jacobi polynomial degree of 2
(i.e., n = 2) and parameters α = β = 1. The size of the
sequential KAN layers is chosen to match the correspond-
ing size of the MLPs in PointNet, such as (64, 64), (64, 128, 1024), and so on, as illustrated in
Qi et al. (2017a). To conserve space, we omit sketching the full network architecture again. In-
terestingly, the network’s performance does not improve. The overall accuracy of classification on
ModelNet40 (Wu et al., 2015) is 88.9% and the mean IoU on the ShapeNet part dataset (Yi et al.,
2016) is 82.1%.
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Table 7: Mean IoU results of PointNet-KAN for part segmentation on ShapeNet part dataset (Yi
et al., 2016) for different values of α and β. In PointNet-KAN, the Jacobi polynomial degree is
set to 2 (i.e., n = 2). Note that α = β = 0 corresponds to the Legendre polynomial, α = β =
−0.5 corresponds to the Chebyshev polynomial of the first kind, α = β = 0.5 corresponds to the
Chebyshev polynomial of the second kind, and, in general, α = β corresponds to the Gegenbauer
polynomial.

Mean aero bag cap car chair ear guitar knife lamp laptop motor mug pistol rocket skate table
IoU phone board

# shapes 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271

α = β = 0 83.1 82.0 73.5 80.2 75.4 88.5 68.9 90.4 83.9 80.6 95.2 65.3 92.7 81.2 56.9 72.4 80.9
α = β = −0.5 83.3 81.0 76.8 79.8 74.6 88.7 65.4 90.9 85.3 79.9 95.0 65.3 93.0 83.0 54.3 71.9 81.6
α = β = 0.5 81.7 80.5 74.9 78.9 69.3 87.5 66.3 89.5 84.1 77.3 95.0 64.5 92.0 81.7 53.1 71.3 79.7
α = β = 1 82.8 81.1 76.8 78.7 74.4 88.4 64.8 90.5 84.5 78.8 95.0 66.9 93.0 82.3 56.8 73.5 80.7
2α = β = 2 82.6 81.0 75.8 81.5 72.1 88.1 68.0 90.9 83.5 79.5 95.2 63.2 91.2 80.5 58.2 74.0 80.8
α = 2β = 2 82.5 81.0 73.3 82.4 71.6 88.3 68.5 90.7 84.3 79.3 95.4 64.2 91.3 81.9 54.6 70.4 80.5

6 RELATED WORK

Relevant work on KANs can be discussed from two perspectives. The first focuses on using KANs
for classification and segmentation tasks in computer graphics and computer vision. For classifica-
tion, researchers (Cheon, 2024; Bodner et al., 2024; Azam & Akhtar, 2024) have embedded KANs
as a replacement for MLPs in various popular CNN-based neural networks for two-dimensional im-
age classification, such as VGG16 (Simonyan & Zisserman, 2014), MobileNetV2 (Sandler et al.,
2018), EfficientNet (Tan, 2019), ConvNeXt (Liu et al., 2022), ResNet-101 (He et al., 2016), and
Vision Transformer (Dosovitskiy, 2020), and evaluated the performance of these networks with
KANs. For 3D image segmentation tasks, KANs have been embedded into U-Net (Ronneberger
et al., 2015) as a replacement for MLPs (Tang et al., 2024; Wu et al., 2024). However, no prior work
has explored the use of KANs in point-cloud-based neural networks for 3D classification and seg-
mentation of unordered point sets or evaluated their performance on complex benchmark datasets
such as ModelNet40 (Wu et al., 2015) and the ShapeNet Part dataset (Yi et al., 2016). From the
second perspective, KANs were originally constructed using B-spline as the basis polynomial (Liu
et al., 2024), and researchers employed this type of polynomial for image classification and segmen-
tation (Cheon, 2024; Bodner et al., 2024; Azam & Akhtar, 2024). However, studies have shown
that B-splines are computationally expensive and pose difficulties in implementation (Howard et al.,
2024; Rigas et al., 2024). To address these issues, recent advancements in scientific machine learn-
ing suggested the use of Jacobi polynomials as an alternative in KANs (SS, 2024; Seydi, 2024).
Accordingly, Jacobi polynomials are not only easier to implement but also computationally more ef-
ficient. However, no prior work has explored the use of KANs with Jacobi polynomials in computer
vision for classification and segmentation tasks.

7 SUMMARY

In this work, we proposed, for the first time, PointNet with shared KANs (i.e., PointNet-KAN) and
compared its performance to PointNet with shared MLPs. Our results demonstrated that PointNet-
KAN achieved competitive performance to PointNet in both classification and segmentation tasks,
while using a simpler and much shallower network compared to the deep PointNet with shared
MLPs. In our implementation of shared KAN, we compared various families of the Jacobi polyno-
mials, including Lagrange, Chebyshev, and Gegenbauer polynomials, and observed no significant
differences in performance among them. Additionally, we found that a polynomial degree of 2 was
sufficient. We hope this work lays a foundation and offers insights for incorporating KANs, as an
alternative to MLPs, into more advanced architectures for point cloud deep learning frameworks.

