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ABSTRACT

Continual Learning solutions often treat multitask learning as an upper-bound of
what the learning process can achieve. This is a natural assumption, given that
this objective directly addresses the catastrophic forgetting problem, which has
been a central focus in early works. However, depending on the nature of the
distributional shift in the data, the multi-task solution is not always optimal for
the broader continual learning problem. In this work, we draw on principles from
online learning to formalize the limitations of multitask objectives, especially when
viewed through the lens of cumulative loss, which also serves as an indicator of
forward transfer. We provide empirical evidence on when multi-task solutions are
suboptimal, and argue that continual learning solutions should not and do not have
to adhere to this assumption. Moreover, we argue for the utility of estimating the
distributional drift as the data is being received and show preliminary results of
how this could be exploited by a simple replay based method to move beyond the
multitask solution.

1 INTRODUCTION

Continual learning (CL) (e.g. Ring, 1994; Thrun & Mitchell, 1995; Silver et al., 2013; Parisi et al.,
2019; Hadsell et al., 2020; Lesort et al., 2020), sometimes referred to as lifelong learning, directly
aims to address the problem of how to construct a model that continuously adapts. Typically, the
problem definition — or rather the solution definition — comes down to a list of desiderata that is
expected from the system (e.g Schwarz et al., 2018; Hadsell et al., 2020; Mundt et al., 2023). The
debate on the ultimate goal of continual learning and the problem definition is still ongoing. In this
work we take the view of Mundt et al. (2023): the model needs to be able to remember previous
knowledge, hence to deal with catastrophic forgetting (McCloskey & Cohen, 1989; French, 1999),
and reuse this knowledge to learn quickly new tasks (forward transfer), under the assumption that
the model capacity is finite and fixed, and the amount of compute it can do per time step is finite
and fixed. Traditionally, fixing catastrophic forgetting has been seen as the first step towards solving
continual learning, as retaining some information is needed in order to exhibit transfer, and most
research focused on resolving this specific aspect. In this work we question this goal, formally asking
whether minimizing catastrophic forgetting is a good objective to achieve continuous adaptation. Our
question is inspired by Kumar et al. (2023), who show theoretically that an agent with limited capacity
must dynamically compromise between retaining old information and acquiring new information in
order to maximise its lifelong performance (formalised in Section 3). In other words, minimizing
forgetting alone might not achieve the other desiderata of continual learning (e.g. Wołczyk et al.,
2021; Wu et al., 2023; Mundt et al., 2023). To understand this trade-off we start by arguing that most
methods aimed at solving catastrophic forgetting rely, implicitly or explicitly, on the assumption that
a multi-task objective is optimal and effectively employ objectives which approximate the multi-task
objective. However, depending on the non-stationarity of the data, there can be interference during
learning that can make a multi-task objective considerably sub-optimal (e.g. He et al., 2019; Du et al.,
2018). Figure 1 depicts this intuition.

Drawing inspiration from the online learning literature, in this work we quantify optimality using the
average lifelong error, which aligns closely with the concept of dynamic regret, as further elaborated
below. In order to study the optimality of the multi-task objective we design two agents: single-task
(ST) and multi-task (MT). The ST agent forgets everything after each task, while the MT agent
minimizes the multi-task objective, i.e., the average loss over all previous tasks, and represents a

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Diagram depicting the potential sub-optimality of the multi-task objective depending on
the data distribution. On the right, a data stream is selected such that multitask objective (blue)
outperforms single task learner (orange), while on the left the reverse is true. In section 4 we will
formalize this behaviour, and in section 5 we will argue that CL algorithms can estimate in which
condition they might be and adapt to it.

CL agent with minimal catastrophic forgetting. We present a theoretical and empirical study of the
difference between ST and MT agents. Our key contribution is to prove that there exist scenarios
where the MT agent accumulates higher regret than the naive forgetting (ST) agent. Furthermore,
we demonstrate the extent of this phenomenon across a range of popular supervised learning and
reinforcement learning benchmarks. In other words, we effectively prove that minimizing forgetting
does not always result in higher lifelong performance and that, in some cases, forgetting can be
beneficial for adapting to a changing environment. These findings validate the thesis of Kumar et al.
(2023) in realistic settings, underscoring the nuanced trade-offs intrinsic in continual learning.

The main message of this paper is that the effectiveness of multitask learning is not universal but
highly dependent on the nature of the data stream and on the distributional drift during training. This
underscores the importance of considering the specific properties of the data stream when selecting
learning strategies in CL, or even to try to estimate these properties and adapt the CL algorithm as data
becomes available. Our results indicate that, when the goal is to maximize the lifelong performance
of the agent, the optimal type of agent is inherently data dependent.

2 BACKGROUND: FROM MULTI-TASK TO ONLINE LEARNING

Multitask learning (Caruana, 1997) refers to a learning process that averages the losses incurred
on multiple tasks. The original goal was to promote sharing of features and therefore speed up
learning and resulting in solutions that generalize better. Within the Continual Learning literature
the multitask objective comes about when analyzing the ability of systems to prevent catastrophic
forgetting (McCloskey & Cohen, 1989; French, 1999) and it is consequently incorporated into several
existing algorithms, either explicitly or implicitly.

Traditionally — see e.g. Parisi et al. (2019) — continual learning methods tend to be grouped into
three categories, according to how they approach the catastrophic forgetting problem, though this
categorization is not without fault (see e.g. Titsias et al., 2019). The first category encompasses
regularization based methods, such as Elastic Weight Consolidation (EWC) (Kirkpatrick et al., 2017).
EWC explicitly assumes the multitask solution as optimal1, and builds the method as an approximation
of this objective when one does not have access to other tasks. This multitask approximation is
prevalent, even if sometimes implicitly, in many other regularization methods (e.g. Zenke et al.,
2017a; Maltoni & Lomonaco, 2018; Swaroop et al., 2019; Li & Hoiem, 2017, etc.) as recently argued
by Yin et al. (2020) and Lanzillotta et al. (2024). The second category of methods consist of replay

1See equation (2) of their derivation.
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methods (e.g. Robins, 1995; Shin et al., 2017), where the replay is effectively emulating the multi-task
objective by representing the task not currently available.2 The third category, dynamic architecture
methods (e.g. Zhou et al., 2012; Rusu et al., 2016; Mallya & Lazebnik, 2018) avoid catastrophic
forgetting by increasing the capacity of the model. While these methods do not seem to directly
mimic the multitask objective, they effectively partition the model capacity between the tasks, which
is akin to maximizing the average performance under a fixed capacity constraint. In Appendix B we
review some of the most famous algorithms in greater detail, providing evidence for our claims. In
general, most continual learning algorithms do not employ a multitask objective; however they can be
interpreted as biased estimates thereof. In this work we choose to look at the multitask objective as
an abstraction of any specific continual learning algorithm, in order to provide a high level intuition
and formalism which can be useful more broadly for the CL community.

Online Learning (OL) on the other hand, (Cesa-Bianchi & Lugosi, 2006; Hoi et al., 2018; Orabona,
2019) offers a fundamentally different perspective on lifelong learning. OL prioritizes rapid adapt-
ability to new data over maintaining strong performance on previously seen data. In this paradigm,
algorithms are commonly evaluated using regret, a measure that captures the model’s ability to
adapt efficiently to the evolving data stream throughout its lifetime. This emphasis on adaptability
highlights OL’s unique approach to addressing the challenges of dynamic environments. In this
work we study a common metric in OL known as the Dynamic Regret (Herbster & Warmuth, 1998;
Zinkevich, 2003) which compares, at each step of the learning, the current expected cost (or reward)
of the agent with the minimal achievable cost (or maximal reward). This metric is particularly relevant
in slowly-drifting or piecewise stationary settings such as those typically arising in CL (e.g. Hadsell
et al., 2020). More precisely, we ignore the comparator and study instead the average lifelong error
without loss of generality3.

In continual learning, the adoption of OL metrics is not a new concept. In the context of Online
Continual Learning (OCL) (Cai et al., 2021; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019;
Buzzega et al., 2020), continual learning algorithms are often evaluated using an online metric. For
instance, the average online accuracy metric ao (Cai et al., 2021) is directly related to the average
lifelong error v, with ao = 100× (1− v). However, the OCL setting typically assumes both training
and evaluation occur in an online manner. this differs from the perspective we adopt in this work.
We decouple the training and evaluation protocols, allowing for potentially offline objectives and
optimization procedures (i.e., revisiting the same data multiple times), while maintaining an online
evaluation of the model’s performance. This approach enables us to explore a fundamental question:
is minimizing forgetting the right objective for achieving lifelong adaptability?

3 SETUP: THE AVERAGE LIFELONG ERROR

In the typical continual learning setting, the agent has to solve a sequence of tasks. We consider
learning tasks including a target, which broadly covers supervised learning (targets are labels) and
reinforcement learning (targets are actions and rewards). For each learning task κ ∈ {1, ..,K}, the
agent receives a dataset Dκ = {(x1, y1), · · · , (xNκ , yNκ)} ∼ Dκ and learns to predict Y |X through
the parametric map fθ : X → Y . For a task κ the train error is Rκ(θ) = 1/Nκ

∑
(x,y)∈Dκ

ℓ(θ;x, y)

and the test error,Rκ = E (x,y)∼Dκ
[ℓ(θ;x, y)]. We consider iterative agents with h update steps in

each task, such that its lifetime4 is T = hK and we track the (discrete) parameters dynamics θ(t)
along the trajectory.

Our work proposes to compare two types of agents, a Single Task (ST) and a Multi Task (MT) agent
with associated parameter dynamics θST (t), θMT (t). An ST agent optimizes the present task loss
Rκ, and is reset after completing each task, effectively forgetting everything. It serves as a baseline
for evaluating performance without employing any continual learning strategies. In contrast, the MT
(Multi-Task) agent optimizes the average error across all tasks encountered up to the current point 5,
1/κ (R1 + · · · + Rκ), without considering future tasks [κ + 1,K]). Notably, our MT agent differs
from traditional multi-task approaches, as it does not have access to information about future tasks.

2Replay emulates a weighted average objective, where the weight of each task may change with time.
3Our derivations can equivalently be applied to dynamic regret.
4Our analysis can be extended without difficulty to tasks of various lengths h1, ..., hK .
5Our MT agent does not have access to future tasks as opposed to traditional MT approaches.
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Concretely, our goal is to compare the performance of these two types of agents by evaluating the
differences in their respective average lifelong error:

v =
1

T

K∑
i=1

ih∑
t=(i−1)h+1

Ri (θ(t)) (1)

To do so, we define ∆T = vST
T − vMT

T , as the difference in average lifelong error of the two agents.
This quantity is central to our study.

Informally, ∆T measures the difference in the rate at which the risk on the current task decreases
during training. An agent that achieves low risk early in training will have a lower average lifelong
error compared to one that achieves a better final performance but at a slower pace. In this context,
the ST agent benefits when there is significant “variation” in the task sequence, as the average MT
objective may inadequately prioritize the current task. Conversely, when the number of updates per
task is severely limited, the MT agent’s bias toward averaging across tasks can lead to a lower overall
error, provided the tasks are reasonably similar. In other words, ∆T captures the trade-off between
stability and plasticity — or bias and variance — in a data-dependent fashion.

Gradient Descent agents. In our theoretical analysis, we consider ST and MT agents that update
their parameters sequentially using gradient descent (GD) on their respective objectives, with a fixed
learning rate η. In line with the setting described above, the ST agent is reset to some θ0 at the first
step of each task, while the MT agent is not reset, although its objective is updated. Crucially, we
do not assume that gradient descent is run to convergence. Instead, the number of update steps per
task, h, plays a pivotal role in our analysis. As we will demonstrate, h can determine which agent
performs best.

