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ABSTRACT

The ability of machine learning (ML) algorithms to generalize to unseen data has
been studied through the lens of information theory, by bounding the general-
ization error with the input-output mutual information (MI), i.e. the MI between
the training data and the learned hypothesis. These bounds have limited empiri-
cal use for modern ML applications (e.g., deep learning) since the evaluation of
MI is difficult in high-dimensional settings. Motivated by recent reports of sig-
nificant low-loss compressibility of neural networks, we study the generalization
capacity of algorithms that slice the parameter space, i.e. train on a random lower-
dimensional subspace. We derive information-theoretic bounds on generalization
error in this regime and discuss an intriguing connection to the k-Sliced Mutual
Information, an alternative measure of statistical dependence that scales well with
dimension. We also propose a rate-distortion framework that allows generaliza-
tion bounds to be obtained if the weights are simply close to the random subspace,
and we propose a training procedure that exploits this flexibility. The computa-
tional and statistical benefits of our approach allow us to empirically estimate the
input-output information of these neural networks and compute their information-
theoretic generalization bounds, a task which was previously out of reach.

1 INTRODUCTION

Generalization is a fundamental aspect of machine learning, where models optimized to perform
well on training data are expected to perform similarly well on test data drawn from the same
underlying data distribution. Neural networks (NNs), in particular, are able to both achieve high
performance on training data and generalize well to test data, allowing them to achieve excellent test
performance on complex tasks. Despite this empirical success, however, the architectural factors
influencing how well a neural network generalizes are not fully understood theoretically, motivating
a substantial body of work using a variety of tools to bound their generalization error (Jiang et al.,
2020b), e.g., PAC-Bayes (Dziugaite & Roy, 2017) and information theory (Xu & Raginsky, 2017).

We formally describe the generalization problem as follows. Let Z be the input data space (e.g.
the set of feature-label pairs z = (x, y)), µ a probability distribution on Z, W ⊆ RD the hy-
pothesis space (e.g. weights of a NN), and ℓ : W × Z → R+ a loss function (e.g. the classifi-
cation error). The training procedure seeks to find a w ∈ W with low population risk given by
R(w) ≜ EZ∼µ[ℓ(w,Z)]. In practice, computing R(w) is difficult since µ is generally unknown:
one only observes a dataset comprising a finite number of samples from µ. Instead, given a training
dataset Sn ≜ {zi ∈ Z, i = 1, . . . , n}, (zi)ni=1 independently and identically distributed from µ,
we can measure the empirical risk R̂n(w) ≜ 1

n

∑n
i=1 ℓ(w, zi). A learning algorithm can then be

described as a function A : Zn → W which returns the optimal hypothesis W learned from Sn.
In general, W is random, and we denote its probability distribution by PW |Sn

. The generalization
error of A is then gen(µ,A) ≜ E[R(W )− R̂n(W )] where the expectation E is taken with respect
to (w.r.t.) the joint distribution of (W,Sn), i.e., PW |Sn

⊗ µ⊗n. The higher gen(µ,A), the more A
overfits when trained on Sn ∼ µ⊗n.

Information-theoretic bounds. In recent years, there has been a flurry of interest in using theoret-
ical approaches to bound gen(µ,A) using mutual information (MI). The MI between two random
variables X and Y is defined as I(X;Y ) =

∫∫
p(x, y) log

( p(x,y)
p(x)p(y)

)
dxdy, where p(x, y) denotes
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the joint distribution of (X,Y ) at (x, y), and p(x), p(y) are the marginals. The most common
information-theoretic bound on generalization error was introduced by Xu & Raginsky (2017) and
depends on I(W ;Sn), where W is the optimal hypothesis learned from Sn. We recall the formal
statement below.
Theorem 1.1 (Xu & Raginsky, 2017). Assume that ℓ(w,Z) is σ-sub-Gaussian1 under Z ∼ µ for
all w ∈ W. Then, |gen(µ,A)| ≤

√
2σ2 I(W ;Sn)/n, where W = A(Sn).

Examples of σ-sub-Gaussian losses include ℓ(w,Z) ∼ N (0, τ2) (in that case, σ = τ ) and ℓ(w,Z) ≤
C (by Hoeffding’s lemma, σ = C/2). Subsequently, Bu et al. (2019) used the averaging structure of
the empirical loss to derive a bound that depends on I(W ;Zi), i ∈ {1, . . . , n}. By evaluating MI on
individual data points Zi, rather than the entire training dataset Sn, one can obtain a tighter bound
than Xu & Raginsky (2017) in certain problems (Bu et al., 2019, §IV).

Theorem 1.2 (Bu et al., 2019). Assume that ℓ(W̃ , Z̃) is σ-sub-Gaussian under (W̃ , Z̃) ∼ PW ⊗ µ.
Then, |gen(µ,A)| ≤ (1/n)

∑n
i=1

√
2σ2 I(W ;Zi), where W = A(Sn).

Most information-theoretic bounds, however, suffer from the fact that the dimension of W can be
large when using modern ML models, e.g. NNs. Indeed, the sample complexity of MI estimation
scales poorly with dimension (Paninski, 2003). Collecting more samples of (W,Zi) can be expen-
sive, especially with NNs, as one realization of W ∼ PW |Sn

requires one complete training run.
Moreover, McAllester & Stratos (2020) recently proved that estimating MI from finite data have
important statistical limitations when the underlying MI is large, e.g. hundreds of bits.

Sliced neural networks. While modern neural networks use large numbers of parameters, common
architectures can be highly compressible by random slicing: Li et al. (2018) found that restricting
W ∈ RD during training to lie in a d-dimensional subspace spanned by a random matrix (with d≪
D) not only provides computational advantages, but does not meaningfully damage the performance
of the neural network, for appropriate choice of d (often two orders of magnitude smaller than
D). They interpreted this fact as indicating compressibility of the neural network architecture up to
some intrinsic dimension d, below which performance degrades. This framework has recently been
applied by Lotfi et al. (2022) to significantly improve PAC-Bayes generalization bounds, to the point
where they closely match empirically observed generalization error.

Sliced mutual information. It is a natural question whether we can leverage the compression
created by slicing to obtain tighter and computationally-friendly information-theoretic generaliza-
tion bounds. Intriguingly, a parallel line of work has considered slicing mutual information itself,
yielding significant sample complexity and computational advantages in high-dimensional regimes.
Goldfeld & Greenewald (2021) and Goldfeld et al. (2022) slice the arguments of MI via random
k-dimensional projections, thus defining the k-Sliced Mutual Information (SMI) between X ∈ Rdx

and Y ∈ Rdy as

SIk(X;Y ) =

∫∫
IA,B(A⊤X; B⊤Y ) d(σk,dx

⊗σk,dy
)(A,B) ,

where IA,B(A⊤X; B⊤Y ) is the disintegrated MI between A⊤X and B⊤Y given (A,B) (Negrea
et al., 2019, Definition 1.1) and σk,d is the Haar measure on St(k, d), the Stiefel manifold of d× k
matrices with orthonormal columns. SIk has been shown to retain many important properties of
MI (Goldfeld et al., 2022), and—more importantly—the statistical convergence rate for estimating
SIk(X;Y ) depends on k but not the ambient dimensions dx, dy . This provides significant advantages
over MI, whose computation generally requires an exponential number of samples in max(dx, dy)
(Paninski, 2003). Similar convergence rates can be achieved while slicing in only one dimension,
e.g. X , if samples from the conditional distribution of X|Y = y are available (Goldfeld & Gree-
newald, 2021), yielding

SI
(1)
k (X;Y ) =

∫
St(k,dx)

IA(A⊤X;Y ) dσk,dx(A) . (1)

Recently, Wongso et al. (2023) empirically connected generalization to SI
(1)
k (T ;Y ) between the true

class labels Y and the hidden representations T of NNs.

1A random variable X is σ-sub-Gaussian (σ > 0) under µ if for t ∈ R, Eµ[e
t(X−Eµ[X])] ≤ eσ

2t2/2.
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Our contributions. Motivated by the above, we introduce information-theoretic bounds study-
ing the generalization capacity of learning algorithms trained on random subspaces. Our bounds
demonstrate that neural networks that are “compressible” via random slicing have significantly bet-
ter information-theoretic generalization guarantees. We also find an intriguing connection to SMI,
which we explore in learning problems where the information-theoretic generalization bounds are
analytically computable. We then leverage the computational and statistical benefits of our sliced ap-
proach to empirically compute nonvacuous information-theoretic generalization bounds for various
neural networks.

We further increase the practicality of our approach by using the rate-distortion based framework
introduced by Sefidgaran et al. (2022) to extend our bounds to the setting where the weight vector
W only approximately lies on random subspace. This extension applies when the loss is Lipschitz
w.r.t. the weights, which we promote using techniques from Bethune et al. (2023). As Sefidgaran
et al. (2022) did for quantization, this allows us to apply generalization bounds based on projection
and quantization to networks whose weights are unrestricted. We tighten the bound by using reg-
ularization in training to encourage the weights to be close to the random subspace. We find this
regularization not only improves the generalization bound, but also test performance.

2 RELATED WORK

Compression of neural networks. Our work focuses on random projection and quantization (c.f.
Hubara et al. (2016)) as tools for compressing neural networks. Many other compression approaches
exist, however Cheng et al. (2017); Hutson (2020), e.g. pruning Dong et al. (2017); Blalock et al.
(2020), low rank compression Wen et al. (2017), and optimizing architectures via neural architecture
search and metalearning Pham et al. (2018); Cai et al. (2020); Finn et al. (2017). Further exploring
alternative compression approaches from an information-theoretic generalization bound perspective
is an interesting avenue for future work.

