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ABSTRACT

Deep learning has been actively studied for time series forecasting, and the main-
stream paradigm is based on the end-to-end training of neural network architec-
tures, ranging from classical LSTM/RNNs to more recent TCNs and Transform-
ers. Motivated by the recent success of representation learning in computer vi-
sion and natural language processing, we argue that a more promising paradigm
for time series forecasting, is to first learn disentangled feature representations,
followed by a simple regression fine-tuning step – we justify such a paradigm
from a causal perspective. Following this principle, we propose a new time se-
ries representation learning framework for long sequence time series forecasting
named CoST, which applies contrastive learning methods to learn disentangled
seasonal-trend representations. CoST comprises both time domain and frequency
domain contrastive losses to learn discriminative trend and seasonal representa-
tions, respectively. Extensive experiments on real-world datasets show that CoST
consistently outperforms the state-of-the-art methods by a considerable margin,
achieving a 21.3% improvement in MSE on multivariate benchmarks. It is also
robust to various choices of backbone encoders, as well as downstream regressors.
Code is available at https://github.com/salesforce/CoST.
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Figure 1: Time series com-
posed of seasonal and trend
components.

Time series forecasting has been widely applied to various domains,
such as electricity pricing (Cuaresma et al., 2004), demand forecast-
ing (Carbonneau et al., 2008), capacity planning and management
(Kim, 2003), and anomaly detection (Laptev et al., 2017). Recently,
there has been a surge of efforts applying deep learning for forecast-
ing (Wen et al., 2017; Bai et al., 2018; Zhou et al., 2021), and ow-
ing to the increase in data availability and computational resources,
these approaches have offered promising performance over conven-
tional methods in forecasting literature. Compared to conventional
approaches, these methods are able to jointly learn feature repre-
sentations and the prediction function (or forecasting function) by
stacking a series of non-linear layers to perform feature extraction,
followed by a regression layer focused on forecasting.

However, jointly learning these layers end-to-end from observed
data may lead to the model over-fitting and capturing spurious cor-
relations of the unpredictable noise contained in the observed data.
The situation is exacerbated when the learned representations are
entangled – when a single dimension of the feature representation encodes information from mul-
tiple local independent modules of the data-generating process – and a local independent module
experiences a distribution shift. Figure 1 is an example of such a case, where the observed time
series is generated by a seasonal module and nonlinear trend module. If we know that the seasonal
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module has experienced a distribution shift, we could still makes a reasonable prediction based on
the invariant trend module. However, if we learn an entangled feature representation from the ob-
served data, it would be challenging for the learned model to handle this distribution shift, even if it
only happens in a local component of the data-generating process. In summary, the learned repre-
sentations and prediction associations from the end-to-end training approach are unable to transfer
nor generalize well when the data is generated from a non-stationary environment, a very common
scenario in the time series analysis. Therefore, in this work, we take a step back and aim to learn
disentangled seasonal-trend representations which are more useful for time series forecasting.

To achieve this goal, we leverage the idea of structural time series models (Scott & Varian, 2015;
Qiu et al., 2018), which formulates time series as a sum of trend, seasonal and error variables, and
exploit such prior knowledge to learn time series representations. First, we present the necessity
of learning disentangled seasonal-trend representations through a causal lens, and demonstrate that
such representations are robust to interventions on the error variable. Then, inspired by Mitrovic
et al. (2020), we propose to simulate interventions on the error variable via data augmentations and
learn the disentangled seasonal-trend representations via contrastive learning.

Based on the above motivations, we propose a novel contrastive learning framework to learn dis-
entangled seasonal-trend representations for the Long Sequence Time-series Forecasting (LSTF)
task (Zhou et al., 2021). Specifically, CoST leverages inductive biases in the model architecture
to learn disentangled seasonal-trend representations. CoST efficiently learns trend representations,
mitigating the problem of lookback window selection by introducing a mixture of auto-regressive
experts. It also learns more powerful seasonal representations by leveraging a learnable Fourier layer
which enables intra-frequency interactions. Both trend and seasonal representations are learned via
contrastive loss functions. The trend representations are learned in the time domain, whereas the
seasonal representations are learned via a novel frequency domain contrastive loss which encour-
ages discriminative seasonal representations and side steps the issue of determining the period of
seasonal patterns present in the data. The contributions of our work are as follows:

1. We show via a causal perspective, the benefits of learning disentangled seasonal-trend rep-
resentations for time series forecasting via contrastive learning.

2. We propose CoST, a time series representation learning approach which leverages inductive
biases in the model architecture to learn disentangled seasonal and trend representations, as
well as incorporating a novel frequency domain contrastive loss to encourage discriminative
seasonal representations.

3. CoST outperforms existing state-of-the-art approaches by a considerable margin on real-
world benchmarks – 21.3% improvement in MSE for the multivariate setting. We also
analyze the benefits of each proposed module, and establish that CoST is robust to various
choices of backbone encoders and downstream regressors via extensive ablation studies.

2 SEASONAL-TREND REPRESENTATIONS FOR TIME SERIES

Figure 2: Causal graph of the genera-
tive process for time series data.

Problem Formulation Let (x1, . . .xT ) ∈ RT×m be a
time series, where m is the dimension of observed signals.
Given lookback window h, our goal is to forecast the next
k steps, X̂ = g(X), where X ∈ Rh×m, X̂ ∈ Rk×m,
and g(·) denotes the prediction mapping function, and X̂
predicts the next k time steps of X .

In this work, instead of jointly learning the representa-
tion and prediction association through g(·), we focus on
learning feature representations from observed data, with
the goal of improving predictive performance. Formally,
we aim to learn a nonlinear feature embedding function
V = f(X), where X ∈ Rh×m and V ∈ Rh×d, to
project m-dimensional raw signals into a d-dimensional la-
tent space for each timestamp. Subsequently, the learned
representation of the final timestamp vh is used as inputs
for the downstream regressor of the forecasting task.
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Disentangled Seasonal-Trend Representation Learning and Its Causal Interpretation As dis-
cussed in Bengio et al. (2013), complex data arise from the rich interaction of multiple sources – a
good representation should be able to disentangle the various explanatory sources, making it robust
to complex and richly structured variations. Not doing so may otherwise lead to capturing spurious
features that do not transfer well under non i.i.d. data distribution settings.

To achieve this goal, it is necessary to introduce structural priors for time series. Here, we borrow
ideas from Bayesian Structural Time Series models (Scott & Varian, 2015; Qiu et al., 2018). As
illustrated in the causal graph in Figure 2, we assume that the observed time series data X is gener-
ated from the error variable E and the error-free latent variable X?. X? in turn, is generated from
the trend variable T and seasonal variable S. As E is not predictable, the optimal prediction can be
achieved if we are able to uncover X? which only depends on T and S.

Firstly, we highlight that existing work using end-to-end deep forecasting methods to directly model
the time-lagged relationship and the multivariate interactions along the observed data X . Unfortu-
nately, each X includes unpredictable noise E, which might lead to capturing spurious correlations.
Thus, we aim to learn the error-free latent variable X?.

Secondly, by the independent mechanisms assumption (Peters et al., 2017; Parascandolo et al.,
2018), we can see that the seasonal and trend modules do not influence or inform each other.
Therefore, even if one mechanism changes due to a distribution shift, the other remains unchanged.
The design of disentangling seasonality and trend leads to better transfer, or generalization in non-
stationary environments. Furthermore, independent seasonal and trend mechanisms can be learned
independently and be flexibly re-used and re-purposed.

We can see that interventions on E does not influence the conditional distribution P (X?|T, S),
i.e. P do(E=ei)(X?|T, S) = P do(E=ej)(X?|T, S), for any ei, ej in the domain of E. Thus, S
and T are invariant under changes in E. Learning representations for S and T allows us to find a
stable association with the optimal prediction (of X?) in terms of various types of errors. Since the
targets X? are unknown, we construct a proxy contrastive learning task inspired by Mitrovic et al.
(2020). Specifically, we use data augmentations as interventions on the error E and learn invariant
representations of T and S via contrastive learning. Since it is impossible to generate all possible
variations of errors, we select three typical augmentations: scale, shift and jitter, which can simulate
a large and diverse set of errors, beneficial for learning better representations.

