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Abstract

The continual learning (CL) ability is vital for001
deploying large language models (LLMs) in the002
dynamic world. Existing methods devise the003
learning module to acquire task-specific knowl-004
edge with parameter-efficient tuning (PET)005
block and the selection module to pick out the006
corresponding one for the testing input, aiming007
at handling the challenges of catastrophic for-008
getting and knowledge transfer in CL. However,009
these methods tend to address only one of the010
challenges, ignoring the potential of aligning011
the two modules to effectively address catas-012
trophic forgetting and knowledge transfer si-013
multaneously. To this end, we propose a novel014
Shared Attention Framework (SAPT), to align015
the PET learning and selection via the Shared016
Attentive Learning & Selection module. Ex-017
tensive Experiments on two CL benchmarks018
demonstrate the superiority of SAPT. Moreover,019
SAPT consistently demonstrates its superiority020
when we scale it to different model sizes (from021
770M to 13B), different model architectures022
(T5 and LLaMA-2) and unseen tasks.1023

1 Introduction024

Endowing the continual learning (CL) ability for025

large language models (LLMs) (Brown et al., 2020;026

Raffel et al., 2020; Touvron et al., 2023) to learn027

different tasks sequentially is crucial for their de-028

ployment in the real-world, which allows them to029

dynamically adapt to novel tasks and acquire ad-030

ditional knowledge (Luo et al., 2023; Zhai et al.,031

2023). However, this scenario presents two sig-032

nificant challenges: (1) Catastrophic Forgetting033

(CF), referring to the loss of previously acquired034

knowledge when learning new tasks (McCloskey035

and Cohen, 1989), and (2) Knowledge Transfer036

(KT), involving the efficient utilization of knowl-037

edge from past tasks to facilitate the learning of038

new ones (Ke and Liu, 2022).039

1Our data and codes could be found in supplementary files.
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Figure 1: The conceptual framework for the learning
and the selection module to achieve the continual learn-
ing of large language models based on PET blocks
when the new Dialogue Generation task arrives. Dashed
lines represent the working process of existing works
while solid lines are for that of our SAPT in this work.

Due to the heavy burden on computation re- 040

sources, recent attempts study the CL of LLMs 041

based on parameter-efficient tuning (PET) methods 042

(Hu et al., 2021; Ding et al., 2022). Inspired by 043

the parameter isolation CL methods (Rusu et al., 044

2016; Fernando et al., 2017), existing methods can 045

be conceptualized as two pivotal components work- 046

ing in the pipeline fashion. As shown in Figure 1 047

(dashed lines), when a new Dialogue Generation 048

task arrives, a private PET block is allocated by the 049

learning module to acquire task-specific knowledge 050

and then saved to the PET pool for the following 051

selection module to pick it out when a test sample 052

is coming. However, the designs of each module 053

in current works exhibit certain limitations in effec- 054

tively dealing with KT and CF challenges. 055

On one hand, the design of learning module is 056

supposed to function to facilitate KT among dif- 057

ferent tasks. Unfortunately, for existing works, the 058

learning of PET block is either performed seper- 059

ately within each single task (Wang et al., 2023b), 060

or kept orthogonal to each other to minimize inter- 061

ference (Wang et al., 2023a). Such isolation cuts off 062
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the potential transfer of acquired knowledge stored063

