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Abstract
The performance of sequential Monte Carlo
(SMC) samplers heavily depends on the tuning of
the Markov kernels used in the path proposal. For
SMC samplers with unadjusted Markov kernels,
standard tuning objectives, such as the Metropolis-
Hastings acceptance rate or the expected-squared
jump distance, are no longer applicable. While
stochastic gradient-based end-to-end optimization
has been explored for tuning SMC samplers, they
often incur excessive training costs, even for tuning
just the kernel step sizes. In this work, we propose
a general adaptation framework for tuning the
Markov kernels in SMC samplers by minimizing
the incremental Kullback-Leibler (KL) divergence
between the proposal and target paths. For step
size tuning, we provide a gradient- and tuning-free
algorithm that is generally applicable for kernels
such as Langevin Monte Carlo (LMC). We further
demonstrate the utility of our approach by pro-
viding a tailored scheme for tuning kinetic LMC
used in SMC samplers. Our implementations are
able to obtain a full schedule of tuned parameters
at the cost of a few vanilla SMC runs, which is a
fraction of gradient-based approaches.

1. Introduction
Sequential Monte Carlo (SMC; Dai et al., 2022; Del Moral
et al., 2006; Chopin & Papaspiliopoulos, 2020) is a
general methodology for simulating Feynman-Kac mod-
els (Del Moral, 2004; 2016), which describe the evolution of
distributions through sequential changes of measure. When
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tuned well, SMC provides state-of-the-art performance in a
wide range of modern problem settings, from inference in
both state-space models and static models (Dai et al., 2022;
Chopin & Papaspiliopoulos, 2020; Doucet & Johansen, 2011;
Cappé et al., 2007), to training deep generative models (Ar-
bel et al., 2021; Matthews et al., 2022; Doucet et al., 2023;
Maddison et al., 2017), steering large language models (Zhao
et al., 2024; Lew et al., 2023), conditional generation from
diffusion models (Trippe et al., 2023; Wu et al., 2023), and
solving inverse problems with diffusion model priors (Car-
doso et al., 2024; Dou & Song, 2024; Achituve et al., 2025).

In practice, however, tuning SMC samplers is often a sig-
nificant challenge. For example, for static models (Chopin,
2002; Del Moral et al., 2006), one must tune the number of
steps, number of particles, target distribution, and Markov
kernel at each step, as well as criteria for triggering particle
resampling. Since the asymptotic variance of SMC samplers
is additive over the steps (Del Moral et al., 2006; Gerber
et al., 2019; Chopin, 2004; Webber, 2019; Bernton et al.,
2019), all of the above must be tuned adequately at all
times; an SMC run will not be able to recover from a single
mistuned step. While multiple methods for adapting the
path of intermediate targets have been proposed (Zhou et al.,
2016; Syed et al., 2024), especially in the AIS context (Ki-
waki, 2015; Goshtasbpour et al., 2023; Masrani et al., 2021;
Jasra et al., 2011), methods and criteria for tuning the path
proposal kernels are relatively scarce.

Markov kernels commonly used in SMC can be divided into
two categories: those of the Metropolis-Hastings (Metropo-
lis et al., 1953; Hastings, 1970) type, commonly referred
to as adjusted kernels, and unadjusted kernels. For tuning
adjusted kernels, one can leverage ideas from the adaptive
Markov chain Monte Carlo (MCMC; Robert & Casella,
2004) literature, such as controlling the acceptance probabil-
ity (Andrieu & Robert, 2001; Atchadé & Rosenthal, 2005) or
maximizing the expected-squared jump distance (Pasarica
& Gelman, 2010). Both have previously been incorporated
into adaptive SMC methods (Fearnhead & Taylor, 2013;
Buchholz et al., 2021). On the other hand, tuning unadjusted
kernels, which have favorable high-dimensional convergence
properties compared to their adjusted counterparts (Lee et al.,
2021; Chewi et al., 2021; Roberts & Rosenthal, 1998; Wu
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et al., 2022; Biswas et al., 2019) and enable fully differ-
entiable samplers (Geffner & Domke, 2021; Zhang et al.,
2021; Doucet et al., 2022), is not as straightforward as most
techniques from adaptive MCMC cannot be used.

Instead, the typical approach to tuning unadjusted kernels is
to minimize a variational objective via stochastic gradient
descent (SGD; Robbins & Monro, 1951; Bottou et al., 2018)
in an end-to-end fashion (Doucet et al., 2022; Goshtasbpour
& Perez-Cruz, 2023; Salimans et al., 2015; Caterini et al.,
2018; Gu et al., 2015; Arbel et al., 2021; Matthews et al.,
2022; Maddison et al., 2017; Geffner & Domke, 2021; Heng
et al., 2020; Chehab et al., 2023; Geffner & Domke, 2023;
Naesseth et al., 2018; Le et al., 2018; Zenn & Bamler, 2023).
End-to-end optimization approaches are costly: SGD typ-
ically requires at least thousands of iterations to converge
(e.g, Geffner & Domke 2021 use 1.5× 105 SGD steps for
tuning AIS), where each iteration itself involves an entire run
of SMC/AIS. Moreover, SGD is sensitive to several tuning
parameters, such as the step size, batch size, and initializa-
tion (Sivaprasad et al., 2020). But many of the unadjusted
kernels, e.g., random walk MH (Metropolis et al., 1953; Hast-
ings, 1970), Metropolis-adjusted Langevin (Rossky et al.,
1978; Besag, 1994), Hamiltonian Monte Carlo (Duane et al.,
1987; Neal, 2011), have only a few scalar parameters (e.g.,
step size) subject to tuning. In this setting, the full generality
(and cost) of SGD is not required; it is possible to design a
simpler and more efficient method for tuning each transition
kernel sequentially in a single SMC/AIS run.

In this work, we propose a novel strategy for tuning path
proposal kernels of SMC samplers. Our approach is based on
greedily minimizing the incremental Kullback-Leibler (KL;
Kullback & Leibler, 1951) divergence between the target
and the proposal path measures at each SMC step (§ 3.1).
This is reminiscent of annealed flow transport (AFT; Arbel
et al., 2021; Matthews et al., 2022), where a normalizing
flow (Papamakarios et al., 2021) proposal is trained at each
step by minimizing the incremental KL. Instead of training a
whole normalizing flow, which requires expensive gradient-
based optimization, we tune the parameters of off-the-shelf
kernels at each step. This simplifies the optimization process,
leading to a gradient- and tuning-free step size adaptation
algorithm with quantitative convergence guarantees (§ 3.3).

Using our tuning scheme, we provide complete implementa-
tions of tuning-free adaptive SMC samplers for static models:
(i) SMC-LMC, which is based on Langevin Monte Carlo
(LMC; Rossky et al., 1978; Parisi, 1981; Grenander & Miller,
1994), also commonly known as the unadjusted Langevin al-
gorithm, and (ii) SMC-KLMC, which uses kinetic Langevin
Monte Carlo with the “OABAO” discretization (Duane et al.,
1987; Horowitz, 1991; Monmarché, 2021), also known as
unadjusted generalized Hamiltonian Monte Carlo (Neal,
2011). Our method achieves lower variance in normalizing

constant estimates compared to the best fixed step sizes
obtained through grid search or SGD-based tuning methods.
Additionally, the step size schedules found by our method
achieve lower or comparable variance than those found by
end-to-end optimization approaches without involving any
manual tuning (§ 5).

2. Background
Notation. Let B (Z) be the set of Borel-measurable sub-
sets of some set Z ⊆ Rd. With some abuse of notation, we
use the same symbol to denote both a distribution and its den-
sity. Also, log+ (x) ≜ logmax (x, 1), [·]+ ≜ max (·, 0),
and [T ] ≜ {1, . . . , T}.

2.1. SMC sampler and Feynman Kac Models

Sequential Monte Carlo (SMC; Dai et al., 2022; Del Moral
et al., 2006; Chopin & Papaspiliopoulos, 2020) is a gen-
eral framework for sampling from Feynman-Kac mod-
els (Del Moral, 2004; 2016). Consider a space X with
a σ-finite base measure. Feynman-Kac models describe a
change of measure between the target path distribution

P θ
0:T (dx0:T )≜

1

Zθ
T

{
G0 (x0)

T∏
t=1

Gθ
t (xt−1, xt)

}
Qθ

0:T (dx0:T )

and the proposal path distribution

Qθ
0:T (dx0:T ) ≜ q (dx0)

T∏
t=1

Kθ
t (xt−1,dxt) , where

q is the reference or initial proposal distribution,
(Kθ

t )t∈[T ] are Markov kernels parameterized with θ, and
(Gθ

t )t∈[T ] are non-negative Q-measurable functions re-
ferred to as potentials.