Compressibility and generalization. A body of work has emerged using various notions of com-
pressibility of neural networks to obtain improved generalization bounds, for instance Arora et al.
(2018); Hsu et al. (2021); Kuhn et al. (2021); Sefidgaran et al. (2022), and fractal dimension based
on the intrinsic dimension of the optimization dynamics, e.g. Simsekli et al. (2020).

Conditional MI generalization bounds. Following Xu & Raginsky (2017) and Bu et al. (2019),
which treat the training data as random, Steinke & Zakynthinou (2020) instead obtain a bound where
the dataset is fixed (i.e. conditioned on a dataset). This framework assumes that two independent
datasets are available, and random Bernoulli indicator variables create a random training set by
randomly selecting which of the two datasets to use for the ith training point. This approach has the
advantage of creating a generalization bound involving the mutual information between the learned
weights and a set of discrete random variables, in which case the mutual information is always finite.
Connections to other generalization bound strategies and to data privacy are established by Steinke
& Zakynthinou (2020). Followup works tightened these bounds by considering the conditional
mutual information between the indicator variables and either the predictions (Harutyunyan et al.,
2021; Haghifam et al., 2022) or loss (Wang & Mao, 2023) of the learned model rather than the
weights. A practical limitation of this general approach is that it requires a second dataset (or
supersample) to compute the conditional mutual information, whereas this extra data could be used
to get a better estimate of the test error (hence, the generalization error) directly. Additionally, some
of these bounds depend on a mutual information term between low-dimensional variables (e.g.,
functional CMI-based bounds (Harutyunyan et al., 2021)), which can be evaluated efficiently but
does not inform practitioners for selecting model architectures. Exploring slicing in the context of
the conditional MI framework is beyond the scope of our paper, but is a promising direction for
future work.

Other generalization bounds for neural networks. Beyond the information-theoretic frameworks
above, many methods bound the generalization of neural networks. Classic approaches in learning
theory bound generalization error with complexity of the hypothesis class (Bartlett & Mendelson,
2002; Vapnik & Chervonenkis, 2015), but these fail to explain the generalization ability of deep
neural networks with corrupted labels (Zhang et al., 2017). More successful approaches include the
PAC-Bayes framework (including Lotfi et al.’s work above, whose use of slicing inspired our work),
margin-based approaches (Koltchinskii et al., 2002; Kuznetsov et al., 2015; Chuang et al., 2021),
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and even empirically-trained prediction not based on theoretical guarantees (Jiang et al., 2020a;
Lassance et al., 2020; Natekar & Sharma, 2020; Schiff et al., 2021). Each approach has its own
benefits and drawbacks; for instance, many of the tightest predictions are highly data-driven and as
a result may provide limited insight into the underlying sources of generalization and how to design
networks to promote it.

Our work. In the context of the above literature, the purpose of this work is to use slicing to
dramatically improve the tightness of input-output information-theoretic generalization bounds for
neural networks. We achieve nonvacuous bounds for NNs of practical size, which to our knowledge
have not been seen using Theorems 1.1 and 1.2 above. That said, our bounds (unsurprisingly) are
still looser than generalization bounds available through some other techniques mentioned above,
particularly those employing additional data (e.g. data-driven PAC-Bayes priors (Lotfi et al., 2022) or
the super-sample of conditional MI bounds (Wang & Mao, 2023)) or involving some kind of trained
or ad hoc prediction function. Regardless, continuing to improve information-theoretic bounds is
a fruitful endeavor that serves to better understand the connection between machine learning and
information theory, and to gain insights that can drive algorithmic and architectural innovation. For
instance, our rate-distortion bounds informed our creation of a regularization technique for NNs,
which not only yields generalization bounds but also improves generalization performance.

3 SLICED INFORMATION-THEORETIC GENERALIZATION BOUNDS

We establish information-theoretic generalization bounds for any algorithm A(d) that samples a
random projection matrix Θ ∼ PΘ of size D × d with d < D and Θ⊤Θ = Id and returns a
trained model with parameters that lie on WΘ,d ≜ {w ∈ RD : ∃w′ ∈ Rd s.t. w = Θw′}. In
other words, A(d) is a slicing algorithm that restricts the weights of a neural network to a random
d-dimensional subspace Θ. Generally speaking, the training procedure will boil down to optimizing
the subspace coefficients w′ ∈ Rd given Θ, and PΘ is e.g. the uniform distribution on the Stiefel
manifold St(d,D).

We analyze the generalization error of models trained by A(d). In this setting, the population risk
and empirical risk are respectively defined as

RΘ(w′) ≜ EZ∼µ[ℓ
Θ(w′, Z)] and R̂Θ

n (w
′) ≜

1

n

n∑
i=1

ℓΘ(w′, zi) , ∀w = Θw′ ∈ WΘ,d, (2)

and ℓΘ(w′, z) ≜ ℓ(Θw′, z). The generalization error of A(d) is gen(µ,A(d)) = E[RΘ(W ′) −
R̂Θ

n (W
′)] with the expectation taken over PW ′|Θ,Sn

⊗ PΘ ⊗ µ⊗n. Here, we take the expectation
with respect to Θ to obtain a number that does not depend on Θ.2

3.1 BOUNDING GENERALIZATION ERROR VIA IΘ(W ′;Sn) OR IΘ(W ′;Zi)

The disintegrated mutual information between X and Y given U is defined as

IU (X;Y ) =

∫∫
p(x, y|u) log

(
p(x, y|u)

p(x|u)p(y|u)

)
dxdy , (3)

where p(x, y|u) denotes the conditional distribution of (X,Y ) at (x, y) given U = u, and p(x|u)
(resp., p(y|u)) is the conditional distribution of X at x (resp., Y at y) given U = u.
Theorem 3.1. Assume ℓΘ(w′, Z) is σ-sub-Gaussian under Z ∼ µ for all w′ ∈ Rd and Θ ∈ RD×d,
Θ⊤Θ = Id. Then,

|gen(µ,A(d))| ≤
√

2σ2

n
EPΘ

[√
IΘ(W ′;Sn)

]
. (4)

While state-of-the-art MI-based bounds depend on I(W ;Sn) (e.g., Xu & Raginsky, 2017), we lever-
age the constraint set WΘ,d to construct a bound in terms of IΘ(W ′;Sn). Since W ′ is lower-
dimensional, our bound can be estimated more easily in practice. Besides, due to the compression

2In practice, for bounding the generalization of a specific model, it is often sufficient to simply fix Θ to be
whatever was sampled and used by A(d) to obtain the model being used in practice.
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of the hypothesis space, we will see our bound (4) is tighter in practice than that of Xu & Raginsky
(2017), which ignores the intrinsic dimension d < D of the hypothesis space.3 This approach, also
referred to as disintegration, has been used to tighten MI-based generalization bounds (Hellström
et al., 2023, §4.3): Bu et al. (2019) used disintegration to derive bounds in terms of individual-
sample MI, I(W ;Zi), which are tighter than the full-sample counterpart of Xu & Raginsky (2017).
To the best of our knowledge, however, we provide the first bounds where disintegration is applied
to account for the intrinsic dimension of the hypothesis space.

Discrete hypothesis space and dependence on d. Using analogous arguments as Xu & Raginsky
(2017, §4.1), we can upper-bound EPΘ

[√
IΘ(W ′;Sn)

]
when W ′ is a discrete random variable. In-

deed, for a fixed Θ, ifW ′ given Θ takesK possible values, then IΘ(W ′;Sn) ≤ HΘ(W ′) ≤ log(K),
where HΘ(W ′) is the entropy of W ′ conditioned on Θ. In that case, and under the assump-
tions of Theorem 3.1, |gen(µ,A(d))| ≤

√
2σ2 log(K)/n. Consider the setting where the dis-

crete hypothesis space is a quantization of each element in W ′ into B bins, then, K = Bd and
|gen(µ,A(d))| ≤

√
2σ2d log(B)/n. This bound rapidly decreases as d shrinks, showing the benefit

of keeping d small as we propose. On the other hand, decreasing d may increase the training error,
implying a tradeoff between generalization error and training error when selecting d.

Next, we adapt the strategy of Bu et al. (2019) and construct a bound in terms of individual sample-
based MI IΘ(W ′;Zi), instead of IΘ(W ′;Sn).

Theorem 3.2. Assume that ℓΘ(W̃ ′, Z̃) is σΘ-sub-Gaussian under (W̃ ′, Z̃) ∼ PW ′|Θ ⊗ µ for all
Θ ∈ RD×d, Θ⊤Θ = Id, where σΘ is a positive constant that may depend on Θ. Then,

|gen(µ,A(d))| ≤ 1

n

n∑
i=1

EPΘ

[√
2σ2

ΘI
Θ(W ′;Zi)

]
. (5)

Discussion. The bound in Theorem 3.1 may be vacuous in certain settings. For instance, if
W ′ = g(Sn) where g is a smooth, non-constant and deterministic function (that may depend on
Θ), then IΘ(W ′;Sn) = +∞, as in the Gaussian mean estimation problem studied in Section 3.2.
The bound in Theorem 3.2 overcomes this issue, as it depends on individual sample-based MI. In
addition, Theorem 3.2 is a particular case of a more general result, where the sub-Gaussian condi-
tion is replaced by milder assumptions on the cumulant-generating function (CGF) of ℓΘ(W̃ ′, Z̃)

(given a fixed Θ) defined for t ∈ R as KℓΘ(W̃ ′,Z̃)(t) = logE[et(ℓΘ(W̃ ′,Z̃)−E[ℓΘ(W̃ ′,Z̃)])], with expec-
tations over PW ′|Θ ⊗ µ. Due to space limit, we give the formal statement of our general result in
Appendix A.1 (see Theorem A.2). We emphasize that Theorem A.2 has a broader applicability than
Theorems 3.1 and 3.2, which is useful to bound generalization errors based on non-sub-Gaussian
losses, as in the linear regression problem considered next.