3 SEASONAL-TREND CONTRASTIVE LEARNING FRAMEWORK

In this section, we introduce our proposed CoST framework to learn disentangled seasonal-trend
representations. We aim to learn representations such that for each time step, we have the disentan-
gled representations for seasonal and trend components, i.e., V = [V (T );V (S)] ∈ Rh×d, where
V (T ) ∈ Rh×dT and V (S) ∈ Rh×dS , such that d = dT + dS .

Figure 3a illustrates our overall framework. Firstly, we make use of an encoder backbone fb :
Rh×m → Rh×d to map the observations to latent space. Next, we construct both the trend and
seasonal representations from these intermediate representations. Specifically, the Trend Feature
Disentangler (TFD), fT : Rh×d → Rh×dT , extracts the trend representations via a mixture of auto-
regressive experts and is learned via a time domain contrastive loss Ltime. The Seasonal Feature
Disentangler (SFD), fS : Rh×d → Rh×dS , extracts the seasonal representations via a learnable
Fourier layer and is learned by a frequency domain contrastive loss which includes an amplitude
component, Lamp, and a phase component, Lphase. We give a detailed description of both com-
ponents in the next section. The model is learned in an end-to-end fashion, with the overall loss
function being

L = Ltime +
α

2
(Lamp + Lphase),

where α is a hyper-parameter which balances the trade-off between trend and seasonal factors.
Finally, we concatenate the outputs of the Trend and Seasonal Feature Disentanglers to obtain our
final output representations.
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Figure 3: (a) Overall Framework. Given intermediate representations from the backbone encoder,
Ṽ = fb(X), the TFD and SFD produce the trend features, V (T ) = fT (Ṽ ), and seasonal features,
V (S) = fS(Ṽ ), respectively. (b) Trend Feature Disentangler. Composition of a mixture of auto-
regressive experts, instantiated as 1d-causal convolutions with kernel size of 2i,∀i = 0, . . . , L,
whereL is a hyper-parameter. Followed by average-pool over theL+1 representations. (c) Seasonal
Feature Disentangler. After transforming the intermediate representations into frequency domain via
the FFT, the SFD applies a (complex-valued) linear layer with unique weights for each frequency.
Then, an inverse FFT is performed to map the representations back to time domain, to form the
seasonal representations, V (S).

3.1 TREND FEATURE REPRESENTATIONS

Extracting the underlying trend is crucial for modeling time series. Auto-regressive filtering is one
widely used method, as it is able to capture time-lagged causal relationships from past observations.
One challenging problem is to select the appropriate lookback window – a smaller window leads to
under-fitting, while a larger model leads to over-fitting and over-parameterization issues. A straight-
forward solution is to optimize this hyper-parameter by grid search on the training or validation
loss (Hyndman & Khandakar, 2008), but such an approach is too computationally expensive. Thus,
we propose to use a mixture of auto-regressive experts which can adaptively select the appropriate
lookback window.

Trend Feature Disentangler (TFD) As illustrated in Figure 3b, the TFD is a mixture of L+1 auto-
regressive experts, where L = blog2(h/2)c. Each expert is implemented as a 1d causal convolution
with d input channels and dT output channels, where the kernel size of the i-th expert is 2i. Each
expert outputs a matrix Ṽ (T,i) = CausalConv(Ṽ , 2i). Finally, an average-pooling operation is
performed over the outputs to obtain the final trend representations,

V (T ) = AvePool(Ṽ (T,0), Ṽ (T,1), . . . , Ṽ (T,L)) =
1

(L+ 1)

L∑
i=0

Ṽ (T,i).

Time Domain Contrastive Loss We employ a contrastive loss in the time domain to learn discrimi-
native trend representations. Specifically, we apply the MoCo (He et al., 2020) variant of contrastive
learning which makes use of a momentum encoder to obtain representations of the positive pair,
and a dynamic dictionary with a queue to obtain negative pairs. We elaborate further on the details
of contrastive learning in Appendix A. Then, given N samples and K negative samples, the time
domain contrastive loss is

Ltime =

N∑
i=1

− log
exp(qi · ki/τ)

exp(qi · ki/τ) +
∑K
j=1 exp(qi · kj/τ)

,

where given a sample V (T ), we first select a random time step t for the contrastive loss and apply a
projection head, which is a one-layer MLP to obtain q, and k is respectively the augmented version
of the corresponding sample from the momentum encoder/dynamic dictionary.
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3.2 SEASONAL FEATURE REPRESENTATIONS

Spectral analysis in the frequency domain has been widely used in seasonality detection (Shumway
et al., 2000). Thus, we turn to the frequency domain to handle the learning of seasonal representa-
tions. To do so, we aim to address two issues: i) how can we support intra-frequency interactions
(between feature dimensions) which allows the representations to encode periodic information more
easily, and, ii) what kind of learning signal is required to learn representations which are able to
discriminate between different seasonality patterns? Standard backbone architectures are unable to
easily capture intra-frequency level interactions, thus, we introduce the SFD which makes use of a
learnable Fourier layer. Then, in order to learn these seasonal features without prior knowledge of
the periodicity, a frequency domain contrastive loss is introduced for each frequency.

Seasonal Feature Disentangler (SFD) As illustrated in Figure 3c, the SFD is primarily composed of
a discrete Fourier transform (DFT) to map the intermediate features to frequency domain, followed
by a learnable Fourier layer. We include further details and definitions of the DFT in Appendix B.
The DFT is applied along the temporal dimension and maps the time domain representations into
the frequency domain, F(Ṽ ) ∈ CF×d, where F = bh/2c + 1 is the number of frequencies. Next,
the learnable Fourier layer, which enables frequency domain interactions, is implemented via a per-
element linear layer. It applies an affine transform on each frequency, with a unique set of complex-
valued parameters for each frequency, since we do not expect this layer to be translation invariant.
Finally, we transform the representation back to time domain using an inverse DFT operation.

The final output matrix of this layer is the seasonal representation, V (S) ∈ Rh×dS . Formally, we
can denote the i, k-th element of the output as

V
(S)
i,k = F−1

( d∑
j=1

Ai,j,kF(Ṽ )i,j +Bi,k

)
,

where A ∈ CF×d×dS ,B ∈ CF×dS are the parameters of the per-element linear layer.

Frequency Domain Contrastive Loss As illustrated in Figure 3c, the inputs to the frequency do-
main loss functions are the pre-iFFT representations, denoted by F ∈ CF×dS . These are complex-
valued representations in the frequency domain. To learn representations which are able to discrim-
inate between different seasonal patterns, we introduce a frequency domain loss function. As our
data augmentations can be interpreted as interventions on the error variable, the seasonal informa-
tion does not change and thus, a contrastive loss in frequency domain corresponds to discriminating
between different periodic patterns given a frequency. To overcome the issue of constructing a loss
function with complex-valued representations, each frequency can be uniquely represented by its
amplitude and phase representations, |Fi,:| and φ(Fi,:). Then, the loss functions are denoted,

Lamp =
1

FN

F∑
i=1

N∑
j=1

− log
exp(|F (j)

i,: | · |(F
(j)
i,: )

′|)

exp(|F (j)
i,: | · |(F

(j)
i,: )

′|) +
∑N
k 6=j exp(|F

(j)
i,: | · |F

(k)
i,: |)

,

Lphase =
1

FN

F∑
i=1

N∑
j=1

− log
exp(φ(F

(j)
i,: ) · φ((F

(j)
i,: )

′))

exp(φ(F
(j)
i,: ) · φ((F

(j)
i,: )

′)) +
∑N
k 6=j exp(φ(F

(j)
i,: ) · φ(F

(k)
i,: ))

,

where F
(j)
i,: is the j-th sample in a mini-batch, and (F

(j)
i,: )

′ is the augmented version of that sample.
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4 EXPERIMENTS

In this section, we report the results of a detailed empirical analysis of CoST and compare it against a
diverse set of time series representation learning approaches, as well as compare against end-to-end
supervised forecasting methods. Appendix F contains further results on runtime analysis.

4.1 EXPERIMENTAL SETUP

Datasets We conduct extensive experiments on five real-world public benchmark datasets. ETT
(Electricity Transformer Temperature)1 (Zhou et al., 2021) consists of two hourly-level datasets
(ETTh) and one 15-minute-level dataset (ETTm), measuring six power load features and “oil tem-
perature”, the chosen target value for univariate forecasting. Electricity2 measures the electricity
consumption of 321 clients, and following popular benchmarks, we convert the dataset into hourly-
level measurements and set “MT 320” as the target value for univariate forecasting. Weather3 is an
hourly-level dataset containing 11 climate features from nearly 1,600 locations in the U.S., and we
take “wet bulb” as the target value for univariate forecasting. Finally, we also include the M5 dataset
(Makridakis et al., 2020) in Appendix J.

