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ABSTRACT

Automatic path planning is a highly relevant research area with multiple applica-
tions, but it is usually solved by addressing either the (high-level) route planning
problem (waypoint sequencing to achieve the final goal) or the (low-level) path
planning problem (trajectory prediction between two waypoints avoiding colli-
sions). However, real-world problems usually require simultaneous solutions to
the route and path planning subproblems with a holistic and more efficient ap-
proach. In this paper, we introduce NaviFormer, a deep reinforcement learning
model based on a Transformer architecture that solves the global navigation prob-
lem by predicting both high-level routes and low-level trajectories. To evaluate
NaviFormer, several experiments have been conducted, including comparisons
with other algorithms. Results show high competitive accuracy from NaviFormer
since it can understand the constraints and difficulties of each high- and low-level
planning and act consequently to improve the performance. Moreover, its superior
computation speed proves its suitability for real-time applications.

1 INTRODUCTION

Planning tours for automated agents is a complex task with multiple applications, such as package
delivery, transportation, autonomous vehicles, film-making, surveillance, search-and-rescue, explo-
ration, military, and agriculture. The general idea is to generate routes for a given ground, aerial, or
underwater unmanned vehicle that connect a set of waypoints/regions where the agent is expected to
perform one or several tasks. Real-world scenarios usually impose constraints such as limited bat-
tery or fuel budget, which may prevent agents from visiting all regions; or static/dynamic obstacles,
which may force to plan a new, typically suboptimal solution. The planning problem that models
these real-world scenarios is usually divided into 2 subproblems: route planning and path planning.

Route planning consists of high-level planning to infer the best sequence of waypoints (route) with-
out considering the exact trajectory between pairs of waypoints. It is frequently modeled as a Com-
binatorial Optimization Problem (COP) Mazyavkina et al. (2021), such as the Traveling Salesman
Problem (TSP) Bellmore & Nemhauser (1968), which minimizes the distance of the route to visit
every waypoint; the Orienteering Problem (OP) Golden et al. (1987), which is a variant of the
TSP with time limitations; or the Capacitated Vehicle Routing Problem (CVRP) Dantzig & Ramser
(1959), which substitutes the time constraint of the OP with a limited carrying capacity to comply
with the demand of items in each region. The mentioned COPs do not consider obstacles, which
allows assuming that every path is the straight line (Euclidean distance) connecting two waypoints.

Path planning Patle et al. (2019) focuses on finding the shortest low-level trajectory (path) defined
by a discretized sequence of coordinates. Contrary to route planning, path planning considers static
(prior knowledge) and/or moving (dynamically detected) obstacles that hinder the travel from a start
to a goal waypoint. However, it is not involved in deciding the next node for a high-level objective.

In this paper, we propose a new and holistic definition of the problem, called Navigation Orienteering
Problem (NOP). Previous works usually focus on either path planning Jin et al. (2023); Wu et al.
(2023); Yu et al. (2022); Pehlivanoglu & Pehlivanoglu (2021) or route planning Kool et al. (2019);
Fuertes et al. (2023); Ma et al. (2020); Ruano et al. (2017), and include the constraints that best fit
the target application. On the contrary, we define a combination of both subproblems (see Figure
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(a) Route planning (b) Path planning (c) Navigation planning

Figure 1: Example of problems: (a) Route planning - maximize number of visited regions (purple
circles) from an initial to an end depot (cyan and red circles) within a time limit (like in the OP); (b)
Path planning - find the shortest path to a goal region while avoiding obstacles (black circles); and
(c) Navigation planning - holistic combination of the other two subproblems.

1). This definition includes basic constraints that would fit any application, such as the time limit
(like in the OP), associated with the agent’s fuel; the presence of obstacles, which exist in most of
the real-world scenarios; and the necessity of returning to an end depot. The NOP introduces a new
challenge for environments with obstacles and waypoints, as the agent must provide collision-free
path planning-like solutions that visit several waypoints to ultimately achieve a high-level objective.

Our main contribution is the design of a novel deep reinforcement learning-based navigation sys-
tem, called NaviFormer, that solves the holistic NOP in real-time. NaviFormer approaches each
individual subproblem (route planning and path planning) in a global manner, allowing better un-
derstanding of the environment and enhancing the quality of solutions. It is based on a Trans-
former neural network trained with deep reinforcement learning (DRL) to solve the NOP. This
Transformer-based network is composed of an encoder-decoder architecture capable of encoding
graphs of nodes/waypoints, and combining them with information from the static obstacles of the
environment using a special combined attention operation. The resulting embedding, containing
global information from the environment, is used to decode the path that maximizes the global per-
formance of the system. Thus, the encoder generates a semantic representation of a scenario by
computing a node-graph embedding, while the decoder iteratively predicts, at each discretized time
step, the next waypoint to visit and the next direction to follow, allowing the agent to avoid obstacles.

2 RELATED WORKS

The existing related works address the navigation problem as two independent subproblems: route
and path planning. As a consequence, this section focuses on works related to these topics.

Route planning Route planning approaches can be divided into three main categories: linear opti-
mizers, (meta) heuristic algorithms, and machine learning. Linear optimizers are computationally
expensive algorithms that seek the optimal solution within a defined set of feasible solutions, sub-
ject to linear constraints. Examples include cutting planes, especially for multiple agents Bianchessi
et al. (2018); Sundar et al. (2022), and commercial solvers such as OR-Tools Perron & Furnon
(2023), Gurobi Gurobi Optimization, LLC (2023), CPLEX Cplex (2022), and others. These meth-
ods are generally accurate but have computational requirements that prevent their use in real-time.

To reduce computation time, heuristics Purkayastha et al. (2020) and metaheuristics Dixit et al.
(2019); Rahman et al. (2021) are frequently applied. These methods sacrifice some precision in
favor of finding approximate solutions within a reduced amount of time. Some approaches include
Variable Neighborhood Search (VNS) Bezerra et al. (2023); Pěnička et al. (2019), or Greedy Ran-
domized Adaptive Search Procedure (GRASP) Campos et al. (2014); Júnior & Guimarães (2019).
Some bioinspired learning algorithms, which usually fall into the category of metaheuristics, can be
applied to routing problems, such as Genetic Algorithms (GA) Mansfield et al. (2021); Xiao et al.
(2022), Particle Swarm Optimization (PSO) Islam et al. (2021); Xiao et al. (2022), Ant Colony Opti-
mization (ACO) Wang et al. (2020); Xiao et al. (2022), and Gray Wolf Optimization (GWO) Li et al.
(2021a); Panwar & Deep (2021). Although (meta) heuristic methods are good alternatives to im-
prove computation speed of linear optimizers, they still tend to fail to reach real-time performance.
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Machine learning solutions primarily rely on neural networks trained with annotated data (super-
vised learning) or without it (unsupervised and reinforcement learning) to perform specific tasks.
Reinforcement learning frameworks, especially DRL frameworks, are particularly interesting for
routing problems, as they employ neural networks that learn from the experience by trying actions
and receiving rewards from the environment. Unlike linear optimization and heuristic algorithms,
which refine solutions through iterative processes within the feasible solution space, DRL methods
first encode data from the environment and then yield predictions that maximize the received reward.
Current works use different architectures, such as Convolutional Neural Networks (CNN) Jung et al.
(2023) or Graph Neural Networks (GNN) Ma et al. (2020), to encode the graph of nodes that rep-
resent routing problems. For the decoding step, responsible for sequentially predicting routes, some
works have proposed to combine Recurrent Neural Networks (RNN) and Attention models Bah-
danau et al. (2016) to obtain Pointer Networks (PN) Vinyals et al. (2015); Bello et al. (2016); Ma
et al. (2020). However, recent Transformer networks Vaswani et al. (2017) and their adaptation to
routing problems Gama & Fernandes (2020); Kool et al. (2019) have shown greater superiority over
PN and other RNN-based methods, due to their faster parallel-like procedure of processing data, and
the robustness of multi-head attention encoding, which is more effective for long sequences of data.

Path Planning Path planning works can also be classified into the same three categories used for
route planning. However, real-time performance becomes more critical due to obstacle avoidance
constraints, which are more closely aligned with real-world applications. Thus, even if linear opti-
mizers are used in some cases, like cutting planes Lam et al. (2022), they are not popular; and other
types of approach share the same problem, such as brute-force algorithms Sharma et al. (2017).

Graph search algorithms, such as Informed RRT* Mashayekhi et al. (2020), A* Mandloi et al.
(2021), D* Ravankar et al. (2017), and D* Lite Jin et al. (2023), exploit heuristic and sampling
techniques to accelerate convergence. Informed RRT* integrates RRT Mthabela et al. (2021) and
RRT* Chen & Wang (2022) to form a connected node tree with an enhanced heuristic. A* uses
admissible heuristics to guide Dijkstra’s graph search Luo et al. (2020) and find optimal solutions.
D* and D* Lite improve A* speed and dynamic obstacle handling. Other sampling strategies include
Probabilistic Roadmaps (PRM) Fei et al. (2019), which constructs a roadmap based on collision-free
path probabilities, and Artificial Potential Fields (APF) Pan et al. (2022), which uses attractive and
repulsive forces for navigation. Furthermore, bioinspired learning methods, such as GA Zhang et al.
(2023), ACO Wu et al. (2023), and PSO Yu et al. (2022), also use (meta) heuristics for path planning.

Some of the mentioned heuristic and sampling-based approaches perform very fast but yield ap-
proximate and suboptimal solutions with limited performance. Instead, machine learning methods,
especially those focused on neural networks and DRL, have the potential to learn representations of
the environment to find better solutions. They often incorporate a CNN to encode binary global maps
(representing the whole scenario) and then make predictions through a set of dense layers Liu et al.
(2020); Loquercio et al. (2018). Some methods Li et al. (2020; 2021b) extend this paradigm to multi-
agent cases by incorporating a GNN to infer a graph embedding from the state of the agents while
maintaining the core CNN + dense layers structure. Alternatively, Transformers, and especially Vi-
sion Transformers (ViT) Dosovitskiy et al. (2021), have led to the replacement of CNN encoders
with more powerful ViT encoders Chen et al. (2022; 2023). In contrast, our approach proposes
to dynamically encode reduced local maps representing the agent’s surroundings by a lightweight
CNN, enabling fast and efficient predictions. Moreover, the proposed framework jointly addresses
the interrelated problems of route and path planning, reaching a superior performance that those
works that adopt the simpler approach of decomposing the problem into two independent problems.

3 NAVIGATION ORIENTEERING PROBLEM FORMULATION

Consider a set of nodes G = {0, ..., n+1} representing the visitable regions, where the nodes 0 and
n+1 are the start and end depots. An agent is expected to visit the nodes and return to the end depot
within a time limit T . The NOP seeks routes that are rewarded for visiting regions of G with a set of
rewards R = {r0, ..., rn+1} while avoiding a set of b obstacles O = {oi|i = 0, ..., b} represented as
circles, where the ith obstacle is parametrized by its center and radious as oi = (xobs, yobs, robs).
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The path followed is discretized with a step length of ts, such that the total number of steps allowed
is L =

⌊
T
ts

⌋
. The objective of the NOP problem is to maximize the constrained function of Eq. 1.

max

n∑
i=0

n+1∑
j=1

rjΦij , Φij =

{
1 if i was visited inmediately after j
0 otherwise

(1)

n+1∑
j=1

Φ0j = 1 (2)
n∑

i=0

Φi(n+1) = 1 (3)

n∑
i=1

Φij ∈ {0, 1}; j ∈ {1, ..., n} (4)
n∑

j=1

Φij ∈ {0, 1}; i ∈ {1, ..., n} (5)

n+1∑
i=0

Φii = 0 (6) L0(n+1) ≤
n∑

i=0

n+1∑
j=0

LijΦij ≤ L (7)

Lij = min
ν∈V

di,j(ν); i, j ∈ G (8) ui − uj + nΦij ≤ n− 1; i, j ∈ G (9)

Constraints of Eqs. 2 and 3 force the agent to start and finish the paths at regions 0 and n + 1,
respectively. Eqs. 4 and 5 ensure continuous routes and prevent revisiting nodes. Eq. 6 forbids
immediate node revisits. Eq. 7 limits the distance/time budget T (we assume that the agent moves
at a constant speed, meaning that the time limit can be converted to a distance limit), which is
discretized as L, and imposes that this budget allows at least to travel from node 0 to node n + 1
(L0(n+1)). Restriction of Eq. 8 minimizes path length between nodes (Li,j), where di,j(ν) is the
length of the path ν ∈ V connecting i and j. Finally, subtours Miller et al. (1960) are avoided thanks
to the constraint of Eq. 9, where ui, uj ∈ {1, ..., n} are the positional order of i and j on the path.

4 NAVIFORMER NEURAL NETWORK

Since the NOP imposes to find a path that maximizes the visited regions, we let our network predict
action adt ∈ D = {0, π

2 , π,
3π
2 } indicating the direction the agent should follow at each time step

t ∈ {1, ..., L}. These prediction of these directions should construct a trajectory that could solve the
problem. However, we wanted to improve the network insight about the scenario by letting it also
predict each next goal to visit agt ∈ G. Note that actions adt and agt are used to solve Eqs. 1 and 8.

Therefore, NaviFormer, depicted in Figure 2, is based on an encoder-decoder Transformer archi-
tecture that first encodes the regions to travel to, characterized by their position (xi, yi; i ∈ G) and
reward (ri), and the obstacles to avoid, both as a graph of nodes (hgraph). This embedding is a pro-
jection into a η-dimensional feature space to extract relevant and discriminating information. Then,
it uses that information to predict a policy πθ(a

g
t , a

d
t |st) that represents the probability distribution

of possible actions agt , a
d
t on each state st. The prediction of this policy also depends on two addi-

tional modules: a state embedding (hstate
t ), with information about the spatial position of the agent

and the elapsed time, combined with hgraph to find the best next goal (πθ(a
g
t |st)); and a direction

predictor, where a set of local maps allows predicting the best direction (πθ(a
d
t |st)). In this manner,

our approach can infer efficient solutions restricted by the problem constraints mentioned above.

Encoder NaviFormer encoder, based on standard route planning Transformer encoders like Kool
et al. (2019); Sankaran et al. (2023); Fuertes et al. (2023), receives individual linear projections of
the input nodes hlin and obstacles hobs with dimension η = 128, and generates a combined graph
embedding hgraph by learning some attention scores S that promote those node connections that
improve the expected reward in the long-term. Contrary to standard encoders that combine pairs of
input data, NaviFormer encoder considers a three-way relationship to find the affinity between every
pair of nodes with respect to each obstacle. For that purpose, the combined multi-head attention
strategy of Figure 3a is proposed to substitute standard self-attention mechanisms of Transformers.
It takes the feature vectors hlin and hobs, and applies a self-attention operation to find the affinity
between nodes from the same set, and an attention operation between the two embeddings hlin and
hobs to find the crossed-affinity. The output of both operations (h11 and h12 from hlin, and h21
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Figure 2: Architecture of NaviFormer, which receives information from the environment (depots,
regions, reward per region, obstacles, time limit) and predicts a policy πθ(a

g
t , a

d
t |st).

and h22 from hobs) are merged through another pair of attention layers to obtain the final combined
embeddings h1 and h2. This mechanism can be expressed as follows.

h11 = MHA(hlin, hlin, hlin); h12 = MHA(hlin, hobs, hobs); h1 = MHA(h11, h12, h12) (10)

h21 = MHA(hobs, hlin, hlin); h22 = MHA(hobs, hobs, hobs); h2 = MHA(h22, h21, h21)

where MHA(hQ, hK , hV ) is the multi-head attention operation. Notice the difference between self-
attention (same embedding for query, key, and value), and (crossed) attention (different embed-
dings). The encoding block of Figure 7a in Appendix A is stacked N = 3 times to obtain a deeper
model. For the last block, h2 is not necessary since the resulting hgraph is just inferred from h1.

State Embedding In addition to the scenario encoding, the agent’s state st is also encoded by the
state embedding module (see Figure 3b). It includes the agent’s position ct and time tleftt , the
distance to the obstacles o1, ..., ob, and the agent’s provenance (included in the graph embedding of
the last node hgraph

ag
t−1

). The final state embedding (hstate
t ) is obtained by adding the linear projection

of the aforementioned elements and the linear projection of the averaged graph embedding across
all nodes h

graph
that provides some context about the agent’s location on the graph.

Decoder Unlike the encoder, which generates a unique static hgraph, the decoder (Figure 7b in
Appendix A) predicts actions at every time step from the scenario information hgraph and the agent’s
state hstate

t . The first decoding module, the masked multi-head attention, combines both inputs with
an attention layer that includes a mask M to satisfy specific constraints of Section 3 as:

S(hstate
t , hgraph) = SoftMax

(
M
(
Q(hstate

t )K(hgraph)T
)

√
η

)
, (11)

M(hi) =

{
−∞ if i was visited
hi otherwise

,∀i ∈ G (12)

This mask ensures that no region is visited multiple times. The last module of the decoder is a
masked single-head attention that uses a tanh activation function and a unique head to predict a
multinomial probability distribution π(agt |st), from which the next node agt is sampled.

Direction Prediction In addition to π(agt |st), NaviFormer estimates another distribution πθ(a
d
t |st)

to obtain a prediction of the agent’s direction. For this purpose, local maps (see Figure 3c) centered
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Figure 3: Several novel NaviFormer modules: (a) the combined multi-head attention operation to
merge node and obstacle information, (b) the state embedding module to encode the situation of the
agent at each time step t, and (c) the direction prediction layers to predict the policy πθ(a

d
t |st) from

local maps based on the obstacles and the next goal agt .

at the agent’s position are generated. The local obstacle map along with the next selected node (pro-
jected to appear on the maps) are divided into four sections representing the agent’s north (zupt ), east
(zrightt ), south (zdown

t ), and west (zleftt ). These maps sections provide knowledge of the scenario
to predict the best direction to reach the next node while avoiding obstacles. Finally, the policy
πθ(a

d
t |st) is obtained by processing the local maps by a couple of convolutional and dense layers.

Training Strategy NaviFormer is trained with DRL by simulating episodes of different scenarios
or problem instances α and collecting, for each α, the following reward values:

rπθ (α) =
∑

ag∈Ag

γ
rag

n/2
− β

∑
ad∈Ad

ag

d(ct, a
g) + ξ, ξ =

{
+20 if episode is succesful
−10 otherwise

(13)

where rπθ (α) is the reward received after following πθ in α, Ag is the set of nodes visited, Ad
ag is

the set of directions followed to reach ag , d(ct, ag) is the distance between ct and ag , and γ = 10,
β = 0.3 are constant values. Besides, the reward for visiting each region is rag = 1 if ag ∈ {1, ..., n}
and 0 otherwise. To maximize the reward collection for the NOP (Eq. 1), we extend Reinforce
Williams (1992) to a vanilla Actor-Critic by using a critic value V πθ (α) as baseline b(α), which
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(a) Agriculture scenario (b) Spraying points of every area (c) Best solution found

Figure 4: A scenario with (a) cultivation and biocultivation areas, (b) their segmentation and spray-
ing points (triangles), and (c) NaviFormer’s solution from start to end depot (cyan and red circles).

(a) n = 20 (b) n = 50 (c) n = 100

Figure 5: Solutions provided by NaviFormer for some synthetic scenarios.

reduces the variance of the obtained reward across different α and improves the learning process.
The gradient of the resulting loss function L(θ|α) for the gradient descent update is defined below.

∇L(θ|α) = Eπθ(ν|α) [(r
πθ (α)− b(α))∇ log πθ(ν|α)] , b(α) = V πθ (α) (14)

where ν is the set of actions a = (ag, ad) that define a path, and V πθ (α) is predicted from h
graph

by applying two dense layers of hidden size η = 128 connected through a ReLU activation function.
Additionally, to encourage the exploration of new actions during training, we sample them from the
binomial distribution πθ(at|st) so that the best known actions are more likely to be exploited, but
other actions could also be explored. During inference, greedy selection is performed instead.

5 RESULTS AND DISCUSSIONS

NaviFormer (code is publicly available 1) has been evaluated with both real and synthetic data.
Synthetic data comprises 640k train samples, 10k validation samples, and 10k test samples. Train
and validation sets contain between 10 and 100 visitable nodes with random variation, while the test
set covers small (20 nodes), medium (50 nodes), and large (100 nodes) scenarios. Node coordinates
were sampled from a uniform distribution U(0, 1). A random obstacle number from 0 to 5 is also
sampled at random locations with radius robs ∼ U(0.05, 0.2). The time limit T was set to allow
visiting around half of the nodes, since these cases tend to be more challenging Vansteenwegen et al.
(2009), resulting in T = 2, 3, 4 for n = 20, 50, 100. The time step remained constant at ts = 0.02.

Real data from a real-world application about pesticide spraying from an unmanned aerial vehicle
(UAV) has also been used. This application includes two different types of areas to consider: culti-
vation and biocultivation (pesticide-free) areas (see Figure 4). The UAV should cover the first ones
with pesticide, and completely avoid flying over the latter ones. To fully cover each cultivation area,
they are discretized into multiple spraying points, which are considered as nodes for the navigation
problem. Moreover, the most restrictive constraint between the UAV’s pesticide capacity and fuel is
used for its return to the depot. We adapted PASTIS dataset Garnot & Landrieu (2021), originally
designed for image segmentation, for this task by normalizing the coordinates in the range [0, 1],
setting T similarly to the synthetic data, and randomly choosing biocultivation areas (ranging from
0 to 5) as obstacles (enclosed in circles like those from the synthetic data). The resulting number of
PASTIS’s instances is 2344, with an average of 42 nodes per instance.

1Anonymus URL
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Figure 6: System performance for small, medium, and large (n = 20, 50, 100) synthetic scenarios.

Results NaviFormer’s performance, measured in terms of success rate (rate of episodes that reach
the depot in time without colliding) and node rate (nodes visited over expected nodes), is shown in
Figure 6 as a function of the number of nodes and obstacles for synthetic test scenarios. As expected,
success rates decline with more obstacles, whereas node rates are higher with 0 and 4 obstacles. The
first is intuitive, as obstacle-free scenarios are simpler. The latter is attributed to reduced node-
to-node distances with abundant obstacles. Comparing small, medium, and large scenarios, node
rates are lower for larger ones due to their complexity; and success rates decrease faster with more
obstacles for the same reason. Note that NaviFormer was trained with scenarios of a variable number
of regions, achieved by adding dummy nodes, to enhance its flexibility and generalization capability.
Regarding qualitative results, Figure 4c shows the performance of NaviFormer on a set of cultivation
areas, demonstrating its ability to visit 41 out of 85 spraying points. Besides, Figure 5 exposes the
solutions found by NaviFormer for different synthetic scenarios.

Ablation Study To analyze NaviFormer’s contributions compared to other Transformer-based
works Kool et al. (2019); Fuertes et al. (2023); Sankaran et al. (2023), the ablation study of Table 1
was carried out by removing or substituting the combined attention encoder, direction prediction lay-
ers, and local maps, as well as a comparison with a 2-step NaviFormer approach. All models were
trained and tested on medium-sized synthetic scenarios (n = 50, T = 3) and computation times
were measured on both GPU (2 × Nvidia Titan Xp) and CPU (Intel Core i9-7900X 3.30GHz).

First, we conducted an experiment to confirm that the proposed joint NaviFormer network (simulta-
neously acts as route and path planner) performs better than training both components in isolation.
We pretrained the base Transformer network included in NaviFormer to predict routes for the OP.
Later, this model was employed to fit the direction prediction layers for the navigation task. The
results confirm a slight deterioration in both success and note rates, which suggests that the behavior
of the route planner is influenced by the path planner and viceversa. Besides, our 1-step approach is
end-to-end trainable. Secondly, the combined attention encoder is assesed by evaluating the model
with and without a traditional Transformer encoder. Without encoder (just the initial linear projec-
tions of Figure 2 are utilized to process the inputs in this ablation test), learning node positions and
relationships is difficult, resulting in a poor node rate. Instead, the standard encoder increased the
node rate at the expense of success rate. This traditional encoder receives the inputs and obstacles
separately to generate two embeddings. The node embedding is utilized by the decoder to make
predictions, and it is combined with the obstacle embedding at the state embedding module to pro-
vide some insight about nodes and obstacles. The results of this approach are relatively positive, but
it relies on the simplicity of the scenarios with small number of obstacles to mantain high success
rates. We believe that the success rate would decrease in more complicated scenarios with more ob-
stacle density. Third, different convolutional layers and linear projections have been removed from
the direction prediction module, leading to shallower models whose results are worse than the pro-
posed deeper model. Lastly, the importance of local maps to predict the direction is analyzed. The
local maps are limited to represent the surroundings of the agent, while the assessed global maps
contain the entire scenario. The inclusion of large global maps provides poor performance due to
the large compression of the map by the convolutional layers, and increases the computational cost
too much. On the other hand, the removal of maps deteriorates accuracy in exchange of faster per-
formance. Regarding general computation time along the presented ablation tests, removing layers
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Table 1: Ablation study showing the performance for synthetic scenarios with n = 50 and T = 3.

Ablation study (time in ms) Success rate Node rate Time (GPU) Time (CPU)
NaviFormer 0.906±0.006 0.820±0.002 0.517±0.001 3.517±0.011
NaviFormer (2-step) 0.877±0.007 0.814±0.002 0.883±0.001 3.104±0.003
w/ standard Transf. encoder 0.863±0.007 0.853±0.002 0.492±0.001 3.203±0.005
w/o encoder (linear layers) 0.939±0.005 0.040±0.000 0.480±0.001 3.167±0.005
w/ 1 conv. and 1 linear layer 0.903±0.006 0.809±0.002 0.491±0.001 3.434±0.005
w/ only 1 conv. layer 0.885±0.007 0.833±0.002 0.445±0.001 3.181±0.005
w/ only 1 linear layer 0.870±0.006 0.799±0.002 0.454±0.001 3.291±0.004
w/ global maps 0.642±0.010 0.596±0.003 0.979±0.001 17.105±0.046
w/o maps 0.771±0.008 0.040±0.000 0.301±0.001 2.294±0.009

Table 2: Comparison with some baselines on the PASTIS dataset.

Algorithms Success rate Node rate Time (GPU) Time (CPU)
NaviFormer 0.991±0.002 0.703±0.007 0.517±0.001 3.517±0.011
NaviFormer (2-step) 0.980±0.003 0.688±0.007 0.883±0.001 3.104±0.003
OR-Tools + A* 0.925±0.011 0.519±0.081 - 10.264±0.346
OR-Tools (5s) + A* 0.944±0.010 0.689±0.008 - 3127.292±63.088
GA + A* 0.958±0.008 0.825±0.008 - 4246.492±352.139
OR-Tools + D* 0.934±0.010 0.537±0.008 - 383.407±5.707
OR-Tools (5s) + D* 0.939±0.010 0.729±0.009 - 3644.377±66.864
GA + D* 0.942±0.010 0.902±0.008 - 4421.613±340.739

generally improved prediction speed, though NaviFormer already performed in real-time. Note that
the reported computation time indicates the average time for solving a problem instance.

Comparison NaviFormer is compared to some 2-step baselines on the PASTIS dataset, including
combinations of A* and D* with GA and OR-Tools (with and without a 5 second guided local
search). To compensate their suboptimal performance, we let path planners 8 motion actions (instead
of 4) and reduced T by a small ϵ = T

10 to aid obstacle-agnostic route planners. Table 2 highlights
NaviFormer’s performance that achieves the highest success rate, proving the importance of tackling
the problem holistically. In terms of node rate, NaviFormer competes effectively with all methods,
only overcomed by GA + A* and D*, whose computational cost is comparatively huge (several
orders of magnitude slower). This is partly due to NaviFormer’s local maps configuration, which
limits the performance by allowing only 4 motion actions, ensuring successful end depot arrivals at
the expense of node visits. This is influenced by the high reward value for successful episodes in
Eq. 13, helping the agent’s learning through successful finishes, but indirectly affecting node rates.
Despite that, NaviFormer remains significantly faster than GA and more accurate than OR-Tools,
achieving an optimal balance between accuracy and computation speed for real-time applications.
In addition, the 2-step NaviFormer is also included in Table 2. As before, our proposal outperforms
this variant in terms of accuracy, which confirms the slight improvement in another (real) dataset.

6 CONCLUSIONS

In this paper, a novel DRL approach called NaviFormer that solves the holistic navigation (orienteer-
ing) problem in real-time is proposed. It combines route planning (waypoint sequencing) and path
planning (shortest trajectory prediction) using a Transformer network that includes a novel encoder
to efficiently create joint embeddings for waypoints and obstacles, allowing the prediction of next
waypoints to visit and safe (non-colliding) directions to reach them. Compared to 2-step state-of-the-
art methods, NaviFormer achieves great balance between accuracy and computation time, making it
suitable for real-time applications. Future research may focus on improving direction prediction for
more motion actions or continuous directions, potentially enhancing visitation rates. Besides, local
maps for obstacle avoidance could limit performance in complex scenarios (e.g., mazes).
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A TRANSFORMER DETAILS

Figure 7 shows in detail the structure of some standard modules from NaviFormer (see Figure 2).
The encoder (see 7a is based on other route planning works such as Kool et al. (2019); Sankaran et al.
(2023); Fuertes et al. (2023). It receives as input the linear projections of nodes and obstacles, and
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(a) NaviFormer Encoder
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(b) NaviFormer Decoder

Figure 7: NaviFormer network is mainly composed of (a) an encoder and (b) a decoder. The encoder
presents (c) a novel combined multi-head attention operation. The decoder receives an embedding
from (d) the state embedding module that encodes the situation of the agent at each time step t.

applied th combined multi-head attention technique to generate proper embeddings. The network
learns to generate embeddings that encourage those three-way relationships between each pair of
nodes (currently visited node and future node to visit) with respect to obstacles that maximize the
long-term reward collection.

Note the difference between the combined multi-head attention layer introduced in Section 4 and the
standard multi-head attetntion strategy. Traditional general purpose Transformer encoders Vaswani
et al. (2017); Dosovitskiy et al. (2021) are capable of generating several scores S with multi-head
self-attention:

S(h) = SoftMax
(
Q(h)K(h)T

√
η

)
, Q(h) = WQh, K(h) = WKh, (15)

where h is an embedding, and Q and K are linear projections of h (known as ”query” and ”key”).
This attention scores S are used to weight the values of the called ”value”, also a linear projection
V (h) = WV h to obtain a final feature vector that ”pays more attention” to those more affine nodes.
Our combined multi-head attention takes this basic concept of node matching learning and extends
it to a three-way relantionship, such that the obstacle information is integrated within the graph
embedding in a more robust and intelligent manner.

The graph embedding output by the combined multi-head attention module is linearly projected
to reinforce the captured information. It is also processed by some skip connections and batch
normalization layers that add stability.

The final graph embedding output by the encoder is properly analyzed later by the decoder (see
Figure7b. This decoder employs a common multi-head attention opertation with a mask that ensures
the accomplishment of the restrictions and constraints presented in Section 3, as it is commented
along Section 4.
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