4 MULTITASK IS NOT ALWAYS OPTIMAL

The primary result of this section demonstrates that, for sufficiently long tasks, the ST agent can
outperform the MT agent on non-stationary task sequences where interference between tasks occurs.
We formalize this finding in the specific context of convex losses for a linear regression task.

4.1 INSTABILITY AND CRITICAL TASK DURATION

Let θ⋆
i and θ⋆

[1,i] represent the minimizers of the respective ST and MT objectives during task i, and
define ti0 := h(i− 1) (see Appendix A.1.2 for an exact formula of θ⋆

i and θ⋆
[1,i] in linear regression.)

Notably, our metric of interest can be expressed as:

∆T =
1

K

K∑
i=1

1

h

ih∑
t=ti0+1

(Ri(θST (t))−Ri(θ
⋆
i ))︸ ︷︷ ︸

∆ST
T

−
(
Ri( θMT (t) )−Ri(θ

⋆
[1:i])

)
︸ ︷︷ ︸

∆MT
T

−
(
Ri(θ

⋆
[1,i])−Ri(θ

⋆
i )
)

︸ ︷︷ ︸
∆I

T

Here, we conveniently added and subtracted the risk at the optimal values that these respective agents
seek. This introduces an agent-independent term, ∆I

T , which is unaffected by the choice of agents
and instead quantifies the non-stationarity of the learning problem. We refer to this term as instability.

We aim to identify the key factors influencing the forgetting vs. no-forgetting trade-off by establishing
conditions under which ∆T < 0, i.e., ∆ST

T < ∆MT
T + ∆I

T . Note that ∆T < 0 indicates that the
single-task agent has a lower average lifelong error (i.e., performs better) than the multitask agent.

A critical observation is that the multitask agent benefits from a long sequence of tasks, as evidenced
by the fact that ∥θ⋆

[1,κ−1] − θ⋆
[1:κ]∥

2
Σκ

x
decreases with increasing κ, so in general, in convex settings 6,

1
K∆MT

T ∈ o(1) (see Lemma 9 for a formal proof). Thus, for K ≫ 1, it is both sufficient and efficient
to focus on scenarios where ∆ST

T < ∆I
T . In what follows, we adopt a prescriptive view, emphasizing

the task duration h, as it is a parameter often within the agent’s control.

6It can be verified in experiments that ∆MT
T decreases with K. Please see Table 2.
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Proposition 1 defines the minimum task duration required for the single-task agent to match or
outperform the multitask learner. In the convex case, using linear models we can prove that such a
task duration exists and is finite (see Theorem 4), as long as the instability of the sequence is strictly
positive. While the non-linear case can not be approached theoretically,we will later demonstrate that
this concept remains empirically useful in such scenarios.

Proposition 1 (Critical task duration). The critical task duration h̄ is the minimum task duration such
that ∆ST

T ≤ ∆I
T for all h > h̄, where T = hK.

4.2 LINEAR PREDICTION WITH CONVEX LOSS

We model each task as a noiseless linear regression problem, where for each task we have y = θ⋆
κ
⊤x.

The loss function used is the squared error, defined as ℓ2(θ;x, y) = (θ⊤x− y)2. Consequently, the
train and test errors are expressed as follows:

Rκ(θ) = (θ − θ⋆
κ)

⊤ Σ̂κ
x (θ − θ⋆

κ) Rκ(θ) = (θ − θ⋆
κ)

⊤ Σκ
x (θ − θ⋆

κ) (2)

where Σκ
x = Ex∼Dκ(X)[xx⊤] and Σ̂κ

x = 1
Nκ

∑
xi x

⊤
i are respectively the true and empirical

(uncentered) covariance matrices.

Assumption 2 (Strictly convex losses). For any κ ∈ [1,K] and M > m > 0 the spectrum of the
covariance matrix satisfies the following condition: m I ≼ Σ̂κ

x ≼ M I .

Under Assumption 2, GD is known to converge exponentially fast (Boyd & Vandenberghe, 2004).
See Lemma 5 for a formal statement. In this case, the ST learner admits the following closed-form
expression: within task i, the parameter update is given by θST (t) = θ⋆

i + (I − ηΣ̂i
x)

t−ti0 (θ0 − θ⋆
i ).

Since the number of steps per task h is limited, we can tightly bound the total error of the ST agent
using Assumption 2 and the closed form formula of geometric series:

∆ST
T =

1

K

K∑
i=1

1

h

h∑
t=1

∥θ0 − θ∗
i ∥2Σκ

x
(1− ηΣ̂i

x)
2t ∈ Θ

(
1

K

K∑
i=1

∥θ0 − θ∗
i ∥2Σκ

x

h

1− ϵh

1− ϵ

)
where ϵ = (1− ηm)2 in the upper bound and ϵ = (1− ηM)2 in the lower bound. This expression

leads to a tight bound on the lifelong error difference ∆T , as presented in Theorem 13 in the appendix.
Consequently, we establish a crucial first result of our study.

Corollary 3 (Monotonic dependence on task duration). For a suitable choice of learning rate and a
fixed task duration h, gradient descent on the ST and MT convex objectives described in Section 4.2
gives rise to two parameter dynamics, θST (t) and θMT (t), such that ∆T decreases monotonically
with the task duration.

The task duration h is typically controlled by the agent designer. As a consequence of Corollary 3,
increasing the task duration will necessarily decrease the difference ∆T . However (Corollary 12 in
the Appendix) it is not granted that increasing h will ever result in ∆T < 0, i.e. that a critical task
duration exists in general. Our main result guarantees the existence of a critical task duration, when
the instability of the sequence is strictly positive. An informal version of the theorem is stated here,
with the formal treatment detailed in the Appendix.

Theorem 4 (Existence result, informal). In the same setting as Corollary 3, if the instability of the
sequence is positive then there exists a finite critical task duration h̄.

This result arises from solving for h in the bound for ∆T , yielding a threshold value ĥ <∞, with
h̄ ≤ ĥ by definition. In other words, Theorem 4 proves that the MT objective is not always optimal
with respect to the average lifelong error. Instead, long tasks or highly non-stationary problems may
be better solved by an ST agent. Conversely, our study also proves that there are cases where the ST
agent is not optimal either, specifically when ∆T > 0. As a consequence, the choice of agent should
depend on the specific problem, if the goal is to minimize the average lifelong error.

While we have the full extent of our study provided in the Appendix, we summarize the key findings
here: (1) that ∆T decreases monotonically as the task duration h increases (Corollary 3); (2) if the

5
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instability ∆I
T > 0, then there exists a finite critical task duration (Theorem 4); (3) increasing ∆I

T
decreases the critical task duration (Theorem 16).

In the remainder of the paper, we assess to what extent these findings extend to the more complex
setting of neural network training, evaluating the behaviour of ST and MT agents on popular
supervised learning and reinforcement learning benchmarks.

A note on overparametrization. Assumption 2 implies that the system is not overparametrized,
i.e. p < Nκ for all κ. In order to deal with the overparametrized case it is sufficient to add a norm
regularizer λ∥θ∥2 to the loss in our derivations. This minor modification can be seamlessly integrated
into our derivations without affecting the results, as we show in Appendix A.4.

4.3 ILLUSTRATION ON A SIMPLE SETTING

0 100 200 300 400 500 600 700 800
Time Steps

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00 Simulation of ST, MT Agents  (high instability)

MT

ST

0 100 200 300 400 500 600 700 800
Time Steps

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00 Simulation of ST, MT Agents  (low instability)

MT

ST

Figure 2: Toy Settings comparisons. θ⋆ oscillates between 1 and 2 for each task on the left, and
between 1 and 1.1 for each task on the right. There are 8 tasks (with start marked by dashed red
lines) with h = 100 each, and η = 0.01. Both agents are initialized with θ0 = 0. The shaded area
corresponds to the lifelong error of the agent.

In order to build a concrete intuition for the theoretical results we look into two toy settings, depicted
in Figure 2. The tasks in the figure are one-dimensional and two different tasks with optimal solutions
θ⋆1 and θ⋆2 (in green) occur repeatedly in alternating fashion. In the first case (on the left) the difference
between the two solutions is 1 and in the second case (on the right) the difference is only 0.1. For the
convex least-square setting, i.e ∀i,Ri(θ) = σ2 (θ− vi)

2, the instability is a function of the difference
between the two solutions (full derivations in Appendix A.3):

1

K
∆I

T =
σ2

2
(θ⋆1 − θ⋆2)

2 (3)

As expected, the instability is higher when the difference between task solutions is more pronounced,
as seen in the left-hand figure. According to Theorem 4, a critical task duration exists for both tasks,
given that instability remains strictly positive in both scenarios. From Corollary 3, it follows that,
with all other factors held constant, the critical task duration is expected to be lower in the left-hand
toy setting. This is evident as, despite using the same task duration of h = 100 in both cases, the ST
agent accumulates less error over time in the first scenario, whereas the MT agent demonstrates better
average performance in the second. In Appendix A.3, we simulate the evolution of ∆T by varying
the duration h, and confirm empirically that the critical task duration is approximately half in the first
toy setting.

5 EMPIRICAL ANALYSIS

Our empirical analysis is structured into three main parts. First, we validate our theoretical framework
on complex continual learning benchmarks, encompassing both supervised learning and reinforcement
learning tasks. Next, we turn to a toy benchmark, Permuted-CIFAR10, where we can control the
task sequence’s instability by adjusting the permutation strength. This setup enables us to test our
theoretical predictions regarding the relationship between instability and task duration. Finally, we
showcase the practical applicability of our framework in continual learning by implementing a simple
variant of experience replay, where the objective is tailored to the instability of the data stream.

5.1 SINGLE TASK VS MULTI TASK IN THE WILD

6
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Benchmarks We present results for supervised learning and reinforcement learning benchmarks.
For supervised learning we take two different benchmarks: the first is based on the CLEAR dataset
(Lin et al., 2021), a collection of images of 10 different classes spanning the years 2004-2014. We
split the collection into 10 tasks, one for each year. The second benchmark is a sequence of 5 different
open source classification datasets, with no semantic overlap between them. In particular, the tasks
consists in classification of automobile models (Krause et al., 2013), aircraft models (Maji et al.,
2013), textures (Cimpoi et al., 2014), dishes (Bossard et al., 2014) and pets (Parkhi et al.). Each
dataset has originally a different number of classes, samples and a different input size. To avoid
introducing biases in the models, we standardize all tasks to have only 30 classes, and we use the
same batch size and amount of update steps in each task, regardless of the original dataset size.
Hereafter we refer to this as the “MULTIDATASET” (MD5) benchmark. We have chosen these
two benchmarks because they represent different types of distribution shifts. While the transitions
from one task to the next in CLEAR are arguably smooth (the tasks differ in input resolution but
semantically are equivalent), in MD5 they are sharp, changing the semantics of the task altogether.
For reinforcement learning we rely on the Meta-World (MW) benchmark (Yu et al., 2020), which is
a collection of 50 distinct simulated robotic manipulation environments. We train our agents on a
sub-collection of 10 environments called ML10 and we evaluate their average lifelong reward on the
same environments in an online fashion. We chose this environment due to it being previously used
to highlight interference in continual learning (Wołczyk et al., 2021). More details in Appendix D.