in the previous PET blocks and hinders them to064

assist the current acquisition of new knowledge.065

On the other hand, the selection module plays066

the pivotal roles in mitigating CF because only067

when it is capable of automatically selecting the068

PET block to which the current input belongs can069

the LLM backbone successfully accomplish the070

current task. However, it would make LLMs vul-071

nerable to CF by simply implementing such selec-072

tion process via the summation (Wang et al., 2023a)073

or concatenation (Razdaibiedina et al., 2023) of all074

existing PET blocks or selecting them from a fixed075

PET pool (Wang et al., 2022b).076

More importantly, they ignore the opportunity077

of aligning the two modules to address challenges078

of CF and KT simultaneously. The intuition is that079

(illustrated by solid lines in Figure 1), in order to080

facilitate KT in the learning of the new task, the081

learning module should rely on task correlations to082

leverage the most relevant knowledge in previous083

PET blocks. And such attentive process, expressed084

as shared attention in our study, could be natu-085

rally repeated by the selection module to resist CF086

through the combination of the corresponding PET087

blocks belonging to each testing input. As a result,088

the end-to-end alignment of these two modules is089

established via such shared attention.090

To this end, we propose a novel Shared Attention091

Framework for Parameter-efficient conTinual092

learning (SAPT) of large language models. In093

SAPT, the Shared Attentive Learning & Selection094

Module (SALS) is devised, where each training095

sample is navigated to utilize the optimal combi-096

nations of existing PET blocks for completing the097

current task. This is achieved through an attention098

weight obtained via instance-level shared attention099

operation. Then inputs in the testing time are capa-100

ble of following the same shared attention opera-101

tion to reach the attention weight and pick out the102

appropriate PET blocks accordingly.103

However, continually updating the SALS leads104

to the optimal attentive combination only for the105

newest task, resulting in the forgetting for that of106

previous ones. Thus, we introduce Attentive Re-107

flection Module (ARM) to help SALS recall what108

the shared attention operation of samples from pre-109

vious tasks should be originally performed through110

generative replay. And the success of ARM offers111

a new perspective for the utilization of generated112

pseudo samples instead of just blindly mixing them113

with samples of new tasks for multi-task training.114

We conduct extensive experiments to evalu- 115

ate SAPT on SuperNI (Wang et al., 2022a) and 116

Long Sequence (Razdaibiedina et al., 2023) bench- 117

marks. State-of-the-art performance is achieved by 118

SAPT compared with recent PET-based CL meth- 119

ods. Moreover, SAPT also exhibits superior per- 120

formance when we scale it to different model sizes 121

(from 770M to 13B), different model architectures, 122

including T5 (Raffel et al., 2020) (encoder-decoder) 123

and LLaMA-2 (Touvron et al., 2023) (decoder- 124

only) and previously unseen tasks. 125

The main contributions of this work are summa- 126

rized as follows: 127

• We propose a novel framework SAPT, includ- 128

ing SALS and ARM, to align the PET learning 129

and selection process to effectively handle the 130

CF and KT challenges simultaneously. 131

• A novel perspective for the utilization of 132

pseudo samples through generative replay is 133

offered in ARM to assist SALS in navigating 134

inputs to their corresponding PET blocks. 135

• Results of extensive experiments on the bench- 136

mark datasets demonstrate the effectiveness 137

of SAPT to mitigate CF and facilitate KT. 138

2 Related Works 139

2.1 Parameter-Efficient Tuning 140

Recently, parameter-efficient tuning (PET) (Ding 141

et al., 2022) has become an appealing research 142

topic which aims at minimizing computational re- 143

sources when adapting LLMs to specific tasks. Var- 144

ious approaches have emerged in this field, includ- 145

ing adapter (Houlsby et al., 2019), prompt-based 146

tuning (Lester et al., 2021; Li and Liang, 2021), Bit- 147

Fit (Zaken et al., 2022) and LoRA (Hu et al., 2021). 148

Since LoRA has exhibited superior performance 149

compared to many mainstream PET methods, our 150

experiments will primarily concentrate on LoRA 151

as a representative method. To ensure a fair com- 152

parison with previous prompt-based methods, we 153

also implement a prompt-version of SAPT. 154

2.2 Continual Learning for LLMs 155

Conventional Continual Learning (CL) are di- 156

vided into three categories. (1) Rehearsal-based 157

methods introduce the fixed memory to store real 158

samples (Lopez-Paz and Ranzato, 2017; Isele 159

and Cosgun, 2018; Rolnick et al., 2019; de Mas- 160

son D’Autume et al., 2019) or pseudo-generative 161

2



LLM

Attentive Learning Attentive Selection

Query
Projection

LLM

Shared Attentive Leraning & Selection Module

Task 

Task 

Weighted

Combination

Weighted

Combination

Attention

Fine-tune
Frozen

Attentive Reflection Module

Task 

Attention

Query
Projection

Attention Attention

Pseudo Pseudo

Figure 2: The overall architecture of our proposed SAPT. We assume that SAPT is currently at the time step 3 to
learn the task T3. (1) In the SALS, as illustrated by the solid lines, the resulting attention weight a3 of task T3 is first
obtained via the instance-level shared attention operation between the input x3 and PET key vectors {k1,k2,k3},
to perform weighted combination of all PET blocks {B1, B2, B3} for the attentive learning of the current task T3.
And dashed lines display the process of attentive selection, following the same process of shared attention to reach
the attention weight a3 and utilizing it to handle given inputs at the testing time. (2) In the ARM, for previous tasks
T1 and T2, the current attention weights of them (â1 and â2), are pulled back to their original states (a1 and a2),
with the introduction of generated pseudo samples x̂1 and x̂2.

examples (Shin et al., 2017; Sun et al., 2019; Su162

et al., 2019) of previous tasks. (2) Regularization-163

based methods impose constraints on the loss func-164

tion to penalize changes regarding the knowledge165

of previous tasks (Kirkpatrick et al., 2017; Li and166

Hoiem, 2017; Farajtabar et al., 2020). (3) Param-167

eter isolation methods dynamically expand model168

capacity or isolate existing model weights to miti-169

gate interference between new and old tasks (Rusu170

et al., 2016; Fernando et al., 2017).171

Continual Learning for LLMs with PET.172

Based on PET methods, current approaches for173

the CL of LLMs inherit the idea of parameter iso-174

lation, exhibiting a pipeline fashion to learn and175

select PET blocks for each task. However, most of176

them assume task-ids are available at testing time177

so that they directly use the oracle PET block of178

each task and just skip the selection process (Qin179

and Joty, 2022; Zhang et al., 2022; Qin et al., 2023).180

These lines of works simplify the problems of CL181

and could not be applied for real-world applica-182

tion of LLMs where the task-ids are unavailable.183

Thus, another branches of attempts focus on the184

more practical settings where the process of PET185

selection must be involved due to the unavailable186

task-ids during testing time. However, they are187

limited in effectively dealing with CF and KT chal-188

lenges. For the PET learning, Wang et al. (2023b)189

allocate private prompt for each task and Wang190

et al. (2023a); Smith et al. (2023) constrain the 191

learning of PET block to keep orthogonal. They re- 192

strict the knowledge transfer among different tasks. 193

And simply implementing the PET selection via 194

the summation (Wang et al., 2023a) or concatena- 195

tion (Razdaibiedina et al., 2023) of all existing PET 196

blocks or select them from a fixed pool (Wang et al., 197

2022b) make LLMs vulnerable to CF. 198

Our proposed SAPT stands out from them in that 199

we attempt to align the learning and selection of 200

PET blocks so that CF and KT can be effectively 201

addressed simultaneously. 202

3 Problem Definition and Setup 203

Continual learning seeks to address challenges 204

within ongoing sequences. Formally, a sequence 205

of tasks {T1, . . . , TT } arrive in a streaming fashion. 206

Each task Tt =
{(

xit, y
i
t

)}nt

i=1
contains a separate 207

target dataset with the size of nt. At any time step 208

t, the model not only needs to adapt to the t-th task, 209

but also keep performances on all previous tasks. 210

In this study, we delve into the more challeng- 211

ing and practical settings, addressing: (1) Di- 212

verse task types: Unlike previous approaches that 213

merely focus on classification problems (Wang 214

et al., 2023a,b), the model would encounter a se- 215

quence of tasks encompassing various types, such 216

as dialogue generation, information extraction, etc. 217

(2) Absence of task identifiers: During the test- 218
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ing phase, the model confronts samples without219

knowing which specific task they belong to.220

4 Methodology221

4.1 Overview of the Framework222

We propose SAPT, a novel framework for the CL223

of LLMs, offering an effective solution to address224

the challenges of catastrophic forgetting (CF) and225

knowledge transfer (KT) simultaneously. The over-226

all architecture of SAPT is illustrated in Figure 2,227

comprising two key components: (1) Shared At-228

tentive Learning & Selection Module (SALS) and229

(2) Attentive Replay Module (ARM). In SALS, at-230

tentive learning (solid lines) and attentive selection231

(dashed lines) are aligned through the shared atten-232

tion operation. Then in ARM, we assist SALS in233

recalling the exact attentions of inputs from previ-234

ous tasks with generated pseudo samples.235

4.2 Shared Attentive Learning & Selection236

Module237

We devise the SALS module to align the learning238

and selection processes for PET blocks, where chal-239

lenges of catastrophic forgetting and knowledge240

transfer could be effectively addressed.241

PET Methods. We adopt two representative PET242

methods, Prompt Tuning (Lester et al., 2021) and243

LoRA (Hu et al., 2021) in SAPT. The additional244

trainable parameters introduced by them are re-245

ferred to as PET blocks. Please refer to Appendix246

A for more details of the two PET methods.247

Attentive Learning. In order to transfer the248

knowledge acquired from previous tasks, when the249

t-th task arrives, parameters of all previous PET250

blocks {B1, B2, . . . , Bt−1} and the current one Bt251

are aggregated via weighted combination for the at-252

tentive learning of task Tt. Specifically, we allocate253

a key vector ki for each PET block Bi (i ∈ [1, t])254

and calculate instance-level input-key attentions.2255

Such input-key attention ensures the process of at-256

tentive learning to be PET-agnostic and compatible257

with both prompt tuning and LoRA in SAPT.258

The process of shared attention begins when the259

j-th input of the current t-th task passes through the260

embedding layer of the LLM backbone to obtain261

Ej
t (we will omit the superscripts j for simplicity).262

Since Et ∈ Rm×d and each key vector ki ∈ Rd263

are of different sequence length, we first perform264

2 This process is called shared attention because it will be
repeated by the following attentive selection.

the max-pool operation on the length dimension 265

of Et, and obtain et ∈ Rd. Then et is fed to a 266

sub-network to project it as a query into the spaces 267

of the key vectors for better feature alignment. This 268

consists of down and up projection: 269

hdown
t = W down(et)

h
up
t = W up(NonLinear(hdown

t ))

qt = LayerNorm(h
up
t )

(1) 270

where W down ∈ Rdp×d and W up ∈ Rd×dp are 271

learnable projection parameters. Following Asai 272

et al. (2022), we use SiLU (Elfwing et al., 2018) 273

for the non-linear and apply Layer Norm (Ba et al., 274

2016) on h
up
t to stabilize the learning process. 275

Then, the attention weights at = 276

{a1, a2, . . . , at} are calculated by the prod- 277

uct between qt and each ki with softmax: 278

279

ai =
eqtki/T∑t
i=1 e

qtki/T
(2) 280

where T is a temperature factor to avoid making 281

the attention weights over-confident and hindering 282

the knowledge transfer. And the parameters of 283

aggregated PET blocks can be obtained: 284

θB =
t∑

i=1

ai θBi (3) 285

where θBi is the parameters of PET block Bi. 286
The training loss for the attentive learning of the 287

current task Tt is: 288

Ltask = −
∑

(xt,yt)∈Tt

logP
(
yt | xt; θm, θB, θproj, θk

)
(4) 289

where θm, θB, θproj and θk are parameters of the 290

LLM backbone, the aggregated PET block, the 291

query projection layer and the set of all key vectors, 292

respectively. And only those parameters belongs to 293

the current t-th task are updated during the training, 294

including θBt , θproj and θkt . 295

Attentive Selection. During the inference phase, 296

when testing data from different tasks arrives, the 297

correct PET blocks are supposed to be automati- 298

cally selected to execute the corresponding tasks. 299

Within the preceding attentive learning, each sam- 300

ple has already been guided to the optimal com- 301

binations of existing PET blocks through shared 302

attention. Thus, the attentive selection process is 303

inherently supposed to follow the same attention 304

operation to pick out the relevant PET blocks for 305

the testing input accordingly. To be more specific, 306

attentive selection involves the same computation 307

process of Equations (1) - (3). 308
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Shared Attentive Learning & Selection. In309

summary, the shared attention succeeds to align310

the attentive learning and selection of PET blocks,311

leading to the shared attentive learning & selection312

that is of the same computation process and exhibit-313

ing promising insights to deal with the CF and KT314

challenges simultaneously.315

4.3 Attentive Reflection Module316

With the sequential training of different tasks, the317

query projection layer in Equation (1) is continu-318

ally updated. The introduction of the Attentive Re-319

flection Module ensures that inputs from previous320

tasks can still correctly perform the corresponding321

shared attention to identify the combination of PET322

blocks specific to each of them. To achieve this,323

we employ generative replay to constrain the pro-324

jection layer with pseudo-samples. This approach325

ensures that no real samples are involved, thereby326

saving the cost associated with maintaining a fixed327

memory (Sun et al., 2019; Qin and Joty, 2022).328

At each time step t, a PET block Bref
t is trained329

to reconstruct input samples of task Tt. For each330

sample (input-output pair), only the input part is331

generated conditioned on an initial token [Gen].332

Thus, we have
{
Bref

1 , Bref
2 , . . . , Bref

t

}
to obtain the333

generated pseudo-samples {G1, G2, . . . , Gt} (gen-334

erated examples could be found in Appendix E.1).335

To assist the query projection layer to reflect336

or recall the correct shared attention for samples337

from previous tasks at time step t, every instance338

x̂i from Gi is fed to the query projection layer and339

performs input-key attention operation following340

Equation (1) - (2) to obtain the current attention341

weight âi. To pull âi to what it should originally342

be, we minimize a KL divergence loss:343

LKL =
t−1∑
i=1

n̂i∑
j=1

DKL(âi||ai) (5)344

where n̂i is the number of pseudo samples from Ti.345

Here, ai is the average attention weights of the test346

samples from Ti, representing the overall attention347

weight of it. Notably, ai is preserved immediately348

after the completion of learning Ti, and the position349

of (i, t] in ai is padded with 0 when it participates350

the calculation in Equation (5).351

Finally, we jointly minimize the task loss and352

the KL loss in the multi-task learning fashion:353

L = Ltask + λLKL (6)354

where λ is a hyper-parameter that functions to bal-355

ance the two parts.356

5 Experiments 357

5.1 Dataset and Evaluation Metrics 358

5.1.1 Dataset 359

SuperNI Benchmark (Wang et al., 2022a): a 360

benchmark of diverse NLP tasks and their expert- 361

written instructions, enabling rigorous benchmark- 362

ing of the more practical settings for the CL of 363

LLMs. Specifically, in the types of dialogue gen- 364

eration, information extraction, question answer- 365

ing, summarization, and sentiment analysis, we 366

select three tasks for each type, forming a sequence 367

comprising a total of 15 tasks to evaluate various 368

methods. For each task, 1,000 instances from the 369

dataset are randomly sampled for training and 100 370

instances for validation and testing. 371

Long Sequence Benchmark (Razdaibiedina 372

et al., 2023): a continual learning benchmark of 373

15 classification datasets. Following Razdaibiedina 374

et al. (2023); Wang et al. (2023a), we select 1,000 375

random samples for training each task and hold out 376

500 samples per class for validation and testing. 377

We explore two different task orders for each 378

benchmark. Please refer to Appendix B for more 379

details about the tasks and orders. 380

5.1.2 Metrics 381

Let ai,j be the testing performance (Accuracy for 382

classification task and Rouge-L (Lin, 2004) for 383

others) on the i-th task after training on j-th task, 384

the metrics for evaluating are: 385

(1) Average Performance (AP) (Chaudhry et al., 386

2018). The average performance of all tasks after 387

training on the last task, i.e., AT = 1
T
∑T

t=1 aT ,t; 388

(2) Forgetting Rate (F.Ra) (Chaudhry et al., 389

2018) measures how much knowledge has been 390

forgotten across the first T − 1 tasks, i.e., FT = 391
1

T −1

∑T −1
t=1 (at,t − aT ,t); 392

(3) Forward Transfer (FWT) (Lopez-Paz and 393

Ranzato, 2017) measures how much knowledge 394

from previous tasks transfers to a new task, i.e., 395

FWTT = 1
T
∑T

t=1(at,t − a0,t), where a0,t refers 396

to the performance of training task t individually; 397

(4) Backward Transfer (BWT) (Ke and Liu, 398

2022) measures how much the learning of subse- 399

quent tasks influences the performance of a learned 400

task, i.e., BWTT = 1
T −1

∑T −1
t=1 (aT ,t − at,t). 401

5.2 Baselines and Comparison Models 402

We evaluate SAPT against the following PET- 403

based continual learning baseline methods: (1) Se- 404

qLoRA: sequentially trains the LoRA on the task 405
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SuperNI Benchmark Long Sequence Benchmark
AP↑ F.Ra↓ FWT↑ BWT↑ AP↑ F.Ra↓ FWT↑ BWT↑

SeqLoRA 6.43 33.39 -13.58 -30.94 9.72 78.61 0.81 -73.37
Replay 35.37 16.92 -1.35 -15.79 71.28 13.05 1.28 -12.18
L2P 12.73 11.87 -19.14 -7.95 57.98 22.49 1.36 -16.63
LFPT5 34.37 15.80 -0.46 -14.47 67.01 13.89 2.48 -12.80
ProgPrompt 3.34 35.57 -3.29 -33.18 7.98 71.55 -2.63 -66.71
EPI - - - - 75.15 1.61 -0.77 -1.42
O-LoRA 25.89 26.37 -0.14 -24.59 69.24 7.00 -8.15 -4.05

SAPT-Prompt 41.11 1.32 1.95 -0.65 79.14 1.68 3.29 -1.48
SAPT-LoRA 51.54 0.91 1.88 -0.57 82.02 1.50 1.86 -1.25

Table 1: The overall results on two continual learning benchmarks with T5-Large model. Performance of continual
learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported after
training on the last task. All results are averaged over two different orders of each benchmark.

orders. (2) Replay: replays real samples from old406

tasks when learning new tasks to avoid forgetting.407

(3) L2P (Wang et al., 2022b): uses the input to dy-408

namically select and update prompts from a fixed409

prompt pool. (4) LFPT5 (Qin and Joty, 2022):410

continuously trains a soft prompt for each task with411

generative replay and an auxiliary loss. (5) Prog-412

Prompt (Razdaibiedina et al., 2023): sequentially413

concatenates previous learned prompts to the cur-414

rent one during the training and testing time. (6)415

EPI (Wang et al., 2023b): trains prompts for each416

task and selects them via the distance between the417

input and distributions formed by labels of differ-418

ent classification tasks. (7) O-LoRA (Wang et al.,419

2023a): learns tasks in different LoRA subspaces420

that are kept orthogonal to each other and sums all421

LoRA weights up at testing time.422

5.3 Implementation Details423

SAPT is a model- and PET-agnostic CL method424

that is compatible with any transformer-based425

LLM. In our experiments, all methods are per-426

formed with instruction tuning (Wei et al., 2021;427

Ouyang et al., 2022) to leverage the task instruc-428

tion provided in the two benchmarks. To ensure429

a fair comparison with recent works, we imple-430

ment SAPT with both prompt tuning and LoRA431

based on the pre-trained encoder-decoder T5-large432

model (Raffel et al., 2020). We also scale SAPT433

to the backbone with larger model size (up to 11B434

and 13B) and the decoder-only LLaMA-2 model435

(Touvron et al., 2023). For the baselines, since436

they only report the AP metric in their original pa-437

pers, we carefully re-implement them with their438

official codes to report metrics of F.Ra, FWT and439

BWT, providing a thorough insight of how existing440

methods deal with CF and KT. For more detailed441

settings, please refer to the Appendix C. 442

6 Results and Analysis 443

6.1 Overall Results 444

Table 1 demonstrates the performance comparison 445

of SAPT and recent PET-based CL baselines on 446

two benchmarks. All results are averaged over the 447

two different orders of each benchmark. Detailed 448

results of each order and each task within a specific 449

order are provided in Appendix D. 450

Our SAPT could effectively deal with the chal- 451

lenges of CF and KT simultaneously. Com- 452

pared to both prompt-based methods (SAPT- 453

Prompt v.s LFPT5/ProgPrompt/EPI) and LoRA- 454

based methods (SAPT-LoRA v.s Replay/O-LoRA), 455

SAPT performs better in addressing the two critical 456

challenges, CF (highest AP and lowest F.Ra) and 457

KT (highest FWT and BWT) when learning dif- 458

ferent tasks sequentially. Moreover, for the replay- 459

based methods, the better performance of SAPT 460

over Replay and LFPT5 offers a new perspective 461

for the utilization of pseudo samples instead of just 462

blindly mixing them with samples of new tasks 463

for joint training. Please refer to Appendix E.2 for 464

more detailed results and analysis regarding the 465

utilization of replayed samples. 466

The alignment of learning and selection of PET 467

is better than previous pipeline fashion. SAPT 468

outperforms the state-of-the-art pipeline method, 469

EPI, which verifies the effectiveness of aligning 470

the learning and selection with a shared attention 471

weight. Since EPI is specifically designed for the 472

CL of classification tasks where the selection of 473

PET is based on the label information of each task, 474

it can not be directly applied to the SuperNI bench- 475

mark covering various types of tasks other than 476
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SuperNI Benchmark Long Sequence Benchmark
AP↑ F.Ra↓ FWT↑ BWT↑ AP↑ F.Ra↓ FWT↑ BWT↑

SAPT-LoRA 51.54 0.91 1.88 -0.57 82.02 1.50 1.86 -1.25

– ARM 11.12 42.83 0.70 -40.44 10.18 78.45 1.93 -73.22
+ Replay 45.41 7.70 1.26 -6.79 76.93 6.86 1.21 -6.41
– Alignment 45.90 2.98 -2.42 -2.55 77.61 2.83 -3.92 -2.48
– DA 44.36 4.16 -2.95 -3.56 67.81 8.24 -8.60 -7.59

Table 2: Results of ablation study on two benchmarks. ARM, Alignment and DA refer to the attentive reflection
module, the alignment of the learning and selection in SAPT and shared attentive learning & selection, respectively.
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Figure 3: Visualization on shared attention of SAPT-
Prompt on the Long Sequence benchmark during the
training for each task (left) and testing for all tasks after
the training of the last task (right).

classification. This manifests that SAPT is more477

practical to the real-world applications of LLMs.478

In addition, the best results of SAPT in terms of479

AP and F.Ra demonstrate the great potential that480

such attention-guided soft selection of PET are481

more resistant to CF, compared with previous meth-482

ods of concatenation (ProgPrompt), summation (O-483

LoRA) and top-1 selection (EPI).484

6.2 Visualization on Shared Attention485

Figure 3 displays the heat maps for shared atten-486

tion during the training and testing time. We can487

observe that: (1) the learning and selection pro-488

cesses of PET blocks are exactly aligned that the489

two heatmaps nearly have the same layout. (2)490

KT do happens in the attentive learning process to491

assist SAPT acquire new knowledge. These fur-492

ther verify the effectiveness of SAPT to deal with493

CF and KT. Please refer to Appendix F for more494

discussions and visualization results.495

6.3 Ablation Study496

We conduct ablation studies to verify the effective-497

ness of different modules proposed in SAPT-LoRA.498

Results are shown in Table 2.499

Effect of Attentive Reflection. After removing500

the attentive reflection module (“– ARM”, imple-501

mented by discarding the LKL), the significant de-502

cline highlights its crucial role in assisting different 503

input samples to recall the correct shared attention 504

for the corresponding PET blocks they should orig- 505

inally combine. When replacing ARM with naive 506

Replay (“+ Replay”), the decline of F.Ra further 507

verifies our claim that ARM offers a more effective 508

solution to apply pseudo samples. 509

Effect of the Alignment. We transform the align- 510

ment of PET learning and selection in SAPT into 511

an independent format. This involves initially per- 512

forming attentive learning to obtain weights that 513

represent the combination of existing PET blocks. 514

Subsequently, a separate PET selector is trained 515

with these weights and generated pseudo samples. 516

The comprehensive decline in model performance 517

validates our claim that the learning and selection 518

processes of PET are inherently capable of aligning 519

together to collaborate seamlessly. 520

Effect of Shared Attentive Learning & Selection. 521

Furthermore, we remove the shared attentive mech- 522

anism based on the above pipeline settings, where 523

each PET block is learned within a single task and 524

the selector are required to pick the most confi- 525

dent top-1 block for inference. The model’s per- 526

formance has suffered significantly, especially in 527

terms of knowledge transfer. This demonstrates 528

that leveraging acquired knowledge comprehen- 529

sively, whether in PET learning or selection, is 530

crucial for effectively addressing CF and KT. 531

6.4 Power of Scale 532

Scale to larger backbone. We empirically ana- 533

lyze how increasing the backbone T5 size affects 534

the performance of SAPT. Figure 4 displays the 535

performance of SAPT, O-LoRA and Replay in 536

terms of AP, F.Ra and FWT, based on the ascend- 537

ing backbone sizes, Large (770M), XL (3B) and 538

XXL (11B). Overall, with the increased sizes of 539

the backbone model, SAPT could always demon- 540

strate superior performance over baseline models 541
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Figure 4: Performance of SAPT and baseline methods based on different size of T5-model in terms of performance
of continual learning, forgetting rate and forward transfer.

7B 13B
0

10

20

30

40

50

Av
er

ag
e 

Pe
rfo

rm
an

ce
 (A

P)

7B 13B
0

5

10

15

20

25

Fo
rg

et
tin

g 
Ra

te
 (F

.R
a)

SAPT-LoRA (T5-11B)
SAPT-LoRA (T5-3B)

SAPT-LoRA
Replay

O-LoRA

7B 13B
6

4

2

0

2

Fo
rw

ar
d 

Tr
an

sf
er

 (F
W

T)

Figure 5: Comparison of SAPT and baselines based on
different architectures of LLM backbones, including T5
(encoder-decoder) and LLaMA-2 (decoder-only).

in resisting catastrophic forgetting and facilitating542

knowledge transfer. It is worth noting that even543

with the largest backbone model, O-LoRA (11B)544

still falls short in terms of Average Performance545

compared to the smallest version of SAPT-LoRA546

(770M). This further underscores the crucial impor-547

tance of selecting the pertinent PET blocks for each548

input sample in real-world application scenarios.549

Scale to different architectures. The results of550

SAPT and baseline methods on the SuperNI Bench-551

mark based on different sizes of T5 and LLaMA-2552

are shown in Figure 5. It can be observed that553

SAPT is capable of effectively mitigating CF and554

promoting KT across different model architectures.555

Moreover, the average performance improves with556

the enhancement of the model’s basic capabilities557

(LLaMA-2 > T5). This further demonstrates the558

generality of our proposed SAPT.559

Scale to unseen tasks. We further select 3 tasks560

from each one of the above task category to as-561

Unseen Tasks Avg.Dialog IE QA Sum SA

T5-ZS 7.49 6.70 4.28 12.14 4.54 7.03
O-LoRA 4.39 9.89 25.38 8.26 50.41 19.67
LFPT5 6.96 35.32 35.00 13.26 21.51 22.41

SAPT-LoRA 11.56 29.66 38.04 13.77 50.62 28.73

Table 3: Results on unseen tasks based on the T5-Large
backbone model. We report the average Rouge-L of the
3 tasks under each category.

sess the model’s cross-task generalization ability. 562

This is also a crucial dimension for evaluating CL 563

algorithms. Table 3 shows the results. T5-ZS rep- 564

resent the zero-shot approaches for task adapta- 565

tion, respectively. SAPT yields the best perfor- 566

mances, which can be attributed to its superiority 567

in effectively combining acquired knowledge to 568

address novel tasks. This suggests that we should 569

actively promote knowledge transfer between dif- 570

ferent tasks during the process of CL. 571

7 Conclusion 572

In this paper, we propose SAPT, a novel frame- 573

work for the parameter-efficient continual learning 574

of LLMs. In SAPT, we ingeniously align the two 575

key processes of parameter-efficient block learning 576

and selection through the shared attention, allowing 577

it to effectively alleviate catastrophic forgetting and 578

promote knowledge transfer simultaneously. More 579

importantly, SAPT works under the practical set- 580

tings where no task-ids are provided for the inputs 581

to select their corresponding parameters. Experi- 582

mental results also demonstrate the applicability of 583

SAPT across different parameter-efficient tuning 584

methods, models of varying scales and architec- 585

tures, highlighting its universality. 586
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8 Limitations587

There are several limitations to consider for future588

directions of continual learning of large language589

models. Firstly, when the learning sequence scales590

to hundreds of tasks, continually expanding the591

PET pool to allocate a PET block for each one592

of them would lead to large computation and stor-593

age costs. Thus, how to prune and merge similar594

PET blocks in the continual learning process can595

be an interesting direction to explore. Secondly,596

although SAPT exhibits the best performance of597

Backward Transfer (BWT), it still fails to allow598

subsequent tasks to impose the positive impacts599

on the learned ones. This could be a critical direc-600

tion to further explore more advanced CL methods.601

Finally, even though our approach do not depend602

on identifying task-ids during the testing phase, it603

still necessitates the identification of tasks during604

training to establish distinct PET parameters for605

each task. Investigating techniques for training that606

is independent of task identification could prove to607

be a promising avenue for future research, which608

could favor the application of continual learning609

upon on the online streams of data.610
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A Parameter-Efficient Tuning Methods1005

We adopt two representative PET methods, Prompt1006

Tuning (Lester et al., 2021) and LoRA (Hu et al.,1007

2021) in our proposed SAPT, which are referred to1008

as PET blocks in this study.1009

In prompt tuning, a series of virtual tokens,1010

called soft prompt P is prepended to the input1011

text x, while keeping the LLM parameters frozen.1012

In this case, during the training on the down-1013

stream tasks, gradient updates are preformed on1014

the prompt parameters independently.1015

In LoRA, the pre-trained weight matrix of LLMs1016

is updated with a low-rank decomposition. For a1017

linear layer h = W0x, the forward pass with LoRA1018

is modified to be:1019

h = W0x+BAx (7)1020

where W0 ∈ Rd×k, B ∈ Rd×r, A ∈ Rr×k, with1021

the rank r ≪ min(d, k). The pre-trained weight1022

matrix W0 remains fixed during training, while A1023

and B contain trainable parameters.1024

B Dataset Details1025

B.1 Datasets1026

Table 4 & 5 show details of the datasets we used1027

for our experiments, along with their evaluation1028

metrics. Overall, in SuperNI, we choose 3 tasks1029

from dialogue generation (Dialog) (Zhang et al.,1030

2018a; Zang et al., 2020; Peskov et al., 2020), in-1031

formation extraction (IE) (Santus et al., 2015; Nye1032

et al., 2018; Mostafazadeh et al., 2020), question1033

answering (QA) (Dasigi et al., 2019; Talmor et al.,1034

2019), summarization (Sum) (Narayan et al., 2018;1035

Gliwa et al., 2019; Kim et al., 2019) and sentiment1036

analysis (SA) (Socher et al., 2013; Saravia et al.,1037

2018), respectively.1038

For the Long Sequence benchmark, this includes1039

five tasks from the standard CL benchmark (AG1040

News, Amazon reviews, Yelp reviews, DBpedia1041

and Yahoo Answers) (Zhang et al., 2015), four1042

from GLUE benchmark (MNLI, QQP, RTE, SST2)1043

(Wang et al., 2018), five from SuperGLUE bench-1044

mark (WiC, CB, COPA, MultiRC, BoolQ) (Wang1045

et al., 2019), and the IMDB movie reviews dataset1046

(Maas et al., 2011).1047

And unseen tasks from the SuperNI benchmark1048

are displayed Table 6. They also from the five cate-1049

gories of Dialog (Wei et al., 2018; Cho and May,1050

2020; Aliannejadi et al., 2021), IE (Mausam et al.,1051

2012; Zlabinger et al., 2020; Radev et al., 2020),1052

QA (Levy et al., 2017; Zhang et al., 2018b; Min 1053

et al., 2020), Sum (Henderson et al., 2014; Syed 1054

et al., 2020; Hasan et al., 2021) and SA (Sheng and 1055

Uthus, 2020; Lowphansirikul et al., 2020). 1056

B.2 Task Sequence Orders 1057

We report 4 different task orders used for our ex- 1058

periments in Table 7. 1059

C Implementation Details 1060

Our experiments are implemented with PyTorch 1061

(Paszke et al., 2019) and Transformer library (Wolf 1062

et al., 2020). The T5-Large is trained on a sin- 1063

gle NVIDIA Tesla A800 GPU and the larger 1064

backbones T5-XL, T5-XXL, LLaMA-2-7B and 1065

LLaMA-2-13B are performed on 4 NVIDIA Tesla 1066

A800 using DeepSpeed repository. 1067

For our prompt-based methods, the length of 1068

prompts is set to 10. Following Lester et al. (2021), 1069

they are initialized from sampled vocabulary of the 1070

backbone model and trained using the Adafactor 1071

optimizer. On the SuperNI benchmark, we train 1072

SAPT-Prompt with 100 epochs, the constant learn- 1073

ing rate of 3e-2 and the batchsize of 32 per GPU. As 1074

for the hyper-parameter λ in Equation (6), it func- 1075

tions to balance the share attention in the process 1076

of attentive learning for the newest task and that in 1077

the process of attentive reflection for previous tasks. 1078

The larger λ means that the attentive reflection con- 1079

tributes more to assist SALS in recalling the shared 1080

attention of previous tasks. However, excessive λ 1081

can impair attentive learning for the current task, 1082

thereby weakening knowledge transfer. Here, λ is 1083

set to 1, which is the relatively optimal balance of 1084

the attentive learning and reflection. The hidden 1085

dimension dp of the query projection layer is 100. 1086

On the Long Sequence benchmark, the model is 1087

trained for 10 epochs with a hierarchical learning 1088

rate, 3e-1 for prompts and 1e-2 for the query pro- 1089

jection layer. We always keep the total batchsize to 1090

32. And the λ and dp for order3 and order4 is (1.5, 1091

200) and (1.3, 150), respectively. The attention 1092

temperature in Equation (2) is d× exp(1), where 1093

d is the LLM backbone dimension size. 1094

For our LoRA-based methods, we use AdamW 1095

optimizer to train the model with the learning rate 1096

of 3e-4 for T5-Large, 1e-4 for those larger T5-XL 1097

and T5-XXL models, 5e-5 for LLaMA-2-7B and 1098

1e-5 for LLaMA-2-13B. For T5 series, the batch 1099

size is set to 32 per GPU. On the SuperNI bench- 1100

mark, the low rank r, λ and dp are 4, 0.5 and 100, 1101
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while they are set to 8, 0.1 and 100 for the Long1102

Sequence benchmark. For LLaMA-2 family, and1103

the batch size is 32 in total. The low rank r, λ and1104

dp are both 4, 2 and 100 for the Superni and Long1105

Sequence benchmarks. The attention temperature1106

in Equation (2) is sqrt(d), where d is the LLM1107

backbone dimension size.1108

For the generative replay to obtain pseudo sam-1109

ples for our Attentive Replay Module, the prompt1110

length is 300 and is trained for 80 epochs utilizing1111

Adafactor with learning rate of 0.5. And in LoRA,1112

the low-rank r is 8. We train it with AdamW with1113

the learning rate of 0.001 for 5k steps. Batch size1114

is set to 16 for both methods.1115

Further, we carefully evaluate the official imple-1116

mentations of all baselines, in order to make the1117

comparison as fair as possible. We strictly follow1118

the hyper-parameter settings in their original code,1119

where the prompt size is all set to 10 (except that1120

for LFPT5 of 300) and the LoRA rank is set to 8. If1121

this could not reach the expected performance, we1122

carry out the hyper-parameter search of the learn-1123

ing rate and bachsize for them. Following Sun1124

et al. (2019); Qin and Joty (2022), the volume of re-1125

play samples is 0.02 of the original training set for1126

SAPT and all replay baseline methods (Replay and1127

LFPT5). Please refer to Appendix E.2 for deeper1128

analysis for the volume of pseudo samples. All the1129

methods are evaluated for 3 random runs.1130

D Fine-grained Results for the Main1131

Experiments1132

We report the results of each task order on the two1133

benchmark in Table 8 and Table 9. And results1134

of the average performance at each time step is1135

displayed in Figure 8. Overall, the our proposed1136

SAPT demonstrates excellent capabilities in ad-1137

dressing CF and KT.1138

E More Results and Analysis on1139

Generated Pseudo-Samples1140

E.1 Examples of Pseudo Samples1141

Table 10 shows several pseudo samples generated1142

by SAPT for the SuperNI an Long Sequence Bench-1143

mark. Since there are tasks instructions in these1144

two benchmarks, the input-output format of real1145

samples is consists of three elements: [INS] task1146

instruction, [IN] task input and [OUT] task out-1147

put. And we only generate the input part, [INS]1148

and [IN], to perform attentive reflection in SAPT,1149

which is a novel ways of pseudo-samples usage1150

and greatly different from previous works where 1151

complete pseudo samples are generated and mixed 1152

with the current task data for multi-task learning. 1153

We can see that SAPT can indeed generate high- 1154

quality pseudo samples to assist samples from pre- 1155

vious tasks in correctly identify the combination of 1156

PET blocks specific to each of them. 1157

E.2 Different Volumes and Types of Replayed 1158

Samples 1159

In SAPT, the Attentive Reflection Module (ARM) 1160

provides a novel perspective for utilizing generated 1161

pseudo-data. We conduct additional experiments 1162

to analyze the impact of using varying scales of 1163

pseudo-data and real data on SAPT and the base- 1164

line models Replay and LFPT5. The results are 1165

shown in Figure 6. We have the following two ob- 1166

servations: (1) Regardless of whether real data or 1167

pseudo-data is used, SAPT demonstrates compu- 1168

tational efficiency during replay, showing superior 1169

performance even with the minimum replay scale 1170

[0.02] compared to the maximum replay scale [1] 1171

of LFPT5 and Replay. It is worth mentioning that 1172

when the replay data volume of Replay is 1, it corre- 1173

sponds to the setting of multi-task learning, which 1174

is commonly considered as the upper bound of con- 1175

tinual learning. SAPT is able to surpass this upper 1176

bound, demonstrating its ability to flexibly handle 1177

different inputs, enabling them to be processed by 1178

corresponding parameters. (2) For SAPT, there is 1179

no significant difference in performance between 1180

using real data and pseudo-data. This firstly indi- 1181

cates the reliability of the pseudo-data we generated 1182

and the sufficient robustness of our proposed ARM, 1183

which can utilize replay data of different qualities 1184

to accomplish reflection on shared attention. 1185

F Visualization on Shared Attention 1186

We demonstrate the visualization on shared atten- 1187

tion operation of SAPT-Prompt on the SuperNI 1188

(Figure 9) and the Long Sequence (Figure 10) 1189

Benchmark, and the SAPT-LoRA on the SuperNI 1190

(Figure 11) and the Long Sequence (Figure 12) 1191

Benchmark. And the resulting attention weights is 1192

obtained through the average attention weights of 1193

the testing samples from a specific task. 1194

Overall, whether based on Prompt or LoRA, 1195

SAPT can maintain the alignment for the learn- 1196

ing and selection process of PET blocks through 1197

shared attention on both benchmarks. Even as the 1198

task sequences become longer, it does not affect 1199
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Figure 7: Comparison of SAPT and baselines based on
different architectures of LLM backbones on the Long
Sequence benchmark, including T5 (encoder-decoder)
and LLaMA-2 (decoder-only).

the ability to identify suitable combinations of PET1200

modules. This directly demonstrates its effective-1201

ness in addressing CF and KT.1202

Furthermore, both methods demonstrate varying1203

degrees of knowledge transfer on the two bench-1204

marks. Overall, the PET blocks in the current task1205

contribute more significantly, as indicated by the1206

darkest color of the diagonal elements. However,1207

there are also interesting observations where the1208

PET blocks for other tasks have weights higher1209

than the current task, surpassing the higher simi-1210

larity between these tasks (yelp & amazon, mnli1211

& cb). Additionally, the knowledge transfer of1212

Prompt appears slightly more pronounced than1213

LoRA, but overall, LoRA outperforms Prompt in1214

terms of the overall performance. This may be1215

attributed to LoRA’s superior representation and1216

learning of task-specific knowledge in the low-rank1217

space, aligning with the conclusions in previous1218

works (Hu et al., 2021; Ding et al., 2022). 1219

G Scale to LLaMA-2 Model 1220

The results of SAPT and baseline methods on the 1221

Long Sequence Benchmark based on different sizes 1222

of T5 and LLaMA-2 are shown in Figure 7. It can 1223

be observed that our proposed SAPT still exhibits 1224

superiority to effectively mitigating CF and pro- 1225

moting KT over baseline methods. 1226
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Dataset name Task Metric

1. task639_multi_woz_user_utterance_generation dialogue generation Rouge-L
2. task1590_diplomacy_text_generation dialogue generation Rouge-L
3. task1729_personachat_generate_next dialogue generation Rouge-L
4. task181_outcome_extraction information extraction Rouge-L
5. task748_glucose_reverse_cause_event_detection information extraction Rouge-L
6. task1510_evalution_relation_extraction information extraction Rouge-L
7. task002_quoref_answer_generation question answering Rouge-L
8. task073_commonsenseqa_answer_generation question answering Rouge-L
9. task591_sciq_answer_generation question answering Rouge-L
10. task511_reddit_tifu_long_text_summarization summarization Rouge-L
11. task1290_xsum_summarization summarization Rouge-L
12. task1572_samsum_summary summarization Rouge-L
13. task363_sst2_polarity_classification sentiment analysis accuracy
14. task875_emotion_classification sentiment analysis accuracy
15. task1687_sentiment140_classification sentiment analysis accuracy

Table 4: The details of 15 datasets in the SuperNI Benchmark (Wang et al., 2022a).

Dataset name Category Task Domain Metric

1. Yelp CL Benchmark sentiment analysis Yelp reviews accuracy
2. Amazon CL Benchmark sentiment analysis Amazon reviews accuracy
3. DBpedia CL Benchmark topic classification Wikipedia accuracy
4. Yahoo CL Benchmark topic classification Yahoo Q&A accuracy
5. AG News CL Benchmark topic classification news accuracy
6. MNLI GLUE natural language inference various accuracy
7. QQP GLUE paragraph detection Quora accuracy
8. RTE GLUE natural language inference news, Wikipedia accuracy
9. SST-2 GLUE sentiment analysis movie reviews accuracy
10. WiC SuperGLUE word sense disambiguation lexical databases accuracy
11. CB SuperGLUE natural language inference various accuracy
12. COPA SuperGLUE question and answering blogs, encyclopedia accuracy
13. BoolQA SuperGLUE boolean question and answering Wikipedia accuracy
14. MultiRC SuperGLUE question and answering various accuracy
15. IMDB SuperGLUE sentiment analysis movie reviews accuracy

Table 5: The details of 15 classification datasets in the Long Sequence Benchmark (Razdaibiedina et al., 2023).
First five tasks correspond to the standard CL benchmark (Zhang et al., 2015).
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Dataset name Task Metric

1. task360_spolin_yesand_response_generation dialogue generation Rouge-L
2. task574_air_dialogue_sentence_generation dialogue generation Rouge-L
3. task1714_convai3_sentence_generation dialogue generation Rouge-L
4. task180_intervention_extraction information extraction Rouge-L
5. task678_ollie_actual_relationship_answer_generation information extraction Rouge-L
6. task1410_dart_relationship_extraction information extraction Rouge-L
7. task339_record_answer_generation question answering Rouge-L
8. task670_ambigqa_question_generation question answering Rouge-L
9. task1327_qa_zre_answer_generation_from_question question answering Rouge-L
10. task522_news_editorial_summary summarization Rouge-L
11. task1356_xlsum_title_generation summarization Rouge-L
12. task1499_dstc3_summarization summarization Rouge-L
13. task421_persent_sentence_sentiment_classification sentiment analysis accuracy
14. task833_poem_sentiment_classification sentiment analysis accuracy
15. task929_products_reviews_classification sentiment analysis accuracy

Table 6: The details of unseen tasks from the SuperNI benchmark.

Order Model Task Sequence

1 T5, LLaMA-2
task1572 → task363 → task1290 → task181 → task002 →
task1510 → task639 → task1729 → task073 → task1590 →
task748 → task511 → task591 → task1687 → task875

2 T5, LLaMA-2
task748 → task073 → task1590 → task639 → task1572 →
task1687 → task591 → task363 → task1510 → task1729 →
task181 → task511 → task002 → task1290 → task875

3 T5, LLaMA-2
mnli → cb → wic → copa → qqp → boolqa → rte → imdb →
yelp → amazon → sst-2 → dbpedia → ag → multirc → yahoo

4 T5, LLaMA-2
yelp → amazon → mnli → cb → copa → qqp → rte → imdb →
sst-2 → dbpedia → ag → yahoo → multirc → boolqa → wic

Table 7: Four different orders of task sequences used for our experiments. Orders 1-2 correspond to the SuperNI
benchmark. Orders 3-4 are long-sequence orders following Razdaibiedina et al. (2023).

Order 1 Order 2
AP↑ F.Ra↓ FWT↑ BWT↑ AP↑ F.Ra↓ FWT↑ BWT↑

SeqLoRA 5.05 30.94 -17.01 -28.88 7.80 35.84 -10.15 -32.99
Replay 34.37 18.09 -1.26 -16.89 36.37 15.74 -1.44 -14.69
L2P 15.18 6.23 -20.97 -3.65 10.27 17.51 -17.30 -12.24
LFPT5 39.03 10.87 -0.41 -9.85 29.70 20.72 -0.51 -19.08
ProgPrompt 2.83 35.65 -3.70 -33.27 3.85 35.48 -2.87 -33.09
EPI - - - - - - - -
O-LoRA 20.95 30.91 -0.43 -28.83 30.82 21.83 0.15 -20.35

SAPT-Prompt 41.88 1.41 2.83 -0.75 40.34 1.23 1.07 -0.54
SAPT-LoRA 52.25 0.57 2.26 -0.23 50.82 1.24 1.50 -0.90

Table 8: The overall results on each task order of the SuperNI benchmark with T5-Large model. Performance of
continual learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported
after training on the last task.
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Order 3 Order 4
AP↑ F.Ra↓ FWT↑ BWT↑ AP↑ F.Ra↓ FWT↑ BWT↑

SeqLoRA 6.71 82.07 1.19 -76.60 12.73 75.15 0.43 -70.14
Replay 68.20 16.21 1.20 -15.13 74.25 9.89 1.36 -9.23
L2P 58.61 21.55 1.01 -15.43 57.34 23.42 1.70 -17.82
LFPT5 66.62 14.57 2.89 -13.60 67.40 13.20 2.06 -11.99
ProgPrompt 6.14 74.64 -1.65 -69.53 9.83 68.45 -3.61 -63.89
EPI 75.19 0.77 -1.54 -0.60 75.10 2.44 0.00 -2.23
O-LoRA 69.22 8.30 -7.79 -4.42 69.26 5.70 -8.51 -5.09

SAPT-Prompt 80.20 0.91 3.63 -0.76 78.08 2.45 2.95 -2.20
SAPT-LoRA 83.44 0.75 1.99 -0.66 80.60 2.25 1.72 -1.94

Table 9: The overall results on each task order of the Long Sequence benchmark with T5-Large model. Performance
of continual learning (AP), forgetting rate (F.Ra), forward transfer (FWT) and backward transfer (BWT) are reported
after training on the last task.
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Figure 8: The average performance of SAPT and baseline models at each time step on the SuperNI (left) and the
Long Sequence (right) benchmark.
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Figure 9: Visualization on shared attention of SAPT-Prompt on the SuperNI benchmark during the training (left)
and testing time (right).
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Figure 10: Visualization on shared attention of SAPT-Prompt on the Long Sequence benchmark during the training
(left) and testing time (right).
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Figure 11: Visualization on shared attention of SAPT-LoRA on the SuperNI benchmark during the training (left)
and testing time (right).
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Figure 12: Visualization on shared attention of SAPT-LoRA on the Long Sequence benchmark during the training
(left) and testing time (right).
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Benchmark Task Name Type Data Sample

SuperNI

task002_quoref_answer_generation

Real

[INS] In this task, you’re expected to write answers to questions involving multiple references to the same entity. The
answer to the question should be unambiguous and a phrase in the paragraph. Most questions can have only one correct
answer. [IN] Passage: Phaedra is a poor Greek sponge diver on the island of Hydra. She works from the boat of her
boyfriend, Rhif, an illegal immigrant from Albania. She accidentally finds an ancient Greek statue of a boy riding a dolphin
on the bottom of the Aegean Sea. Her efforts to sell it to the highest bidder lead her to two competing individuals: Dr.
James Calder, an honest archaeologist who will surrender it to Greek authorities, and Victor Parmalee, an aesthete and an
unscrupulous dealer with a history of trying to acquire works of art stolen by the Nazis from their owners.\nCalder and
Parmalee each try to win Phaedra’s cooperation. She works in concert with Parmalee, while developing feelings for Calder.
When she seems to waver, Rhif decides to make the deal with Parmalee work. The film reaches a happy conclusion, with
virtue rewarded, the statue celebrated by the people of Hydra, and Phaedra and Calder in each other’s arms. Parmalee, a
man with no apparent national loyalties or heritage, sets course for Monte Carlo. \nQuestion: Who is dating an illegal
immigrant? [OUT] Phaedra.

Pesudo

[INS] In this task, you’re expected to write answers for questions involving multiple references to the same entity. The
answer to the question should be unambiguous and a phrase in the paragraph. Most questions can have only one correct
answer. [IN] Passage: In 1899 British President Johnston (now known as John Marshall) is charged with running riots
against officers of the Royal Navy. After two days of debriefing, Admiral Sir William Rogers Jr. becomes interested in
Robert R̈obJ̈ohnson, another officer on staff, who finds out that Johnson was not present at the rehearsals for the film;
however, his father also claims that he has been fired from the navy because Mr Williams had been shot before him. He then
went off to see an officer looking after the military. He later admitted himself guilty—for failing which he became involved
in the crime? Although no arrest was made during his service they served less than 40 days. He does remain behind but
never gets away or die first. He takes control over

task875_emotion_classification

Real
[INS] In this task, you are given a sentence containing a particular emotion. You must classify the sentence into one of the
six emotions: ’joy’, ’love’, ’anger’, ’fear’, or ’surprise’. [IN] i could clearly feel my adomen muscles contract everytime i
cough like some adomen exercise haha and im aching from it now sigh [OUT] sadness

Pesudo
[INS] In this task, you are given a sentence containing monetary hardship. You must classify the sentence into one of the
six emotions: ’joy’, ’love’, ’anger’, ’fear’, or’surprise’. [IN] i feel like it is worthwhile to support local artists and so does
clay so im amazed by how supportive and passionate artistic writers can be

task1572_samsum_summary

Real

[INS] In this task, you are given a conversation, and your task is to generate a summary from the information present in the
given conversation. Generate a summary in such a way that the context should be present in the conversation. It should
cover the complete context of the conversation. [IN] Mary: Can you pick up the kids?, John: Sure. You’ve already asked
me this morning., Mary: Really? I don’t remember. , John: Ok, doesn’t matter. [OUT] John will pick up the kids at Mary’s
request.

Pesudo

[INS] In this task, you are given a conversation, and your task is to generate a summary from the information present in the
given conversation. Generate a summary in such a way that the context should be present in the conversation. It should
cover the complete context of the conversation. [IN] Leda: Ok, so first Homo Faber., Gaby: I’ve already booked the tickets.,
Ivan: Where exactly?, Leda: Isola San Giorgio., Gaby: They have limited spaces., Ivan: They are always full, but we can
ask around it., Gaby: So for us? We won’t make it all day., Marc: OK, what about Giardini or Arsenale? I think we won’t
make it to see both. We can ask around., Gaby: I’ll go back!, Ivan: Me too. We could also go different places... There are a
lot of satellitanni: What about the transportation? Same ticket

Long Sequence

amazon

Real

[INS] Given a review text from an e-commerce platform, please analyze the sentiment polarity expressed in the text.
Choose one from the following sentiment categories: very negative, negative, neutral, positive and very positive.\n[IN]
Title: Great\nText: Jim Cramer is the best - his stock tips and philosophy of investing is truly outstanding.Thanks Jim for all
of your insight!\n[OUT] positive

Pesudo

[INS] Given a review text from an e-commerce platform, please analyze the sentiment polarity expressed in the text. Choose
one from the following sentiment categories: very negative, negative, neutral, positive and very positive! [IN] Title: Just not
as cool as I thought it would be Text: This was just too cool to give up on this movie! Unfortunately, there are way more
people with bad taste than Meg McConnell here or even Amy Schumer who make some of her own movies instead of being
a good mommy.

imdb

Real

[INS] Classify the sentiment polarity expressed in the following movie reviews.\n [IN] The Japanese R̈un Lola Run,ḧis is
one offbeat movie which will put a smile on just about anyone’s face. Fans of Run Lola Run, Tampopo, Go!, and Slacker
will probably like this one. It does tend to follow a formula that is increasingly popular these days of separate, seemingly
unrelated vignettes, all contributing the the overall story in unexpected ways. catch it if you see it, otherwise wait for the
rental. [OUT] Good

Pesudo

[INS] Classify the sentiment polarity expressed in this movie reviews. [IN] Well, I’ve just got back from watching this
film for my birthday and it’s been an incredible experience to see how well done that film is! The production values are
unbelievable; not only does it look really good, but they have amazing acting: John Wayne makes one of the best actors on
his career, and when he plays Jack Ryan (Scott Stierlin) there can be very few performances you would want him to lose
weight because he is over 50 pounds. It should all appeal to everybody. There must also explain why such great cinema was
important at the time so many years ago. This picture is another highlight which shows how bad James Bond could be like
with anything else. We know what we were facing before leaving our country after 24 hours or 48 days...and now we have
had some real talent in this film!!

yahoo
Real [INS] I will give you a pair of question and answer, please categorize the topic discussed within.\n [IN] Question: who is the

actress from india at da vinci premiere?\nAnswer: Aishwarya Rai, the former Miss World.\n [OUT] Entertainment & Music

Pesudo [INS] I will give you a pair of question and answer, please categorize the topic discussed within. [IN] Question: what is the
word "butterfly"? Answer: It means butterfly-like flower that grow in a basket or vase with lilies on it

Table 10: Examples of generated pseudo samples of the SuperNI and the Long Sequence benchmarks. [INS], [IN]
and [OUT] represent the task instruction, task input and task output, respectively.
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