REPRODUCIBILITY STATEMENT

The code is currently provided in a zip file as supplementary material and is accessible to the public.
After the review process, we will make it available in a public repository as well.
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A SUPPLEMENTARY MATERIALS

A.1 TRAINING DETAILS

The models for both classification and part segmentation are implemented using PyTorch. For classi-
fication tasks, a batch size of 64 is used, while part segmentation uses a batch size of 32. The training
process employs the Adam optimizer, configured with β1 = 0.9, β2 = 0.999, and ϵ̂ = 10−8. An
initial learning rate of 0.0005 and 0.001 is chosen respectively for the classification and part segmen-
tation tasks. To progressively decrease the learning rate during training, a learning rate scheduler is
applied, which reduces the learning rate by a factor of 0.5 after every 20 epochs. The cross-entropy
loss function is used. All experiments run on an NVIDIA A100 Tensor Core GPU with 80 GB of
RAM.

A.2 A MORE ADVANCED NETWORK: EXTENDING POINTMLP WITH SHARED KANS

We further explore the potential of shared KANs in point-cloud-based neural networks by integrating
them into more advanced architectures. Among the advanced neural networks discussed earlier in
this study is PointMLP (Ma et al., 2022). Here, we present PointKAN, a framework that reconstructs
PointMLP (Ma et al., 2022) using shared KANs.

We briefly review the PointMLP (Ma et al., 2022) architecture, which is fundamentally built on
Residual Point (ResP) blocks. These ResP blocks form the backbone of an extractor, denoted as
Φ. In the PointMLP (Ma et al., 2022) framework, each stage consists of two extractors and an
aggregation function. The first extractor (Φpre) learns features from the input and passes them to
the aggregation function, which employs max pooling. The output of this function is then fed into
the second extractor (Φpos), which extracts aggregated features (see Eq. 4 in Ma et al. (2022)). As
discussed by Ma et al. (2022), one may optionally increase the number of extractors in each stage.
Multiple stages can be connected sequentially to increase the depth of PointMLP. After several
sequential stages, the final output is connected to a classifier for predicting classification scores. To
enhance efficiency and stability, PointMLP (Ma et al., 2022) uses a geometric affine module before
passing input points to the first stage (see Fig. 1 and Fig. 6 in Ma et al. (2022)). For a more detailed
explanation, we refer readers to Ma et al. (2022).

To construct PointKAN, we modify the ResP blocks in PointMLP (Ma et al., 2022) by incorporat-
ing two sequential shared KAN layers, with each layer followed by batch normalization. Similar
to PointMLP (Ma et al., 2022), PointKAN uses four stages. Each stage contains two extractor
components (Φpre), followed by max pooling as the aggregation function, and then two extractor
components (Φpos). The same geometric affine module is employed, as there is no MLP component
embedded in this module (see Eq. 5 in Ma et al. (2022)); hence, no modification is required. For the
classifier, we use the one designed for PointNet-KAN, as depicted in Fig. 1. For a fair comparison
between PointMLP and PointKAN, we use the same dimensionality for each layer as in PointMLP,
as illustrated in Fig. 6 of Ma et al. (2022). For the KAN and shared KAN layers, we set the Jacobi
polynomial degree to 4 (n = 4) with α = β = 1.0.

Table 8: Classification results on ModelNet40 (Wu et al., 2015) and ScanObjectNN, the PB T50 RS
dataset (Uy et al., 2019). In PointKAN and PointNet-KAN, the Jacobi polynomial degree is set to 4
(i.e., n = 4) with α = β = 1.0.

Test case ModelNet40 ModelNet40 ScanObjectNN ScanObjectNN

Mean class accuracy Overall accuracy Mean class accuracy Overall accuracy

PointNet (Qi et al., 2017a) 86.2 89.2 63.4 68.2
PointNet-KAN 87.2 90.5 63.9 69.2

PointNet++ (Qi et al., 2017b) - 91.9 75.4 77.9
DGCNN (Wang et al., 2019) 90.7 93.5 73.6 78.1

Point Transformer (Zhao et al., 2021) 90.6 93.7 - -
ShapeLLM (Qi et al., 2024) 94.8 95.0 - 95.2

PointMLP (Ma et al., 2022) 91.4 94.5 83.9 85.4

PointKAN 91.7 94.6 84.1 85.5
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We conduct machine learning experiments on the classification task using ModelNet40 (Wu et al.,
2015) and ScanObjectNN, the PB T50 RS dataset (Uy et al., 2019). The results are tabulated in
Table 8. Comparing PointKAN with PointNet-KAN, we observe a significant improvement in the
prediction accuracy of PointKAN. This highlights the critical role of using a more advanced archi-
tecture in enhancing network performance. Improvements are evident for both ModelNet40 (Wu
et al., 2015) and ScanObjectNN (Uy et al., 2019). When comparing PointKAN with PointMLP (Ma
et al., 2022), the prediction accuracy of PointKAN exceeds that of PointMLP by 0.1% for overall
accuracy on the ModelNet40 (Wu et al., 2015) test case. On the ScanObjectNN (Uy et al., 2019)
benchmark, PointNet-KAN outperforms PointMLP (Ma et al., 2022), although their performances
are highly competitive, as shown in Table 8. Based on these experiments, we conclude two findings.
First, integrating shared KANs into both basic and advanced point-cloud deep learning frameworks
leads to successful neural networks. Second, combining shared KANs with advanced neural net-
works has the potential to improve performance compared to their counterparts with shared MLPs.
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