Notes on the empirical setup. In line with out theoretical analysis, we use the same task duration
h for each task -which is also in line with typical practice in continual learning. More precisely, h
is the number of parameter updates performed, which may correspond to multiple passes through
the dataset. After each update the performance of the agent is evaluated on a separate test set, in the
case of supervised learning, or on new interactions with the environment. The evaluation is always
performed on the current task. Additionally, at the end of training on all the tasks we measure the
agent’s multitask (offline) accuracy ACCagent or multitask (offline) reward Ragent, which consists
in the average performance across all tasks, and is a typical CL metric (Lopez-Paz & Ranzato, 2017;
Powers et al., 2022). To aid interpretability and comparison with the offline performance we report
the average lifelong accuracy ao = (1− v)× 100 which is more common in the literature (Cai et al.,
2021). More details regarding our experimental choices in Appendix D.

h ao ST aoMT ∆T ACCST ACCMT

MD5 3000 47.0±0.002 43.0 ±0.005 -0.004 ±0.005 19.9 ±0.007 62.8 ±0.007

CLEAR 3000 46.5 ±0.0004 68.1 ±0.0005 +0.216 ±0.002 65.2 ±0.012 76.8 ±0.004

ro ST roMT ∆T RST RMT

ML10 500 1.15 ±0.21 0.77 ±0.30 -0.38 ±0.19 1.007 ±0.09 1.029 ±0.14

Table 1: Lifelong average accuracy (ao) / reward (ro) and multitask accuracy (ACC) / reward (R) in
the wild. Higher is better. We report the difference in performance ∆T in the original metric, e.g
∆T = vST − vMT and ∆T = −(rST − rMT ). The lower ACC (R), the higher the forgetting in
supervised (RL) benchmarks.

Table 1 shows the performance of the ST and MT agent on the three benchmarks. The ST agent
outperforms the MT agent according to the lifelong average performance metrics (ao/ro) in the MD5
and ML10 benchmarks, while the opposite is true in the CLEAR benchmark. This confirms our
intuition that the interference between the tasks is lower in CLEAR, making the multitask a suitable
objective. In Section 5.2 we quantify this statement by measuring the amount of instability ∆I

T in
all our benchmarks. Notice that the MT agent always outperforms the ST agent on the multitask
performance metrics (ACC/R), indicating that – as expected – its forgetting is always lower.

Next, we ask whether increasing the task duration h would reduce the advantage of the multitask agent
in CLEAR and ML10, as predicted by the theory. Table 2 shows the behaviour of our performance
metrics as the task duration h is increased. In accordance with the theory, on CLEAR we observe the
error difference ∆T decaying with h, although it does not fall below 0 -suggesting that the critical
task duration may be way above the range of h tested. Interestingly, we also observe that multitask
performance of both ST and MT improve as h is increased. The reason is that the similarity of the
tasks grants positive transfer between them, and thus improving performance on one task by training
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h ao ST aoMT ∆T ACCST ACCMT

CLEAR 3000 46.5 ±0.0004 68.1 ±0.0005 0.216 ±0.002 65.2 ±0.012 76.8 ±0.004

6000 56.2 ±0.0001 71.3 ±0.004 0.151 ±0.004 75.9 ±0.017 78.4 ±0.003

9000 61.0 ±0.0004 72.0 ±0.001 0.11 ±0.001 78.1 ±0.009 78.9 ±0.010

12000 64.1 ±0.0002 73.2 ±0.0006 0.10 ±0.001 76.9 ±0.0008 79.3 ±0.001

ro ST roMT ∆T RST RMT

ML10 50 1.07 ±0.10 0.62 ±0.08 -0.45 ±0.06 1.593 ±0.12 0.355 ±0.08

500 1.15 ±0.21 0.77 ±0.30 -0.38 ±0.19 1.007 ±0.09 1.029 ±0.14

Table 2: Increasing the task duration h in CLEAR and ML10, closes the gap in average lifelong
performance.

for longer has the additional effect of increasing the performance on all the other tasks. On the other
hand on the ML10 benchmark -where the ST agent consistently outperforms the MT agent on the
current task- the reward difference does not decay with h. We hypothesise that this might be a result
of the inherent noisiness of the reward signal, which we use as a performance metric.

K ro ST roMT ∆T RST RMT

3 0.90 ±0.37 0.70 ±0.34 -0.21 ±0.24 0.58 ±0.06 0.81 ±0.38

6 1.02 ±0.30 0.92 ±0.48 -0.10 ±0.23 0.48 ±0.10 1.03 ±0.78

10 1.15 ±0.21 0.77 ±0.30 -0.38 ±0.19 1.007 ±0.09 1.029 ±0.14

Table 3: Increasing the number of tasks in ML10. The sequence order is fixed, and the number of
tasks K observed is chosen between 3, 6, 10 (10 corresponds to the full sequence).
Finally, we evaluate the effect of increasing K, the number of tasks in the sequence, on the trade-off
between forgetting and memorizing. We perform this experiment on the ML10 benchmark, where
the tasks are known to be adversarial in nature. We train the ST and MT agents on a sequence of
3, 6 or 10 tasks presented with the same ordering. In Table 3 we present the results. If there are
more difficult tasks later in the sequence increasing the number of tasks should lead to increased
instability in ML10 experiments. In Table 11 we report the average reward on each task: we observe
a marked difference in difficulty between the tasks, with easier tasks appearing later in the sequence.
The observed increase in average lifelong rewards in Table 3 reflects the distribution of the difficulty
in the task ordering. Tasks that yield higher rewards on average, boost the overall performance. Even
though there is no clear monotonic trend of ∆T , we observe that ST globally outperforms MT on
average lifelong reward, which is in line with the fact that the first K = 3 tasks have relatively high
interference and difficulty.

5.2 EMPIRICAL STUDY ON THE CRITICAL TASK DURATION AND INSTABILITY

Data Option 1 Option 2

CLEAR −0.024±0.003 0.007±0.001

MD5 0.017±0.008 0.35±0.01

ML10 0.407±0.002 0.139±0.009

PC-16 −0.0213±0.0024 0.03±0.002

PC-32 0.0014±0.004 0.30±0.005

Table 4: Measures of instability. The higher the
measure the higher the instability. The range of
values is not the same for supervised and RL bench-
marks. We highlight in gray the toy benchmarks.

We move on to study empirically the criti-
cal task duration and instability in non-convex
settings. According to the theory, the criti-
cal task duration depends on the sequence in-
stability ∆I

T , which is by definition a prop-
erty of the data, independent of the agents:
∆I

T = 1/K
∑K

κ=1 Rκ(θ
⋆
[1,κ])−Rκ(θ

⋆
κ). In

convex settings this quantity can be directly mea-
sured (see Equation (20) for a precise formula).
However when using non-linear models such as
neural networks, the task minimizer θ⋆

i is not
known nor easy to discover. Additionally, when
using neural networks the notion of task simi-
larity is inherently model dependent since the
features representing the data are.

Hence the question: how can the instability be estimated in non-convex settings?
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Option 1 We propose to approximate ∆I
T by training a neural network on the ST and MT objectives,

obtaining respectively θ̃⋆
i and θ̃⋆

[1,i] and measure ∆̃I
T = 1

K

∑κ
i=1(Ri(θ̃

⋆
[1,i]) −Ri(θ̃

⋆
i )). Note that

this quantity is dependent on initialization, optimizer and hyperparameters of the experimental setup.

Option 2 Intuitively, ∆I
T should be higher when there is more interference between the tasks and

lower when the tasks have more in common. Thus, we propose to measure directly the transfer
between tasks as a proxy for instability. More specifically, we produce a transfer matrix Q whose i, j
entry isRj(θ̃

⋆
i ) and we compare the average of the diagonal to that of the off-diagonal. In practice,

this second option is cheaper to compute, as it does not require to train two separate models and it
can be estimated online (provided the agent has access to the full sequence).

In Table 4 we report the measurements of instability with both options. In the supervised learning
benchmarks we take R(θ) to be the test error (thus a quantity between 0 and 1) and in ML10 we
useR(θ) = −r(θ), which is generally unbounded. Overall, we observe that the first option can be
negative (becauseRi(θ̃

⋆
i ) ̸= 0 for our choice ofR) and the second option is always positive (because

training on a task necessarily results in a higher performance on the task, thus Qii < Qij ∀ j ̸= i).
Both metrics confirm the intuition that the instability is lower in the CLEAR dataset, and higher in
the Md5 and ML10 datasets, which aligns with the observed ∆T .
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Figure 3: Permuted CIFAR experiments. Top: evolution of ∆T as a function of h. Middle: average
lifelong errors of MT and ST agents as a function of h. Bottom: evolution of the multitask performance
as a function h.

Next, we wish to explore empirically how ∆I
T impacts h̄, by controlling ∆I

T in a toy experimental
setting. More specifically, we build a benchmark from the CIFAR 10 data Krizhevsky & Hinton
(2009), applying fixed random permutations to the images in the dataset. By increasing the size of
the permuted areas of the input image we wish to increase the instability ∆I

T . We use two different
permutation sizes in all experiments, namely 16 and 32. We refer to the respective benchmarks as
’CIFAR10 Permuted - 16’ (PC-16) and ’CIFAR10 Permuted - 32’ (PC-32).

The instability measures introduced above (Table 4) validate our methodology: for both measures
instability is higher for PC-16 than PC-32. In Figure 3 we visualize the average lifelong error v of
the ST and MT agents as we increase the task duration h. As a comparison, we also visualize the
evolution of the difference in multitask performance, which should be independent of h. The critical
task performance corresponds to the value of h where ∆T is predicted to drop below 0. Since ∆T

is always positive in PC-16, we infer that the critical task duration lays beyond the explored range.
However, the critical task duration for PC-32 is estimated to be between 3000 and 6000 steps: as
predicted by the theory, higher ∆I

T corresponds to lower h̄.

5.3 DEMO: A DATA-DEPENDENT OBJECTIVE FOR REPLAY

One of the main takeaway messages of this work is that the optimization objective in continual
learning should be treated as a data-dependent quantity. Broadly speaking, the objective should reflect
the instability of the sequence, enabling forgetting when it is high and avoiding it when it is low.

We design a simple variant of the experience replay (ER) algorithm (Lin, 1992; Zhang & Sutton,
2020), which we call Selective Replay (SR) that does not replay from previous tasks when there is
high instability in the sequence. Generally, one could rely on any heuristical measure of ∆I

T and adapt
to the current stream, trading forgetting for forward transfer. In practice, in this simple experiment we
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create a new controlled benchmark from CIFAR10, which we call ‘C10 mixed’, where we increase
the permutation size from 16 to 32 after 5 tasks. We know from Figure 3 that forgetting is beneficial
when the permutation size is 32, since the instability is very high (we choose h = 6000 such that
∆T < 0). Intuitively, in this benchmark memory is useful only on the first half of the sequence,
where there is positive transfer between the tasks. Thus, both the ER and ST agent are suboptimal, as
the former is forced to remember irrelevant information -which affects its capacity to fit the new data-
and the latter fails to remember any useful information. SR is designed to remember the relevant
information and discard irrelevant one. We take advantage of the knowledge of the sequence, and
simply change the objective from ER to the ST objective when the instability is increased.

In Figure 4 we plot the test error over the training trajectory of the three agents: ST, ER and SR.
As expected, the SR agent has the lowest average lifelong error, and the ER agent has the lowest
multitask error - meaning that it has the lowest forgetting. Observe the switch in behaviour midway
through the sequence of task: in the first half of the sequence the ER agent outperforms the ST agent,
while the opposite is true in the second half. Because of its dynamic objective, the SR agent is able to
always adhere to the best performing behaviour.

0 6000 12000 18000 24000 30000 36000 42000 48000 54000 60000
t

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 E
rro

r

ST error
ST vt

Replay error
Replay vt

Selective Replay error
Selective Replay vt

Agent ao ACC

ER 55.1 ±0.001 39.4 ±0.01

ST 57.0 ±0.001 24.0 ±0.012

SR 58.2 ±0.005 24.0 ±0.002

Figure 4: Cifar 10 mixed results. Left: test error trajectory through training, evaluated on the current
task. In violet the SR agent, in blue the classic ER agent and in yellow the ST agent. Right: average
lifelong performance and multitask performance at the end of training.