3.2 APPLICATIONS AND CONNECTION TO THE SLICED MUTUAL INFORMATION

To further illustrate the advantages of our bounds as compared to those of Bu et al. (2019), we apply
them to two specific settings. These examples also allow us to draw a connection with k-SMI.

Gaussian mean estimation. Denote by ∥ · ∥ the Euclidean norm and 0D the D-dimensional zero
vector. We consider the problem of estimating the mean of Z ∼ N (0D, ID) via empirical risk
minimization. The training dataset Sn = (Z1, . . . , Zn) consists of n i.i.d. samples from N (0D, ID).
Our objective is minw∈WΘ,d

R̂n(w) ≜ 1
n

∑n
i=1 ∥w−Zi∥2. We prove in Appendix A.3 that (i)W ′ =

Θ⊤Z̄, Z̄ ≜ (1/n)
∑n

i=1 Zi, (ii) gen(µ,A(d)) = 2σ2d/n, and (iii) ℓΘ(W̃ ′, Z̃) = ∥ΘW̃ ′ − Z̃∥2 is
sub-Gaussian under (W̃ ′, Z̃) ∼ PW ′|Θ ⊗ µ for all Θ. By applying Theorem 3.2,

gen(µ,A(d)) ≤ 2

n

√
d

(
1 +

1

n

)2

+ (D − d)

n∑
i=1

EPΘ

[√
IΘ(Θ⊤Z̄;Zi)

]
. (6)

3By the data processing inequality, our bound can be shown theoretically to be tighter for mean estimation
and linear regression, discussed below.
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Figure 1: Evaluation of the mean es-
timation generalization bound of (6)
forD = 15 in log-log scale, showing
tighter generalization error bounds as
d decreases. Note the bound in Bu
et al. (2019) only applies for d = D.

The connection between gen(µ,A(d)) and SMI results from
using Jensen’s inequality on (6) and the fact that W ′ =

Θ⊤W , where W ≜ argminw∈RD R̂n(w) = Z̄ is the so-
lution of the unconstrained problem. Indeed, this shows

EPΘ
[
√
IΘ(Θ⊤Z̄;Zi)] <

√
SI

(1)
d (W ;Zi), i ∈ {1, . . . , n}.

Note that by the data processing inequality, IΘ(W ′;Zi) ≤
IΘ(W ;Zi), thus we obtain tighter bounds as compared to
strategies which ignore the existence of an intrinsic dimen-
sion. In the limit case d = D, our bound (6) boils down to
the one in Bu et al. (2019), since SI

(1)
D (W ;Zi) = I(W ;Zi).

When d < D, the bound by Bu et al. (2019) is not appli-
cable: the CGF of ℓ(ΘW̃ ′, Z̃) for (ΘW̃ ′, Z̃) ∼ PΘW ′ ⊗ µ
cannot be derived analytically since PΘW ′ is not Gaussian
(as opposed to the case d = D). In contrast, our bound de-
pends on the CGF of ℓΘ(W̃ ′, Z̃) for (W̃ ′, Z̃) ∼ PW ′|Θ ⊗ µ,
which is available in closed form thanks to conditioning on
Θ. Finally, analogously to the unconstrained problem (Bu
et al., 2019, §IV.A), our bound (6) is suboptimal since it is in
O(1/

√
n) as n → +∞, while the true generalization error

is 2d/n. We provide the derivations in Appendix A.3 and
illustrate our bound vs. (Bu et al., 2019) in Figure 1.

Linear regression. Consider n i.i.d. samples (x1, . . . , xn), xi ∈ RD and a response variable y =

(y1, . . . , yn), yi ∈ R. The goal of A(d) is minw∈WΘ,d
R̂n(w) ≜ (1/n)∥y − Xw∥2, where X ∈

Rn×D denotes the design matrix. We show that if n ≥ D, then W ′ = (ΘX⊤XΘ⊤)−1ΘX⊤y.
Moreover, assume that X is deterministic and yi = x⊤i W

⋆ + εi where W ⋆ ∈ RD and (εi)
n
i=1

i.i.d. from N (0, σ2). Then, by applying Theorem A.2, we bound gen(µ,A(d)) by a function of
I(ϕ(Θ, X)W ; yi), where ϕ(Θ, X) ≜ (ΘX⊤XΘ⊤)−1Θ(X⊤X) and W ≜ argminw∈RD R̂n(w),
which can be interpreted as a generalized SMI with a non-isotropic slicing distribution that depends
on the fixed X . The corresponding derivations are detailed in Appendix A.4.

3.3 RATE-DISTORTION GENERALIZATION BOUNDS

The above bounds require the learned weights W to lie in WΘ,d. When d is very small, this con-
straint can be restrictive and significantly deteriorate the performance of the model, as we illustrate
in Section 4. Besides, since our MI-based bounds generally increase with increasing d, it is impor-
tant to keep d small. Motivated by recent work applying rate-distortion theory to input-output MI
generalization bounds (Sefidgaran et al., 2022), we establish the following result for approximately
compressible weights and Lipschitz loss.

Theorem 3.3. Consider A : Zn → W s.t. A may take Θ ∼ PΘ into account to output W . Assume
there exists C > 0 s.t. ℓ(W̃ , Z̃) ≤ C almost surely. Assume for any z ∈ Z, ℓ(·, z) : W → R+ is
L-Lipschitz, i.e. ∀(w1, w2) ∈ W ×W, |ℓ(w1, z)− ℓ(w2, z)| ≤ L∥w1 − w2∥. Then,

|gen(µ,A)| ≤ 2LEPW |Θ⊗PΘ

[
∥W −ΘΘ⊤W∥

]
+
C

n

n∑
i=1

EPΘ

[√
IΘ(Θ⊤W ;Zi)

2

]
. (7)

The proof of Theorem 3.3 consists in considering two models A : Zn → RD and A′ : Zn → WΘ,d

such that A(Sn) = W may depend on Θ ∼ PΘ, and A′(Sn) = Θ(Θ⊤W ); then using the triangle
inequality to obtain |gen(µ,A)| ≤ |gen(µ,A) − gen(µ,A′)| + |gen(µ,A′)|; and finally bounding
the first term (the distortion term) using the Lipschitz condition and the second term (the rate term)
using our Theorem 3.2. Using similar arguments and applying Theorem 3.1, we derive another
rate-distortion bound based on quantization, which does not require estimation of MI.

Theorem 3.4. Assume the conditions of Theorem 3.3 hold. Furthermore, suppose that ∥Θ⊤W∥ ≤
M for (W,Θ) ∼ PW |Θ ⊗ PΘ. Consider a function Q quantizing Θ⊤W such that ∥Θ⊤W −
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Figure 2: Illustration of our bound (5) and Bu et al. (2019) on binary classification of Gaussian data
of dimension 20 with logistic regression trained on WΘ,d

Q(Θ⊤W )∥ ≤ δ. Then,

|gen(µ,A)| ≤ 2LEPW |Θ⊗PΘ

[
∥W −ΘQ(Θ⊤W )∥

]
+ CEPΘ

[√
IΘ(Q(Θ⊤W );Sn)

2n

]
(8)

≤ 2L
(
EPW |Θ⊗PΘ

[
∥W −ΘΘ⊤W∥

]
+ δ

)
+ C

√
d log(2M

√
d/δ)

2n
. (9)

Note that ∥Θ⊤W∥ ≤M is a mild assumption, since in general, this is a result of enforcing Lipschitz
continuity (e.g. the Lipschitz neural networks studied by Bethune et al. (2023) require weights with
bounded norms). By setting δ = 1/

√
n, our bound (9) decreases as n→ +∞, which reflects the fact

that training on more samples improves generalization. Besides, as d goes toD, (9) converges to the
bound of Xu & Raginsky (2017) and hence becomes vacuous for over-parameterized models where
D > n (e.g. NNs). Theorem 3.4 thus proves that accounting for compressibility of the hypothesis
space can help improve existing generalization bounds that ignore this information.

Our theoretical findings provide concrete guidelines on how to tighten the generalization error
bounds in practice. First, the value of the Lipschitz constant L can be directly controlled through the
design of the neural network, as we explain in Section 4. The term EPW |Θ⊗PΘ∥W − ΘΘ⊤W∥ is
controlled by adding it as a regularizer to the training objective, specifically, we add the regulariza-
tion term λEPW |Θ⊗PΘ

∥W − ΘΘ⊤W∥. This regularizer has the effect of encouraging solutions to
be close to the subspace WΘ,d, i.e. having low distortion from the compressed weights. The choice
of d is also important and can be tuned to balance the MI term with the distortion required (how
small λ needs to be) to achieve low training error.4

4 EMPIRICAL ANALYSIS

To illustrate our findings and their impact in practice, we train several neural networks for classifi-
cation, and evaluate their generalization error and our bounds. This requires compressing NNs (via
random slicing and quantization) and estimating MI. We explain our methodology below, and refer
to Appendix B.1 for more details and additional results. All our experiments can be reproduced with
the source code provided in the supplementary material.

Random projections. To sample Θ ∈ RD×d such that Θ⊤Θ = Id, we construct an orthonormal
basis using the singular value decomposition of a random matrix Γ ∈ RD×d whose entries are i.i.d.
from N (0, 1). Since the produced matrix Θ is dense, the projection Θ⊤w induces a runtime of
O(dD). To improve scalability, we use the sparse projector of Li et al. (2018) and the Kronecker
product projector of Lotfi et al. (2022), which compute Θ⊤w in O(d

√
D) and O(

√
dD) operations

respectively, and require storing only O(d
√
D) and O(

√
dD) matrix elements respectively.

Quantization. We use the quantizer of Lotfi et al. (2022), which simultaneously learns the quantized
weights W ′ and quantized levels (c1, · · · , cL). This allows us to highly compress NNs, and bypass

4Increasing λ increases the weight on the regularization, effectively reducing the importance of empirical
risk. Hence, empirical risk may rise, which in most cases will necessarily increase training error.

7



Under review as a conference paper at ICLR 2024

0 5000 10000
d

0.0

0.1

0.2

0.3

0.4

Ge
ne

ra
liz

at
io

n 
er

ro
r Gen. error

Bound

0 5000 10000
d

0.1

0.2

0.3

0.4

Cl
as

sif
ica

tio
n 

er
ro

r Training error
Test error

(a) MNIST

5000 10000 150001000
d

0.0

0.1

0.2

0.3

0.4

0.5

Ge
ne

ra
liz

at
io

n 
er

ro
r

Gen. error
Bound

5000 10000 150001000
d

0.60

0.65

0.70

0.75

Cl
as

sif
ica

tio
n 

er
ro

r Training error
Test error

(b) CIFAR-10

Figure 3: Illustration of our generalization bounds with NNs for image classification. The weights
are projected and quantized.

the estimation of MI: for Θ ∼ PΘ, IΘ(W ′;Sn) ≤ H(W ′|Θ) ≤ ⌈d×H(p)⌉+L×(16+⌈log2 d⌉)+2

where H(p) = −
∑L

k=1 pk log(pk) and pk is the empirical probability of ck.

Estimating MI. In our practical settings, the MI terms arising in the generalization bounds cannot be
computed exactly, so we resort to two popular estimators: the k-nearest neighbor estimator (kNN-
MI, Kraskov et al., 2004) and MINE (Belghazi et al., 2018). We obtain NaN values with kNN-MI
for d > 2 thus only report the bounds estimated with MINE.

4.1 ILLUSTRATION OF GENERALIZATION BOUNDS FOR MODELS TRAINED ON WΘ,d

Binary classification with logistic regression. We consider the same setting as Bu et al. (2019,
§VI): each data point Z = (X,Y ) consist of featuresX ∈ Rs and labels Y ∈ {0, 1}, Y is uniformly
distributed in {0, 1}, and X|Y ∼ N (µY , 4Is) with µ0 = (−1, . . . ,−1) and µ1 = (1, . . . , 1). We
use a linear classifier and evaluate the generalization error based on the loss function ℓ(w, z) =

1ŷ ̸=y , where ŷ is the prediction of input x defined as ŷ ≜ 1w̄T x+w0≥0, ∀w = (w̄, w0) ∈ Rs+1.
We train a logistic regression on WΘ,d and estimate the generalization error. Since ℓ is bounded by
C = 1, we approximate the generalization error bound given by Theorem 3.2 for d < D, and (Bu
et al., 2019, Proposition 1) for d = D. Figure 2 reports the results for s = 20 and different values of
n and d: we observe that our bound holds and accurately reflects the behavior of the generalization
error against (n, d). Besides, our methodology provides tighter bounds than (Bu et al., 2019), and
the difference increases with decreasing d. On the other hand, the lower d, the lower generalization
error and its bound, but the higher the test risk (Figure 2). This is consistent with prior empirical
studies (Li et al., 2018) and explained by the fact that lower values of d induce a more restrictive
hypothesis space, thus make the model less expressive.

Multiclass classification with NNs. Next, we evaluate our generalization error bounds for neural
networks trained on image classification. Denote by f(w, x) ∈ RK the output of the NN parameter-
ized by w given an input image x, with K > 1 the number of classes. The loss is ℓ(w, z) = 1ŷ ̸=y ,
with ŷ = argmaxi∈{1,...,K}[f(w, x)]i. We train fully-connected NNs to classify MNIST and
CIFAR-10 datasets, with D = 199 210 and D = 656 810 respectively: implementation details
are given in Appendix B.2. Given the high-dimensionality of this problem, obtaining an accurate es-
timation of IΘ(Θ;Sn) can be costly. Therefore, we discretize W ′ with the quantizer from Lotfi et al.
(2022) and evaluate Theorem 3.1 with IΘ(W ′;Sn) replaced by ⌈d×H(p)⌉+L×(16+⌈log2 d⌉)+2,
as discussed at the beginning of Section 4. Results are shown in Figure 3 and demonstrate that our
methodology allow us to compute generalization bounds for NNs, while also maintaining perfor-
mance for reasonable values of d, which is consistent with Li et al. (2018). Additional empirical
results on MNIST and Iris are given in Appendix B.2.

4.2 ILLUSTRATION OF RATE-DISTORTION BOUNDS

We solve a binary classification task with the neural network f(w, x) = (f2 ◦ φ ◦ f1)(w, x), where
x is the input data, fi(w, x) = wix + bi for i ∈ {1, 2}, and φ(t) = 1t>0 is the ReLU activation
function. The loss is the binary cross-entropy, i.e., for w ∈ RD, z = (X, y) ∈ Rs × {0, 1},
ℓ(w, z) = −y log(σ(f(w,X))) + (1 − y) log(1 − σ(f(w,X))), where σ(t) ≜ 1/(1 + e−t) is the
sigmoid function. The conditions of Theorems 3.3 and 3.4 are satisfied in this setting: ℓ is bounded
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Figure 4: Influence of (λ, d) on generalization errors and rate-distortion bounds (left), and training
and test errors (right) for a Lipschitz-constrained neural network on MNIST classification. Results
are averaged over 5 runs.

since f(w,X) admits a lower bound, and for any z ∈ Rs+1, ℓ(·, z) is Lipschitz-continuous. The
explicit formulas of the bound C and Lipschitz constant L of the loss are given in Appendix B.3.
Note that one can adjust the bound on ℓ (hence, the rate-distortion bound) by replacing f(w,X) in
the expression of ℓ(w, z) by f(w,X) + ε, where ε ∈ R is a hyperparameter.

Here, each sample z corresponds to a pair of image X ∈ Rs and label y ∈ {0, 1}, where y = 1
if X corresponds to a certain class (e.g., digit 1 for MNIST), y = 0 otherwise. For different d and
λ, we train on MNIST with only n = 10 samples, so that it is harder for the model to generalize
well. We approximate the generalization error and our rate-distortion bound given in Theorem 3.4
with δ = 1/n: see Figure 4. For any d < D, both the generalization error and rate-distortion
bound decrease with increasing λ, as expected: higher values of λ yield solutions W with smaller
∥W −ΘΘ⊤W∥, hence the model is more compressible (thus generalizes better) and the bound (9)
is lower. We analyze the impact of λ and d on the test risk: Figure 4 shows that when λ exceeds a
certain threshold (which depends on d), the test risk increases, thus illustrating the trade-off between
low generalization error and test risk for compressible models. We also observe that for some (λ, d),
the test risk is lower than the one returned by no regularization (λ = 0 or d = D) or the traditional
L2 regularization (λ∥W∥ is added to the objective), which can both be seen as particular cases of
our regularization technique. This suggests that for carefully chosen λ and d, our methodology
can be beneficial in tightening the information-theoretic generalization bounds, while improving the
model’s performance.

5 CONCLUSION

In this work, we combined recent empirical schemes for finding compressed models, including
NNs, via random slicing with generalization bounds based on input-output MI. Our results indicate
that architectures that are amenable to this compression scheme yield tighter information-theoretic
generalization bounds. We also explore a notion of approximate compressibility, i.e., rate-distortion,
where the learned parameters are close to a quantization of the compressed subspace but do not
lie on it exactly. This framework provides more flexibility in the trained model, allowing it to
maintain good training error for even smaller (approximate) projection dimension d, ensuring that
the resulting generalization bounds are as tight as possible, and allowing for clear analytical bounds
on the MI to be used in place of difficult-to-compute MI estimates. This rate-distortion framework
also motivated a weight regularization approach that encourages trained NNs to be as approximately
compressible as possible to ensure that our bound is small in practice, while also providing empirical
benefits in observed test performance itself. Future work includes a more detailed exploration of
strategies for using our bounds to help inform selection and design of NN architectures in practice,
and exploring bounds and regularizers based on other successful compression strategies for NNs, as
discussed in the introduction.
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A POSTPONED PROOFS FOR SECTION 3

A.1 PROOF OF THEOREM A.2

Consider three random variables X ∈ X, Y ∈ Y and U ∈ U. Denote by PX,Y,U their joint
distribution and by PX , PY , PU the marginals. Let X̃ (respectively, Ỹ ) be an independent copy
of X (resp., Y ) with joint distribution PX̃,Ỹ = PX̃ ⊗ PỸ . Given U , let fU : X × Y → R
be a mapping parameterized by U , and denote by KfU (X̃,Ỹ ) the cumulant generating function of
fU (X̃, Ỹ ), i.e. for t ∈ R,

KfU (X̃,Ỹ )(t) = logE
[
et(f

U (X̃,Ỹ )−E[fU (X̃,Ỹ )])
]

(10)

where the expectations are taken w.r.t. PX|U ⊗ PY |U .

Lemma A.1. Suppose that for any U ∼ PU , there exists b+ ∈ R∗
+ ∪ {+∞} and a convex function

φ+(·, U) : [0, b+) → R such that φ+(0, U) = φ′
+(0, U) = 0 and for t ∈ [0, b+), KfU (X̃,Ỹ )(t) ≤

ψ+(t, U). Then,

EPX,Y,U
[fU (X,Y )]− EPX̃,Ỹ ,U

[fU (X̃, Ỹ )] ≤ EPU

[
inf

t∈[0,b+)

IU (X;Y ) + ψ+(t, U)

t

]
. (11)

Suppose that for any U ∼ PU , there exists b− ∈ R∗
+ ∪ {+∞} and a convex function φ−(·, U) :

[0, b−) → R such that φ−(0, U) = φ′
−(0, U) = 0 and for t ∈ (b−, 0], KfU (X̃,Ỹ )(t) ≤ ψ−(−t, U).

Then,

EPX̃,Ỹ ,U
[fU (X̃, Ỹ )]− EPX,Y,U

[fU (X,Y )] ≤ EPU

[
inf

t∈[0,−b−)

IU (X;Y ) + ψ−(t, U)

t

]
. (12)

Proof. Let U ∼ PU . By Donsker-Varadhan variational representation,

IU (X;Y ) = KL(P(X,Y )|U∥PX|U ⊗ PY |U ) (13)

= sup
g∈GU

EP(X,Y )|U [g
U (X,Y )]− logEPX|U⊗PY |U [e

gU (X̃,Ỹ )] (14)

where GU ≜ {gU : X×Y → R s.t. EPX|U⊗PY |U [e
gU (X̃,Ỹ )] <∞}. Therefore, for any t ∈ [0, b+),

KL(P(X,Y )|U∥PX|U ⊗ PY |U ) ≥ tE[fU (X,Y )]− logE[etf
U (X̃,Ỹ )] (15)

≥ t
(
E[fU (X,Y )]− E[fU (X̃, Ỹ )]

)
− ψ+(t, U) (16)

where (16) follows from assuming that for t ∈ [0, b+),KfU (X̃,Ỹ )(t) ≤ ψ+(t, U). Hence,

E[fU (X,Y )]− E[fU (X̃, Ỹ )] ≤ inf
t∈[0,b+)

IU (X;Y ) + ψ+(t, U)

t
. (17)

We obtain the final result (11) by taking the expectation of (17) over PU .

We can prove analogously that (12) holds, assuming for t ∈ [0, b−),KfU (X̃,Ỹ )(t) ≤ ψ−(−t, U).

Theorem A.2. Assume that for Θ ∼ PΘ, there exists C− ∈ R∗
+ ∪ {+∞} s.t. for t ∈ (C−, 0],

KℓΘ(W̃ ′,Z̃)(t) ≤ ψ−(−t,Θ), where ψ−(·,Θ) is convex and ψ−(0,Θ) = ψ′
−(0,Θ) = 0. Then,

gen(µ,A(d)) ≤ 1

n

n∑
i=1

EPΘ

[
inf

t∈[0,−C−)

IΘ(W ′;Zi) + ψ−(t,Θ)

t

]
. (18)

Assume that for Θ ∼ PΘ, there exists C+ ∈ R∗
+ ∪ {+∞} s.t. for t ∈ [0, C+), KℓΘ(W̃ ′,Z̃)(t) ≤

ψ+(t,Θ), where ψ+(·,Θ) is convex and ψ+(0,Θ) = ψ′
+(0,Θ) = 0. Then,

gen(µ,A(d)) ≥ 1

n

n∑
i=1

EPΘ

[
inf

t∈[0,C+)

IΘ(W ′;Zi) + ψ+(t,Θ)

t

]
. (19)
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Proof of Theorem A.2. The generalization error of A(d) can be written as

gen(µ,A(d)) =
1

n

n∑
i=1

{
EPW ′|Θ⊗PΘ⊗µ[ℓ

Θ(W̃ ′, Z̃i)]− EPW ′|Θ,Zi
⊗PΘ⊗µ[ℓ

Θ(W ′, Zi)]
}
. (20)

Our final bounds (19) and (18) result from applying Lemma A.1 on each term of the sum in (20),
i.e. with X =W ′, Y = Zi and fU (X,Y ) = ℓΘ(W ′, Zi).

A.2 APPLICATIONS OF THEOREM A.2

We specify Theorem A.2 under different sub-Gaussian conditions on the loss. A random variable X
is said to be σ-sub-Gaussian (with σ > 0) if for any t ∈ R,

E[et(X−E[X])] ≤ eσ
2t2/2 . (21)

Proof of Theorem 3.1. Define hΘ(w′, s) = (1/n)
∑n

i=1 ℓ
Θ(w′, zi) for w′ ∈ Rd, s =

(z1, . . . , zn) ∈ Zn and Θ ∈ RD×d s.t. Θ⊤Θ = Id. The generalization error of A(d) can be
written as,

gen(µ,A(d)) = EPW ′|Θ⊗PΘ⊗µ⊗n

[
hΘ(W̃ ′, S̃n)

]
− EPW ′|Zi,Θ

⊗PΘ⊗µ⊗n

[
hΘ(W ′, Sn)

]
. (22)

Since we assume that ℓΘ(w′, Z) is σ-sub-Gaussian under Z ∼ µ for all w′ and Θ, and Z1, . . . , Zn

are i.i.d, then hΘ(w′, Sn) is σ/
√
n-sub-Gaussian under Sn ∼ µ⊗n for all w′ and Θ. Therefore,

hΘ(W̃ ′, S̃n) is σ/
√
n-sub-Gaussian under (W̃ ′, Sn) ∼ PW ′|Θ ⊗ µ⊗n for all Θ, and for t ∈ R,

KhΘ(W̃ ′,S̃n)
(t) ≤ σ2t2

2n
. (23)

We conclude by applying Lemma A.1 with X = W ′, Y = Sn, U = Θ and fU (X,Y ) =
hΘ(W ′, Sn), and the fact that,

inf
t>0

IΘ(W ′;Sn) + σ2t2/(2n)

t
=

√
2σ2

n
IΘ(W ′;Sn) . (24)

Proof of Theorem 3.2. Let Θ ∈ RD×d s.t. Θ⊤Θ = Id. Since ℓΘ(W̃ ′, Z̃) is σΘ-sub-Gaussian under
(W̃ ′, Z̃) ∼ PW ′ ⊗ µ, then for any t ∈ R, KℓΘ(W̃ ′,Z̃)(t) ≤ σ2

Θt
2/2. We conclude by applying

Theorem A.2 and the fact that for i ∈ {1, . . . , n},

inf
t>0

IΘ(W ′;Zi) + σ2
Θt

2/2

t
=

√
2σ2

ΘI
Θ(W ′;Zi) . (25)

Corollary A.3. Assume that for any Θ ∼ PΘ, ℓΘ(W̃ ′, Z̃) ≤ C almost surely. Then,

|gen(µ,A(d))| ≤ C

n

n∑
i=1

EPΘ

[√
IΘ(W ′;Zi)

2

]
. (26)

Proof of Corollary A.3. Since for any Θ ∼ PΘ, ℓΘ(W̃ ′, Z̃) ≤ C almost surely, then by Hoeffding’s
lemma, we have for all t ∈ R,

EPW ′|Θ⊗µ

[
e
t{ℓΘ(W̃ ′,Z̃)−EP

W ′|Θ⊗µ[ℓ
Θ(W̃ ′,Z̃)]}] ≤ eC

2t2/8 . (27)

Therefore, KℓΘ(W̃ ′,Z̃)(t) ≤ C2t2/8. We conclude by applying Lemma A.1 and the fact that for
i ∈ {1, ..., n},

inf
t>0

IΘ(W ′;Zi) + C2t2/8

t
= C

√
IΘ(W ′;Zi)

2
. (28)
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A.3 DETAILED DERIVATIONS FOR GAUSSIAN MEAN ESTIMATION

Problem statement. The loss function is defined for any (w, z) ∈ RD × RD as ℓ(w, x) = ∥w −
z∥2. Let Z1, . . . , Zn be n random variables i.i.d. from N (0D, ID). Let d ≤ D and Θ ∼ PΘ

s.t. Θ⊤Θ = Id. Consider a model A(d) whose objective is argminw∈WΘ,d
R̂n(w) where the

empirical risk is defined for w ∈ RD as R̂n(w) =
1
n

∑n
i=1 ∥w−Zi∥2. This is equivalent to solving

argminw′∈Rd R̂Θ
n (w

′), where

∀w′ ∈ Rd, R̂Θ
n (w

′) =
1

n

n∑
i=1

∥Θw′ − Zi∥2 . (29)

The gradient of (59) with respect to w′ is,

∇w′R̂Θ
n (w) =

2

n

n∑
i=1

Θ⊤(Θw′ − Zi) , (30)

and solving ∇w′R̂Θ
n (w) = 0 yields (Θ⊤Θ)w′ = Θ⊤Z̄ where Z̄ ≜ (1/n)

∑n
i=1 Zi. Since Θ⊤Θ =

Id, we conclude that the minimizer of (59) is W ′ = Θ⊤Z̄.

Generalization error. We recall that the generalization error of A(d) is defined as,

gen(µ,A(d)) = E[RΘ(W ′)− R̂Θ
n (W

′)] (31)

where the expectation is computed with respect to PW ′|Θ,Sn
⊗ PΘ ⊗ µ⊗n. Since W ′ = Θ⊤Z̄,

gen(µ,A(d)) can be written as

gen(µ,A(d)) = E(Sn,Θ)∼µ⊗n⊗PΘ

[
EZ̃∼µ[∥ΘΘ⊤Z̄ − Z̃∥2]− 1

n

n∑
i=1

∥ΘΘ⊤Z̄ − Zi∥2
]

(32)

Since Z1, . . . , Zn are n i.i.d. samples from N (0D, ID) and Θ⊤Θ = Id, then PΘ⊤Z̄|Θ =

N (0d, (1/n)Id) and we have

Eµ⊗n⊗PΘ
[∥ΘΘ⊤Z̄∥2] = Eµ⊗n⊗PΘ

[Tr((ΘΘ⊤Z̄)⊤(ΘΘ⊤Z̄))] (33)

= Eµ⊗n⊗PΘ
[Tr(Z̄⊤ΘΘ⊤ΘΘ⊤Z̄)] (34)

= Tr(Eµ⊗n⊗PΘ
[Θ⊤Z̄(Θ⊤Z̄)⊤]) (35)

=
d

n
. (36)

Besides, for i ∈ {1, . . . , n}, E[∥Zi∥2] = Tr(E[ZiZ
⊤
i ]) = D, and

E[(ΘΘ⊤Z̄)⊤Zi] =
1

n

n∑
j=1

E[Z⊤
j ΘΘ⊤Zi] (37)

=
1

n

n∑
j=1

Tr(E[Θ⊤Zi(Θ
⊤Zj)

⊤]) (38)

=
1

n
Tr(E[Θ⊤Zi(Θ

⊤Zi)
⊤]) (39)

=
d

n
. (40)

Equations (39) to (40) can be justified as follows. Since Zi ∼ N (0D, ID), the conditional
distribution of Θ⊤Zi given Θ is N (0d,Θ

⊤Θ), and Θ⊤Θ = Id by definition. Therefore,
E[Θ⊤Zi(Θ

⊤Zi)
⊤] = E[E[Θ⊤Zi(Θ

⊤Zi)
⊤|Θ]] = Id. We conclude that Tr(E[Θ⊤Zi(Θ

⊤Zi)
⊤]) =

d.
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We thus obtain,

E[R̂Θ
n (W

′)] = E(Sn,Θ)∼µ⊗n⊗PΘ

[
1

n

n∑
i=1

∥ΘΘ⊤Z̄ − Zi∥2
]

(41)

= E(Sn,Θ)∼µ⊗n⊗PΘ

[
1

n

n∑
i=1

∥ΘΘ⊤Z̄∥2 − 2(ΘΘ⊤Z̄)⊤Zi + ∥Zi∥2
]

(42)

= D − d

n
. (43)

Indeed, by the linearity of expectation, (42) simplifies as

E[R̂Θ
n (W

′)] = Eµ⊗n⊗PΘ
[∥ΘΘ⊤Z̄∥2]− 2

n

n∑
i=1

Eµ⊗n⊗PΘ
[(ΘΘ⊤Z̄)⊤Zi] +

1

n

n∑
i=1

Eµ[∥Zi∥2] (44)

Since (Zi)
n
i=1 are i.i.d. from N (0D, ID), we proved that Eµ⊗n⊗PΘ

[∥ΘΘ⊤Z̄∥2] = d
n (eq. (36)) and

E[(ΘΘ⊤Z̄)⊤Zi] =
d
n (eq. (40)). Additionally,

Eµ[∥Zi∥2] = Eµ[Tr(∥Zi∥2)] = Eµ[Tr(ZiZ
⊤
i )] = Tr(Eµ[ZiZ

⊤
i ]) = Tr(ID) = D (45)

Plugging these identities in (44) yields (43).

On the other hand,

E(Sn,Θ,Z̃)∼µ⊗n⊗PΘ⊗µ[(ΘΘ⊤Z̄)⊤Z̃] = E[ΘΘ⊤Z̄]⊤E[Z̃] = 0 , (46)

therefore,

E[RΘ(W ′)] = E(Sn,Θ)∼µ⊗n⊗PΘ
EZ̃∼µ[∥ΘΘ⊤Z̄ − Z̃∥2] (47)

= E(Sn,Θ)∼µ⊗n⊗PΘ
EZ̃∼µ[∥ΘΘ⊤Z̄∥2 − 2(ΘΘ⊤Z̄)⊤Z̃ + ∥Z̃∥2] (48)

= D +
d

n
. (49)

By plugging (43) and (49) in (32), we conclude that gen(µ,A(d)) = 2d/n.

Generalization error bound. We apply Theorem A.2 to bound the generalization error. To this
end, we need to bound the cumulant generating function of ℓΘ(W̃ ′, Z̃) = ∥ΘΘ⊤Z̄ − Z̃∥2 given Θ.

Since (Z1, . . . , Zn, Z̃) ∼ µ⊗n ⊗ µ with µ = N (0D, ID), then, given Θ, one has Θ⊤Z̄ ∼
N (0d, (1/n)Id) and (ΘΘ⊤Z̄ − Z̃) ∼ N (0D,ΣΘ) with ΣΘ = ΘΘ⊤/n + ID. Therefore, for
d < D, ℓΘ(W̃ ′, Z̃) = ∥ΘΘ⊤Z̄ − Z̃∥2 is the sum of squares of D dependent Gaussian random
variables, which can equivalently be written as

ℓΘ(W̃ ′, Z̃) =

D∑
k=1

λΘ,kU
2
Θ,k , (50)

UΘ = PΣ
−1/2
Θ (ΘW ′ − Z̃) (51)

where P ∈ RD×D and λΘ = (λΘ,1, . . . , λΘ,D) ∈ RD come from the eigendecomposition of ΣΘ,
i.e. ΣΘ = PΛP⊤ with Λ = diag(λΘ). As a consequence, UΘ ∼ N (0D, ID). Note that, since ΣΘ

is positive definite, P is orthogonal and for any k ∈ {1, . . . , D}, λΘ,k > 0.

By (50), ℓΘ(W̃ ′, Z̃) is a linear combination of independent chi-square variables, each with 1 degree
of freedom. Therefore, ℓΘ(W̃ ′, Z̃) is distributed from a generalized chi-square distribution, and its
CGF is given by,

∀t ≤ 1

2
min

k∈{1,...,D}
λΘ,k, KℓΘ(W̃ ′,Z̃)(t) = −t

D∑
k=1

λΘ,k − 1

2

D∑
k=1

log(1− 2λΘ,kt) (52)

=
1

2

D∑
k=1

[−2λΘ,kt− log(1− 2λΘ,kt)] . (53)
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Since for any s < 0, −s− log(1− s) ≤ s2/2, we deduce that

∀t < 0, KℓΘ(W̃ ′,Z̃)(t) ≤
1

2

D∑
k=1

(2λΘ,kt)
2

2
= ∥λΘ∥2t2 . (54)

Since rank(ΘΘ⊤) = rank(Θ⊤Θ) and Θ⊤Θ = Id, then rank(ΘΘ⊤) = d. Besides, ΘΘ⊤ and Θ⊤Θ
share the same non-zero eigenvalues. Therefore, ΘΘ⊤ has d eigenvalues equal to 1, and (D − d)
eigenvalues equal to 0, thus Θ⊤Θ/n + Id has d eigenvalues equal to 1 + 1/n and and (D − d)
eigenvalues equal to 1, and

∥λΘ∥2 = d

(
1 +

1

n

)2

+ (D − d) . (55)

By combining Theorem A.2 with (54) and (55), we obtain

gen(µ,A(d)) ≤ 2

n

√
d

(
1 +

1

n

)2

+ (D − d)
n∑

i=1

EPΘ

[√
IΘ(W ′;Zi)

]
(56)

Applying Jensen’s inequality on (56) and the fact that W ′ = Θ⊤W with W =

argminw∈RD R̂n(w) = Z̄ finally yields,

gen(µ,A(d)) ≤ 2

n

√
d

(
1 +

1

n

)2

+ (D − d)

n∑
i=1

√
SI

(1)
d (W ;Zi) . (57)

A.4 DETAILED DERIVATIONS FOR LINEAR REGRESSION

Problem statement. Consider n i.i.d. samples (x1, . . . , xn) and a response variable y =
(y1, . . . , yn), where xi ∈ RD and yi ∈ R. Consder a learning algorithm A(d) whose objective
is argminw∈WΘ,d

R̂n(w), with

∀w ∈ RD, R̂n(w) =
1

n

n∑
i=1

(yi − x⊤i w)
2 =

1

n
∥y −Xw∥2 . (58)

where X ∈ Rn×D is the design matrix. This objective is equivalent to finding W ′ =

argminw′∈Rd R̂Θ
n (w

′), where

∀w′ ∈ Rd, R̂Θ
n (w

′) =
1

n
∥y −XΘw′∥2 . (59)

We assume the problem is over-determined, i.e. D ≤ n. Solving ∇w′R̂Θ
n (w

′) = 0 yields

W ′ = (ΘX⊤XΘ⊤)−1ΘX⊤y . (60)

On the other hand, we know that the solution of argminw∈RD R̂n(w) is the ordinary least squares
(OLS) estimator, given by

W = (X⊤X)−1X⊤y . (61)

Hence, by (61) with (60), we deduce that

W ′ = (ΘX⊤XΘ⊤)−1Θ(X⊤X)W (62)

Generalization error. In the remainder of this section, we assume that X is deterministic and
there exists W ⋆ ∈ RD such that yi = x⊤i W

⋆ + εi where (εi)
n
i=1 are i.i.d. from N (0, σ2). By using

similar techniques as in Appendix A.3, one can show that gen(µ,A(d)) = 2σ2d/n.
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Generalization error bound. Since yi ∼ N (x⊤i W
⋆, σ2), and by (60),

x⊤i Θ
⊤W ′ ∼ N (x⊤i ΘXW

⋆, σ2x⊤i Θ
⊤[ΘX⊤XΘ⊤]−1Θxi) (63)

where ΘX = Θ⊤(ΘX⊤XΘ⊤)−1Θ(X⊤X) ∈ RD×D. Therefore,

(ỹi − x⊤i Θ
⊤W̃ ′) ∼ N (x⊤i (ID −ΘX)W ⋆, σ2(1 + x⊤i Θ

⊤[ΘX⊤XΘ⊤]−1Θxi)) , (64)
and

ℓΘ(W̃ ′, ỹi) ∼ σ2
i χ

2(1, λi) , (65)
where σ2

i = σ2(1 + x⊤i Θ
⊤[ΘX⊤XΘ⊤]−1Θxi), λi = (x⊤i (ID −ΘX)W ⋆)2 and χ2(k, λ) denotes

the noncentral chi-squared distribution with k degrees of freedom and noncentrality parameter λ.
Hence, the moment-generating function of ℓΘ(W̃ ′, ỹi) is

∀t < 1

2σ2
i

, E
[
et ℓ

Θ(W̃ ′,ỹi)
]
=
e(λiσ

2
i t)/(1−2σ2

i t)√
1− 2σ2

i t
(66)

and its expectation is E[ℓΘ(W̃ ′, ỹi)] = σ2
i (1 + λi). Therefore, for t < 1/(2σ2

i ) and ui = 2σ2
i t,

KℓΘ(W̃ ′,ỹi)
(t) =

λiui
2(1− ui)

− 1

2
log(1− ui)−

1

2
(1 + λi)ui (67)

=
1

2
{− log(1− ui)− ui}+

λiu
2
i

2(1− ui)
. (68)

Since − log(1− x)− x ≤ x2/2 for x < 0, we deduce that for t < 0,

KℓΘ(W̃ ′,ỹi)
(t) ≤ u2i

4
+

λiu
2
i

2(1− ui)
(69)

= σ4
i t

2 +
2λiσ

4
i t

2

1− 2σ2
i t
. (70)

By applying Theorem A.2, we conclude that

gen(µ,A(d)) ≤ 1

n

n∑
i=1

EΘ

[
inf
t>0

I(W ′; yi) + σ4
i t

2
(
1 + 2λi(1 + 2σ2

i t)
−1

)
t

]
. (71)

By (62), W ′ is the projection of W along ϕ(Θ, X) ≜ (ΘX⊤XΘ⊤)−1Θ(X⊤X). The right-hand
side term in (71) can thus be interpreted as a generalized SMI with a non-isotropic slicing distribution
that depends on the fixed X .

As d converges to D, λ = (λ1, . . . , λn) ∈ Rn converges to 0n. Indeed, consider the compact
singular value decomposition (SVD) of XΘ⊤, i.e. XΘ⊤ = USV ⊤ where S ∈ Rd×d is diagonal,
U ∈ Rn×d, V ∈ Rd×m s.t. U⊤U = V ⊤V = Id. By using the pseudo-inverse expression of SVD,

XΘX = XΘ⊤(ΘX⊤XΘ⊤)−1Θ(X⊤X) (72)

= USV ⊤V S−1U⊤X (73)

= UU⊤X (74)

Therefore,
√
λ = X(ID − UU⊤)W ⋆. Since U⊤U = Id with U ∈ Rn×d, then ID − UU⊤ has

(D − d) eigenvalues equal to 1 and d eigenvalues equal to 0. Hence, λ converges to 0n as d→ D.

A.5 PROOFS FOR SECTION 3.3

Proof of Theorem 3.3. By the triangle inequality, for any pair of models (A,A′),
|gen(µ,A)| ≤ |gen(µ,A)− gen(µ,A′)|+ |gen(µ,A′)| . (75)

Consider A : Zn → W and A′ : Zn → WΘ,d such that A(Sn) = W may depend on Θ ∼ PΘ, and
A′(Sn) = Θ(Θ⊤W ). On the one hand, by applying Lemma A.1 with X = Θ⊤W , Y = Zi, U = Θ
and fU (X,Y ) = ℓΘ(Θ⊤W,Zi), we obtain

|gen(µ,A′)| ≤ C

n

n∑
i=1

EPΘ

[√
IΘ(Θ⊤W ;Zi)

2

]
. (76)
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On the other hand, by the definition of the generalization error, one can show that

|gen(µ,A)− gen(µ,A′)| = |E[R(W )− R̂n(W )]− E[RΘ(Θ⊤W )− R̂Θ
n (Θ

⊤W )]| (77)

≤ |E[R(W )−RΘ(Θ⊤W )]|+ |E[R̂n(W )− R̂Θ
n (Θ

⊤W )]| (78)

where the expectations are computed over PW |Θ,Sn
⊗ PΘ ⊗ µ⊗n. Besides,

|E[R(W )−RΘ(Θ⊤W )]| = |EPW |Θ⊗PΘ⊗µ[ℓ(W̃ , Z̃)− ℓ(ΘΘ⊤W̃ , Z̃)]| (79)

≤ EPW |Θ⊗PΘ⊗µ|ℓ(W,Z)− ℓ(ΘΘ⊤W,Z)| (80)

≤ LEPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥ , (81)

where (79) follows from the definition of the population risks R(w) and RΘ(Θ⊤w), and (81) results
from the assumption that ℓ(·, z) : W → R+ is L-Lipschitz for all z ∈ Z.

Using similar arguments, one can show that

|E[R̂n(W )− R̂Θ
n (Θ

⊤W )]| ≤ LEPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥ , (82)

and we conclude that

|gen(µ,A)− gen(µ,A′)| ≤ 2LEPW |Θ⊗PΘ∥W −ΘΘ⊤W∥ . (83)

The final result follows from bounding (75) using (76) and (83).

Proof of Theorem 3.4. Consider A : Zn → W and A′ : Zn → WΘ,d such that A(Sn) = W may
depend on Θ ∼ PΘ, and A′(Sn) = ΘQ(Θ⊤W ). Using the same techniques as in the proof of
Theorem 3.3, we obtain

|gen(µ,A)| ≤ 2LEPW |Θ⊗PΘ
∥W −ΘQ(Θ⊤W )∥+ |gen(µ,A′)| (84)

≤ 2LEPW |Θ⊗PΘ
∥W −ΘQ(Θ⊤W )∥+ C EPΘ

[√
IΘ(Q(Θ⊤W );Sn)

2n

]
(85)

where eq. (85) follows from applying Theorem 3.1.

Then, by using the triangle inequality, the fact that ∥Θ∥ = ∥Θ⊤Θ∥ = 1, and the properties of Q,

EPW |Θ⊗PΘ
∥W −ΘQ(Θ⊤W )∥ (86)

≤ EPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥+ EPW |Θ⊗PΘ

∥ΘΘ⊤W −ΘQ(Θ⊤W )∥ (87)

≤ EPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥+ EPW |Θ⊗PΘ

[
∥Θ∥∥Θ⊤W −Q(Θ⊤W )∥

]
(88)

≤ EPW |Θ⊗PΘ
∥W −ΘΘ⊤W∥+ δ . (89)

Finally, since Q(Θ⊤W ) is a discrete random variable and ∥Θ⊤W∥ ≤ M , we use the same argu-
ments as in Section 3.1 to bound IΘ(Q(Θ⊤W );Sn) by d log(2M

√
d/δ).

B ADDITIONAL EXPERIMENTAL DETAILS FOR SECTION 4

B.1 METHODOLOGICAL DETAILS

Architecture for MINE. In all our experiments, the MI terms are estimated with MINE Belghazi
et al. (2018) based on a fully-connected neural network with one single hidden layer of dimension
100. The network is trained for 200 epochs and a batch size of 64, using the Adam optimizer with
default parameters (on PyTorch).
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Figure 5: Generalization bounds on MNIST classification with neural networks trained on WΘ,d

Figure 6: Generalization bounds on Iris dataset classification with neural networks trained on WΘ,d

Quantization method. We use the quantization scheme of Lotfi et al. (2022), with minor modifi-
cations. We learn c = [c1, ..., cL] ∈ RL quantization levels in 16-precision during training using the
straight through estimator, and quantize the weights W ′ = [W1, · · · ,Wd] ∈ Rd into Ŵi = cq(i),
where q(i) = argmink∈{1,...,L} |Wi − ck|. Post quantization, arithmetic coding is employed for
further compression, to take into account the fact that quantization levels are not uniformly dis-
tributed in the quantized weights. Denote by pk the empirical probability of ck. Arithmetic cod-
ing uses at most ⌈d × H(p)⌉ + 2 bits, where H(p) = −

∑L
k=1 pk log2 pk. The total bit require-

ment for the quantized weights, the codebook c, and the probabilities (p1, . . . , pL) is bounded by
⌈d×H(p)⌉+ L× (16 + ⌈log2 d⌉) + 2.

B.2 ADDITIONAL DETAILS AND EMPIRICAL RESULTS FOR SECTION 4.1

Binary classification with logistic regression. We consider the binary classification problem
solved with logistic regression as described in (Bu et al., 2019, §VI), with features dimension s = 20,
henceD = s+1 (weights and intercept). We train our model on WΘ,d for different values of d < D,
using n training samples. We compute the test error on ⌊20n/80⌋ observations. For each value of n
and d, we approximate the generalization error for 30 samples of Θ independently drawn from the
SVD-based projector (see Section 4). We estimate the MI term in the bounds via MINE (with the
aforementioned architecture) using 30 samples of (W ′, Zi) ∼ PW ′|Sn,Θ ⊗ µ for each Θ.

Multiclass classification with NNs. We consider a fully-connected neural network with two hid-
den layers of width 200 to classify MNIST (LeCun & Cortes, 2010) and CIFAR-10 (Krizhevsky
et al., 2009). The random projections are sampled using the Kronecker product projector, in or-
der to scale better with the high-dimensionality of our models (see Appendix B.2). We train our
NNs on WΘ,d for different values of d, including the intrinsic dimensions reported in Li et al.
(2018). We approximate the generalization error for 30 samples of Θ and estimate our MI-based
bounds given by Theorem A.2. The MI terms are estimated using MINE over 100 samples of
(W ′, Zi) ∼ PW ′|Sn,Θ ⊗ µ for each Θ. As MINE requires multiple runs, which can be very expen-
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Figure 7: Influence of (λ, d) on generalization errors and rate-distortion bounds (left), and training
and test errors (right) for a Lipschitz-constrained neural network on MNIST classification in an
“out-of-distribution” setting. Results are averaged over 5 runs. The reported training/test error
corresponds to the value of the loss (binary cross-entropy) on the training/test dataset.

sive, we only estimate MI for datasets and models of reasonable sizes: see Figure 5 for results on
MNIST. For MNIST and CIFAR-10, we quantize W ′ and evaluate our quantization-based general-
ization bounds. To train our NNs, we run Adam (Kingma & Ba, 2017) with default parameters for
30 epochs and batch size of 64 or 128.

We also classify the Iris dataset (Fisher, 1936). We train a two-hidden-layer NN with width 100
(resulting in D = 10, 903 parameters) on WΘ,d. We use Adam with a learning rate of 0.1 as
optimizer, for 200 epochs and batch size of 64. We approximate the generalization error for 20
samples of Θ independently drawn from the SVD-based projector. We evaluate our generalization
bounds (Theorem 3.2) using MINE over 500 samples of (W ′, Zi) ∼ PW ′|Θ,Sn

⊗ µ for each Θ. We
report results for d ∈ {5, 10, 15, 20, 50, 100} in Figure 6. We obtain over 95% accuracy at d = 10
already, and both the best train and test accuracy is achieved for d = 50. As expected, our bound is
an increasing function of d and all bounds are non-vacuous.

B.3 ADDITIONAL DETAILS AND EMPIRICAL RESULTS FOR SECTION 4.2

Lipschitz neural networks. We follow the guidelines in Bethune et al. (2023) to design a Lipschitz-
controlled neural network. We detail the computation of the Lipschitz constant of the neural network
considered in Section 4.2. Denote ŷ = f(w, x) = f2 ◦ φ ◦ f1(w, x). Then, the gradients of the loss
with respect to (w2, b2) are given by,

∇w2
ℓ(w, z) = ∇ŷLCE(ŷ)∇w2

(w2[φ ◦ f1(w, x)] + b2) (90)
= ∇ŷLCE(ŷ)[φ ◦ f1(w, x)] (91)

∇b2ℓ(w, z) = ∇ŷLCE(ŷ)∇b2(w2[φ ◦ f1(w, x)] + b2) (92)
= ∇ŷLCE(ŷ) (93)

where LCE denotes the binary cross-entropy.

Now, denoting z′′ = w1x+ b1 and z′ = φ(z′′),

∇w1ℓ(w, z) = ∇ŷLCE(ŷ)∇z′(w2z
′ + b2)∇z′′φ(z′′)∇w1(w1x+ b1) (94)

= ∇ŷLCE(ŷ)w2∇z′′φ(z′′)x (95)

∇b1ℓ(w, z) = ∇ŷLCE(ŷ)∇z′(w2z
′ + b2)∇z′′φ(z′′)∇b1(w1x+ b1) (96)

= ∇ŷLCE(ŷ)w2∇z′′φ(z′′) (97)
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Figure 8: Influence of (λ, d) on generalization errors and rate-distortion bounds (left), and training
and test errors (right) for a Lipschitz-constrained neural network on CIFAR-10 classification in an
“out-of-distribution” setting. Results are averaged over 5 runs. The reported training/test error
corresponds to the value of the loss (binary cross-entropy) on the training/test dataset.

Therefore,

∥∇wℓ(w, z)∥2 =

2∑
i=1

(
∥∇wi

ℓ(w, z)∥2 + ∥∇biℓ(w, z)∥2
)

(98)

≤ ∥∇ŷLCE(ŷ)∥2
{
∥φ ◦ f1(w, x)∥2 + 1 + ∥w2∥2∥∇z′′φ(z′′)∥2[∥x∥2 + 1]

}
(99)

≤ ∥f1(w, x)∥2 + 1 + ∥w2∥2∥[∥x∥2 + 1] , (100)

where (100) follows from the fact that the binary cross-entropy is 1-Lipschitz, and that ReLU ac-
tivation is 1-Lipschitz and null at 0. By (100), we conclude that the Lipschitz constant of our loss
(w.r.t. to w) is L =

√
(∥w1∥∥x∥+ ∥b1∥)2 + 1 + ∥w2∥2[∥x∥2 + 1].

We normalize the data so that each pixel of any input x ∈ Rs lies between 0 and 1. The maximum
norm of x is then

√
s. We enforce the maximum norms of bi and wi to be 1/

√
s via projected

gradient descent.

Bounded loss. If there exists a ∈ R such that f(w, x) ≥ a, then the binary cross-entropy loss
satisfies ℓ(w, z) ≤ log(1+ ea). For f(w, x) defined as the neural network above, one can show that
a = −M2(∥x∥2 + 1) +M , where M is s.t. ∥wi∥ ≤M , ∥bi∥ ≤M for i ∈ {1, 2}.

Additional Experiments. We consider the same binary classification task with Lipschitz-controlled
neural networks as in Section 4.2, but on a practical setting that is beyond the scope of our theory:
we hide certain classes in the training set (e.g., digit 2) and include them in the test set. Given
input image X , the label is y = 1 if X represents a certain class (digit 1 for MNIST, ’automo-
bile’ on CIFAR-10), y = 0 otherwise. For MNIST, the training dataset contains digits {0, 1, 8}
and the test dataset contains digits {0, 1, 8, 2}; for CIFAR-10, the training dataset contains classes
{automobile, cat, deer}, while the test dataset contains classes {automobile, cat, deer, truck}. Note
that these classes were arbitrarily chosen. The generalization error and rate-distortion bounds are
approximated over 5 Θ randomly drawn from the sparse projector. We use Adam for training, with
default parameters, 30 epochs and batch size 128. For different d and λ, we train on MNIST and
CIFAR-10 with n = 2000 and approximate the generalization error and our rate-distortion bound
given in Theorem 3.4 with δ = 1/n: see Figures 7 and 8. Our empirical results shows that our
discussion regarding the generalization ability of approximately-compressible NNs applies to this
“out-of-distribution” setting as well: a more comprehensive investigation of generalization bounds
on such settings is left for future work.

22



Under review as a conference paper at ICLR 2024

0 20 40 60 80 100
number of quantization levels L

0.0

0.1

0.2

0.3

0.4

0.5

Ge
ne

ra
liz

at
io

n 
er

ro
r

Gen. error for d = 1000
Bound for d = 1000
Gen. error for d = 5000
Bound for d = 5000
Gen. error for d = 10000
Bound for d = 10000

Figure 9: Influence of the number of quantization levels L on the generalization error and our
bounds, for MNIST classification with NNs.

C NEW EXPERIMENTS

Influence of the number of quantization levels. We analyze the influence of the quantization levels
L on the generalization error and our bounds in practice. We consider the MNIST classification
with NNs (described in Section 4) and train for varying L. We report the results in Figure 9 for
different values of d. We observe that for all tested dimensions, the generalization error increase with
increasingL. Our bound exhibits the same behavior, which we expected given their dependence onL
(see paragraph “Quantization” in Section 4). This experiment illustrates that (i) the more aggressive
the compression, the better the generalization, (ii) our bounds accurately reflect the behavior of the
generalization error, and seem tighter for lower values of d and L.

Rate-distortion bounds. We evaluate our rate-distortion bounds on binary classification using the
same neural network as in Appendix B.3. The training and test data consists of MNIST images
corresponding to digits 1 and 7. To make generalization harder, we train our model on n = 10
samples. The maximum norm of the weights and biases is constrained to 1 via projected gradient
descent. The optimization procedure is the same as in Appendix B.3 and the results are reported in
Figure 4. Note that the bounds are overall looser than in Figure 7: this is due to the fact that we
chose a larger value for the maximum norm of wi, bi, thus the Lipschitz constant L is larger.
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