The (intermediate) normalizing constant at time t ∈ [T ] is

Zθ
t =

∫
X t+1

G0 (x0)

t∏
s=1

Gθ
s (xs−1, xs)Q

θ
0:t(dx0:t) .

The goal is often to draw samples from P θ
0:T or to estimate

the normalizing constant Zθ
T .

At time t = 0, SMC draws N particles x1:N0 from the initial
proposal q, each assigned with equal weights wn

0 = 1 for
n ∈ [N ]. At each subsequent time t ∈ [T ], particles x1:Nt−1

are transported via the transition kernel Kθ
t , reweighted

using the potentials Gθ
t , and optionally resampled to discard

particles with low weights. See the textbook by Chopin &
Papaspiliopoulos (2020) for more details.

At each time t ∈ [T ], the SMC sampler outputs a
set of weighted particles (w̄1:N

t , x1:N
t ), where w̄n

t ≜
wn
t /
∑

m∈[N ] w
m
t , along with an estimate of the normaliz-

ing constant Ẑt,N . Under suitable conditions, SMC samplers
return consistent estimates of the expectation Pt (φ) of a
measurable function φ : X → R over the marginal Pt and
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the normalizing constant Zt (Del Moral, 2004; 2016):∑
n∈[N ]

w̄n
t φ (xnt )

N→∞−−−−→ Pt (φ) and Ẑt,N
N→∞−−−−→ Zt .

Different choices ofG0:T , q, andKθ
0:T can describe the same

target path distribution P θ
0:T but result in vastly different

SMC algorithm performance. Proper tuning is thus essential
for achieving high efficiency and accuracy.

2.2. Sequential Monte Carlo for Static Models

In this work, we focus on SMC samplers for static models
where we target a “static” distribution π, whose density π :
X → R>0 is known up to a normalizing constant Z through
the unnormalized density function γ : X → R>0:

π (x) ≜
γ (x)

Z
, where Z =

∫
X
γ (x) dx .

This can be embedded into a sequential inference targeting
a “path” of distributions (π0, . . . , πT ), where the endpoints
are constrained as π0 = q and πT = π. It is common to
choose the geometric annealing path by setting the density
of πt, for t ∈ {0, . . . , T}, as

πt (x) ∝ γt (x) ≜ q (x)
1−λtγ (x)

λt , (1)
where the “temperature schedule” (λt)t∈{0,...,T} is mono-
tonically increasing as 0 = λ0 < . . . < λT = 1.

To implement an SMC sampler that simulates the path
(πt)t∈[T ], we introduce a sequence of backward Markov
kernels (Lθ

t−1)t∈[T ]
(and refer to the (Kθ

t )t∈[T ] as forward
kernels). We can then form a Feynman-Kac model by setting
the potential for t ≥ 1 as

Gθ
t (xt−1, xt) =

Zt−1

Zt

d
(
πt ⊗ Lθ

t−1

)
d
(
πt−1 ⊗Kθ

t

) (xt−1, xt) . (2)

As long as the condition
πt ⊗ Lθ

t−1 ≪ πt−1 ⊗Kθ
t (3)

holds for all t ≥ 0 and the Radon-Nikodym derivative can
be evaluated pointwise, Eq. (2) is equivalent to

Gθ
t (xt−1, xt) =

γt (xt)L
θ
t−1 (xt, xt−1)

γt−1 (xt−1)Kθ
t (xt−1, xt)

. (4)

Other than the constraint Eq. (3), the choice of forward
and backward kernels is a matter of design. Typically, the
forward kernelKθ

t is selected as a πt-invariant (i.e., adjusted)
MCMC kernel (Del Moral et al., 2006), such that the particles
following Pt−1 are transported to approximately follow πt.
This Feynman-Kac model targets the path measure

P θ
0:T (dx0:T ) = π (dxT )

∏T
t=1L

θ
t−1 (xt,dxt−1) .

Then, the marginal of xT is π, and for t ∈ [T ], the intermedi-
ate normalizing constant Zθ

t is precisely Zt =
∫
X γt (x) dx.

3. Adaptation Methodology
3.1. Adaptation Objective

The variance of sequential Monte Carlo is minimized when
the target path measure P and the proposal path measure
Q are close together (Del Moral et al., 2006; Gerber et al.,
2019; Chopin, 2004; Webber, 2019; Bernton et al., 2019). A
common practice has been to make them close by solving

minimize
θ

DKL(Q
θ
0:T , P

θ
0:T ) .

In this work, we are interested in a scheme enabling efficient
online adaptation within SMC samplers. One could appeal
to the chain rule of the KL divergence:
DKL(Q

θ
0:T , P

θ
0:T )

= DKL(Q0, P0) +
∑
t∈[T ]

EQt−1
{DKL(Qt|t−1, Pt|t−1)} ,

and attempt to minimize the incremental KL terms. Unfor-
tunately, at each step of SMC, we have access to a particle
approximation Pt−1 but not the marginal path proposal
Qt−1 due to resampling. Instead, we can consider the
forward/inclusive KL divergence
DKL(P

θ
0:T , Q

θ
0:T )

= DKL(P0, Q0) +
∑
t∈[T ]

EPt−1
{DKL(Pt|t−1, Qt|t−1)} .

Estimating the incremental forward KL divergence
DKL(Pt|t−1, Qt|t−1), however, is difficult due to the ex-
pectation taken over Pt|t−1, often resulting in high variance.
Therefore, we would like to have a proper divergence mea-
sure between the joint paths that (i) decomposes into T
incremental terms like the chain rule of the KL divergence,
(ii) is easy to estimate, just like the exclusive KL divergence.

Notice that naively summing the incremental exclusive KL
divergences as
Dpath (P0:T , Q0:T )

≜ DKL (Q0, P0) +
∑
t∈[T ]

EP0:t−1

{
DKL

(
Qt|0:t−1, Pt|0:t−1

)}
,

satisfies both requirements and turns out to be a valid diver-
gence between path measures:
Proposition 1. Consider joint distributions Q0:T , P0:T .
Then Dpath satisfies the following:

(i) Dpath (P0:T , Q0:T ) ≥ 0 for any Q0:T , P0:T .
(ii) Dpath (P0:T , Q0:T ) = 0 if and only if P0:T = Q0:T .

Proof. See the full proof in page 25.
Ideal Adaptation Scheme. Therefore, we propose to adapt
SMC samplers by minimizing Dpath.

minimize
θ

Dpath

(
P θ
0:T , Q

θ
0:T
)
. (5)

The key convenience of this objective is that for most cases
that we will consider, the tunable parameters θ decompose
into a sequence of subsets θ = (θ1, . . . , θT ), where at any
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t ∈ [T ], Kt and Gt depend on only θ1:t while θt dominates
their variance contribution. This suggests a greedy scheme
where we solve for a subset of parameters at a time. By
fixing θ1:t−1 from previous iterations, we solve for

θt = argmin
θt

E
P

θ1:t−1
t−1

{
DKL(Q

θ1:t
t|t−1, P

θ1:t
t|t−1)

}
. (6)

This greedy strategy does not guarantee a solution to the
joint optimization in Eq. (5). However, as long as greedily
setting θt does not negatively influence future and past steps,
which is reasonable for the kernels we consider, this strategy
should yield a good approximate solution.

Relation with Annealed Flow Transport. For the static
model case, Arbel et al. (2021) noted that the objective in
Eq. (6) approximates

Ext−1∼πt−1

{
DKL(πt−1 ⊗Kθ1:t

t , πt ⊗ Lθ1:t
t−1 |xt−1)

}
. (7)

Furthermore, Matthews et al. (2022, §3) showed that, when
Kt is taken to be a normalizing flow Ft (Papamakarios
et al., 2021) and Lt−1 = F−1

t , there exists a joint objective
associated with Eq. (7),

DKL

(∏T
t=1F

#πt−1,
∏T

t=1πt

)
, (8)

where F#
t πt−1 is the pushforward measure of πt−1 pushed

through Ft. Our derivation of Eq. (6) shows that it is not
just minimizing an approximation to some joint objective
as Eq. (8), but a proper divergence between the joint target
P and joint path Q. This general principle applies to all
Feynman-Kac models, not just those for static models.