Clearly, crucial to the success of selective replay, and any kind of adaptive objective, is the information
regarding the tasks sequence instability -which in the case of this experiment is assumed to be known.
Thus, the question becomes how to estimate ∆I

T in an online fashion, as the data stream is being
processed. We believe that this is an exciting avenue for future research, together with the study of
data-dependent objectives.

6 DISCUSSION AND CONCLUSION

In this work we explore the optimality of the multitask objective in continual learning. Multitask
objectives arise as a natural target to address catastrophic forgetting. However, as was highlighted in
previous works as well, the multitask objective is suboptimal when considering the overall continual
learning problem, which ultimately is about lifelong adaptability. Borrowing from the rich literature
on online learning, we formalize sufficient conditions for suboptimality in the restricted scenario of
convex objective and linear models. We show empirically that our theoretical results can be predictive
of the behaviour of the nonlinear system. We discuss the limitations of our approach in Appendix C.

Crucially we believe our work highlights at least three different observations. Firstly, while the
suboptimality of the multitask objective was observed early on in continual learning, most methods
are still heavily relying on it. We argue that this is not necessary. Indeed, we showed that one can
easily modify a replay based method to take into account task similarity and be able to outperform
the multitask agent. We argue that more continual learning methods should remove the reliance
on multitask objective or at least reason explicitly about the assumptions being made. Secondly,
we argue that without making assumptions on data stream, one cannot behave optimally. Thus, it
should be common for continual methods to exploit the structure of the data stream, either estimating
online or assuming it as initial condition. Third, in order to do the above, further formalization of
the continual learning problem and theoretical tools to describe data non-stationarity are needed.
In particular, connecting the field with related topics, such as online learning, but also others like
invariances, causality, can provide a rich source to borrow from and adapt mathematical constructs.
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Appendices

A THEORETICAL PROOFS

Notation

D1, . . . ,DK A sequence of tasks: K datasets

X Input space

Yi Task i ∈ [K] output space (may vary or be shared across tasks)

θ ⊆ RP The neural network parameters

In Identity matrix with n rows and n columns

θ A generic network parameters vector

θAgent(t) Dynamics of the network parameters of Agent (ST,MT)

θ0 Network initialization

ℓi(x, y,θ) Task i loss function

Ri(θ) Expected loss on the task i distribution Di

Rt(θ) Empirical loss on the task i dataset

tκ0 First time step of task κ, equal to (κ− 1)h since all tasks last h
time steps

∥x∥Σ = x⊤Σx Elliptic norm of vector x for PSD matrix Σ

A.1 RECALL THE SETUP

Average lifelong error:

1

T

T∑
t=1

E
xt,yt

ℓ( θ(t);xt, yt ) =
1

T

K∑
i=1

hi∑
t=1

Ri( θ(t
i
0 + t) ) (4)

Average lifelong error difference:

1

T

K∑
i=1

hi∑
t=1

(
Ri( θST (t

i
0 + t) )−Ri( θMT (t

i
0 + t) )

)
(5)

Agents’ objectives:

ΩST (θ, κ) = Rκ(θ) ΩMT (θ, κ) =
1

κ

κ∑
i=1

Ri(θ) (6)

A.1.1 LINEAR REGRESSION MODEL

We define each task as a linear regression problem:

y = θ⋆
κ
⊤x+ ξ (7)

where ξ is a noise term sampled independently for each input x with mean 0 and variance Σ2. In
the paper we treat the noiseless case, i.e. assume ξ = 0. For completeness, we keep the setting
formulation more general.

Let Dκ(X) the marginal distribution on the input space X and Dκ a dataset of size Nκ sampled i.i.d.
from Dκ. We denote by Σκ

x = Ex∼Dκ(X)[xx
⊤] the uncentred population or true covariance matrix

of the inputs x. Given a training dataset of size Nκ for task κ we define the empirical covariance
matrix as Σ̂x = 1

Nκ

∑Nκ

i=1 xix
⊤
i .
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With a squared error ℓ2(θ;x, y) = (θ⊤x−y)2 the risk or test errorRκ(θ) of the predictor fθ = θ⊤x
is:

Rκ(θ) = Ex,ξ [⟨θ⋆
κ − θ,x⟩ − ξ]

2

= (θ − θ⋆
κ)

⊤Σx(θ − θ⋆
κ) + σ2

(8)

Similarly, the training error is simply:

Rκ(θ) =
1

Nκ

Nκ∑
i=1

[
(θ⋆

κ − θ)⊤xi − ξi
]2

= (θ⋆
κ − θ)⊤

(
1

Nκ

Nκ∑
i=1

xix
⊤
i

)
(θ⋆

κ − θ)− 2

Nκ

Nκ∑
i=1

ξi x
⊤
i (θ

⋆
κ − θ)

= (θ⋆
κ − θ)⊤Σ̂κ

x(θ
⋆
κ − θ)− 2

Nκ

Nκ∑
i=1

ξi x
⊤
i (θ

⋆
κ − θ)

ξi=0∀i
= (θ⋆

κ − θ)⊤Σ̂κ
x(θ

⋆
κ − θ)

= (θ⋆
κ − θ)⊤Σx(θ

⋆
κ − θ)−

(
(θ⋆

κ − θ)⊤(Σx − Σ̂κ
x)(θ

⋆
κ − θ)

)
= Rk(θ) +

(
(θ⋆

κ − θ)⊤(Σx − Σ̂κ
x)(θ

⋆
κ − θ)

)

(9)

where in the last line, we highlight that in this simple setting, the training error is equal to the test
error up to a vanishing error term that goes to 0 as Nκ grows large. This result is standard and typical
of empirical risk minimization (Vapnik, 1991). More precisely, the norm of the error decreases in
O(1/

√
Nk) (with a hidden constant factor that depends on the spectrum of Σx).

Finally, notice that in the noiseless caseRκ(θ
⋆
κ) = 0 by Equation (8).

Assumption 2. For any κ ∈ [1,K] and M > m > 0 the spectrum of the covariance matrix satisfies
the following condition:

m I ≼ Σ̂κ
x ≼ M I

A.1.2 MINIMIZERS

Given a sequence of K tasks we can resolve for the minimizers of, respectively, the MT and ST
objectives. Trivially, argminθ ΩST (θ, κ) = θ⋆

κ. For MT we have:

θ⋆
[1,κ] := argmin

θ
ΩMT (θ, κ)

= argmin
θ

∑
i≤κ

(θ⋆
i − θ)⊤Σ̂i

x(θ
⋆
i − θ) = (

∑
i≤κ

Σ̂i
x )

−1 (
∑
i≤κ

Σ̂i
x θ

⋆
i )

For simplicity, we denote
∑

i≤κ Σ̂
i
x by Σ̄≤κ

x and
∑

i≤κ Σ̂
i
x θ

⋆
i by θ̄⋆

[1,κ].

A.1.3 GRADIENT DESCENT DYNAMICS

The ST agent and MT agent update their parameters by gradient descent on their respective objectives
with a learning rate η. We here consider the case of full batch gradient descent. One iteration during
task κ takes the form:

θST (t)← θST (t− 1)− η∇θST (t−1)Rκ(θ)

= θST (t− 1)− η Σ̂κ
x (θST (t− 1)− θ⋆

κ)
(10)

θMT (t)← θMT (t− 1)− η

κ

κ∑
i=1

∇θMT (t−1)Ri(θ)

= θMT (t− 1)− η

κ

∑
i≤κ

Σ̂i
x (θMT (t− 1)− θ⋆

i )

(11)
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Let tκ0 be the beginning of task κ and t the absolute time step. Solving the recursion we have:

θST (t) = θ⋆
κ + (I − ηΣ̂κ

x)
(t−tκo ) (θ0 − θ⋆

κ) (12)

θMT (t) = θ⋆
[1,κ] + (I − η

κ
Σ̄≤κ

x )(t−tκo ) (θMT (t
κ
0 )− θ⋆

[1,κ]) (13)

Note that applying Assumption 2 we directly have ηm I ≼ η
κΣ̄

≤κ
x ≼ ηM I , which allows us to use

the same convergence statements for the ST and MT objectives.

The ST agent is reset after every task, and thus θST (t
κ
0 ) = θ0 ∀κ. In contrast, the MT agent is never

reset and therefore it starts the new task from where it ended the last one θMT (t
κ
0 ) = θ0 ⇐⇒ tκ0 = 0.

The task initialization θMT (t
κ
0 ) admits a closed-form expression:

θMT (t
κ+1
0 ) =

κ∑
j=0

[ i∏
i=j+1

(I − η

i
Σ̄≤i

x︸ ︷︷ ︸
Pi

)hi
] (

I − (I − η

j
Σ̄≤j

x )hj

)
θ⋆
[1,j]

=

κ∑
j=0

[ i∏
i=j+1

Pi
hi
] (

I − P
hj

j

)
θ⋆
[1,j]

(14)

where, with an abuse of notation we denote P0 = 0 and θ⋆
≤0 = θ0.

A.2 AVERAGE LIFELONG ERROR DIFFERENCE

Lemma 5. For any strictly convex loss R, i.e., there exists m,M > 0 such that mI ≤ ∇2R(θ) ≤
MI for all θ, the convergence of (full-batch) discrete time gradient descent with learning rate η is
geometric and we have:

∥θ(k)− θ∗∥2 ≤ (1− ηm)k∥θ0 − θ∗∥2 R(θ(k))−R(θ∗) ≤ (1− ηm)2k∥θ0 − θ∗∥2Σx

∥θ(k)− θ∗∥2 ≥ (1− ηM)k∥θ0 − θ∗∥2 R(θ(k))−R(θ∗) ≥ (1− ηM)2k∥θ0 − θ∗∥2Σx

where Σx = ∇2R(θ).
Assumption 6 (Learning rate). The learning rate is chosen such that gradient descent converges to a
minimum. If Assumption 2 is satisfied this is simply: η < 1

M .

Definition 7 (Decomposition of ∆T ). We identify three separate elements which contribute indepen-
dently to the average lifelong error difference ∆T , namely:

∆I
T =

K∑
i=1

Ri(θ
⋆
[1,i])−Ri(θ

⋆
i ) (15)

∆MT
T =

K∑
i=1

 1

h

ih∑
t=ti0+1

Ri(θ
(i)
MT (t) )−Ri(θ

⋆
[1:i])

 (16)

∆ST
T =

K∑
i=1

 1

h

ih∑
t=ti0+1

Ri(θ
(i)
ST (t) )−Ri(θ

⋆
i )

 (17)

Further,

∆T =
1

K
∆ST

T − 1

K
∆MT

T − 1

K
∆I

T (18)

Theorem 8 (General upper bound on ∆T ). For clarity in the notation, we fix hκ = h for all tasks,
and denote ϵm = (1−ηm)2 where η is the GD step size and m is from Assumption 2. If Assumption 6
and Assumption 2 are satisfied then the difference in average lifelong error of the ST and MT agents
with dynamics described by Equation (12) admits the following upper bound:

∆T ≤
1

K

K∑
κ=1

(
1

h
· 1− ϵhm
1− ϵm

∥θ0 − θ∗
κ∥2Σκ

x
+O(1/Nκ)

)
− 1

K
∆I

T (19)
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Proof We start from the general decomposition of Definition 7. We bound each task term ∆ST
T (tκ0 +

t),∆MT
T (tκ0 + t) separately. ∆I

T ≥ 0 cannot be bounded further since it is not agent dependent.
However we can rewrite is as follows:

1

K
∆I

T =
1

K

K∑
κ=1

(
Rκ(θ

⋆
[1,κ])−Rκ(θ

⋆
κ)
)
=

1

K

K∑
κ=1

∥θ⋆
[1,κ] − θ⋆

κ∥2Σκ
x

(20)

Both ST and MT are gradient descent agents that optimize a convex objective. By Lemma 5 and
Assumption 2 we have that the train error with respect to the minimum will converge to 0 at a
geometric rate. Using a generic concentration argument to upper bound the difference between the
empirical risk on the train set and the test error: Rκ(θ

∗
κ) − Rκ(θ

∗
κ) (the train and test set being

identically distributed) we get:

∆ST
T (tκ0 + t) ≤ (1− ηm)2t∥θ0 − θ∗

κ∥2Σκ
x
+O(1/Nκ)

and
∆MT

T (tκ0 + t) ≥ (1− ηM)2t∥θMT(t
κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
+O(1/Nκ)

First note that for κ≫ 0,

∆MT
T (tκ0 + t) ≥ (1− ηM)2t∥θMT(t

κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
+O(1/Nκ) ≳ 0

because θMT(t
κ
0 ) ≈ θ⋆

[1:κ−1] ≈ θ⋆
[1:κ] is close to the minimum at the previous task, which is itself

similar to the current minimum. So in general, we can grossly lower bound ∆MT
T (tκ0 + t) > 0 without

making a large error (see Lemma 9 for a formal proof).

Recognising that (1− ηm)2t forms a geometric series with base ϵm = (1− ηm)2, we can write :

∆T ≤
1

K

K∑
κ=1

1

h

(
1− ϵhm
1− ϵm

∥θ0 − θ∗
κ∥2Σκ

x

)
+O(1/Nκ)−

1

K
∆I

T (21)

This concludes the proof.
Lemma 9. The error term due to the MT agent is negligible:

1

K

K∑
κ=1

∥θMT(t
κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
∈ o(1)

Proof Using Equation (14) we can write

θMT(t
κ
0 )− θ⋆

[1:κ] =

κ∑
j=0

[ i∏
i=j+1

Pi
hi
] (

I − P
hj

j

)
θ⋆
[1,j] − θ⋆

[1:κ]

=
(
I − Ph

κ−1

)
θ⋆
[1,κ−1]

+ Ph
κ−1

(
I − Ph

κ−2

)
θ⋆
[1,κ−2]

+ Ph
κ−1 P

h
κ−2

(
I − Ph

κ−3

)
θ⋆
[1,κ−3]

+ . . .

+ Ph
κ−1 . . . Ph

2

(
I − Ph

1

)
θ⋆
1 + Ph

κ−1 . . . Ph
1 θ0 − θ⋆

[1:κ]

By Assumption 2 we know Ph
i ≼ (1 − ηm)hI for all the tasks i and thus we can ignore the

contribution of all the terms j < κ− 1 in the norm:

∥θMT(t
κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
≤ ∥θ⋆

[1,κ−1] − θ⋆
[1:κ]∥

2
Σκ

x
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As κ increases the average will converge to the final average θ⋆
[1,K], and ∥θ⋆

[1,κ−1] − θ⋆
[1:κ]∥

2
Σκ

x
→ 0.

In general we can say that ∥θMT(t
κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
decreases with κ and thus:

1

K

K∑
κ=1

∥θMT(t
κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
∈ o(1)

Corollary 10. Consider the setting where Assumption 2 and Assumption 6 are satisfied. If the
instability of the sequence is null, i.e. ∆I

T = 0, then the upper bound in Theorem 8 is always positive.

This result is a direct consequence of the general upper bound above. In particular, Lemma 9 shows
that in such setting the error of the MT agents goes to 0 geometrically fast so it is the optimal type of
agent.

Theorem 11 (General lower bound on ∆T ). In the same setting as Theorem 8, using ϵM = (1−ηM)2,
if Assumption 6 and Assumption 2 are satisfied then the difference in average lifelong error of the ST
and MT agents with dynamics described by Equation (12) admits the following upper bound:

∆T ≥
1

K

K∑
κ=1

1

h

(
1− ϵhM
1− ϵM

∥θ0 − θ∗
κ∥2Σκ

x
− 1− ϵhm

1− ϵm

)
− 1

K
∆I

T (22)

Proof The proof is similar to Theorem 11.

Again, we start from the general decomposition of Definition 7. Both ST and MT are gradient descent
agents that optimize a convex objective. By Lemma 5 and Assumption 2 we have that the train error
with respect to the minimum will converge to 0 at a geometric rate. Using a generic concentration
argument to upper bound the difference between the empirical risk on the train set and the test error:
Rκ(θ

∗
κ)−Rκ(θ

∗
κ) (the train and test set being identically distributed) we get:

∆ST
T (tκ0 + t) ≥ (1− ηM)2t∥θ0 − θ∗

κ∥2Σκ
x
s

and
∆MT

T (tκ0 + t) ≤ (1− ηm)2t∥θMT(t
κ
0 )− θ⋆

[1:κ]∥
2
Σκ

x
+O(1/Nκ)

Recognising that (1− ηm)2t and (1− ηM)2t form a geometric series with base ϵm = (1− ηm)2

and ϵM = (1− ηM)2 respectively, we can write :

∆T ≥
1

K

K∑
κ=1

1

h

(
1− ϵhM
1− ϵM

∥θ0 − θ∗
κ∥2Σκ

x
− 1− ϵhm

1− ϵm
∥θMT (t

κ
0 )− θ∗

κ∥2Σκ
x

)
+O(1/Nκ)−

1

K
∆I

T

Applying Lemma 9 we know that the second term vanishes with K:

1

K

K∑
κ=1

∥θMT (t
κ
0 )− θ∗

κ∥2Σκ
x
∈ o(1)

and thus

∆T ≥
1

K

K∑
κ=1

1

h

(
1− ϵhM
1− ϵM

∥θ0 − θ∗
κ∥2Σκ

x
− 1− ϵhm

1− ϵm

)
+O(1/Nκ)−

1

K
∆I

T

This concludes the proof.
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Corollary 12. Consider the setting where Assumption 2 and Assumption 6 are satisfied. Let VK =∑K
κ=1 ∥θ0 − θ∗

κ∥2Σκ
x

measure a quantity measuring the ‘spread’ of the task solution vectors, with

respect to initialization, and further let ωM =
1−ϵhM
1−ϵM

and ωm =
1−ϵhm
1−ϵm

. The lower bound in
Theorem 11 is positive if the following is true:

LB > 0 ⇐⇒ VK >
ωm

ωM
+

h

ωM
∆I

T (23)

And thus if the instability of the sequence is null, i.e. ∆I
T = 0 then the lower bound in Theorem 11 is

positive only if VK > ωm

ωM
.

Proof Let LB denote the lower bound on ∆T of Theorem 11:

LB =
1

K

K∑
κ=1

1

h

(
1− ϵhM
1− ϵM

∥θ0 − θ∗
κ∥2Σκ

x
− 1− ϵhm

1− ϵm

)
− 1

K
∆I

T (24)

LB > 0 ⇐⇒ 1

K

K∑
κ=1

1

h

(
1− ϵhM
1− ϵM

∥θ0 − θ∗
κ∥2Σκ

x

)
>

1

h

1− ϵhm
1− ϵm

+
1

K
∆I

T (25)

1− ϵhM
1− ϵM

(
1

K

K∑
κ=1

∥θ0 − θ∗
κ∥2Σκ

x

)
>

1− ϵhm
1− ϵm

+ h
1

K
∆I

T (26)

(27)

which concludes the proof.

Corollary 12 highlights the role of the task duration h in the balance between ST and MT agents. As
h increases it becomes harder for the MT agent to match the performance of the ST agent. Another
consequence of Corollary 12 is that a positive instability does not imply a positive ∆T . For instance,
if the solutions are all δ-close (δ = o( ωm

ωM
)) to the initialization (e.g. by being of low norm) then the

ST agent may still outperform the MT agent.

Moreover, since both the upper and lower bound on ∆T vary as h−1 we can say that ∆T ∈ Ω(h−1),
which confirms that increasing the task duration will always lead to lower ∆T .

Theorem 13 (Asymptotically tight bounds for ∆T ). Let VK =
∑K

κ=1 ∥θ0−θ∗
κ∥2Σκ

x
as in Corollary 12.

In the same setting as Theorems 8 and 11 if Assumption 2 and Assumption 6 are satisfied then the
difference in average lifelong error described by Equation (12) can be tightly bounded as follows:

∆T ∈ Θ

(
1

K
( 1hVK −∆I

T ) +
1

Nκ
+ C

)
(28)

where C is hiding a constant which depends only on the spectrum of the covariance matrices.

Proof The theorem is a direct consequence of Theorem 8 and Theorem 11.

Interestingly, Theorem 13 highlights the nature of the dependence of ∆T on h, which is essentially
monotonic. The following corollary formalizes this observation.

Corollary 3. In the same setting as Theorems 8 and 11 if Assumption 2 and Assumption 6 are satisfied
then the difference in average lifelong error described by Equation (12) decreases monotonically
with the task duration.

Corollary 3 provides fundamental insight for our study, and has high practical relevance. The task
duration h is typically under the control of the agent designer. By Corollary 3 we know that increasing
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the task duration will necessarily decrease the difference ∆T . However (Corollary 12) it is not granted
that ∆T will in general be negative, i.e. that a critical task duration exists in general.

In order to prove the existence of a critical task duration we need to consider the worst case scenario,
i.e. the upper bound on ∆T . We are thus looking for cases where the instability is not 0, i.e. ∆I

T > 0.
This is what the next set of results looks at.

Theorem 14 (Negative ∆T with positive instability). Consider the setting where Assumption 2 and
Assumption 6 are satisfied. If the instability of the sequence is strictly positive, then the upper bound
in Theorem 8 is strictly negative if:

h >

∑K
κ=1 ∥θ0 − θ∗

κ∥2Σκ
x

(1− ϵm)
∑K

κ=1 ∥θ⋆
[1,κ] − θ⋆

κ∥2Σκ
x

:= ĥ (29)

Proof We simply solve for ∆T < 0 in Theorem 8:

∆T < 0⇐ h >

∑K
κ=1 ∥θ0 − θ∗

κ∥2Σκ
x

(1− ϵm)
∑K

κ=1 ∥θ⋆
[1,κ] − θ⋆

κ∥2Σκ
x

Theorem 15 (Existence of the critical task duration.). In the setting where Assumption 2 and
Assumption 6 are satisfied, if the instability of the sequence is strictly positive, gradient descent on the
ST and MT convex objectives described in Section 4.2 gives rise to two parameter dynamics θST (t)
and θMT (t), such that there exists a finite critical task duration h̄.

Proof The result follows directly from Theorem 14. By definition (Proposition 1), the critical
task duration is the minimal value of h such that ∆T < 0. Since we know by Theorem 14 that
∆T < 0 ∀h < ĥ then we know that h̄ ≤ ĥ. Noticing that ĥ is finite if the instability is strictly
positive, then necessarily so is h̄.

Theorem 16 (Order of magnitude of the critical task duration). With all the conditions of Theorem 13,
ignoring the constants C and Nκ we know that the critical task duration admits the following
asymptotic expression:

h̄ ∈ Θ

(
VK

∆I
T

)
(30)

Proof Solving for h in Theorem 13 and ignoring the terms depending on Nκ or C leads to the
theorem statement.

Theorem 16 provides interesting insights. In particular, at higher instability in general the critical
task duration is lower, which means that the multi-task solutions is more likely to achieve worse
lifelong performance. At the same time, the norm of the solutions with respect to the initialization
VK influences the balance between the two agents too. With the norm of the solutions tending to 0,
the ST agent may still be more performing even in very stable environments.

A.3 TOY SETTINGS

For the toy settings in Figure 2 we can obtain explicit expressions by computing ∆I
T and ∆ST

T exactly.
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In a one-dimensional problem the risk is simply Ri(θ) = σ2 (θ − vi)
2, where w.l.o.g. we use

Σx = σ2. The MT objective minimizer after κ tasks is:

θ⋆[1,κ] = (
∑
i≤κ

Σ̂x)
† (
∑
i≤κ

Σ̂xθ
⋆
i )︸ ︷︷ ︸

all average but the last one if odd

(31)

= (κσ2)−1(σ2
⌊κ
2

⌋
(θ⋆1 + θ⋆2) + 1{κ odd}σ

2θ∗1) (32)

=

{
µ if κ even
κ−1
κ µ+ 1

κθ
⋆
1 if κ odd

(33)

where µ = 1
2 (θ

⋆
1 + θ⋆2) is the average solution. Thus, we can easily compute ∆I

T :

σ2∥θ⋆[1,κ] − θ⋆κ∥2 =

{
σ2

2 (θ⋆1 − θ⋆2)
2 if κ even

σ2

2 ·
κ−1
κ (θ⋆1 − θ⋆2)

2 if κ odd
→κ→∞

σ2

2
(θ⋆1 − θ⋆2)

2 (34)

∆I
T =

K∑
k=1

σ2∥θ⋆[1,κ] − θ⋆κ∥2 = K
σ2

2
(θ⋆1 − θ⋆2)

2 (35)

Further, in Figure 2 we use θ0 = 0, therefore we have:

VK =

K∑
κ=1

σ2(θ0 − θ⋆κ)
2 = K

σ2

2
(θ⋆1

2 + θ⋆2
2) (36)

Finally by Theorem 14 we know that the critical task duration is at most:

h̄ ≤ VK

∆I
T

=
θ⋆1

2 + θ⋆2
2

(1− ϵ)(θ⋆1 − θ⋆2)
2

(37)

where ϵ = (1− ση)2.

In our toy example in Figure 2, we chose η = 0.01 and σ2 = 9, θ⋆1 = 1 and θ⋆2 = 2 in the left plot
and θ⋆2 = 1.1 in the right plot. So we can solve for h̄left ≤ 29.09 and h̄right ≤ 7478.9.
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Figure 5: Simulation of ∆T as a function of T for the two toy settings of Figure 2.

Simulations. In order to get the precise value of h̄ for our two toy settings we run 100 simulations
as we vary h ∈ [1, 1000], keeping all the other variables fixed. We plot the average lifelong error
of ST and MT, and the respective ∆T as a function of T in Figure 5. The observed h̄ is way lower
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than its predicted upper bound ĥ, however the critical task duration is lower for higher instability -as
expected. Also notice that when ∆ST

T ≈ 0 the ∆T grows less negative as h is increased. This is a
case that is not covered by the theory, since we work with the approximation 1

K∆MT
T ≈ 0, whereas

at very high h, the effect of 1
K∆MT

T is much more pronounced compared to 1
K∆ST

T .

A.4 OVERPARAMETRIZATION

Assumption 2 implies that the number of data points for each task Nκ is at least equal to the number
of parameters of the model p, i.e. minκ Nκ ≥ p. If this condition is not satisfied, there exist infinitely
many vectors which minimize the loss. It is known that gradient descent has an implicit bias towards
minimum norm solutions (Gunasekar et al., 2018; Zhang & Sutton, 2020). Therefore, without
changing the characteristics of the solution, we can augment the task loss with a regularizer. Denoting
the overparametrized case with the o superscript:

Ro
κ(θ) = Ex,ξ

[
⟨θ⋆

κ − θ,x⟩]2 + λ ∥θ∥2 (38)

= (θ − θ⋆
κ)

⊤Σx(θ − θ⋆
κ) + λ ∥θ∥2 (39)

Ro
κ(θ) =

1

Nκ

Nκ∑
i=1

[
(θ⋆

κ − θ)⊤xi]
2 + λ ∥θ∥2 (40)

= (θ − θ⋆
κ)

⊤Σ̂x(θ − θ⋆
κ) + λ ∥θ∥2 (41)

Next, we reproduce some key steps of our analysis with this modified loss in order to show that our
derivations are readily extended to the overparametrized case.

The new minimizers of the ST and MT objectives are:

θo,⋆
κ = argminθ ΩST (θ, κ) = (λI +Σκ

x)
−1Σκ

x θ
⋆
κ (42)

θo,⋆
[1,κ] = argminθ ΩMT (θ, κ) = (κλI + Σ≤κ

x )−1 θ̄⋆
[1,κ] (43)

And the gradient descent dynamics for the two agents take the form:

θoST (t)← θoST (t− 1)− η∇θo
ST (t−1)R

o
κ(θ)

= θoST (t− 1)− η
(
Σ̂κ

x (θ
o
ST (t− 1)− θ⋆

κ) + λθoST (t− 1)
)

= (1− ηλ) θoST (t− 1)− η Σ̂κ
x (θST (t− 1)− θ⋆

κ)

(44)

θoMT (t)← θoMT (t− 1)− η

κ

κ∑
i=1

∇θo
MT (t−1)R

o
i (θ)

= (1− ηλ) θoMT (t− 1)− η

κ

∑
i≤κ

Σ̂i
x (θMT (t− 1)− θ⋆

i )

(45)

Let λ′ = 1− ηλ. Solving the recursion we have:

θoST (t) = θo,⋆
κ + (λ′I − ηΣ̂κ

x)
(t−tκo ) (θ0 − θo

κ
⋆) (46)

θoMT (t) = θo,⋆
[1,κ] + (λ′I − η

κ
Σ̄≤κ

x )(t−tκo ) (θMT (t
κ
0 )− θo,⋆

[1,κ]) (47)

We now propose an adapted version of Lemma 5, which crucially does not require the empirical
covariance to be full rank, thus guaranteeing convergence in the overparametrized regime.

Lemma 17 (Overparametrized convergence under regularization.). For any convex loss R with added
norm regularizer λ ∥θ∥2, such that mI ≤ ∇2R(θ) ≤MI for m,M ∈ R+ and 0 < λ < η−1 −M ,
the convergence of (full-batch) discrete time gradient descent with learning rate η is geometric and
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we have:

∥θ(k)− θ∗∥2 ≤ (1− ηm′)k∥θ0 − θ∗∥2 R(θ(k))−R(θ∗) ≤ (1− ηm′)2k∥θ0 − θ∗∥2Σx

∥θ(k)− θ∗∥2 ≥ (1− ηM ′)k∥θ0 − θ∗∥2 R(θ(k))−R(θ∗) ≥ (1− ηM ′)2k∥θ0 − θ∗∥2Σx

where m′ = m + λ and M ′ = M + λ, Σx = ∇2R(θ) and θ⋆ is the minimizer of the regularized
objective.

Proof Let us consider the ST agent case, as the proof for the MT agent is similar. By Equation (46)
we know that the GD estimate converges to the minimizer θo,⋆

κ exponentially fast:

∥θ(k)− θo,⋆
κ ∥2 ≤ (1− ηm′)k∥θ0 − θo,⋆

κ ∥2
∥θ(k)− θo,⋆

κ ∥2 ≥ (1− ηM ′)k∥θ0 − θo,⋆
κ ∥2

The resulting estimation error is:

Rκ(θ(k)) = (θ(k)− θ⋆
κ)

⊤Σκ
x(θ(k)− θ⋆

κ) (48)

= (θ(k)− θo,⋆
κ )⊤Σκ

x(θ(k)− θo,⋆
κ ) + (θo,⋆

κ − θ⋆
κ)

⊤Σκ
x(θ

o,⋆
κ − θ⋆

κ) (49)

≤ (1− ηm′)2k∥θ0 − θo,⋆
κ ∥2Σκ

x
+ ∥θo,⋆

κ − θ⋆
κ∥2Σκ

x
(50)

What is left to prove is that ∥θo,⋆
κ − θ⋆

κ∥2Σκ
x
= 0. We start by using the definition of θo,⋆

κ :

θo,⋆
κ − θ⋆

κ = (λI +Σκ
x)

−1Σκ
x θ

⋆
κ − θ⋆

κ (51)

= ((λI +Σκ
x)

−1Σκ
x − I)θ⋆

κ (52)

Clearly, the difference is 0 if the regularizer strength is 0:

(λI +Σκ
x)

−1Σκ
x − I = 0 (53)

⇐⇒ Σκ
x = λI +Σκ

x (54)
⇐⇒ λ = 0 (55)

In practice, λ→ 0 corresponds to the case where the population risk R has a much stronger weight
than the regularization strength in the objective (up to rescaling). Therefore, we may equivalently
describe tθo,⋆

κ as the solution to the following constrained minimization problem:

min ∥θ∥2 s.t. Rκ(θ) = 0 (56)

Notice that this is the precise definition of the gradient descent solution in overparametrized settings.

In the overparametrized setting the condition Rκ(θ) = 0 is satisfied by any θ = θ′
κ + Pxv, where v

is any vector in the parameter space, Px is a projection operator on the orthogonal complement of the
data space, i.e. Px = I −X†

κXκ, and θ′
κ is a solution to the task, i.e. Yκ = θ′

κXκ. Thus picking
θo,⋆
κ ∈ {θ |θ = θ′

κ + Pxv} necessarily ∥θo,⋆
κ − θ⋆

κ∥2Σκ
x
= 0.

Lemma 17 bridges the regularized objective and the population risk, showing that convergence in
one is necessarily linked to convergence in the other. Applying this lemma instead of Lemma 5, the
results obtained in the underparametrized case can be extended to the overparametrized case without
assumptions on the spectrum of the empirical covariance matrix.

A.5 MEASURING THE INSTABILITY WITH THE NTK

A key takeaway of our theoretical analysis is that the optimal objective depends on the instability
of the sequence. Thus, it is crucial to devise efficient and pragmatic, albeit precise, measures of
instability. The two methods which we mention in Section 5.2 introduce noise in the estimate of ∆I

T
due to randomness in the optimization process, and in addition they both have high computational
costs.

In what follows we explore a way to get rid of this noise using the Neural Tangent Kernel (NTK) (Jacot
et al., 2018). The results are still in a preliminary form and thus they are not included in the main
discussion, however they demonstrate potential in this direction of research.
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Consider a linearization of the network around its initialization using the Neural Tangent Kernel
(NTK) (Jacot et al., 2018):

f lin(x;θt) = f0(x) + ϕ(x)⊤(θt − θ0) (57)

where ϕ(x) = ∂θ0f0(x) are the tangent kernel features. Minimizing a quadratic cost R =
E(x,y) [f

lin(x;θ)− y]2 averaged over a dataset (X,Y ) in this new convex space we get the optimal
weights:

θ⋆ = θ0 − ϕ(X)⊤K(X,X)−1 (f0(X)− Y ) (58)

where K(x,x′) = ϕ(x)ϕ(x′)⊤ is the neural tangent kernel. In our continual learning setting,
let (Xκ,Yκ) denote the dataset of task κ and (X[1,κ],Y[1,κ]) the concatenation of all the datasets
1, . . . , κ. Using Equation (58), and given a common initialization θ0, the minimizers of the ST and
MT objectives for task κ are:

θ⋆
κ = θ0 − ϕ(Xκ)

⊤K(Xκ,Xκ)
−1 (f0(Xκ)− Yκ) (59)

θ⋆
[1,κ] = θ0 − ϕ(X[1,κ])

⊤K(X[1,κ],X[1,κ])
−1 (f0(X[1,κ])− Y[1,κ]) (60)

The instability is the average error of the MT minimizer compared to the average error of the ST
minimizer. Suppose that the ST minimizer is optimal, i.e. that y = f0(x) + ϕ(x)⊤θ⋆

κ, then we can
measure the instability as the average error of the MT minimizer:

∆I
T =

K∑
κ=1

E(x,y)

[
f lin(x;θ⋆

[1,κ])− y
]2

=

K∑
κ=1

E(x,y)

[
ϕ(x)⊤θ⋆

[1,κ] − ϕ(x)⊤θ⋆
κ

]2
=

K∑
κ=1

(θ⋆
[1,κ] − θ⋆

κ)
⊤Ex [K(x,x)] (θ⋆

[1,κ] − θ⋆
κ)

=

K∑
κ=1

∥θ⋆
[1,κ] − θ⋆

κ∥2Σκ
Kx

where Σκ
Kx

= Ex [K(x,x)] is the data covariance matrix in the kernel feature space. Let Ξκ =
f0(Xκ)− Yκ denote the residuals at initialization. Then:

θ⋆
[1,κ] − θ⋆

κ = ϕ(Xκ)
⊤K(Xκ,Xκ)

−1 Ξκ − ϕ(X[1,κ])
⊤K(X[1,κ],X[1,κ])

−1 Ξ[1,κ]

This quantity can be measured directly at initialization, and is exact in the infinite width limit, i.e.
limwidth→∞ ∆T

I → ∆I,∞
T .
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B REVIEW OF CONTINUAL LEARNING ALGORITHMS AND THE LINK TO THE
MULTI-TASK OBJECTIVE

In this section we replicate some of the findings in the literature regarding the connection between
existing CL algorithms and the multi-task objective. The discussion is mainly based on Yin et al.
(2020) and Lanzillotta et al. (2024). We proceed by algorithm families, following the categorization
of Parisi et al. (2019).

B.1 REGULARIZATION METHODS

Let ΩCL be the objective of a general CL algorithm. Yin et al. (2020) consider ΩCL of the form:

ΩCL(θ, κ) =
1

κ

κ∑
i=1

R̂i(θ) (61)

where R̂i(θ) is an approximation of Ri(θ) based on a second order Taylor expansion centered at
the task minimizer θ⋆

i . Thus in practice ΩCL(θ, κ) approximated the MT objective ΩMT (θ, κ). In
Section 4 (Yin et al., 2020) it is shown how two popular regularization based methods implement
ΩCL. We loosely follow their arguments here.

Elastic Weight Consolidation. Kirkpatrick et al. (2017) use the approximation

R̂i(θ) = (θ⋆
i − θ)⊤ Fi (θ

⋆
i − θ)

where Fi is the Fisher information matrix computed at θ⋆
i (Equation 3, Kirkpatrick et al., 2017). For

computational reasons, they approximate Fi by zeroing the off diagonal entries. If the loss function
is the negative log-likelihood, and we obtained the ground truth probabilistic model, then the Fisher
information matrix is equivalent to the Hessian matrix, and R̂i(θ) coincides with the second order
Taylor expansion when the gradient at θ⋆

i is null.

Kronecker factored Laplace approximation. Ritter et al. (2018) essentially refine the approxima-
tion of the Hessian matrix in EWC by considering a more sophisticated approximation of the fisher
information matrix through a kronecker product rather than the diagonal approximation (Equations 5
and 9, Ritter et al., 2018).

Synaptic Intelligence Zenke et al. (2017b) explicitly introduce an approximation of the task loss
of the following form (Equation 4 and 6, Zenke et al., 2017b):

R̂i(θ) = Ri(θold) + (θold − θ)⊤ Ωi (θold − θ) (62)

where θold is the value of the model parameters after training on the previous task and Ωi is a
diagonal matrix which is an estimate of the parameter importance for the task i. In Section 4 (Zenke
et al., 2017b) they demonstrate that under certain stability assumptions Ωi is directly related to the
Hessian computed at θold. Thus also the SI method enters the general characterization of (Yin et al.,
2020), with the difference that the Taylor approximation is not centered in θ⋆

i but in θold. Lanzillotta
et al. (2024) argue that this choice results in higher performance under long learning sequences.

In general, the conjecture proposed by Yin et al. (2020) is that many second order regularization
based methods implicitly build an approximation of the form Equation (61) which is based on a
second order Taylor expansion. A full review of the literature is out of the scope of this work and
in general infeasible, without which the conjecture cannot be proven. Nonetheless, we believe this
conjecture to be true for most existing regularization methods, and we do not make any claims on the
ones which escape this characterization.
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B.2 REPLAY METHODS

Since Experience Replay was first introduced (Robins, 1995), several variants thereof have been
proposed. In general, many replay-based algorithms optimize the same objective ΩCL Equation (61),
approximating the task loss Ri through the use of a buffer:

R̂i(θ) =
∑

(x,y)∈Bi

ℓ(θ;x, y) ≈
∑

(x,y)∈Di

ℓ(θ;x, y) (63)

Importantly, often the samples from the buffer have an overall lower weight than the sample from the
current task, e.g. by taking a gradient step on each. Thus, more accurately we say that many replay
methods optimize the following objective:

Ωrep(θ, κ) =
1

κ

κ∑
i=1

αi R̂i(θ) (64)

where the task weight αi is determined by the specific implementation of the algorithm. Our analysis
of the MT objective can be easily extended to weighted average objectives, and we believe this
conceptual framework to be an essential contribution of this work. In general, we demonstrate how to
evaluate the optimality of any objective against a very simple baseline.

Next, we discuss other famous algorithms which belong to the replay category yet do not fall under
the characterization of Equation (64). In doing so we mostly follow the arguments of Lanzillotta et al.
(2024).

Orthogonal Gradient Descent. Orthogonal gradient descent (OGD) enforces orthogonality be-
tween the parameter update and the previous tasks output gradients (which are stored in the replay
buffer). In order to see the connection to multi-task learning we must consider gradient-based updates.
For an MT objective the gradients take the form:

∂θΩMT (θ, κ) =
1

κ

κ∑
i=1

∂θRi(θ) (65)

By a first order Taylor expansion, updating the parameters is the direction −∂θΩMT (θ, κ) should
decrease the objective by:

ΩMT (θ
′, κ) ≈ ΩMT (θ, κ)− η ∥∂θΩMT (θ, κ)∥2 (66)

The OGD condition enforcing orthogonality between the parameter update and the previous tasks
output gradients instead modifies the MT loss as follows:

ΩMT (θ
′, κ) ≈ ΩMT (θ, κ)− η β∥1/κ ∂θRκ∥2 (67)

where β = cos(∂θRκ,θ
′− θ) is the angle between the projected update and the current task gradient

-which must be non negative. Thus, the MT loss is still reduced by the OGD update, although the
optimization is significantly slowed down (by a factor of

√
κ∥∂θΩMT ∥2/β∥∂θRκ∥2). Lanzillotta et al.

(2024) prove that OGD implement an optimal quadratic constraint (Theorem 5.1, Lanzillotta et al.,
2024), effectively minimizing the MT loss.

Gradient Episodic Memory. Gradient Episodic memory (GEM) minimizes a constrained objective
where the parameter update has to be at a negative angle with the gradient of the previous task losses,
i.e.:

⟨∂θRi,θ
′ − θ⟩ ≤ 0 (68)

The connection to the MT objective is similar to what we have seen for OGD. Simply considering
a first order Taylor expansion of the MT objective we approximate its change due to the parameter
update by:

ΩMT (θ
′, κ) ≈ ΩMT (θ, κ) + η

κ∑
i=1

βi∥ 1/κ ∂θRi∥2 (69)

where βi = ⟨∂θRi,θ
′ − θ⟩. Thus applying the GEM condition we know that the update reduces the

MT objective.
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B.3 DYNAMIC ARCHITECTURE METHODS

Finally, we consider the set of dynamic architecture methods (e.g. Zhou et al., 2012; Rusu et al.,
2016; Mallya & Lazebnik, 2018). Generally, these methods use new units or new parameters for
each task, freezing the parameters where learning already happened. Effectively, one can formalize
this considering a partition of the full set of parameters S = {θ1, . . . ,θp} in subsets S1, . . . , SK and
enforcing the condition (θ′ − θ)[Si] = 0 ∀ i ̸= κ ((θ′ − θ) is the vector of parameter update during
task κ) and ∂Sj

Ri(θ) = 0 for all j > i (Section 5, Lanzillotta et al., 2024).

To see the effect of this update strategy let’s look at the angle of the update with the gradients of the
MT objective:

⟨θ′ − θ, ∂θΩMT (θ, κ) ⟩ =
1

κ

κ∑
i=1

⟨θ′ − θ, ∂θRi(θ)⟩ (70)

=
1

κ

κ∑
i=1

K∑
j=1

⟨(θ′ − θ)[Sj ], ∂Sj
Ri(θ)⟩ (71)

=
1

κ

κ∑
i=1

⟨(θ′ − θ)[Sκ], ∂SκRi(θ)⟩ (first condition) (72)

=
1

κ
⟨(θ′ − θ)[Sκ], ∂SκRκ(θ)⟩ (second condition) (73)

The parameter update is typically a gradient-based update on the current loss (and satisfying the
above conditions). Therefore we know that ⟨(θ′ − θ)[Sκ], ∂Sκ

Rκ(θ)⟩ < 0 and thus in general
⟨θ′ − θ, ∂θΩMT (θ, κ)⟩ < 0, which - by a first order Taylor expansion argument - results in a
reduction in the MT objective.

Assuming that the optimization on each task is run to convergence, the final parameters at the end
of each task are (local) minima of the task loss: θend

κ [Sκ] = argminθ[Sκ] {Rκ(θ)}. Thus, after
the entire sequence of tasks has been learned the model parameters θend will satisfy the following
conditions:


θend[S1] = argminθ[S1] {R1(θ)}
. . .

θend[SK ] = argminθ[SK ] {RK(θ)}

Thus effectively this class of methods assign a different subnetwork to each task, optimizing the tasks
in isolation. Partitioning the network capacity compromises the performance on the task -which could
be higher if the whole network were to be used- but it avoids forgetting.

Under a capacity constraint for each task, these methods minimize the MT loss, assuming the
optimization converges to a minima for each task. To see why simply notice that minθ∈S R1(θ) +
R2(θ) ≤ minθ∈S R1(θ) + minθ∈S R2(θ).
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C LIMITATIONS

Our work is a small step towards understanding and formalizing the existing assumptions in continual
learning. The theoretical framework is limited to the convex case with linear models. Nevertheless
we argue that theory is useful as long as it is predictive of behavior, even if it does not describe the
actual setup.

Additionally, the proposed formalism is not descriptive enough to address complex shifts in
the data distribution, as it relies on the assumption that there are contiguous time intervals (called
tasks) where the data distribution is locally i.i.d..

Another limitation of the work is the choice of the MT agent, which is an abstract and
unattainable rendition of continual learning algorithms. For example, experience replay may be
biased to the current task, or simply fail to represent the past data distributions due to the limited
buffer. In order to evaluate the exact degree of optimality of any specific algorithm the multitask
objective should be modified in accordance with the algorithm.

Finally, the selective replay algorithm only provides a proof-of-concept idea of how the
structure of the non-stationarity can be exploited by continual learning algorithms. In practice, one
would need to estimate the sequence instability in order to run it. We believe that the online estimate
of a sequence instability for the design of adaptive objectives is a promising avenue of future work.

D EMPIRICAL SETUP

D.1 BENCHMARKS, NETWORKS AND GENERAL CONFIGURATION

Table 5: Supervised Learning benchmark statistics

Benchmark K Input Size Classes Nκ

CLEAR 10 224x224 100 109M

MD10 5 224x224 30 ∈ [1480, 27750]

PERMUTED CIFAR10 10 32x32 20 10K

Table 6: MULTIDATASET datasets statistics

Dataset Classes Nκ

StanfordCars 196 1523

FGVCAircraft 100 2467

DTD 47 1480

Food101 101 27750

OxfordPet 37 3680

D.1.1 CLEAR

The CLEAR dataset (Lin et al., 2021), a collection of images of 10 different classes spanning the
years 2004-2014. We split the collection into 10 tasks, one for each year. The tasks are organised
in their natural temporal ordering, i.e., by increasing year. All the input images are resized to
224x224 squares and normalised by subtracting the mean µ = [0.485, 0.456, 0.406] and dividing by
Σ = [0.229, 0.224, 0.225].
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Figure 6: Samples from CLEAR benchmark. Each column corresponds to a different task.

D.1.2 MULTIDATASET (MD5)

The MULTIDATASET benchmark consists of a sequence of 5 different open source classification
datasets, with no semantic overlap between them. In particular, the tasks consists in classification of
automobile models (Krause et al., 2013), aircraft models (Maji et al., 2013), textures (Cimpoi et al.,
2014), dishes (Bossard et al., 2014) and pets (Parkhi et al.). Each dataset has originally a different
number of classes, samples and a different input size - see Table 6. To avoid introducing biases in the
models, we standardize all tasks to have only 30 classes, and we use the same batch size and amount
of update steps in each task, regardless of the original dataset size. All the input images are resized to
224x224 squares and normalised by subtracting the mean µ = [0.485, 0.456, 0.406] and dividing by
Σ = [0.229, 0.224, 0.225]. Additionally, the training dataset samples are augmented with random
crops, random horizontal flips and random rotations of 15 degrees.

Figure 7: Samples from the MD5 benchmark. Each row corresponds to a different task.
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D.1.3 PERMUTED CIFAR 10

Permuted CIFAR 10 is a benchmark built from the CIFAR 10 dataset Krizhevsky & Hinton (2009),
applying fixed random permutations to the images in the dataset. We use two different permutation
sizes in all experiments, namely 16 and 32. The size of the permutation measures one length of the
square box of pixels which will be permuted, centered at the center of the image (see Figure 8 and
Figure 9 for examples). We refer to the respective benchmarks as ’CIFAR10 Permuted - 16’ (PC-16)
and ’CIFAR10 Permuted - 32’ (PC-32). All the input images are normalised by subtracting the mean
µ = [0.507, 0.486, 0.441] and dividing by Σ = [0.267, 0.256, 0.276].

D.1.4 META-WORLD

Meta-World is a collection of 50 distinct robotic manipulation tasks simulated in the MuJoCo physics
engine. Each task involves controlling a robotic arm to interact with objects in its environment, such
as pushing, picking, placing, opening drawers, or pressing buttons. The tasks are designed to test a
range of skills and are suitable for evaluating both single-task and multi-task learning agents.

Each observation includes the robot’s joint positions, velocities, and positions of relevant objects in
the environment. For the multi-task agent, the observation is augmented with a task identifier.

Actions are continuous control signals sent to the robot’s joints. Actions are sampled from a normal
distribution defined by the policy network outputs. Log probabilities and entropies are computed to
facilitate the learning process. Generalized Advantage Estimation (GAE) (Schulman et al., 2015) is
utilized to compute advantages and target values for training.

D.2 TRAINING PROCEDURES & NETWORKS

D.2.1 SUPERVISED LEARNING EXPERIMENTS

All supervised learning agents consists of a network, an optimizer and a scheduler. In all supervised
learning experiments the network is a residual network, RN18 with the final linear head size being the
number of classes in each task (100 for CLEAR, 30 for MD5 and 10 for PC). The final head is shared
among all the tasks. See Table 10 and Table 9 for the network and optimization hyperparameters.
The ST and MT agents are trained for the same number of steps h with the same batch size per step.

Single-Task Agent Given a sequence of K tasks the ST agent is trained to minimize a given loss
function on the current task training data. The optimizer chosen is stochastic gradient descent. The
ST agent network and optimizers are reset at the beginning of every task.

Multi-Task Agent Given a sequence of K tasks the MT agent is trained to minimize a given loss
function on the union of all the observed tasks training data, including the current task data. The
optimizer chosen is stochastic gradient descent.

Replay agents In order to ensure comparability with the ST agent, the Experience Replay and Selective
Replay agents are trained with the same batch size, which is equally partitioned between the current
task data and the buffer data. The buffer is randomly filled at the end of each task with the data from
the task. For all the agents we use a replay buffer of 500, meaning that we store 500 samples of each
task in the buffer. While the ER agent is trained in a similar fashion as the MT agent, to minimize the
loss on the the observed tasks, the SR agent ignores the buffer when the instability is high, i.e. in the
second half of the sequence of tasks.

D.2.2 REINFORCEMENT LEARNING EXPERIMENTS

In our reinforcement learning experiments, we aim to compare the performance of single-task and
multi-task agents using Proximal Policy Optimization (PPO) Schulman et al. (2017) on the Meta-
World benchmark Yu et al. (2020). PPO is a widely used policy-gradient method known for its
stability and reliability in training deep reinforcement learning agents.

Single-Task Agent. For each task, we train a separate PPO agent with its own policy and value
networks. The policy network is a multi-layer perceptron (MLP) consisting of two hidden layers with
128 units each and ReLU activation functions. The output layer produces the mean and standard
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Figure 8: Samples from a Permuted CIFAR10 - 16 task.

Figure 9: Samples from a Permuted CIFAR10 - 32 task.
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deviation for a Gaussian action distribution. The value network shares the same architecture but
outputs a scalar value estimate.

Multi-Task Agent. We train a single PPO agent across all selected tasks. The agent uses a shared
policy network with the same architecture as the single-task agents. Multi-task agent uses a replay
buffer to sample and update the PPO. The replay buffer at each task has the data from the current task
and previous ones.

The RL agents were exposed to 10 tasks from ML10 benchmark, the tasks are as following: Reach,
Push, Pick & Place, Door Open, Drawer Close, Button Press, Peg Insert Side, Window Open, Sweep,
and Basketball. The order is preserved while running experiments for various task durations.

D.2.3 HYPERPARAMETERS

D.2.4 SUPERVISED LEARNING BENCHMARKS

The key hyperparameters which are tuned separately for each agent and benchmark are the learning
rate, the batch size and the weight decay. The optimizer and scheduler are fixed across all supervised
learning experiments. We employ SGD with a cosine annealing of the learning rate every h time step,
which means the learning rate is annealed over the course of each task and increased again at the
beginning of the next task in order to allow the network to minimize the changing objective.

Table 7: Fixed HyperParameters for Supervised Learning Experiments. Note that the batch size has
been tuned but the optimal batch size is the same for all agents and benchmarks

HP Value

Momentum 0.9

Scheduler Cosine Annealing

Batch Size 256

Optimizer SGD

Table 8: Tuned HyperParameters for Supervised Learning Experiments

Dataset Agent Network LR Weight Decay

CLEAR ST RN18 0.1 3× 10−4

CLEAR MT RN18 0.1 1× 10−4

C10 mixed MT RN18 0.075 7× 10−4

C10 mixed ST RN18 0.055 8× 10−4

PC-16 MT RN18 0.075 7× 10−4

PC-16 ST RN18 0.055 8× 10−4

PC-32 MT RN18 0.074 1× 10−3

PC-32 ST RN18 0.06 1× 10−3

MD5 MT RN18 0.08 6× 10−4

MD5 ST RN18 0.089 9× 10−4
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D.2.5 ML10

We use the same set of hyperparameters for both agents where applicable to ensure a fair comparison.
Key hyperparameters include a learning rate, a discount factor, and a clip ratio, enthropy coefficient,
and lambda for GAE for training the PPO. Both agents are trained using the Adam optimizer. For
the multi-task agent, gradients are calculated for each task and aggregated before the update step to
ensure balanced learning across tasks. We train two type of agents, single-task and multi-task. The
single task agent only receives observation from the current task, multi-task agent receives data from
the current task as well as previous ones. We train these two type of agents for different task duration.
For the RL experiments, we picked 50 and 500 episodes. All the results shown in tables Each episode
is 500 time steps.

We use a batch size of 256 for updating the policy in ST agent and 512 for MT agent. In the multi-task
setting, the batch is composed of an equal number of timesteps from each environment to prevent
task imbalance.

Table 9: Optimal Configurations for ML10 for single-task and multi task agents

Parameter ST MT

Batch Size 256 512

Entropy Coefficient 0.02 0.02

Learning Rate (Value) 1× 10−3 1× 10−3

Learning Rate (Policy) 1× 10−4 1× 10−5

Lambda for GAE 0.95 0.8

Table 10: Software, hardware, and libraries used in the experiments

Python MuJoCo Meta-World Gymnasium GPU RAM

Version 3.8 2.3.2 2.0.0 ≥ 1.0.0 NVIDIA RTX 2080 Ti 128 GB

D.3 ADDITIONAL EMPIRICAL RESULTS

The table presents the task average reward for single-task and multi-task agents across various
environments in the ML10 benchmark. Single-task agents generally perform better in most tasks, as
seen in environments like SawyerReachEnvV2 and SawyerDrawerCloseEnvV2. However, there are
cases, such as SawyerPushEnvV2, where the multi-task agent outperforms the single-task agent.

Table 11: Task average reward over 500 episodes for single-task and multi-task agents in ML10.

Task rewardST (↑) rewardMT (↑)
SawyerReachEnvV2 1.9130±1.8771 1.8040 ±1.6159

SawyerPushEnvV2 0.0349±0.0456 0.0760±0.3693

SawyerPickPlaceEnvV2 0.0079±0.0055 0.0112±0.0140

SawyerDoorEnvV2 0.5736±0.2662 0.5052±0.2829

SawyerDrawerCloseEnvV2 2.8774±3.8648 2.2409±3.4909

SawyerButtonPressTopdownEnvV2 0.4940±0.4084 0.3761±0.2232

SawyerPegInsertionSideEnvV2 0.0105±0.0066 0.0124±0.0088

SawyerWindowOpenEnvV2 0.4924±0.4618 0.4294±0.3024

SawyerBasketballEnvV2 0.0114±0.0082 0.0128±0.0080

Figure 10 shows four heatmaps illustrating forward and backward transfer for single-task (left) and
multi-task (right) agents across different environments. Each cell represents the amount of transfer
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between pairs of tasks, with the x-axis indicating the source task and the y-axis indicating the target
task. Forward Transfer measures how learning a previous task improves (or degrades) performance
in a future task. Higher values indicate a positive impact, where experience from one task helps
improve performance in another. The ST agent (a) shows strong forward transfer in a few pairs
(e.g., SawyerPickPlaceEnvV2 to SawyerDrawerCloseEnv2), while the MT agent (b) exhibits more
consistent transfer patterns across several tasks. Backward Transfer measures the impact of learning
a new task on previously learned ones. The ST agent suffers from low backward transfer while MT
shows less severe negative transfer, suggesting better robustness when incorporating new tasks.

The forward transfer matrix is represented as an upper triangular matrix, this structure means that
the matrix entries below the diagonal are zeros (or not applicable), while entries above the diagonal
capture the influence of each task on tasks that are learned afterward. The backward transfer is
represented as a lower triangular matrix, meaning that the entries above the diagonal are zeros, while
entries below the diagonal capture the influence of learning a new task on earlier ones.

(a) Forward Transfer for ST agent. (b) Forward Transfer for MT agent.

(c) Backward Transfer for ST agent. (d) Backward Transfer for MT agent.

Figure 10: Forward and Backward Transfer matrices in ML10.
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