Evaluation Setup Following prior work, we perform experiments on two settings – multivariate
and univariate forecasting. The multivariate setting involves multivariate inputs and outputs, con-
sidering all dimensions of the dataset. The univariate setting involves univariate inputs and out-
puts, which are the target values described above. We use MSE and MAE as evaluation metrics,
and perform a 60/20/20 train/validation/test split. Inputs are zero-mean normalized and evalu-
ated over various prediction lengths. Following (Yue et al., 2021), self-supervised learning ap-
proaches are first trained on the train split, and a ridge regression model is trained on top of
the learned representations to directly forecast the entire prediction length. The validation set
is used to choose the appropriate ridge regression regularization term α, over a search space of
{0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}. Evaluation results are reported on the test set.

Implementation Details For CoST and all other representation learning methods, the backbone
encoder used is a Temporal Convolution Network (following similar practice in TS2Vec (Yue
et al., 2021)) unless the approach includes or is an architectural modification (further details in
Appendix E). All methods used have a representation dimensionality of 320. We use a standard
hyper-parameter setting on all datasets – a batch size of 256 and learning rate of 1E−3, momentum
of 0.9 and weight decay of 1E−4 with SGD optimizer and cosine annealing. The MoCo imple-
mentation for time domain contrastive loss uses a queue size of 256, momentum of 0.999, and
temperature of 0.07. We train for 200 iterations for datasets with less than 100,000 samples, and 600
iterations otherwise. Details on data augmentations used in CoST can be found in Appendix C.

4.2 RESULTS

Among the baselines, we report the performance of representation learning techniques including
TS2Vec, TNC, and a time series adaptation of MoCo in our main results. A more extensive bench-
mark of feature-based forecasting approaches can be found in Appendix H due to space limitations.
Further details about the baselines can be found in Appendix E. We include supervised forecasting
approaches - two Transformer based models, Informer (Zhou et al., 2021) and LogTrans(Li et al.,
2020), and the backbone TCN trained directly on an end-to-end forecasting loss. A comparison of
end-to-end forecasting approaches can be found in Appendix I.

Table 1 summarizes the results of CoST and top performing baselines for the multivariate setting,
and Table 7 (in Appendix G due to space limitations) for the univariate setting. For end-to-end fore-
casting approaches, the TCN generally outperforms the Transformer based approaches, Informer
and LogTrans. At the same time, the representation learning methods outperform end-to-end fore-
casting approaches, but there are indeed cases, such as in certain datasets for the univariate setting,
where the end-to-end TCN performs surprisingly well. While Transformers have been shown to

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://www.ncei.noaa.gov/data/local-climatological-data/
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Table 1: Multivariate forecasting results. Best results are highlighted in bold.

Methods
Representation Learning End-to-end Forecasting

CoST TS2Vec TNC MoCo Informer LogTrans TCN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.386 0.429 0.590 0.531 0.708 0.592 0.623 0.555 0.577 0.549 0.686 0.604 0.583 0.547
48 0.437 0.464 0.624 0.555 0.749 0.619 0.669 0.586 0.685 0.625 0.766 0.757 0.670 0.606
168 0.643 0.582 0.762 0.639 0.884 0.699 0.820 0.674 0.931 0.752 1.002 0.846 0.811 0.680
336 0.812 0.679 0.931 0.728 1.020 0.768 0.981 0.755 1.128 0.873 1.362 0.952 1.132 0.815
720 0.970 0.771 1.063 0.799 1.157 0.830 1.138 0.831 1.215 0.896 1.397 1.291 1.165 0.813

E
T

T
h2

24 0.447 0.502 0.423 0.489 0.612 0.595 0.444 0.495 0.720 0.665 0.828 0.750 0.935 0.754
48 0.699 0.637 0.619 0.605 0.840 0.716 0.613 0.595 1.457 1.001 1.806 1.034 1.300 0.911
168 1.549 0.982 1.845 1.074 2.359 1.213 1.791 1.034 3.489 1.515 4.070 1.681 4.017 1.579
336 1.749 1.042 2.194 1.197 2.782 1.349 2.241 1.186 2.723 1.340 3.875 1.763 3.460 1.456
720 1.971 1.092 2.636 1.370 2.753 1.394 2.425 1.292 3.467 1.473 3.913 1.552 3.106 1.381

E
T

T
m

1

24 0.246 0.329 0.453 0.444 0.522 0.472 0.458 0.444 0.323 0.369 0.419 0.412 0.363 0.397
48 0.331 0.386 0.592 0.521 0.695 0.567 0.594 0.528 0.494 0.503 0.507 0.583 0.542 0.508
96 0.378 0.419 0.635 0.554 0.731 0.595 0.621 0.553 0.678 0.614 0.768 0.792 0.666 0.578
288 0.472 0.486 0.693 0.597 0.818 0.649 0.700 0.606 1.056 0.786 1.462 1.320 0.991 0.735
672 0.620 0.574 0.782 0.653 0.932 0.712 0.821 0.674 1.192 0.926 1.669 1.461 1.032 0.756

E
le

ct
ri

ci
ty

24 0.136 0.242 0.287 0.375 0.354 0.423 0.288 0.374 0.312 0.387 0.297 0.374 0.235 0.346
48 0.153 0.258 0.309 0.391 0.376 0.438 0.310 0.390 0.392 0.431 0.316 0.389 0.253 0.359
168 0.175 0.275 0.335 0.410 0.402 0.456 0.337 0.410 0.515 0.509 0.426 0.466 0.278 0.372
336 0.196 0.296 0.351 0.422 0.417 0.466 0.353 0.422 0.759 0.625 0.365 0.417 0.287 0.382
720 0.232 0.327 0.378 0.440 0.442 0.483 0.380 0.441 0.969 0.788 0.344 0.403 0.287 0.381

W
ea

th
er

24 0.298 0.360 0.307 0.363 0.320 0.373 0.311 0.365 0.335 0.381 0.435 0.477 0.321 0.367
48 0.359 0.411 0.374 0.418 0.380 0.421 0.372 0.416 0.395 0.459 0.426 0.495 0.386 0.423
168 0.464 0.491 0.491 0.506 0.479 0.495 0.482 0.499 0.608 0.567 0.727 0.671 0.491 0.501
336 0.497 0.517 0.525 0.530 0.505 0.514 0.516 0.523 0.702 0.620 0.754 0.670 0.502 0.507
720 0.533 0.542 0.556 0.552 0.519 0.525 0.540 0.540 0.831 0.731 0.885 0.773 0.498 0.508

Avg. 0.590 0.524 0.750 0.607 0.870 0.655 0.753 0.608 1.038 0.735 1.180 0.837 0.972 0.666

be powerful models in other domains like NLP, this suggests that TCN models are still a powerful
baseline which should still be considered for time series.

Overall, our approach achieves state-of-the-art performance, beating the best performing end-to-
end forecasting approach by 39.3% and 18.22% (MSE) in the multivariate and univariate settings
respectively. CoST also beats next best performing feature-based approach by 21.3% and 4.71%
(MSE) in the multivariate and univariate settings respectively. This indicates that CoST learns more
relevant features by learning a composition of trend and seasonal features which are crucial for
forecasting tasks.

4.3 PARAMETER SENSITIVITY

Table 2: Parameter sensitivity of α in CoST on the ETT datasets.

α 1E-01 5E-02 1E-02 5E-03 1E-03 5E-04 1E-04 5E-05 1E-05

Multivariate 0.810 0.805 0.781 0.781 0.782 0.781 0.780 0.780 0.780
Univariate 0.120 0.113 0.106 0.104 0.102 0.102 0.103 0.103 0.103

Cases for which larger α is preferred (multivariate).

ETTh2
168 1.509 1.604 1.555 1.550 1.550 1.549 1.544 1.545 1.546
336 1.524 1.646 1.722 1.731 1.744 1.749 1.759 1.762 1.765

α controls the weightage of the seasonal components in the overall loss function, L = Ltime +
α
2 (Lamp + Lphase). We perform a sensitivity analysis on this hyper-parameter (Table 2) and show
that an optimal value can be chosen and is robust across various settings. We choose α = 5E−04
for all other experiments since it performs well on both multivariate and univariate settings. We note
that the small values of α stems from the frequency domain contrastive loss being generally three
orders of magnitude larger than the time domain contrastive loss, rather than being an indicator that
the seasonal component has lower importance than the trend component. Further, we highlight that
overall, while choosing a smaller value of α leads to better performance on most datasets, there are
certain cases for which a larger α might be preferred, as seen in the lower portion of Table 2.
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4.4 ABLATION STUDY

Table 3: Ablation study of various components of CoST on ETT datasets). TFD: Trend Feature
Disentangler, MARE: Mixture of Auto-regressive Experts (TFD without MARE refers to the TFD
module with a single AR expert with kernel size bh/2c), SFD: Seasonal Feature Disentangler, LFL:
Learnable Fourier Layer, FDCL: Frequency Domain Contrastive Loss. † indicates a model trained
end-to-end with supervised forecasting loss. ‡ indicates † with an additional contrastive loss.

TFD MARE SFD LFL FDCL
Multivariate Univariate

MSE MAE MSE MAE

Trend
0.882 0.674 0.115 0.243
0.789 0.630 0.105 0.235

Seasonal
0.905 0.675 0.105 0.237
0.895 0.721 0.103 0.239
0.862 0.668 0.129 0.255

CoST† - 1.376 0.834 0.228 0.366
CoST‡ - 1.477 0.909 0.965 0.883
MoCo - 0.996 0.721 0.112 0.248
SimCLR - 1.021 0.730 0.113 0.248

CoST 0.781 0.625 0.102 0.233

Table 4: Ablation study of various backbone encoders on the ETT datasets.

Backbones TCN LSTM Transformer

Methods TS2Vec CoST TS2Vec CoST TS2Vec CoST

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Multivariate 0.990 0.717 0.781 0.625 1.415 0.903 0.928 0.706 1.092 0.766 0.863 0.674
Univariate 0.116 0.253 0.102 0.233 0.544 0.596 0.148 0.301 0.172 0.328 0.159 0.320

Table 5: Ablation study of various regressors on the ETT datasets

Regressors Ridge Linear Kernel Ridge

Methods TS2Vec CoST TS2Vec CoST TS2Vec CoST

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Multivariate 0.990 0.717 0.781 0.625 1.821 0.944 1.472 0.781 1.045 0.738 0.868 0.686
Univariate 0.116 0.253 0.102 0.233 0.304 0.414 0.182 0.310 0.132 0.273 0.109 0.243

Components of CoST We first perform an ablation study to understand the performance benefits
brought by each component in CoST. Table 3 presents the average results over the ETT datasets
on all forecast horizon settings (similarly for Tables 4 and 5). We show that both trend and sea-
sonal components improve performance over the baselines (SimCLR and MoCo), and further, the
composition of trend and seasonal components leads to the optimal performance. We further verify
that training our proposed model architecture end-to-end with a supervised forecasting loss leads to
worse performance.

Backbones Next, we verify that our proposed trend and seasonal components as well as contrastive
loss (both time and frequency domain) are robust to various backbone encoders. TCN is the default
backbone encoder used in all other experiments and we present results on LSTM and Transformer
backbone encoders of equivalent parameter size. While performance using the TCN backbone out-
performs LSTM and Transformer, we show that our approach outperforms the competing approach
on all three settings.

Regressors Finally, we show that CoST is also robust to various regressors used for forecasting.
Apart from a ridge regression model, we also perform experiments on a linear regression model and
a kernel ridge regression model with RBF kernel. As shown in Table 5, we also demonstrate that
CoST outperforms the competing baseline on all three settings.
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4.5 CASE STUDY

Tr
en
d

Se
as
on
al
ity

TS2VecCoST

Figure 4: T-SNE visualization of learned repre-
sentations from CoST and TS2Vec. (Top) Gener-
ated by visualizing representations after selecting
a single seasonality. Colors represent the two dis-
tinct trends. (Bottom) Generated by visualizing
representations after selecting a single trend. Col-
ors represent the three distinct seasonal patterns.

We visualize the learned representations on a
simple synthetic time series with both seasonal
and trend components, and show that CoST
is able to learn representations which are able
to discriminate between various seasonal and
trend patterns. The synthetic dataset is gener-
ated by defining two trend and three seasonal
patterns, and taking the cross product to form
six time series (details in Appendix D). After
training the encoders on the synthetic dataset,
we can visualize them via the T-SNE algorithm
(Van der Maaten & Hinton, 2008). Figure 4
shows that our approach is able to learn both
the trend and seasonal patterns from the dataset
and the learned representations has high clus-
terability, whereas TS2Vec is unable to distin-
guish between various seasonal patterns.

5 RELATED WORK

Deep forecasting has typically been tackled as an end-to-end supervised learning task, where early
work considered using RNN based models (Lai et al., 2018) as a natural approach to modeling time
series data. Recent work have also considered adapting Transformer based models for time series
forecasting (Li et al., 2020; Zhou et al., 2021), specifically focusing on tackling the quadratic space
complexity of Transformer models. Oreshkin et al. (2020) proposed a univariate deep forecasting
model and showed that deep models outperform classical time series forecasting techniques.

While recent work in time series representation learning focused on various aspects of representation
learning such how to sample contrastive pairs (Franceschi et al., 2020; Tonekaboni et al., 2021),
taking a Transformer based approach (Zerveas et al., 2021), exploring complex contrastive learning
tasks (Eldele et al., 2021), as well as constructing temporally hierarchical representations (Yue et al.,
2021), none have touched upon learning representations composed of trend and seasonal features.
Whereas existing work have focused exclusively on time series classification tasks, Yue et al. (2021)
first showed that time series representations learned via contrastive learning establishes a new state-
of-the-art performance on deep forecasting benchmarks.

Classical time series decomposition techniques (Hyndman & Athanasopoulos, 2018) have been used
to decompose time series into seasonal and trend components to attain interpretability. There has
been recent work on developing more robust and efficient decomposition approaches (Wen et al.,
2018; 2020; Yang et al., 2021). These methods focus decomposing the raw time series into trend
and seasonal components which are still interpreted as time series in the original input space rather
than learning representations. Godfrey & Gashler (2017) presents an initial attempt to use neural
networks to model periodic and non-periodic components in time series data, leveraging periodic
activation functions to model the periodic components. Different from our work, such a method is
only able to model a single time series per model, rather than produce the decomposed seasonal-
trend representations given a lookback window.

6 CONCLUSION

Our work shows separating the representation learning and downstream forecasting task to be a
more promising paradigm than the standard end-to-end supervised training approach for time-series
forecasting. We show this empirically, and also explain it through a causal perspective. By fol-
lowing this principle, we proposed CoST, a contrastive learning framework that learns disentangled
seasonal-trend representations for time series forecasting tasks. Extensive empirical analysis shows
that CoST outperforms the previous state-of-the-art approaches by a considerable margin and is ro-
bust to various choices of backbone encoders and regressors. Future work will extend our framework
for other time-series intelligence tasks.
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A CONTRASTIVE LEARNING

Contrastive learning via the instance discrimination task is a powerful approach for self-supervised
learning. Here, we describe the essentials of this method, which underpins our proposed approach.
Firstly, a family of data augmentations, A, is defined. Given a single sample of data xi ∈ X, two
data augmentation operators are sampled, a ∼ A, a′ ∼ A. qi = f(a(xi)) is referred to as the query
representation with encoder f , and ki = f(a′(xi)) is the positive key representation. Finally, the
InfoNCE loss function is

LInfoNCE =

N∑
i=1

− log
exp(qi · ki/τ)

exp(qi · ki/τ) +
∑K
j=1 exp(qi · kj/τ)

,

where τ is the temperature hyper-parameter, kj are negative key representations, and K is the total
number of negative samples. Standard approaches use an efficient mechanism to obtain negative
samples - by simply treating all other samples in the mini-batch as negative samples, i.e. K = N−1.
MoCo (He et al., 2020) introduces the idea of a using a queue of sizeK (a hyper-parameter) to obtain
negative samples. At each iteration of training, simply pop N samples from the queue, and push the
N representations form the current mini-batch.

B DISCRETE FOURIER TRANSFORM

The DFT provides a frequency domain view of a given sequence, x = (x0, x1, . . . , xN−1), mapping
a time series with regular intervals into the Fourier coefficients, a sequence of complex numbers of
equal length. Due to the conjugate symmetry of the DFT of real-valued signals, we can simply
consider the first bN/2c+ 1 Fourier coefficients, c = F(x) ∈ CbN/2c+1.

ck = F(x)k =

N−1∑
n=0

xn · exp(−i2πkn/N).

Each complex component, ck, can be represented by the amplitude, |ck|, and the phase, φ(ck),

|ck| =
√
R{ck}2 + I{ck}2 φ(ck) = tan−1

(
I{ck}
R{ck}

)
where R{ck} and I{ck} are the real and imaginary components of ck respectively. Finally, the
inverse DFT maps the frequency domain representation back to the time domain,

xn = F−1(c)n =
1

N

N−1∑
k=0

ck · exp(i2πkn/N).

C DATA AUGMENTATIONS

In our experiments, we utilize a composition of three data augmentations, applied in the following
order - scaling, shifting, and jittering, activating with a probability of 0.5.

Scaling The time-series is scaled by a single random scalar value, obtained by sampling ε ∼
N (0, 0.5), and each time step is x̃t = εxt.

Shifting The time-series is shifted by a single random scalar value, obtained by sampling ε ∼
N (0, 0.5) and each time step is x̃t = xt + ε.

Jittering I.I.D. Gaussian noise is added to each time step, from a distribution εt ∼ N (0, 0.5),
where each time step is now x̃t = xt + εt.

D SYNTHETIC DATA GENERATION

We first construct two trend patterns. The first trend patterns follows a nonlinear, saturating pattern,
yt =

1
1+exp β0(t−β1)

+ εt for β0 = 0.2, β1 = 60, εt ∼ N (0, 0.3). The second pattern is a mixture of
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ARMA process, ARMA(2, 2) + ARMA(3, 3) + ARMA(4, 4), where the AR and MA parameters
are as follows, ({.9, -.1}, {.2, -.5}), ({.1, .2, .3}, {.1, .65, -.45}), ({.3, .5, -.5, -.3}, {.1, .1, -.2, -
.3}). Next, we construct three seasonal patterns, consisting of sine waves with the following period,
phase, and amplitudes, {20, 0, 3}, {50, .2, 3}, {100, .5, 3}.
The final time series are constructed as follows, generate a trend pattern g(t) and seasonal pattern
s(t), the final time series is y(t) = g(t) + s(t), t = 0, . . . , 999. We do this for all pairs of trend and
seasonal patterns, constructing a total of 6 time series.

E DETAILS ON BASELINES

Results for TS2Vec, TNC, MoCo, Triplet, CPC, TST, TCC are based on our reproduction, while
results for Informer, LogTrans, and LSTNet (Lai et al., 2018) are directly taken from Yue et al.
(2021) for the ETT and Electricity datasets, and Zhou et al. (2021) for the Weather dataset. For
all reproduced approaches, we train for 200 iterations for datasets with less than 100,000 samples,
otherwise, and 600 iterations otherwise.

The encoders used in all approaches except Triplet and TST is the causal TCN encoder as proposed
in TS2Vec (Yue et al., 2021). A fully connected layer is first used to project each time step from
the dimensionality of the multivariate time series to the hidden channel (size 64). Then, there are 10
layers of convolution blocks. Each convolution block is a sequence of GELU, DilatedConv, GELU,
DilatedConv, with skip connections across each block. The DilatedConvs have dilation of 2i in each
layer i of convolution block, all have kernel size of 3 and input/output channel size of 64. A final
convolution block is used to map the hidden channels to the output channel (size 320).

For Triplet, the encoder is their proposed causal TCN encoder, while for TST, their proposed Trans-
former encoder is used. Further details can be found in their respective papers.

TS2Vec (Yue et al., 2021) TS2Vec was recently proposed as a universal framework for learning
time series representations by performing contrastive learning in a hierarchical manner over aug-
mented context views. They propose to learn timestamp level representations. We ran the code from
their open source repository4 as is, hyper-parameters used are all defaults as suggested in their paper.

TNC (Tonekaboni et al., 2021) TNC proposes a self-supervised framework for learning general-
izable representations for non-stationary time series. They make use of the augmented Dickey-Fuller
test for stationarity to ensure positive samples come from the a neighborhood of similar signals. We
use their open source code5, setting w = 0.005 in the loss function, mc sample size = 20, batch
size of 8, and learning rate of 1E−3 with Adam optimizer.

MoCo (He et al., 2020) MoCo is a popular self-supervised learning baseline in computer vision,
and we implement a time series version of MoCo using their open source code6. We use a batch
size of 128, queue of 256, momentum for the momentum encoder is 0.999, temperature of the
loss function is 0.07, learning rate of 1E−3 with SGD optimizer, with cosine annealing. Data
augmentations used are described in Appendix C.

Triplet (Franceschi et al., 2020) Triplet proposes a time series self-supervised learning approach
by taking positive samples to be substrings of the anchor, and negative samples to be randomly
sampled from the dataset. We reproduce their approach by adapting their open source code7, making
use of their proposed causal TCN model architecture. We use a batch size of 10, and learning rate
1E−3 with AdamW optimizer.

CPC (van den Oord et al., 2019) CPC learns representations by predicting the future in latent
space using auto-regressive models. They use a probabilistic contrastive loss which induces latent

4https://github.com/yuezhihan/ts2vec
5https://github.com/sanatonek/TNC representation learning
6https://github.com/facebookresearch/moco
7https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
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space to capture information maximally useful to predict future samples. We reproduce this ap-
proach by referencing an unofficial implementation8. We use a GRU for the AR module, use two
prediction steps after eight AR steps. We use a batch size of 8 and learning rate of 1E−3 with
AdamW optimizer.

TST (Zerveas et al., 2021) TST is a Transformer based approach using a reconstruction loss. We
use the open source implementation9 as is.

TCC (Eldele et al., 2021) TCC introduces a temopral contrastive module and a tough cross-view
prediction task. We use their open source implementation10. We use a learning rate of 3E−4 with
Adam optimizerλ1 = 1, λ2 = 0.7 as in their implementation, and jitter scale ratio or 1.1, maximum
segment length of 8, and jitter ratio of 0.8, following their HAR setting.

F RUNTIME ANALYSIS

Table 6: Runtime (seconds) for each method in train and inference phase. For representation meth-
ods, we split the runtime into A + B, where A refers to the time for encoder, and B is the time for
the ridge regressor in downstream phase.

Phase H CoST TS2Vec TNC MoCo Informer TCN

Training

24 262.78 + 7.19 91.9 + 5.45 1801.58 + 4.78 31.3 + 6.57 331.32 108.36
48 262.78 + 8.41 91.9 + 6.44 1801.58 + 5.79 31.3 + 8.03 167.18 109.30
96 262.78 + 10.0 91.9 + 8.13 1801.58 + 7.23 31.3 + 9.40 325.51 110.02

288 262.78 + 19.9 91.9 + 16.47 1801.58 + 14.51 31.3 + 17.83 449.86 112.08
672 262.78 + 38.3 91.9 + 32.22 1801.58 + 28.21 31.3 + 36.63 587.25 112.87

Inference

24 23.60 + 0.04 3.73 + 0.05 3.38 + 0.05 3.67 + 0.07 10.32 3.20
48 23.60 + 0.07 3.73 + 0.06 3.38 + 0.09 3.67 + 0.08 5.78 3.67
96 23.60 + 0.11 3.73 + 0.08 3.38 + 0.09 3.67 + 0.10 11.32 4.78

288 23.60 + 0.24 3.73 + 0.18 3.38 + 0.21 3.67 + 0.22 17.19 7.19
672 23.60 + 0.34 3.73 + 0.30 3.38 + 0.33 3.67 + 0.33 25.62 11.93

Table 6 shows the runtime in seconds for each phase for various representation learning methods
and end-to-end approaches. All experiments are performed on an NVIDIA A100 GPU. Do note that
for Informer, we follow the hyperparameters (including lookback window length) as described by
the authors which may vary for different forecasting horizons, thus the runtime may not be strictly
increasing as the forecasting horizon increases. We want to highlight that for all representation
learning approaches, the ridge regressor portions should be equal since the dimension size used are
the same across all methods, any differences are simply due to randomness. Despite a slightly higher
training time compared to some of the baseline approaches, CoST achieves much better results (refer
to Table 1 in the main paper). Furthermore, the extra computation time of CoST as compared to
TS2Vec is due to the sequential computation of each expert in the mixture of AR expert component,
it can be further accelerated by parallel methods (He et al., 2021).

8https://github.com/jefflai108/Contrastive-Predictive-Coding-PyTorch
9https://github.com/gzerveas/mvts transformer

10https://github.com/emadeldeen24/TS-TCC
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G UNIVARIATE FORECASTING BENCHMARK

Table 7: Univariate forecasting results. Best results are highlighted in bold.

Methods
Representation Learning End-to-end Forecasting Feature Engineered

CoST TS2Vec TNC MoCo Informer LogTrans TCN TSFresh

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.040 0.152 0.039 0.151 0.057 0.184 0.040 0.151 0.098 0.247 0.103 0.259 0.104 0.254 0.080 0.224
48 0.060 0.186 0.062 0.189 0.094 0.239 0.063 0.191 0.158 0.319 0.167 0.328 0.206 0.366 0.092 0.242
168 0.097 0.236 0.142 0.291 0.171 0.329 0.122 0.268 0.183 0.346 0.207 0.375 0.462 0.586 0.097 0.253
336 0.112 0.258 0.160 0.316 0.192 0.357 0.144 0.297 0.222 0.387 0.230 0.398 0.422 0.564 0.109 0.263
720 0.148 0.306 0.179 0.345 0.235 0.408 0.183 0.347 0.269 0.435 0.273 0.463 0.438 0.578 0.142 0.302

E
T

T
h2

24 0.079 0.207 0.091 0.230 0.097 0.238 0.095 0.234 0.093 0.240 0.102 0.255 0.109 0.251 0.176 0.331
48 0.118 0.259 0.124 0.274 0.131 0.281 0.130 0.279 0.155 0.314 0.169 0.348 0.147 0.302 0.202 0.357
168 0.189 0.339 0.198 0.355 0.197 0.354 0.204 0.360 0.232 0.389 0.246 0.422 0.209 0.366 0.273 0.420
336 0.206 0.360 0.205 0.364 0.207 0.366 0.206 0.364 0.263 0.417 0.267 0.437 0.237 0.391 0.284 0.423
720 0.214 0.371 0.208 0.371 0.207 0.370 0.206 0.369 0.277 0.431 0.303 0.493 0.200 0.367 0.339 0.466

E
T

T
m

1

24 0.015 0.088 0.016 0.093 0.019 0.103 0.015 0.091 0.030 0.137 0.065 0.202 0.027 0.127 0.027 0.128
48 0.025 0.117 0.028 0.126 0.036 0.142 0.027 0.122 0.069 0.203 0.078 0.220 0.040 0.154 0.043 0.159
96 0.038 0.147 0.045 0.162 0.054 0.178 0.041 0.153 0.194 0.372 0.199 0.386 0.097 0.246 0.054 0.178
288 0.077 0.209 0.095 0.235 0.098 0.244 0.083 0.219 0.401 0.554 0.411 0.572 0.305 0.455 0.098 0.245
672 0.113 0.257 0.142 0.290 0.136 0.290 0.122 0.268 0.512 0.644 0.598 0.702 0.445 0.576 0.121 0.274

E
le

ct
ri

ci
ty

24 0.243 0.264 0.260 0.288 0.252 0.278 0.254 0.280 0.251 0.275 0.528 0.447 0.243 0.367 - -
48 0.292 0.300 0.313 0.321 0.300 0.308 0.304 0.314 0.346 0.339 0.409 0.414 0.283 0.397 - -
168 0.405 0.375 0.429 0.392 0.412 0.384 0.416 0.391 0.544 0.424 0.959 0.612 0.357 0.449 - -
336 0.560 0.473 0.565 0.478 0.548 0.466 0.556 0.482 0.713 0.512 1.079 0.639 0.355 0.446 - -
720 0.889 0.645 0.863 0.651 0.859 0.651 0.858 0.653 1.182 0.806 1.001 0.714 0.387 0.477 - -

W
ea

th
er

24 0.096 0.213 0.096 0.215 0.102 0.221 0.097 0.216 0.117 0.251 0.136 0.279 0.109 0.217 0.192 0.330
48 0.138 0.262 0.140 0.264 0.139 0.264 0.140 0.264 0.178 0.318 0.206 0.356 0.143 0.269 0.231 0.361
168 0.207 0.334 0.207 0.335 0.198 0.328 0.198 0.326 0.266 0.398 0.309 0.439 0.188 0.319 0.298 0.415
336 0.230 0.356 0.231 0.360 0.215 0.347 0.220 0.350 0.297 0.416 0.359 0.484 0.192 0.320 0.314 0.429
720 0.242 0.370 0.233 0.365 0.219 0.353 0.224 0.357 0.359 0.466 0.388 0.499 0.198 0.329 0.423 0.499

Avg. 0.193 0.283 0.203 0.298 0.207 0.307 0.198 0.294 0.296 0.386 0.352 0.430 0.236 0.367 - -
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H RESULTS ON FEATURE-BASED FORECASTING BASELINES

Table 8: Multivariate forecasting results for feature-based approaches.

Methods
Representation Learning Feature Engineered

CoST TS2Vec TNC MoCo Triplet CPC TST TCC TSFresh

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.386 0.429 0.590 0.531 0.708 0.592 0.623 0.555 0.942 0.729 0.728 0.600 0.735 0.633 0.766 0.629 3.858 1.574
48 0.437 0.464 0.624 0.555 0.749 0.619 0.669 0.586 0.975 0.746 0.774 0.629 0.800 0.671 0.825 0.657 4.246 1.674
168 0.643 0.582 0.762 0.639 0.884 0.699 0.820 0.674 1.135 0.825 0.920 0.714 0.973 0.768 0.982 0.731 3.527 1.500
336 0.812 0.679 0.931 0.728 1.020 0.768 0.981 0.755 1.187 0.859 1.050 0.779 1.029 0.797 1.099 0.786 2.905 1.329
720 0.970 0.771 1.063 0.799 1.157 0.830 1.138 0.831 1.283 0.916 1.160 0.835 1.020 0.798 1.267 0.859 2.667 1.283

E
T

T
h2

24 0.447 0.502 0.423 0.489 0.612 0.595 0.444 0.495 1.285 0.911 0.551 0.572 0.994 0.779 1.154 0.838 8.720 2.311
48 0.699 0.637 0.619 0.605 0.840 0.716 0.613 0.595 1.455 0.966 0.752 0.684 1.159 0.850 1.579 0.983 12.771 2.746
168 1.549 0.982 1.845 1.074 2.359 1.213 1.791 1.034 2.175 1.155 2.452 1.213 2.609 1.265 3.456 1.459 20.843 3.779
336 1.749 1.042 2.194 1.197 2.782 1.349 2.241 1.186 2.007 1.101 2.664 1.304 2.824 1.337 3.184 1.420 14.801 3.006
720 1.971 1.092 2.636 1.370 2.753 1.394 2.425 1.292 2.157 1.139 2.863 1.399 2.684 1.334 3.538 1.523 17.967 3.335

E
T

T
m

1

24 0.246 0.329 0.453 0.444 0.522 0.472 0.458 0.444 0.689 0.592 0.478 0.459 0.471 0.491 0.502 0.478 0.639 0.589
48 0.331 0.386 0.592 0.521 0.695 0.567 0.594 0.528 0.752 0.624 0.641 0.550 0.614 0.560 0.645 0.559 0.705 0.629
96 0.378 0.419 0.635 0.554 0.731 0.595 0.621 0.553 0.744 0.623 0.707 0.593 0.645 0.581 0.675 0.583 0.675 0.606
288 0.472 0.486 0.693 0.597 0.818 0.649 0.700 0.606 0.808 0.662 0.781 0.644 0.749 0.644 0.758 0.633 0.848 0.702
672 0.620 0.574 0.782 0.653 0.932 0.712 0.821 0.674 0.917 0.720 0.880 0.700 0.857 0.709 0.854 0.689 0.968 0.767

E
le

ct
ri

ci
ty

24 0.136 0.242 0.287 0.375 0.354 0.423 0.288 0.374 0.564 0.578 0.403 0.459 0.311 0.396 0.345 0.425 - -
48 0.153 0.258 0.309 0.391 0.376 0.438 0.310 0.390 0.569 0.581 0.424 0.473 0.326 0.407 0.365 0.439 - -
168 0.175 0.275 0.335 0.410 0.402 0.456 0.337 0.410 0.576 0.584 0.450 0.491 0.344 0.420 0.389 0.456 - -
336 0.196 0.296 0.351 0.422 0.417 0.466 0.353 0.422 0.591 0.591 0.466 0.501 0.359 0.431 0.407 0.468 - -
720 0.232 0.327 0.378 0.440 0.442 0.483 0.380 0.441 0.603 0.598 0.559 0.555 0.383 0.446 0.438 0.487 - -

W
ea

th
er

24 0.298 0.360 0.307 0.363 0.320 0.373 0.311 0.365 0.522 0.533 0.328 0.383 0.372 0.404 0.332 0.392 2.170 0.909
48 0.359 0.411 0.374 0.418 0.380 0.421 0.372 0.416 0.539 0.543 0.390 0.433 0.418 0.445 0.391 0.439 2.235 0.936
168 0.464 0.491 0.491 0.506 0.479 0.495 0.482 0.499 0.572 0.565 0.499 0.512 0.521 0.518 0.492 0.510 2.514 0.985
336 0.497 0.517 0.525 0.530 0.505 0.514 0.516 0.523 0.582 0.572 0.533 0.536 0.555 0.541 0.523 0.532 2.293 0.969
720 0.533 0.542 0.556 0.552 0.519 0.525 0.540 0.540 0.597 0.582 0.559 0.553 0.575 0.555 0.548 0.549 2.468 0.961

Avg. 0.590 0.524 0.750 0.607 0.870 0.655 0.753 0.608 0.969 0.732 0.880 0.663 0.893 0.671 1.021 0.701 - -

Table 9: Univariate forecasting results for feature-based approaches

Methods
Representation Learning Feature Engineered

CoST TS2Vec TNC MoCo Triplet CPC TST TCC TSFresh

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.040 0.152 0.039 0.151 0.057 0.184 0.040 0.151 0.130 0.289 0.076 0.217 0.127 0.284 0.053 0.175 0.080 0.224
48 0.060 0.186 0.062 0.189 0.094 0.239 0.063 0.191 0.145 0.306 0.104 0.259 0.202 0.362 0.074 0.209 0.092 0.242
168 0.097 0.236 0.142 0.291 0.171 0.329 0.122 0.268 0.173 0.336 0.162 0.326 0.491 0.596 0.133 0.284 0.097 0.253
336 0.112 0.258 0.160 0.316 0.192 0.357 0.144 0.297 0.167 0.333 0.183 0.351 0.526 0.618 0.161 0.320 0.109 0.263
720 0.148 0.306 0.179 0.345 0.235 0.408 0.183 0.347 0.195 0.368 0.212 0.387 0.717 0.760 0.176 0.343 0.142 0.302

E
T

T
h2

24 0.079 0.207 0.091 0.230 0.097 0.238 0.095 0.234 0.160 0.316 0.109 0.251 0.134 0.281 0.111 0.255 0.176 0.331
48 0.118 0.259 0.124 0.274 0.131 0.281 0.130 0.279 0.181 0.339 0.152 0.301 0.171 0.321 0.148 0.298 0.202 0.357
168 0.189 0.339 0.198 0.355 0.197 0.354 0.204 0.360 0.214 0.372 0.251 0.392 0.261 0.404 0.225 0.374 0.273 0.420
336 0.206 0.360 0.205 0.364 0.207 0.366 0.206 0.364 0.232 0.389 0.238 0.388 0.269 0.413 0.232 0.385 0.284 0.423
720 0.214 0.371 0.208 0.371 0.207 0.370 0.206 0.369 0.251 0.406 0.234 0.389 0.278 0.420 0.242 0.397 0.339 0.466

E
T

T
m

1

24 0.015 0.088 0.016 0.093 0.019 0.103 0.015 0.091 0.071 0.180 0.018 0.102 0.048 0.151 0.026 0.122 0.027 0.128
48 0.025 0.117 0.028 0.126 0.036 0.142 0.027 0.122 0.084 0.206 0.035 0.142 0.064 0.183 0.045 0.165 0.043 0.159
96 0.038 0.147 0.045 0.162 0.054 0.178 0.041 0.153 0.097 0.230 0.059 0.188 0.102 0.231 0.072 0.211 0.054 0.178
288 0.077 0.209 0.095 0.235 0.098 0.244 0.083 0.219 0.130 0.276 0.118 0.271 0.172 0.316 0.158 0.318 0.098 0.245
672 0.113 0.257 0.142 0.290 0.136 0.290 0.122 0.268 0.160 0.315 0.177 0.332 0.224 0.366 0.239 0.398 0.121 0.274

E
le

ct
ri

ci
ty

24 0.243 0.264 0.260 0.288 0.252 0.278 0.254 0.280 0.355 0.379 0.264 0.299 0.351 0.387 0.266 0.301 - -
48 0.292 0.300 0.313 0.321 0.300 0.308 0.304 0.314 0.375 0.390 0.321 0.339 0.398 0.416 0.317 0.330 - -
168 0.405 0.375 0.429 0.392 0.412 0.384 0.416 0.391 0.482 0.459 0.438 0.418 0.531 0.498 0.424 0.402 - -
336 0.560 0.473 0.565 0.478 0.548 0.466 0.556 0.482 0.633 0.551 0.599 0.507 0.656 0.575 0.578 0.486 - -
720 0.889 0.645 0.863 0.651 0.859 0.651 0.858 0.653 0.930 0.706 0.957 0.679 0.929 0.729 0.950 0.667 - -

W
ea

th
er

24 0.096 0.213 0.096 0.215 0.102 0.221 0.097 0.216 0.203 0.337 0.105 0.226 0.124 0.244 0.107 0.232 0.192 0.330
48 0.138 0.262 0.140 0.264 0.139 0.264 0.140 0.264 0.219 0.351 0.147 0.272 0.151 0.280 0.143 0.272 0.231 0.361
168 0.207 0.334 0.207 0.335 0.198 0.328 0.198 0.326 0.251 0.379 0.213 0.340 0.213 0.342 0.204 0.333 0.298 0.415
336 0.230 0.356 0.231 0.360 0.215 0.347 0.220 0.350 0.262 0.389 0.234 0.362 0.233 0.361 0.219 0.350 0.314 0.429
720 0.242 0.370 0.233 0.365 0.219 0.353 0.224 0.357 0.263 0.394 0.237 0.366 0.232 0.361 0.220 0.352 0.423 0.499

Avg. 0.193 0.283 0.203 0.298 0.207 0.307 0.198 0.294 0.255 0.360 0.226 0.324 0.304 0.396 0.221 0.319 - -

We include hand-crafted features (using the same experiment methodology as representation learn-
ing approaches) in our benchmark, by using features from the TSFresh package. We select the same
set of features for all datasets and settings, to avoid extensive feature engineering which requires
domain expertise. TSFresh generally under performs in the multivariate benchmark due to the high
dimensionality of the generated features, since it extracts univariate features and thus feature size
increases linearly with input size. On the other hand, it performs relatively well on the univariate
setting.
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I RESULTS ON END-TO-END FORECASTING BASELINES COMPARED TO COST

Table 10: Multivariate forecasting results for End-to-end forecasting baselines compared to CoST

Methods
End-to-end Forecasting

CoST Informer LogTrans TCN LSTnet

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.386 0.429 0.577 0.549 0.686 0.604 0.583 0.547 1.293 0.901
48 0.437 0.464 0.685 0.625 0.766 0.757 0.670 0.606 1.456 0.960

168 0.643 0.582 0.931 0.752 1.002 0.846 0.811 0.680 1.997 1.214
336 0.812 0.679 1.128 0.873 1.362 0.952 1.132 0.815 2.655 1.369
720 0.970 0.771 1.215 0.896 1.397 1.291 1.165 0.813 2.143 1.380

E
T

T
h2

24 0.447 0.502 0.720 0.665 0.828 0.750 0.935 0.754 2.742 1.457
48 0.699 0.637 1.457 1.001 1.806 1.034 1.300 0.911 3.567 1.687

168 1.549 0.982 3.489 1.515 4.070 1.681 4.017 1.579 3.242 2.513
336 1.749 1.042 2.723 1.340 3.875 1.763 3.460 1.456 2.544 2.591
720 1.971 1.092 3.467 1.473 3.913 1.552 3.106 1.381 4.625 3.709

E
T

T
m

1

24 0.246 0.329 0.323 0.369 0.419 0.412 0.363 0.397 1.968 1.170
48 0.331 0.386 0.494 0.503 0.507 0.583 0.542 0.508 1.999 1.215
96 0.378 0.419 0.678 0.614 0.768 0.792 0.666 0.578 2.762 1.542

288 0.472 0.486 1.056 0.786 1.462 1.320 0.991 0.735 1.257 2.076
672 0.620 0.574 1.192 0.926 1.669 1.461 1.032 0.756 1.917 2.941

E
le

ct
ri

ci
ty

24 0.136 0.242 0.312 0.387 0.297 0.374 0.235 0.346 0.356 0.419
48 0.153 0.258 0.392 0.431 0.316 0.389 0.253 0.359 0.429 0.456

168 0.175 0.275 0.515 0.509 0.426 0.466 0.278 0.372 0.372 0.425
336 0.196 0.296 0.759 0.625 0.365 0.417 0.287 0.382 0.352 0.409
720 0.232 0.327 0.969 0.788 0.344 0.403 0.287 0.381 0.38 0.443

W
ea

th
er

24 0.298 0.360 0.335 0.381 0.435 0.477 0.321 0.367 0.615 0.545
48 0.359 0.411 0.395 0.459 0.426 0.495 0.386 0.423 0.66 0.589

168 0.464 0.491 0.608 0.567 0.727 0.671 0.491 0.501 0.748 0.647
336 0.497 0.517 0.702 0.620 0.754 0.670 0.502 0.507 0.782 0.683
720 0.533 0.542 0.831 0.731 0.885 0.773 0.498 0.508 0.851 0.757

Avg. 0.590 0.524 1.038 0.735 1.180 0.837 0.972 0.666 1.668 1.284

Table 11: Univariate forecasting results for end-to-end forecasting baselines compared to CoST

Methods
End-to-end Forecasting

CoST Informer LogTrans TCN LSTnet

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

24 0.040 0.152 0.098 0.247 0.103 0.259 0.104 0.254 0.108 0.284
48 0.060 0.186 0.158 0.319 0.167 0.328 0.206 0.366 0.175 0.424

168 0.097 0.236 0.183 0.346 0.207 0.375 0.462 0.586 0.396 0.504
336 0.112 0.258 0.222 0.387 0.230 0.398 0.422 0.564 0.468 0.593
720 0.148 0.306 0.269 0.435 0.273 0.463 0.438 0.578 0.659 0.766

E
T

T
h2

24 0.079 0.207 0.093 0.240 0.102 0.255 0.109 0.251 3.554 0.445
48 0.118 0.259 0.155 0.314 0.169 0.348 0.147 0.302 3.190 0.474

168 0.189 0.339 0.232 0.389 0.246 0.422 0.209 0.366 2.800 0.595
336 0.206 0.360 0.263 0.417 0.267 0.437 0.237 0.391 2.753 0.738
720 0.214 0.371 0.277 0.431 0.303 0.493 0.200 0.367 2.878 1.044

E
T

T
m

1

24 0.015 0.088 0.030 0.137 0.065 0.202 0.027 0.127 0.090 0.206
48 0.025 0.117 0.069 0.203 0.078 0.220 0.040 0.154 0.179 0.306
96 0.038 0.147 0.194 0.372 0.199 0.386 0.097 0.246 0.272 0.399

288 0.077 0.209 0.401 0.554 0.411 0.572 0.305 0.455 0.462 0.558
672 0.113 0.257 0.512 0.644 0.598 0.702 0.445 0.576 0.639 0.697

E
le

ct
ri

ci
ty

24 0.243 0.264 0.251 0.275 0.528 0.447 0.243 0.367 0.281 0.287
48 0.292 0.300 0.346 0.339 0.409 0.414 0.283 0.397 0.381 0.366

168 0.405 0.375 0.544 0.424 0.959 0.612 0.357 0.449 0.599 0.500
336 0.560 0.473 0.713 0.512 1.079 0.639 0.355 0.446 0.823 0.624
720 0.889 0.645 1.182 0.806 1.001 0.714 0.387 0.477 1.278 0.906

W
ea

th
er

24 0.096 0.213 0.117 0.251 0.136 0.279 0.109 0.217 - -
48 0.138 0.262 0.178 0.318 0.206 0.356 0.143 0.269 - -

168 0.207 0.334 0.266 0.398 0.309 0.439 0.188 0.319 - -
336 0.230 0.356 0.297 0.416 0.359 0.484 0.192 0.320 - -
720 0.242 0.370 0.359 0.466 0.388 0.499 0.198 0.329 - -

Avg. 0.193 0.283 0.296 0.386 0.352 0.430 0.236 0.367 - -
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J RESULTS ON M5 DATASETS

Table 12: Results on M5 datasets (Makridakis et al., 2020). M5 is a multivariate dataset, with
forecast horizon is 28, as per M5 competition settings.

Methods
Representation Learning End-to-end Forecasting

CoST TS2Vec TNC MoCo Informer TCN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

M5

L1 0.063 0.211 0.299 0.446 0.671 0.627 0.279 0.415 0.836 0.724 1.395 1.020
L2 0.154 0.311 0.383 0.498 0.521 0.564 0.360 0.482 1.436 0.991 1.310 0.932
L3 0.191 0.340 0.591 0.549 0.621 0.582 0.438 0.496 1.747 1.033 1.847 1.048
L4 0.149 0.293 0.291 0.403 0.393 0.482 0.304 0.408 1.023 0.829 1.388 0.992
L5 0.260 0.390 0.419 0.484 0.506 0.545 0.462 0.508 1.514 0.899 2.039 1.172
L6 0.255 0.386 0.500 0.528 0.586 0.589 0.478 0.510 1.099 0.822 1.309 0.925
L7 0.394 0.482 0.630 0.600 0.648 0.618 0.641 0.605 1.565 0.931 1.475 0.953
L8 0.328 0.442 0.589 0.559 0.614 0.584 0.610 0.575 1.969 1.063 1.691 0.990
L9 0.702 0.582 2.150 0.748 1.445 0.726 1.293 0.701 4.923 1.313 4.634 1.332
L10 1.471 0.783 1.677 0.812 1.679 0.830 1.604 0.815 2.474 0.977 2.476 1.025

Avg. 0.397 0.422 0.753 0.563 0.769 0.615 0.647 0.551 1.859 0.958 1.957 1.039

K CASE STUDY: DISENTANGLEMENT

TFD	Representations SFD	Representations

Tr
en
d

(a) Trend Disentanglement.

TFD	Representations SFD	Representations

Se
as
on
al
ity

(b) Seasonality Disentanglement.

Figure 5: T-SNE visualization of seasonal-trend disentanglement in CoST embeddings. TFD Rep-
resentations refer to the representations generated by the Trend Feature Disentangler while SFD
Representations refer to the representations generated by the Seasonal Feature Disentangler. (a) We
select a single seasonality and visualize the representations. The two colors represent the two dis-
tinct trends. (b) We select a single trend and visualize the representations. The three colors represent
the three distinct seasonal patterns.

To exhibit CoST’s ability to disentangle trend and seasonal components, we plot the T-SNE rep-
resentations of the Trend Feature Disentangler (TFD) and Seasonal Feature Disentangler (SFD)
separately. From Figure 5a, we see that representations from the TFD indeed have better clusterabil-
ity and the representations from SFD have a degree of overlap between the two trend patterns. From
Figure 5b, we see that the TFD representations have a higher degree of overlap between the three
seasonality patterns than the SFD representations. Here, to better highlight the stronger capability
of seasonality representations in extracting seasonal patterns, we used complex seasonality patterns
(described below).

Complex Seasonality Similar to the synthetic data generation process in Appendix D, we generate
three different seasonality patterns before combining them with the two trend patterns. The first
seasonality pattern is no seasonality. The second pattern begins with a sine wave of period, phase,
and amplitude of {3, 0, 10}, thereafter, a mask is then applied to the entire pattern, consisting of a
repeating pattern of three 1s and seven 0s. The third pattern begins with a sine wave of period, phase,
and amplitude of {10, 0.5, 15}, thereafter, a mask is then applied to the entire pattern, consisting of
a repeating pattern of two 1s and eight 0s.
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