Incremental KL Objective for Feynman-Kac Models.
For Feynman-Kac models, Eq. (6) takes the form

E
P

θ1:t−1
1:t−1

{
DKL(Q

θ1:t
t|1:t−1, P

θ1:t
t|1:t−1)

}
=

∫ ∫ dQθ1:t
t|t−1

dP θ1:t
t|t−1

dQθ1:t
t|t−1dP

θ1:t−1
t−1

=

∫ ∫
− logGθ1:t

t (xt−1, xt)M
θ1:t
t (xt−1,dxt) dP

θ1:t−1
t−1

− log
(
Zθ1:t

t /Z
θ1:t−1
t−1

)
.

The normalizing constant ratio forms a telescoping sum such
that the path divergence becomes

Dpath

(
P θ
0:T , Q

θ
0:T
)
= DKL(Q0, P0)− log

ZT

Z0

+
∑
t∈[T ]

E
(xt−1,xt)∼P

θ1:t−1
t−1 ⊗M

θ1:t
t

{
− logGθ1:t

t (xt−1, xt)
}
.

In practice, Feynman-Kac models are designed such that both
ZT and Z0 are fixed regardless of θ: Z0 is the normalizing
constant of q, which is usually normalized, and ZT is the
normalizing constant of the target P θ

0:T . Therefore, for such
Feynman-Kac models, solving Eq. (6) is equivalent to
θt=argmin

θt

E
(xt−1,xt)∼P

θ1:t−1
t−1 ⊗M

θ1:t
t

{−logGθ1:t
t (xt−1, xt)}.

(9)

Algorithm 1: Adaptive Sequential Monte Carlo
xn0 ∼ q, wn

0 = 1, Ẑ0,N ← 1
for t = 1, . . . , T do
ϵbt ∼ ψ
ã1:B
t−1 = resampleB

(
w1:N

t−1

)
x̃bt−1 = x

ãb
t−1

t−1 , w̃ b
t−1 = 1

θt = argminθt
L̂t

(
θt; x̃

1:B
t−1, w̃

1:B
t−1, ϵ

1:B
t

)
+ τreg (θt)

xnt ∼ Kθ1:t
t (xnt−1, ·)

wn
t ← wn

t−1G
θ1:t
t (xnt−1, x

n
t )

if resampling is triggered or t = T then
Ẑt,N = Ẑt−1,N

1
N

∑
n∈[N ] w

n
t

a1:N
t = resampleN

(
w1:N

t

)
xnt ← x

ant
t , wn

t ← 1
end

end

3.2. General Adaptation Scheme
Estimating the Incremental KL Objective. Now that we
have discussed our ideal objective for adaptation in Eq. (9),
we turn to estimating this objective in practice. At each
iteration t ∈ [T ], we have access to a collection of weighted
particles ∑

n∈[N ]

1

Z
θ1:t−1

t−1

wn
t−1δxnt−1

∼ P θ1:t−1

t−1

up to a constant with respect to θt, Z
θ1:t−1

t−1 , where δxnt−1

is a Dirac measure centered on xnt−1. Consider the case
where sampling from Kθ1:t

t can be represented by a map
T θ1:t
t : X × E → X , where the randomness over the space
E following ψ : B (E)→ R≥0 is captured by ϵnt ∼ ψ :

xnt = T θ1:t
t

(
xnt−1; ϵ

n
t

)
.

Then, up to a constant, we obtain a conditionally unbiased
estimate of the expectation in Eq. (9) as a function of θ:
L̂t(θt; x

1:N
t−1 ,w

1:N
t−1 , ϵ

1:N
t )

≜ −
∑

n∈[N ]

w̄n
t−1 logG

θ1:t
t

(
xnt−1, T

θ1:t
t

(
xnt−1; ϵ

n
t

))
. (10)

Efficiently Optimizing the Objective. Directly optimiz-
ing L̂t, however, is challenging: (i) Evaluating L̂t takes
O(N) evaluations of the potential, which can be expensive.
(ii) The expectation over the kernel Kt or, equivalently, over
ϵnt ∼ ψ, is intractable. We address these issues as follows:

1. Subsampling of Particles. To reduce the O(N) cost of
evaluating L̂t, we apply resampling over the particles
according to the weights w1:N

t−1 such that we end up
with a smaller subset of particles of size B ≪ N ,
which remains a valid approximation of P θ1:t−1

t−1 . Then,
evaluating L̂t takes O(B) evaluations of the potential.

2. Sample Average Approximation. Properly minimizing
the expectation over Kt requires stochastic optimiza-
tion algorithms, which introduce numerous challenges
related to convergence determination, step size tuning,
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Algorithm 2: AdaptStepsize (L, t, hguess, δ, c, r, ϵ)
Input: Adaptation objective L : (0,∞)→ R ∪ {+∞},

SMC iteration t ∈ [T ],
initial guess hguess > 0,
backing-off step size δ < 0,
exponential search coefficient c > 0,
exponential search exponent r > 1,
absolute tolerance ϵ > 0.

Output: Adapted step size h.
1 Llog (ℓ) ≜ L (exp (ℓ))
2 ℓ← log hguess

3 if t = 1 then
4 ℓ← FindFeasible

(
Llog, ℓ, δ

)
5 end
6 ℓ← Minimize

(
Llog, ℓ, c, r, ϵ

)
7 Return exp (ℓ)

handling instabilities, and such. Instead, we draw a
single batch of randomness (ϵbt)b∈[B], and fix it through-
out the optimization procedure. This sample average
approximation (SAA; Kim et al., 2015) introduces bias
in the optimized solution but enables the use of more
reliable deterministic techniques.

3. Regularization. Subsampling the particles results in
a higher variance for estimating the objective. We
counteract this by adding a weighted regularization term
τ reg (θt) to the objective. For example, for the case
of step sizes at t > 1 such that θt contains ht, we
will set τ reg (ht) = τ |log ht − log ht−1|2, which has
a smoothing effect over the tuned step size schedule.
This also makes the objective “more convex,” easing
optimization. For time t = 1, where we don’t have ht−1,
we use a guess h0 instead. Effective values of τ depend
on the type of kernel in question, but not much on the
target problem. We thus used a fixed value (App. B)
throughout all our experiments.

The high-level workflow of the proposed adaptive SMC
scheme is shown in Alg. 1. The notable change is the
addition of the adaptation step in Line 3 (colored region),
where the tunable parameters to be used at time t are tuned
to perform best at the tth SMC step, which follows the
“pre-tuning” principle of Buchholz et al. (2021). In contrast,
retrospective tuning (Fearnhead & Taylor, 2013), which uses
parameters that performed well in the previous step, forces
SMC to run with suboptimal parameters at all times.

3.3. Algorithm for Step Size Tuning
Recall that for SMC samplers applied to static models
(§ 2.2), the path proposal kernel is typically chosen to be an
MCMC kernel. For most popular MCMC kernels such as
random walk MH (Metropolis et al., 1953; Hastings, 1970)
or Metropolis-adjusted Langevin (MALA; Besag, 1994;
Rossky et al., 1978), the crucial tunable parameter is a scalar-
valued parameter called the step size denoted as ht > 0 for
t ∈ [T ]. In this section, we will describe a general procedure
for tuning such step sizes.
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Figure 1. Illustration of Assumption 1. The solid line is the
empirical objective L̂t for the LMC kernel computed using the
Bones model from PosteriorDB at time t = 1.

AdaptStepsize. The adaptation routine is shown in
Alg. 2. First, in Line 1 and 2, we convert the optimiza-
tion space to log-space; from (0,∞) to (−∞,∞). At
the SMC iteration t = 1, hguess is provided by the user.
Here, it is unsafe to immediately trust hguess to be non-
degenerate (L (hguess) < ∞). Therefore, FindFeasible in
Line 4 ensures that L (exp (ℓ)) <∞. At time t > 1, we set
hguess = ht−1, which should be non-degenerate as long as
adaptation at time t− 1 went successfully. Then we proceed
to optimization in Minimize (Alg. 8), which mostly relies on
the golden section search algorithm (GSS; Avriel & Wilde,
1968; Kiefer, 1953), a gradient-free 1-dimensional optimiza-
tion method. GSS deterministically achieves an absolute
tolerance of ϵ > 0. Since we optimize in log-space, this
translates to a natural relative tolerance e±ϵ/2 with respect
to the minimizer of L. In our implementation and choice
of r, c, ϵ (described in App. B), this procedure terminates
after around 10 objective evaluations for t > 1 and few tens
of iterations for t = 1. For an in-depth discussion on the
algorithm, please refer to App. C.

3.4. Analysis of the Algorithm for Step Size Tuning

We provide quantitative performance guarantees of the pre-
sented step size adaptation procedures. To theoretically
model various degeneracies that can happen in the large step
size regime, we will assume that the objective function L
takes the value of +∞ beyond some threshold. In practice,
whenever a numerical degeneracy is detected when evaluat-
ing log γ (NaN or −∞), we ensure that the objective value
is accordingly set as∞. Our algorithm can deal with such
cases by design, as reflected in the following assumptions:

Assumption 1. For the objective L : (0,∞)→ R ∪ {+∞},
we assume the following:

(a) There exists some h∞ ∈ (0,∞] such that L is finite
and continuous on (0, h∞) and +∞ on [h∞,∞).

(b) There exists some h ∈ (0, h∞) such that L is strictly
monotonically decreasing on (0, h].

(c) There exists some h ∈ [h, h∞) such that L is strictly
monotonically increasing on [h, h∞)

5
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Assumption (a) stipulates that degenerate regions are never
disconnected and only exist in the direction of large step
sizes. Assumptions (b) and (c) represent the intuition that
when the step size is too small or too large, the MCMC
kernels degenerate predictably. Most of the MCMC kernels
used in practice are based on time-discretized diffusions. In
these cases, (b) is satisfied as they approach the continuous-
time regime, while (c) will be satisfied as the discretization
becomes unstable (divergence). Fig. 1 validates this intuition
on one of the examples.
Theorem 1. Suppose Assumption 1 holds. Then
AdaptStepsize (L, t, hguess, δ, c, r, ϵ) returns a step size
h ∈ (0, h∞) that is ϵ-close to a local minimum of L
in log-scale after Cfeas + Cbm + Cgss objective evalua-
tions, where, defining ∆ ≜ log+

(
h/h0

)
+ log+(h0/h)

and h0 ≜ min(hguess, h
∞),

Cfeas = O
{
δ−1 log+ (hguess/h∞)

}
Cbm = O

{
(log r)

−1
log+

(
∆rc−1

) }
Cgss = O

{
log+

((
r3∆+ r2c

)
ϵ−1
)}

.

Proof. See the full proof in page 28.

This suggests that, ignoring the dependence on r, c, the
objective query complexity of our optimization procedure is
O(log (∆/ϵ)). Here, ∆ represents the difficulty of the prob-
lem, where∆ ≥

∣∣log h− log h
∣∣. In essence,

∣∣log h− log h
∣∣

represents how “multimodal” the problem is. In practice,
however, many problems result in less pessimistic objective
surfaces such as follows:

Assumption 2. L is unimodal on (0, h∞).

This is equivalent to assuming (b) and (c) in Assumption 1
with h = h and implies there is a unique global minimum.
Then Theorem 1 can be strengthened into the following:

Corollary 1. Suppose Assumption 2 and 3 hold. Then The-
orem 1 holds, where AdaptStepsize (L, t, hguess, δ, c, r, ϵ)
returns h ∈ (0, h∞) that is ϵ-close to the global optimum
h∗ and ∆ = |log h∗ − log h0|.

Note that, at t > 1, it is sensible to set hguess ← ht−1

since πt−1 ≈ πt by design. Therefore, after t = 1,
AdaptStepsize will run in a “warm start” regime where
∆ ≈ 0. For instance, assume the initial guess is warm such
that |log hguess − log h∗| ≤ ϵ and hguess ∈ (0, h∞). Then
Corollary 1 states that the number of objective evaluations
will be O

{
log+

(
r2cϵ−1 + r3

)}
.

The parameters of AdaptStepsize, r and c, must balance
the performance of both the warm and cold start cases. For
a warm start, cr−1 = O(ϵ) optimizes performance. For a
cold start, r needs to be large enough to keep the (log r)−1

term in Cbm small. Thus, leaning towards making c small
and r moderately large balances both cases. The values we
use in the experiments are shown in App. B.1.

4. Implementations
Based on the procedure in § 3.3, we now describe complete
implementations of adaptive SMC samplers. Here, we will
focus on the static model setting (§ 2.2), where the main
objective is tuning of the MCMC kernels (Kθ

t )t∈[T ].

4.1. SMC with Langevin Monte Carlo

First, we consider SMC with Langevin Monte Carlo
(LMC; Grenander & Miller, 1994; Rossky et al., 1978;
Parisi, 1981), also known as the unadjusted Langevin algo-
rithm. LMC forms a kernel Kt : Rd × B

(
Rd
)
→ R>0 on

the state space X = Rd, which, for s ≥ 0, simulates the
Langevin stochastic differential equation (SDE)

dxs = ∇ log πt (xs) ds+
√
2 dBs, (11)

where (Bs)s≥0 is Brownian motion. Under appropriate
conditions on the targetπt, it is well known that the stationary
distribution of the process (xs)s≥0 is πt, where converges
exponentially fast in total variation (Roberts & Tweedie,
1996, Thm 2.1). The Euler-Maruyama discretization of
Eq. (11) yields a Markov kernel

Kh
t (x, dx′) = N (dx′; x+ h∇ log πt (x) , 2h Id) ,

where h > 0 is the step size, which conveniently has a
tractable density with respect to the Lebesgue measure.

Note that LMC is an approximate MCMC algorithm in the
sense that, for any h > 0, the stationary distribution ofKh

t is
only approximately πt. This contrasts with its MH-adjusted
counterpart MALA (Besag, 1994; Roberts & Tweedie, 1996;
Rossky et al., 1978), which is stationary on πt.

Backward Kernel. For the sequence of backward kernels
(Lθ

t−1)t=2,...,T
, multiple choices are possible. For instance,

in the literature, a typical choice is Lht
t−1 = Kht

t . In this
work, we instead take the choice of

L
ht−1

t−1 (xt, xt−1) ≜ K
ht−1

t−1 (xt, xt−1) ,

which we call the “time-correct forward kernel.” Compared
to more popular alternatives, this choice results in signifi-
cantly lower variance. (An in-depth discussion can be found
in App. E.) The resulting potentials are

Gh1
1 (x0, x1) =

γ1 (x1)

Kh1
1 (x0, x1)

G
ht−1,ht

t (xt−1, xt) =
γt (xt)L

ht−1

t−1 (xt, xt−1)

γt−1 (xt−1)K
ht
t (xt−1, xt)

,

where, at each step t ∈ [T ], we optimize for ht using the
general step size tuning procedure described in § 3.3 while
the backward kernel re-uses the tuned parameter ht−1 from
the previous iteration.

4.2. SMC with Kinetic Langevin Monte Carlo
Next, we consider a variant of the LMC that operates on
the augmented state space Z = X × X , where, for t ≥ 0,

6
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Algorithm 3: AdaptKLMC (L, hguess, ρguess, δ, Ξ, c, r, ϵ)
Input: Adaptation objective L : R>0 × (0, 1)→ R ∪ {∞},

initial guess (hguess, ρguess) ∈ R>0 × (0, 1),
backing-off step size δ < 0,
grid of refreshment parameters Ξ ∈ (0, 1)k,
exponential search coefficient c > 0,
exponential search exponent r > 1,
absolute tolerance ϵ > 0.

Output: Adapted step size and refreshment rate (h, ρ).
1 Llog (ℓ, ρ) ≜ L (exp (ℓ) , ρ)
2 ℓ← log hguess, ρ← ρguess
3 if t = 1 then
4 ℓ← FindFeasible

(
ℓ 7→ Llog (ℓ, ρ) , ℓ, δ

)
5 end
6 while not converged do
7 ℓ′ = Minimize

(
ℓ 7→ Llog (ℓ, ρ) , ℓ, c , r , ϵ

)
ρ′ = argminρ∈Ξ Llog (ℓ′, ρ).

8 if max (|ℓ− ℓ′|, |ρ− ρ′|) ≤ ϵ then
9 Return (exp (ℓ′) , ρ′)

10 end
11 ℓ← ℓ′, ρ← ρ′

12 end
13 Return (exp (ℓ′) , ρ′)

each state of the Feynman-Kac model is denoted as zt =
(xt, vt) ∈ Z , xt, vt ∈ X , X = Rd, and the target is

πklmc
t (x, v) ≜ πt (x)N (v; 0d, Id) .

Evidently, the x-marginal of the augmented target is π.
Therefore, a Feynman-Kac model targeting πklmc

t is also tar-
geting π by design. Kinetic Langevin Monte Carlo (KLMC;
Horowitz, 1991; Duane et al., 1987), also commonly referred
to as underdamped Langevin, for s ≥ 0, is given by

dxs = vsds

dvs = ∇ log π (vs) ds− ηvsds+
√
2η dBs ,

where η > 0 is a tunable parameter called the damping
coefficient. The stationary distribution of the joint process
(xs, vs)s≥0 is then πklmc. This continuous time process
corresponds to the “Nesterov acceleration (Nesterov, 1983;
Su et al., 2016)” of Eq. (11) (Ma et al., 2021), meaning that
the process should converge faster. We thus expect KLMC
to reduce the required number of steps T compared to LMC.

To simulate this, we consider the OBABO discretiza-
tion (Leimkuhler & Matthews, 2013), which operates in a
Gibbs scheme (Geman & Geman, 1984): its kernel
Kt (zt−1,dzt)

= Rρ
(
vt−1,dvt−1/2

)
Sh,L
t

((
xt−1, vt−1/2

)
, (dxt,dvt)

)
is a composition of the momentum refreshment kernel

Rρ
(
vt−1,dvt−1/2

)
≜ N

(
dvt−1/2;

√
1− ρ2 vt−1, ρ

2 Id

)
,

where ρ ≜ 1 − exp (−ηh) ∈ (0, 1) is the “momentum
refreshment rate” for some step size h > 0, and the Leapfrog
integrator kernel

Sh
t

((
xt−1, vt−1/2

)
, ·
)
≜ δΦh

t (xt−1,vt−1/2)
(·) ,

whereΦh
t is a single step of leapfrog integration with step size

h preserving the “Hamiltonian energy” − log πklmc
t . This

discretization also coincides with the unadjusted version of
the generalized Hamiltonian Monte Carlo algorithm (Duane
et al., 1987; Neal, 2011) with a single leapfrog step.

Backward Kernel. Since the kernel Sht is a deterministic
mapping, Kθt

t does not admit a density with respect to the
Lebesgue measure. Therefore, we are restricted to a specific
backward kernel that satisfies the condition in Eq. (3): Since
the leapfrog integrator Φh

t is a diffeomorphism, its inverse
map (Φh

t )
−1 exists. Therefore, we can choose

Lh,ρ
t−1 (zt, ·) = δ(Φh

t )
−1(xt,vt)

((
dxt,dvt−1/2

))
Rρ
(
vt−1/2,dvt−1

)
This results in the deterministic component of Kt and Lt−1
being supported on the same pair of points, ensuring absolute
continuity (Doucet et al., 2022; Geffner & Domke, 2023).
Then the potential is given by the Radon-Nikodym derivative
between the momentum refreshment components Rρ as
Ght,ρt

t (zt−1, zt)

=
γt (xt)N (vt; 0d, Id)N

(
vt−1;

√
1− ρ2t vt−1/2, ρ

2
t Id

)
γt−1 (xt−1)N (vt−1; 0d, Id)N

(
vt−1/2;

√
1− ρ2t vt−1, ρ2t Id

)
with two tunable parameters: (ht, ρt) ∈ R>0 × (0, 1).

D
en
si
ty

Refreshment	rate	(ρt)
0 0.2 0.4 0.6 0.8 1

Figure 4. Distribution of
tuned refreshment rates
ρt. The results were ob-
tained by running adaptive
SMC on the Sonar prob-
lem with T = 256 and
N = 1024

Adaptation Algorithm. As
KLMC has two parameters, we
cannot immediately apply the
tuning procedure offered in § 3.3.
Thus, we will tailor it to KLMC.
At each iteration t ∈ [T ], we
will minimize the incremental
KL objective L̂t (h, ρ) through
coordinate descent. That is, we
alternate between minimizing
over h and ρ. This is shown
in Alg. 3. In particular, ht is
updated using the procedure
used in § 3.3, while ρt is directly
minimized over a grid Ξ ∈ (0, 1)

k of k grid points. As
shown in Fig. 4, empirically, the minimizers of L̂t with
respect to ρt tend to concentrate on the boundary, as if the
adaptation problem is determining to “fully refresh” or “not
refresh at all.” Therefore, the grid Ξ can be made as coarse
as Ξ = {0.1, 0.9}, which is what we use in the experiments.

5. Experiments
5.1. Implementation and General Setup

We implemented our SMC sampler1 using the Julia lan-
guage (Bezanson et al., 2017). For resampling, we use the
Srinivasan sampling process (SSP) by Gerber et al. (2019),
which performs similarly to the popular systematic resam-

1Link to GitHub repository: https://github.com/
Red-Portal/ControlledSMC.jl/tree/v0.0.4.
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Figure 2. SMC-LMC with adaptive tuning v.s. fixed step sizes. The solid lines are the median of the estimates of logZ, while the
colored regions are the 80% empirical quantiles computed over 32 replications.
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Figure 3. SMC-KLMC with adaptive tuning v.s. fixed step sizes and refreshment rates. For SMC-KLMC with fixed parameters h, ρ,
we show the result of the best-performing refreshment rate. The solid lines are the median of the estimates of logZ, while the colored
regions are the 80% empirical quantiles computed over 32 replications.

pling strategy (Carpenter et al., 1999; Kitagawa, 1996),
while having stronger theoretical guarantees. Resampling
is triggered adaptively, which has been theoretically shown
to work well (Syed et al., 2024) under the typical rule of
resampling as soon as the effective sample size (Kong, 1992;
Elvira et al., 2022) goes below N/2. In all cases, the reference
distribution is a standard Gaussian q = N (0d, Id), while
we use a quadratic annealing schedule λt = (t/T )

2.
Evaluation Metric. We will compare the estimate
log ẐT,N , where, for unbiased estimates of Z against a
ground truth estimate obtained by running a large budget
run with N = 214 and T = 29. Due to adaptivity, our
method only yields biased estimates of Z. Therefore, after
adaptation, we run vanilla SMC with the tuned parameters,
which yields unbiased estimates.
Benchmark Problems. For the benchmarks, we ported
some problems from the Inference Gym (Sountsov et al.,
2020) to Julia, where the rest of the problems are taken
from PosteriorDB (Magnusson et al., 2025). Details on the
problems considered in this work are in App. A, while the
configuration of our adaptive method is specified in App. B.

5.2. Comparison Against Fixed Step Sizes

Setup. First, we evaluate the quality of the parameters
tuned through our method. For this, we compare the perfor-
mance of SMC-LMC and SMC-KLMC against hand tuning
a fixed step size h, such that ht = h, over a grid of step sizes.
For KLMC, we also perform a grid search of the refreshment
rate over {0.1, 0.5, 0.9}. The computational budgets are set
as N = 1024, B = 128, and T = 64.

Results. A representative subset of the results is shown
in Figs. 2 and 3, while the full set of results is shown in
App. F.1. First, we can see that SMC with fixed step sizes is
strongly affected by tuning. On the other hand, our adaptive
sampler obtains estimates that are closer or comparable to
the best fixed step size on 20 out of 22 benchmark problems.
Our method performed poorly on the Rats problem, which
is shown in the right-most panes in Figs. 2 and 3. Overall,
our method results in estimates that are better or comparable
to those obtained with the best fixed step size.

5.3. Comparison Against End-to-End Optimization

Setup. Now, we compare our adaptive tuning strategy
against end-to-end optimization strategies. In particular,
we compare against differentiable AIS (Geffner & Domke,
2023; 2021; Zhang et al., 2021) instead of SMC, as differ-
entiating through resampling does not necessarily improve
the results (Zenn & Bamler, 2023). To focus on the tuning
capabilities, we do not optimize the reference q. How-
ever, results with variational reference tuning can be found
in App. F.2. Furthermore, we performed a grid search over
the SGD step sizes {10−4, 10−3, 10−2} and show the best
results. Additional implementation details can be found in
App. B.2. Since end-to-end methods need to differentiate
through the models, we only ran them on the problems with
JAX (Bradbury et al., 2018) implementations (Funnel, Sonar,
Brownian, and Pine). We use T = 32 SMC iterations for
all methods. For adaptation, our method uses B = 128
particles out of N = 1024 particles, while end-to-end op-
timization uses an SMC sampler with 32 particles during
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Figure 5. Dimensional scaling of adaptive SMC with Langevin-based kernels with (MALA) and without (LMC) MH adjustment.
(a) Comparison of the logZ estimates under growing dimensionality. The solid lines are the median, while the shaded regions are the
80% quantiles obtained from 32 replications. (b-d) Tuned step size schedules obtained under each sampler. SMC-MALA-ESJD uses
ESJD maximization for adaptation, while SMC-MALA-ARC uses acceptance rate control (ARC). Each solid line is a step size schedule
obtained from a single run (eight examples are shown), while the dotted lines are the average over t.
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Figure 6. Comparison against end-to-end optimization. The
“cost” is the cumulative number of gradient evaluations of the target.
32 independent runs for end-to-end optimization are shown. The
error bars/bands are 80% empirical quantiles of the cost and the
estimates of logZ computed from 32 replications.

optimization, and N = 1024 particles when actually esti-
mating ẐT,N . For both methods, the cost of estimating the
unbiased normalizing constant is excluded.
Results. The results with the KLMC kernel are shown in
Fig. 6, while additional results can be found in App. F.2. Our
Adaptive SMC sampler achieves more accurate estimates
than the best-tuned end-to-end tuning results on Sonar and
Brownian, while the estimate on Pines is comparable. This
demonstrates that our SMC tuning approach achieves esti-
mates that are better or on par with those obtained through
end-to-end optimization.

5.4. Dimensional Scaling with and without
Metropolis-Hastings Adjustment

We will now compare the tuned performance of unadjusted
versus adjusted kernels, in particular, LMC versus MALA.
To maintain a non-zero acceptance rate, MH-adjusted meth-
ods generally require h to decrease with dimensionality d.
Theoretical results suggest that, for MALA, the step size
has to decrease as O

(
d−1/3

)
(Chewi et al., 2021; Roberts

& Tweedie, 1996) for Gaussian targets and as O
(
d−1/2

)
in

general (Chewi et al., 2021; Wu et al., 2022). In contrast,
LMC only needs to reduce h to counteract the asymptotic

bias in the stationary distribution, which grows as O(d) in
squared Wasserstein distance (Dalalyan, 2017; Durmus &
Eberle, 2024; Durmus & Moulines, 2019). However, since
SMC never operates in the stationary regime (except for the
waste-free variant by Dau & Chopin 2022), we expect SMC-
LMC to scale better than SMC-MALA with dimensionality
d. Here, we will empirically verify this intuition.
Setup. We set π = N (3 · 1d, Id) and q = N (0d, Id)
under varying dimensionality d. The computational budgets
are set as N = 1024, T = 4⌈

√
d⌉, where the latter is

suggested by Syed et al. (2024, §4.7). For MALA, we will
consider two common adaptation strategies: controlling
the acceptance rate (Buchholz et al., 2021) such that it
is 0.575 (Roberts & Tweedie, 1996) and maximizing the
ESJD (Pasarica & Gelman, 2010; Buchholz et al., 2021;
Fearnhead & Taylor, 2013). For both, we use the tricks
stated in § 3.2, such as subsampling and SAA.
Results. The results are shown in Fig. 5. For SMC-LMC,
the step size schedule is shown to decrease with t (Fig. 5b).
Since the smoothness constant of the target density does
not change with t, this means our adaptation scheme is
automatically performing a trade-off between convergence
speed and asymptotic bias. Also, the average step sizes
decrease with d, which is expected since the bias grows with
d. However, for d ≥ 128, the step sizes of SMC-LMC tend
to be larger than those of SMC-MALA (Figs. 5c and 5d).
Consequently, SMC-ULA obtains more accurate estimates
in higher dimensions (Fig. 5a).

6. Conclusions
In this work, we established a methodology for tuning path
proposal kernels in SMC samplers, which involves greedily
minimizing an incremental KL divergence at each SMC step.
We also developed a specific instantiation of the method for
tuning scalar-valued step sizes of MCMC kernels used in
SMC samplers. A potential future direction would be to
investigate the consistency of the proposed scheme, possibly
through the framework of Beskos et al. (2016).
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Name Description d Source Reference

Funnel Neal’s funnel distribution. 10 Inference Gym Sountsov et al. 2020
Neal 2003

Brownian Latent Brownian motion with missing observations. 32 Inference Gym Sountsov et al. 2020

Sonar Bayesian logistic regression with the sonar classifica-
tion dataset.

61 Inference Gym Sountsov et al. 2020
Gorman & Sejnowski 1988

Pines Log-Gaussian Cox process model of the concentration
of Scotch pine saplings in Finland over a 40× 40 grid.

1600 Inference Gym Sountsov et al. 2020
Møller et al. 1998

Table 1. Overview of Benchmark Problems

A. Benchmark Problems
In this section, we provide additional details about the
benchmark problems. A full list of the problems is shown in
Tables 1 to 3. For the problems we ported from the Inference
Gym, we provide additional details for clarity:

Funnel. This is the classic benchmark problem by Neal
(2003). We use the formulation:

y ∼ N
(
0, 32

)
x ∼ N (0d−1, e

yId−1) ,

where d = 10.

Sonar. This is a logistic regression problem with a standard
normal prior on the coefficients. That is, for d = 61, given a
dataset (X, y), where X ∈ Rn,d−1 and y ∈ Rn, the design
matrix is augmented with a column containing 1s denoted
with X̃ to include an intercept. The data-generating process
is

β ∼ N (0d, Id)

y ∼ Bernoulli
(
σ
(
X̃β
))
,

where σ (x) ≜ 1/ (1 + e−x) is the logistic function. Here,
we use the sonar classification dataset by Gorman & Se-
jnowski (1988). The features are pre-processed with z-
standardization following Phillips et al. (2024).

Pines. This is a log-Gaussian Cox process (LGCP; Møller
et al., 1998) model applied to a dataset of Scotch pine saplings
in Finland (Møller et al., 1998). A LGCP is a nonparametric
model of intensity fields, where the observations are assumed
to follow a Poisson point process (PPP). Consider a 2-
dimensional grid of n cells indexed by i ∈ [n], each denoted
by Si ∈ S and centered on the location xi ∈ Rd. The dataset
is the number of points contained in the ith cell, yi ∈ N≥0,
for all i ∈ [n], which is assumed to follow a PPP such that

yi ∼ Poisson

(∫
Si

λ (x) dx

)
with the intensity field

log λ ∼ GP (µ, k) ,

whereGP (µ, k) is a Gaussian process prior (GP; Rasmussen
& Williams, 2005) with mean µ and covariance kernel
k : R2 × R2 → R>0. We use the grid approximation∫

Si

λ (x) dx ≈ Ai exp (log λ (xi)) ,

where Ai is the area of Si. The likelihood is then

ℓ (yi, xi, λ) = exp {λ (xi) yi −Ai exp (λ (xi))} .

Following Møller et al. (1998), the hyperparameters of the
GP are set as

µ = log (126)− σ2

2

k (xi, xj) = σ2 exp

(
−
∥xi − xj∥2√
|S|β2

)
,

where

σ2 = 1.91 and β =
1

33
.

The field [0, 1]2 is discretized into a 40× 40 grid such that
|S| = 402 and Ai = 1/|S|. Furthermore, to improve the
conditioning of the posterior, we whiten the GP prior (Murray
& Adams, 2010, §2.1).

18



Tuning SMC Samplers via Greedy Incremental Divergence Minimization

Name Description d Source References

Bones Latent trait model for multiple ordered categorical
responses for quantifying skeletal maturity from radio-
graph maturity ratings with missing entries. (model:
bones model; dataset: bones data)

13 PosteriorDB Magnusson et al. 2025
Spiegelhalter et al. 1996

Surgical Binomial regression model for estimating the mor-
tality rate of pediatric cardiac surgery. (model:
surgical model; dataset: surgical data)

14 PosteriorDB Magnusson et al. 2025
Spiegelhalter et al. 1996

HMM Hidden Markov model with a Gaussian emission ap-
plied to a simulated dataset. (model: hmm gaussian;
dataset: hmm gaussian simulated)

14 PosteriorDB Magnusson et al. 2025
Cappé et al. 2005

Loss Curves Loss model of insurance claims. The model is the sin-
gle line-of-business, single insurer (SISLOB) variant,
where the dataset is the “ppauto” line of business, part
of the “Schedule P loss data” provided by the Casu-
alty Actuarial Society. (model: losscurve sislob;
dataset: loss curves)

15 PosteriorDB Magnusson et al. 2025
Cooney 2017

Pilots Linear mixed effects model with varying intercepts for
estimating the psychological effect of pilots when per-
forming flight simulations on various airports. (model:
pilots; dataset: pilots)

18 PosteriorDB Magnusson et al. 2025
Gelman & Hill 2007

Diamonds Log-log regression model for the price of diamonds
with highly correlated predictors. (model: diamonds;
dataset: diamonds)

26 PosteriorDB Magnusson et al. 2025
Wickham 2016

Seeds Random effect logistic regression model of the seed
germination proportion of seeds from different root
extracts. We use the variant with a half-Cauchy prior
on the scale. (model: seeds stanified model;
dataset: seeds data)

26 PosteriorDB Magnusson et al. 2025
Crowder 1978

Spiegelhalter et al. 1996

Downloads Prophet time series model applied to the download
count of rstan over time. The model is an additive
combination of (i) a trend model, (ii) a model of sea-
sonality, and (iii) a model for events such as holidays.
(model: prophet; dataset: rstan downloads)

62 PosteriorDB Magnusson et al. 2025
Taylor & Letham 2018

Bales et al. 2019

Rats Linear mixed effects model with varying slopes and
intercepts for modeling the weight of young rats over
five weeks. (model: rats model; data: rats data)

65 PosteriorDB Magnusson et al. 2025
Spiegelhalter et al. 1996

Gelfand et al. 1990

Radon Multilevel mixed effects model with log-normal
likelihood and varying intercepts for modeling
the radon level measured in U.S. households.
We use the Minnesota state subset. (model:
radon hierarchical intercept centered;
dataset: radon mn)

90 PosteriorDB Magnusson et al. 2025
Gelman et al. 2014

Table 2. Overview of Benchmark Problems
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Name Description d Source Reference

Election88 Generalized linear mixed effects model of the voting
outcome of individuals at the 1988 U.S. presiden-
tial election. (model: election88 full; dataset:
election88)

90 PosteriorDB Magnusson et al. 2025
Gelman & Hill 2007

Butterfly Multispecies occupancy model with correlation be-
tween sites. The dataset contains counts of butterflies
from twenty grassland sites in south-central Sweden
(model: butterfly; dataset: multi occupancy)

106 PosteriorDB Magnusson et al. 2025
Dorazio et al. 2006

Birds Mixed effects model with a Poisson likelihood and
varying intercepts for modeling the occupancy of the
Coal tit (Parus ater) bird species during the breed-
ing season in Switzerland. (model: GLMM1 model;
dataset: GLMM data)

237 PosteriorDB Magnusson et al. 2025
Kéry & Schaub 2012

Drivers Time series model with seasonal effects of
driving-related fatalities and serious injuries in
the U.K. from Jan. 1969 to Dec. 1984. (model:
state space stochastic level stochastic seasonal;
dataset: uk drivers)

389 PosteriorDB Magnusson et al. 2025
Commandeur & Koopman 2007

Capture Model of capture-recapture data for estimating the pop-
ulation size. This is the “heterogeneity model,” where
the detection probability is assumed to be heteroge-
neous across the individuals. The data is simulated.
(model: Mh model; dataset: Mh data)

388 PosteriorDB Magnusson et al. 2025
Kéry & Schaub 2012

Science Item response model with generalized rating scale.
The dataset was taken from the Consumer Protec-
tion and Perceptions of Science and Technology sec-
tion of the 1992 Euro-Barometer Survey. (model:
grsm latent reg irt; dataset: science irt)

408 PosteriorDB Magnusson et al. 2025
Reif & Melich 1993

Furr 2017

Three Men Latent Dirichlet allocation for topic modeling. The
number of topics is set as K = 2, while the dataset is
corpus 3 among pre-processed multilingual corpora
of the book “Three Men and a Boat.” (model: ldaK2;
dataset: three men3)

505 PosteriorDB Magnusson et al. 2025
Farkas 2014

Blei et al. 2003

TIMSS Item response model with generalized partial credit.
The dataset is from the TIMSS 2011 mathemat-
ics assessment of Australian and Taiwanese stu-
dents. (model: gpcm latent reg irt; dataset:
timssAusTwn irt)

530 PosteriorDB Magnusson et al. 2025
Muraki 1997

Mullis et al. 2012

Table 3. Overview of Benchmark Problems (continued)
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B. Details on the Experimental Setup
B.1. Setup of Adaptive SMC Samplers

Configuration of the Adaptation Procedure. Here, we
collected the specifications of the tunable parameters in our
adaptive SMC samplers. The parameters of SMC-LMC are
set as in Table 4:

Name Source Value

τ § 3.2 0.1
ϵ Alg. 6 0.01
c Alg. 7 0.1
r Alg. 7 2
δ Alg. 5 −1

hguess Alg. 5 exp (−10) ≈ 4.54× 10−5

Table 4. Configuration of SMC-LMC

The parameters of SMC-KLMC are set as in Table 5:

Name Source Value

τ § 3.2 5
ϵ Alg. 6 0.01
c Alg. 7 0.01
r Alg. 7 3
δ Alg. 5 −1
Ξ Alg. 3 {0.1, 0.9}

ρguess Alg. 3 0.1
hguess Alg. 5 exp (−7.5) ≈ 5.53× 10−4

Table 5. Configuration of SMC-KLMC

Schedule Adaptation. In some of the experimental results
in the appendix, we evaluate the performance of our step
size adaptation procedure when combined with an annealing
temperature schedule ((λt)t=0,...,T ) adaptation scheme. In
particular, we use the recently proposed method of Syed et al.
(2024), which is able to tune both the schedule (λt)t=0,...,T

and the number of SMC steps T . Under regularity as-
sumptions, the resulting adaptation schedule asymptotically
(N →∞ and T →∞) approximates the optimal geometric
annealing path that minimizes the variance of the normal-
izing constant estimator. For a detailed description, see
Syed et al. (2024, Sec. 5). Below, we provide a concise
description of the schedule adaptation process.

Under suitable regularity assumptions, the asymptotically
optimal schedule is the one that makes the “local communi-
cation barrier”

LCB(λt−1, λt) ≈
√
R(πt−1 ⊗Kθ

t ||πt ⊗ Lθ
t−1)

uniform across all adjacent steps λt, λt−1 for all t ∈
[T ] (Syed et al., 2024, §4.3). As such, the correspond-
ing adaptation scheme estimates the local communication

barrier and uses it to obtain a temperature schedule that
makes it uniform. Intuitively, LCB(λt−1, λt) quantifies
the “difficulty” of approximating πt ⊗ Lθ

t−1 using weighted
particles drawn from πt−1 ⊗Kθ

t .

In addition, let us denote the local communication barrier
accumulated up to time step t ∈ {0, . . . , T},

Λ(λt) ≜
t∑

s=1

LCB(λs−1, λs) .

This serves as a divergence measure for the “length” of the
annealing path from λ0 = 0 to λt. Furthermore, the total
accumulated local barrier

Λ ≜ Λ(λT ) ,

which is referred to as the global communication barrier,
quantifies the total difficulty of simulating the annealing
path (πt)t∈{0,...,T}. For the normalizing constant to be
accurate, SMC needs to operate in what they call the “stable
discretization regime,” which occurs at T = O(Λ) (Syed
et al., 2024). Therefore, for tuning the number of SMC steps,
a good heuristic is to set T to be a constant multiple of the
estimated global communication barrier.

The corresponding schedule adaptation scheme is as fol-
lows: From the estimates of the communication barrier
(Λ̂ (λt))t∈[T ] obtained from a previous run, the updated
schedule for the next run of length T ′ is set via mapping

λ⋆t = Λ̂inv

(
Λ̂× t

T ′

)
, t′ = 0, . . . , T ′, (12)

where the inverse mapping Λ̂inv is approximated using a
monotonic spline with knots {(Λ̂(λt), λt)}Tt=0. In our case,
the length of the new schedule is set as T ′ = 2Λ̂.

Below, we summarize the general steps for adaptive SMC
with round-based schedule adaptation:

Algorithm 4: Round-Based Annealing Schedule Adap-
tation
Input: Number of rounds rmax,

Initial number of SMC iterations T1.
Initial schedule (λ1t )t=0,...,T1

.
1 for r = 1 . . . , rmax do
2 Run adaptive SMC with the schedule (λrt )t=0,...,Tr

.
3 Estimate Λ̂ and compute Λ̂inv.
4 Set Tr+1 = 2Λ̂.
5 Obtain (λr+1

t )t=0,...,Tr+1
using Eq. (12).

6 end
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B.2. Setup of End-to-End Optimization

We provide additional implementation details for end-to-
end optimization2. We implemented two differentiable AIS
methods: one based on LMC (Thin et al., 2021) and another
based on KLMC (Geffner & Domke, 2021; Doucet et al.,
2022). Both methods are implemented in JAX (Bradbury
et al., 2018), modified from the code provided by Geffner &
Domke (2023).

For optimization, we used the Adam optimizer (Kingma
& Ba, 2015) with three different learning rates
{10−4, 10−3, 10−2} for 5,000 iterations, with a batch size of
32. We evaluated two different annealing step sizes (32 and
64), keeping the number of steps fixed during training while
optimizing the annealing schedule (detailed in App. F.2).
Each setting was repeated 32 times, and we report results
from the best-performing configurations.

Following the setup of Doucet et al. (2022), the vector-valued
step sizes are amortized through a function ϵθ(t) : [0, 1]→
Rd. This function is parametrized through a 2-layer fully
connected neural network with 32 hidden units and ReLU
activation, followed by a scaled sigmoid function which
enforces ϵθ(t) < 0.1 for the ULA variant and ϵθ(t) < 0.25
for the KLMC variant. Enforcing these step size constraints
is necessary to prevent numerical issues during training,
which was acknowledged in prior works (Doucet et al., 2022;
Geffner & Domke, 2021).

For schedule adaptation, Doucet et al. (2022); Geffner &
Domke (2021), parametrize the temperature schedule as

λt =

∑
t′≤t σ (bt′)∑T
t′=1 σ (bt′)

,

where σ is the sigmoid function, λ0 is fixed to be 0, and
b0:T−1 is subject to optimization. Following Doucet et al.
(2022), we additionally learn the momentum refreshment
rate ρ (shared across t ∈ [T ]) for SMC-KLMC. That is, we
parametrize ρ with a parameter u as ρ = .98σ(u) + .01,
which ensures ρ ∈ (0.01, 0.99),

2Link to GitHub repository: https://github.com/
zuhengxu/dais-py/releases/tag/v1.1
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Algorithm 5: FindFeasible (f, x0, ∆)

Input: Objective f : R→ R,
initial guess x0 ∈ R,
backing off step size δ ∈ R \ {0}.

Output: Feasible initial point x0
1 x← x0
2 while f (x) =∞ do
3 x← x+ δ
4 end
5 Return x

C. Algorithms
In this section, we will provide a detailed description of our
proposed adaptation algorithms and their components.

C.1. FindFeasible (Algorithm 5)

Our adaptation schemes receive a guess from the user. For
robustness, it is safe to assume that this guess may not be
non-degenerate. As such, we must first check that it is
non-degenerate, and if it is not, move it to somewhere that is.
This is done by FindFeasible (f, x0, δ) shown in Alg. 5.
If x0 is already non-degenerate, it immediately returns the
initial point x0. Otherwise, if x0 is degenerate, it increases
or decreases x0 with a step size of δ until the objective
function becomes finite.

C.2. GoldenSectionSearch (Alg. 6)

The workhorse of our step size adaptation scheme is the
golden section search (GSS) algorithm (Avriel & Wilde,
1968), which is a variation of the Fibonacci search algo-
rithm (Kiefer, 1953). In particular, we are using the imple-
mentation of Press et al. (1992, §10.1), shown in Alg. 6,
which uses a triplet, (a, b, c) ∈ R3, for initialization. This
triplet requires the condition

a < b < c, f (b) < f (a) , and f (b) < f (c) (13)

to hold. Then, by Lemma 1, this implies that the open interval
(a, c) contains a local minimum. Then GSS is guaranteed
to find the contained local minimum at a “linear rate” of
(1−

√
5)/2 ≈ 1.62, the golden ratio. For finding a point

ϵ-close to a local minimum, this translates into an objective
query complexity of O (log |c− a|/ϵ). Furthermore, if f is
unimodal (Assumption 2), then the solution will be ϵ-close
to the global minimum (Luenberger & Ye, 2008, §7.1). The
key is to find a triplet (a, b, c) satisfying the condition in
Eq. (13), which is done in Alg. 7 in the next section.

Algorithm 6: GoldenSectionSearch (f, a, b, c, ϵ)
Input: Objective f : R→ R ∪ {+∞},

initial triplet (a, b, c) ∈ R3 satisfying Eq. (13),
absolute tolerance ϵ > 0.

1 ϕ−1 ≜ (
√
5−1)/2

2 x0 ← a
3 x3 ← c
4 if |c− b| > |b− a| then
5 x1 ← b

6 x2 ← b+
(
1− ϕ−1

)
(c− b)

7 else
8 x2 ← b

9 x1 ← b−
(
1− ϕ−1

)
(b− a)

10 end
11 f1 ← f (x1)
12 f2 ← f (x2)
13 while |x1 − x2| > ϵ/2 do
14 if f2 < f1 then
15 x0 ← x1
16 x1 ← x2
17 x2 ← ϕ−1x2 +

(
1− ϕ−1

)
x3

18 f1 ← f2
19 f2 ← f (x2)

20 else
21 x3 ← x2
22 x2 ← x1
23 x1 ← ϕ−1x1 +

(
1− ϕ−1

)
x0

24 f2 ← f1
25 f1 ← f (x1)

26 end
27 end
28 if f1 ≤ f2 then
29 Return x1
30 else
31 Return x2
32 end
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Algorithm 7: BracketMinimum (f, x0, c, r)
Input: Objective f : R→ R ∪ {+∞},

initial point x0 ∈ (−∞, x∞),
exponential search coefficient c > 0,
exponential search base r > 1.

Output: Triplet (x−, xmid, x
+)

1 x← x0
2 y ← f(x)
3 k ← 0
4 while true do
5 x′ ← x0 + crk

6 y′ ← f (x′)
7 if y < y′ then
8 x+ ← x′

9 x0 ← x
10 break
11 end
12 x← x′

13 y ← y′

14 k ← k + 1

15 end
16 k ← 0
17 while true do
18 x′ ← x0 − crk
19 y′ ← f (x′)
20 if y < y′ then
21 x− ← x′

22 xmid ← x
23 break
24 end
25 x← x′

26 y ← y′

27 k ← k + 1

28 end
29 Return (x−, xmid, x

+)

C.3. BracketMinimum (Algorithm 7)

The main difficulty of applying GSS in practice is setting
the initial bracketing interval. If the bracketing interval does
not contain a local minimum, nothing can be said about
what GSS is converging towards. In our case, we require
a triplet (a, b, c) that satisfies the sufficient conditions in
Lemma 2. Therefore, an algorithm for finding such an
interval is necessary. Naturally, this algorithm should have
a computational cost that is better or at least comparable to
GSS. Otherwise, a more naive way of setting the intervals
would make more sense. Furthermore, the width of the
interval found by the algorithm should be as narrow as
possible so that GSS can be run more efficiently.

While Press et al. (1992, §10.1) presents an algorithm for
finding such a bracket using parabolic interpolation, the

Algorithm 8: Minimize (f, x0, c, r, ϵ)
Input: objective f : R→ R ∪ {+∞},

initial point x0 ∈ R such that f (x0) <∞,
exponential search coefficient c > 0,
exponential search exponent r > 1,
absolute tolerance ϵ > 0.

1 (x−, xint, x
+)← BracketMinimum (f, x0, c, r)

2 x∗ ← GoldenSectionSearch (f, x−, xint, x
+, ϵ)

efficiency and quality of the output of this algorithm are not
analyzed. Furthermore, the presence of discontinuities in
our objective function (Assumption 3) warrants a simpler
algorithm that is provably robust. