Under review as submission to TMLR

Reproducibility study of 'Learning Decision Trees and
Forests with Algorithmic Recourse"

Anonymous authors
Paper under double-blind review

Abstract

Decision trees and random forests are widely recognized machine learning models, particu-
larly for their interpretability. However, ensuring algorithmic recourse—providing individ-
uals with actionable steps to alter model predictions—remains a significant challenge. The
authors of the paper Learning Decision Trees and Forests with Algorithmic Re-
course (Kanamori et al.| (2024))) introduce a novel method for training tree-based models
while guaranteeing the existence of recourse actions. In this study, we attempt to repli-
cate the original findings and validate their data using the open-source implementation and
datasets provided in the original paper. While we observe some differences in the per-
formance of sensitivity forests, we confirm that our results closely align with those of the
decision trees presented in the original study.

1 Introduction

The paper Learning Decision Trees and Forests with Algorithmic Recourse by (Kanamori et al.
(2024)) presents a new framework for learning tree-based models that ensures accurate predictions while
also guaranteeing the existence of algorithmic recourse actions. Algorithmic recourse (AR) provides affected
individuals with actionable steps to alter unfavorable model predictions. This approach aims to bridge the
gap between predictive performance and practical usability by ensuring that recourse actions are not only
feasible but also reasonable in real-life scenarios. Traditional models often fail to guarantee such recourse,
as they prioritize prediction accuracy without considering the cost and feasibility of actionable outcomes.

The authors propose Recourse-Aware Classification Trees (RACT), a novel algorithm that incorporates
adversarial training techniques to learn decision trees and random forests capable of guaranteeing recourse.
By extending a standard top-down greedy approach (similar to CART), their algorithm balances predictive
performance with the existence of valid actions for more instances. The method is further extended to
random forests, making it applicable to a broader range of real-world problems.

As part of our university course, we attempted to reproduce the results presented in the paper. Our objective
was to evaluate the validity of the proposed RACT algorithm. We carefully followed the implementation
details described by the authors, applied the algorithm to the same real-world datasets the authors used,
and compared the outcomes with the original findings. This report outlines our efforts in reconstructing
the experiments, highlighting the challenges faced, the insights gained, and the extent to which the original
results were replicated successfully.

2 Reconstruction and Validation Process

To ensure the reliability and reproducibility of our results, we closely followed the implementation details
provided in the paper and utilized the code available in the authors’ GitHub repository. However, upon
initial testing, we observed inconsistent and differing results across our runs.

Our first step was to examine the package versions used in the authors’ experiments. The repository and
paper did not provide sufficient details on this, so we reached out to the authors for clarification. This

Under review as submission to TMLR

was crucial, as mismatched library versions can lead to subtle yet significant variations in performance and
accuracy. The authors kindly shared the exact package versions, enabling us to align our environment with
theirs and establish a more consistent baseline for comparison. We then tested the algorithm on multiple
systems with varying hardware configurations, all running Windows Subsystem for Linux (WSL), to validate
its behavior further. Additionally, we leveraged the high-performance computing (HPC) system we had access
to, to assess the algorithm’s scalability and performance under optimal computational conditions. Although
the original authors used macOS, we considered this difference unlikely to significantly affect the results.

After running the experiments with the same settings and package versions on our different setups, we
observed discrepancies in parts of the outcomes. The provided code seemed to include stochastic elements
that were not controlled by a fixed seed. Upon closer inspection, we suspected these inconsistencies were
due to non-thread-safe behavior in the code.

To investigate further, we focused on verifying whether the authors’ multi-threading implementation was
truly thread-safe. Improper multi-threading management can lead to race conditions and inconsistent results.
We compared the outcomes of both single-threaded and multi-threaded runs across different systems to
identify any concurrency or thread-safety issues. When we found that single-threaded runs were consistent,
while multi-threaded runs produced varying results, we concluded that the provided code was not thread-safe.

The authors acknowledged that they had not specifically focused on ensuring thread-safe behavior. This
prompted us to investigate further to determine whether the results presented by the authors were drawn
from the same distribution. To address this, we attempted to conduct a statistical test to assess the stochastic
nature of the results.

These extensive tests, conducted across various platforms and configurations, provided valuable insights
into the stability and scalability of the proposed method. Although our results differed from those of the
authors, we were able to gain a deeper understanding of the algorithm’s behavior and its potential limitations.
Ultimately, our findings highlight areas for improvement, particularly regarding thread safety, and contribute
to a more robust evaluation of the algorithm’s practical applicability.

3 Scope of Reproducibility

The study by Kanamori et al. introduces a novel approach for learning decision trees and forests while ensur-
ing Algorithmic Recourse (AR). The authors propose the Recourse-Aware Classification Tree (RACT) frame-
work, which aims to provide affected individuals with actionable steps to alter an undesirable classification
outcome. The method is designed to balance predictive accuracy, recourse guarantees, and computational
efficiency, addressing a key challenge in algorithmic fairness.

In this study, we seek to verify the key claims made in the original paper by attempting to reproduce its
experiments. Specifically, we assess the following hypotheses:

1. RACT successfully provides recourse actions to more individuals than baseline methods (Vanilla,
OAF) while maintaining comparable predictive accuracy.

2. The proposed learning algorithm is computationally efficient, meaning that its runtime is comparable
to traditional decision tree training methods.

3. RACT enables controlling the trade-off between predictive accuracy and recourse guarantees by
adjusting a so-called trade-off parameter \.

4. The learned models produce low-cost and plausible recourse actions, ensuring that the suggested
changes to feature values are realistic and executable in practice.

By rigorously evaluating these claims, we aim to assess the reliability, generalizability, and practical impli-
cations of the RACT framework in real-world applications.

Under review as submission to TMLR

4 Method

In this section, we outline the experimental setup used to reproduce the results of the original study on
Recourse-Aware Classification Trees (RACT). We closely followed the methodology described by the authors,
utilizing their provided datasets and implementation to ensure a faithful reproduction of their findings.

4.1 Datasets

The original study was conducted on multiple real-world datasets, which were made available by the authors
in their repository. For consistency, we used the exact same datasets without modifications.

FICO (N = 9871, D = 23) — A credit risk dataset used for predicting loan approvals.
COMPAS (N = 6167, D = 14) — A dataset containing criminal justice risk assessment scores.
Credit (N = 30,000, D = 16) — A dataset related to consumer credit risk classification.

Bail (N = 8923, D = 16) — A dataset used for predicting bail outcomes.

The datasets were provided in the GitHub repository and used as-is, ensuring consistency with the original
study.

4.2 Experimental Setup

We executed the experiments using the official code provided by the authors, ensuring that all steps, in-
cluding model training, evaluation, and comparative analyses, remained unchanged. The study focused on
the Recourse-Aware Classification Tree (RACT), a decision tree classifier designed to ensure algorithmic
recourse, as well as its Random Forest extension. They consistently compared their approach with own
implementations of CART (later referred to as Vanilla) and Only-Actionable-Features (OAF), as introduced
in |Dominguez-Olmedo et al.| (2022).

To maintain comparability, we followed the same experimental design as the original study:

e Cross-Validation: A 10-fold cross-validation procedure was applied across all models, including
RACT and its Random Forest version, ensuring robustness and minimizing variance in performance
estimation.

e Performance Analysis: The models were evaluated on standard classification metrics, comparing
RACT to baseline methods.

e Recourse Analysis: We examined the quality and availability of recourse actions generated by RACT,
assessing whether individuals received feasible alternatives to change an undesirable classification
outcome.

o Computational Efficiency: We analyzed the runtime of RACT compared to traditional decision trees,
verifying the authors’ claims regarding efficiency.

o Trade-off Parameter Analysis: The study explored the impact of the trade-off parameter A, which
balances predictive accuracy and recourse guarantees.

4.3 Hardware and Software Environment

To ensure reproducibility, we conducted the experiments in an environment closely aligned with the original
study. The experiments were performed on both the HPC cluster and a local machine equipped with an AMD
Ryzen 5 7600 processor. While the original study was conducted on macOS, we executed our reproduction
in a Linux environment on the HPC and in Windows 11 using the Windows Subsystem for Linux (WSL)
with Ubuntu. Although these setups differ, we expect them to have minimal impact on the results, except
for possibly runtime performance. The specific libraries and tools utilized in the implementation of the
experiments are listed in the appendix.

Under review as submission to TMLR

4.4 Reproducibility Considerations

Since we directly utilized the authors’ code and datasets, the reproduction focused on verifying the consis-
tency of the reported results rather than reimplementing the method. Any deviations from the expected
results were carefully examined to determine whether they stemmed from implementation discrepancies,
hardware differences, or statistical variation inherent in the cross-validation procedure.

By adhering to this methodology, we aimed to rigorously validate the claims of the original study and assess
the generalizability of the RACT framework in real-world applications.

4.5 Model Evaluation and Statistical Analysis

Parts of the code could be directly compared, particularly the sections that relied solely on the tree classifier.
These parts were thread-safe (based on our findings), meaning we could simply compare them. However, we
discovered that some parts of the code had stochastic behavior when running in multithreaded environments,
which led us to believe that the original authors’ code might also be stochastic. This meant we couldn’t just
do a direct comparison, so we needed to use a different method. Specifically, we performed statistical testing
to determine whether their results and ours came from the same probability distribution.

To improve the accuracy of our statistical analysis, we took advantage of the multiple values generated by
the 10-fold cross-validation (CV). Each of the final results shown in the authors’ plots was the mean of these
10 values, so we used this information for our analysis.

Here’s the methodology we used:

e Null Hypothesis Hy: We first set up the null hypothesis that the results of our experiment are drawn
from the same probability distribution than the results of the authors.

o 10-Fold Cross-Validation (CV) Results: For each given A-value, we had ten results from the 10-fold
CV. We compared the individual results (rather than just the mean values) from both our and the
authors’ experiments.

o Alternative Hypothesis H)): We then formulated a new hypothesis: H|, — that 50% of the time, our
result is higher than theirs. We assumed that if Hy holds true, it is implied that H{ should also be
valid. In other words, if H{) is unlikely, we can also reject Hp.

e Comparison of Results: We compared the corresponding values from our runs and the authors’ runs,
counting how often our values were larger than theirs and vice versa.

e Statistical Analysis: Using a two-sided binomial test with parameters n = 10 and p = 0.5, we
calculated p-values to assess the probability that the observed differences could have arisen by
chance.

5 Results

Our efforts to replicate the experiments from the original study revealed a number of insights into the
behavior of the Recourse-Aware Classification Tree (RACT) and its Random Forest extension.

5.1 RACT Tree Classifier

The RACT tree classifier, which forms the core of the proposed method, was fully reproducible in our
experiments (see e.g. Figure [1). The results we obtained for the decision tree model closely aligned with
those reported by the original authors. This included the key findings related to the provision of algorithmic
recourse and the balance between prediction accuracy and feasibility of recourse actions.

Our reproduction of the decision tree experiments confirmed that RACT successfully provides recourse ac-
tions to a greater number of individuals compared to baseline methods (Vanilla and OAF), while maintaining

Under review as submission to TMLR

FICO COMPAS Credit Bail
- .68 4
0.72 4 " % % 0.700
g 20,67 4 20,80 Iy
£ 0701 g 067 g Z 0675
g 2 0664 4 g
. : . 0651 ‘ : . 06251 ; .
Vanilla OAF RACT \ nu\.ln ()}\l- R.'\L T Vanilla OAF RACT Vanilla OAF RACT
0.706) (0.686) (0.712) 0.666) (0664 (0.667) (0808) (0.779) (0.804) 0692) (064T) (0.684)
FICO COMPAS Credit Bail
L0 0.8
0014 Em—
%054 4 £ n.os - 06
: 2 0 : z e
= = = .06 4 = 044
0.6 0.90 -
; - , . 0.2 - : .
Vi IIHH.I ().I\I- R,-\L T ‘ nuH 1 (),-\]- RACT Vanilla OAF RACT Vanilla OAF RACT
(0.722))7 (0.817) 018) (0019) (0.925) (0.957) (L) (0.992) (0355) (0491) (0.776)

Figure 1: RACT classification tree in comparison with baselines, identical in this case. Reproduction and
expansion of Figure 3 a) in Kanamori et al| (2024)

Dataset ‘ Vanilla, ‘ OAF ‘ RACT
FICO 0.36 £0.08 | 0.272 £0.02 | 0.408 +0.07
COMPAS | 0.038 £0.01 | 0.03+0.0 0.038 0.0
Credit 1.758 £ 0.2 1.274+0.15 1.669 + 0.21
Bail 0.188 0.02 | 0.055+0.01 | 0.188 £ 0.03

Dataset ‘ Vanilla ‘ OAF ‘ RACT
FICO 42.085 + 1.8 35.25 £ 1.52 48.074 £+ 2.33
COMPAS 2.311 +0.32 1.755 £+ 0.14 2.074 +0.13
Credit 292.532 £ 21.56 | 268.405 + 18.93 | 277.398 £ 25.75
Bail 24.842 +1.93 3.262 +£0.35 22.968 + 1.2

Table 1: Results on the average running time in [s] for the random forest classifiers (our results on top).
Reproduction and expansion of Table 1 in [Kanamori et al.| (2024)

comparable predictive accuracy. Furthermore, the analysis of computational efficiency supported the authors’
claims regarding the efficiency of the RACT algorithm, with runtimes similar to those of traditional decision
tree classifiers.

5.2 RACT Random Forest Classifier

In contrast to the RACT tree classifier, the Random Forest extension exhibited significant inconsistencies
(see Figure [2| or Figure (3| or Tables We traced these discrepancies in parts to a thread-safety
issue in the original code, which was not explicitly addressed by the authors. Specifically, we found that the
multi-threaded implementation of the Random Forest algorithm produced varying results on different runs,
while single-threaded runs yielded consistent outcomes.

Most of the figures presented in the original paper were generated using the Random Forest classifier, and
as such, our reproduction efforts showed significant deviations, particularly in the sensitivity analysis. The
differences were statistically significant, as confirmed by a binomial test comparing our results with those of
the original study. This is a critical finding, as the authors’ results were heavily reliant on the forest-based
models.

5.3 Random Forests

In contrast, the results for the Random Forest extension of RACT were less consistent.

Under review as submission to TMLR

FICO COMPAS Credit Bail
0.70 4
0.800 0750 é
i N
c 0.65 4 0.7
© s 4 N LIk
2 0725 -
- 0.60
0.55
T T T T T T T
W nu\.ln ();\l— R,-\L T W nu\.ln ();\I— RACT Vanilla OAF RACT Vanilla OAF RACT
(0.786) (0.773) (0.771) (0.725) (01.723) (01.722) (0.671) (01.573) (0.649) (0.749) (01.585) (0.742)
FICO COMPAS Credit Bail
045 Lo 04 mE———
o E —_— p—
5 0.6
] 0.90 4 0.98
2 06
- .
0.5 .= 0.96 4
04 — T T — T T — T T
Vanilla OAF RACT Vanilla ()M— R;\L T Vanilla OAF RACT Vanilla OAF RACT
(0.484) (0.597) (0.74) (0.876) (01.868) (0.928) (0.955) (rm (0.995) (0.151) (0.264) (0.637)

Figure 2: RACT Random forests in comparison with baselines, ours in red, authors in blue. Reproduction

and expansion of Figure 3 b) in [Kanamori et al| (2024))

Dataset Vanilla OAF RACT
FICO 0.366 =0.11 | 0.159 £+ 0.02 | 0.28 & 0.08
COMPAS | 0.1824+0.02 | 0.179+0.02 | 0.176 & 0.01
Credit 0.253 +0.02 | 0.001 +£0.0 | 0.163 4+ 0.04
Bail 0.58140.09 | 0.419+0.02 | 0.22 4 0.01

Dataset Vanilla OAF RACT
FICO 0.447 £ 0.05 | 0.407 £0.03 | 0.283 + 0.01
COMPAS | 0.298 £0.02 | 0.28 £0.01 | 0.232 & 0.02
Credit 0.293 +0.02 0.0+0.0 0.166 £ 0.04
Bail 0.763 +0.03 | 0.525+0.04 | 0.332 &+ 0.04

Table 2: Valid costs (our results on top). Reproduction and expansion of Table 2 in Kanamori et al.| (2024)

Dataset Vanilla OAF RACT
FICO 0.48 +0.01 0.459 +0.0 | 0.479 &+ 0.01
COMPAS | 0.45240.01 | 0.453 £0.01 | 0.451 £+ 0.01
Credit 0.521 +0.01 0.213+0.3 | 0.509 + 0.01
Bail 0.513 £+ 0.01 0.5+0.0 0.515 + 0.0
Dataset Vanilla OAF RACT
FICO 0.456 + 0.0 0.446 4+ 0.0 0.437 £+ 0.0
COMPAS 0.44 + 0.01 0.447 +0.01 0.453 £ 0.01
Credit 0.526 + 0.01 0.0+0.0 0.523 £+ 0.01
Bail 0.504 £+ 0.01 | 0.507 +=0.0 0.512 +0.01

Table 3: Plausibility (our results on top). Reproduction and expansion of Table 3 in [Kanamori et al.|(2024)

Under review as submission to TMLR

Dataset Vanilla OAF RACT
FICO 0.487 +0.16 | 0.822+0.04 | 0.619 & 0.13
COMPAS | 0.7454+0.05 | 0.749+0.05 | 0.762 & 0.05
Credit 0.542 4+ 0.08 1.0+0.0 0.838 £ 0.09
Bail 0.2124+0.09 | 0.413£0.03 | 0.722 & 0.03

Dataset Vanilla OAF RACT
FICO 0.316 = 0.04 | 0.502 +0.03 | 0.648 & 0.03
COMPAS | 0.599 +0.02 | 0.642+0.04 | 0.721 & 0.02
Credit 0.669 £ 0.05 1.0+0.0 0.964 + 0.03
Bail 0.17440.04 | 0.201 +0.04 | 0.649 & 0.03

Table 4: Budget validity (our results on top). Reproduction and expansion of Table 4 in [Kanamori et al.
(2024)

2 ! oo Vanilla (Our results)
o . o Vanilla + STD (Our results)
- ¥ P05t Tomp— N ey | Zeef e Vanilla (Authors)

AUC
AUC

Vanilla + STD (Authors)
OAF (Our results)

OAF + STD (Our results)
T OAF (Authors)

) OAF + STD (Authors)
—o— RACT (Our results)

2, RACT + STD (Our results)
o oo . —e— RACT (Authors)

RACT + STD (Authors)

Figure 3: Sensitivity analysis with respect to the trade-off parameter A\. Reproduction and expansion of
figure 4 in [Kanamori et al.| (2024])

5.4 Statistical Testing and Sensitivity Analysis

Because of the inconsistencies with the Random Forest classifier, we needed a different method to compare
the results of our experiments with the results of the authors. We were able to perform a statistical analysis
using the 10-fold cross-validation results from both our runs and the authors’. Our analysis showed that
the observed differences between the results of our experiments and those of the original study could not
be attributed solely to chance, as indicated by the significant p-values from the binomial test. This was
particularly evident in the sensitivity analysis (see Figure [3| where our results differed notably from the
original findings.

It is worth noting that, in cases where we observed differing results, our implementation often outperformed
the original results in terms of both predictive accuracy and recourse availability. While this suggests that
the RACT framework holds promise for real-world applications, it also underscores the potential for further
improvements to the implementation, particularly in the Random Forest version.

6 Challenges and Resolutions

Throughout our replication process, we encountered several practical challenges that required careful
problem-solving. One major issue was that the code repository did not include a list of required pack-
ages or their specific versions, making it difficult to recreate the original environment. To overcome this,
we reached out directly to the authors, who were very helpful in providing a complete pip freeze output
with all the necessary package details. Another challenge arose from the hardware differences: the original
experiments were conducted on a Mac running macOS Monterey with an Apple M1 Pro CPU and 32 GB of
memory—a configuration we did not have access to. As a workaround, we employed Windows Subsystem
for Linux (WSL) and leveraged the HPC | which operates on Linux, to run the experiments reliably. Lastly,

Under review as submission to TMLR

we faced a discrepancy regarding the depth of trees and forests. The paper mentioned a maximum tree
depth of 64, but the provided code used for the forest classifier much shallower maximum depths at 16. We
experimented with both settings and found that the full depth of 64 was achievable only on the HPC, which
used 128 GB of RAM (using only 64GB of memory lead to memory overflow), leading us to suspect that the
depth mentioned in the paper might be a typographical error. This suspicion is reinforced by the imprac-
ticality of running such deep trees in the forest classifier setting with 200 trees. Overall, these challenges
prompted us to adapt our approach, ensuring that our replication remained robust and our results reliable
despite the initial hurdles.

7 Conclusion

Despite addressing most of the identified issues, our experiments consistently produced results that deviated
from those reported in the original study. In fact, our outcomes were not only comparable to but in many
cases even better than the published results. We ran the original code and directly compared the outputs
across a wide range of hardware platforms. Interestingly, despite the different computing environments,
we consistently obtained similar results on our different hardware, which underscores the robustness of our
findings. However, they did not match the results presented in the paper.

Although our replication did not exactly mirror the reported outcomes, the fact that our approach often
delivered superior performance is encouraging. It demonstrates that their implementation is both reliable
and efficient, opening up promising avenues for further improvements and refinements in their proposed
framework.

References

R. Dominguez-Olmedo, A. H. Karimi, and B. Schélkopf. On the adversarial robustness of causal algorithmic
recourse. In Proceedings of the 39th International Conference on Machine Learning, pp. 5324-5342, 2022.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Yuichi Ike. Learning decision trees and forests with
algorithmic recourse. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

A Appendix

A.1 Python packages:

Paket Version
aif360 0.5.0
aiohttp 3.9.5
aiosignal 1.3.1
alembic 1.13.2
altair 5.3.0
anyio 3.6.2
appnope 0.1.3
apricot-select 0.6.1
argon2-cfhi 21.3.0
argon2-cffi-bindings 21.2.0
arrow 1.2.3
arviz 0.18.0
asttokens 2.2.1
async-timeout 4.0.3
attrs 22.2.0
backcall 0.2.0

Under review as submission to TMLR

beautifulsoup4 4.11.2
bleach 6.0.0
blinker 1.7.0
cachetools 5.3.3
cdt 0.6.0
certifi 2023.5.7
cfh 1.15.1
cfgv 3.3.1
charset-normalizer ~ 3.1.0
click 8.1.7
cloudpickle 3.0.0
colorlog 6.8.2
comin 0.1.2
cons 0.4.6
contourpy 1.0.7
cycler 0.11.0
Cython 0.29.35
debugpy 1.6.6
decorator 5.1.1
defusedxml 0.7.1
distlib 0.3.6
dm-tree 0.1.8
etuples 0.3.9
exceptiongroup 1.2.0
executing 1.2.0
factor-analyzer 0.4.1
fastjsonschema 2.16.3
filelock 3.10.2
folktables 0.0.12
fonttools 4.38.0
fqdn 1.5.1
frozenlist 14.1
fsspec 2024.6.0
future 0.18.3
gitdb 4.0.11
GitPython 3.1.43
GPUtil 1.4.0
GPy 1.13.2
GraKeL 0.1.9
graphviz 0.20.1
hbnetcdf 1.3.0
h5py 3.11.0
identify 2.5.21
idna 3.4
igraph 0.104
importlib-metadata 6.11.0
iniconfig 2.0.0
ipykernel 6.21.2
ipython 8.11.0
ipywidgets 8.0.4
isoduration 20.11.0
jedi 0.18.2
Jinja2 3.1.2
joblib 1.2.0

Under review as submission to TMLR

jsonpointer 2.3
jsonschema 4.17.3
jupyter 1.0.0
jupyter-console 6.6.2
jupyter.lient 8.0.3
jupyter.ore 5.2.0
kiwisolver 144
lightgbm 3.3.5
lightning-utilities 0.11.2
lingam 1.9.0
llvmlite 0.39.1
Mako 1.3.5
matplotlib 3.7.0
networkx 3.0
numba 0.56.4
numpy 1.23.4
pandas 1.5.3
plotly 5.20.0
protobuf 4.25.3
pytorch-lightning 2.2.5
scikit-learn 1.5.2
scipy 1.10.1
seaborn 0.12.2
shap 0.44.0
SQLAIchemy 2.0.31
statsmodels 0.13.5
streamlit 1.39.0
sympy 1.12
torch 2.0.1
xgboost 1.7.4
Zipp 3.18.1

10

	Introduction
	Reconstruction and Validation Process
	Scope of Reproducibility
	Method
	Datasets
	Experimental Setup
	Hardware and Software Environment
	Reproducibility Considerations
	Model Evaluation and Statistical Analysis

	Results
	RACT Tree Classifier
	RACT Random Forest Classifier
	Random Forests
	Statistical Testing and Sensitivity Analysis

	Challenges and Resolutions
	Conclusion
	Appendix
	Python packages:

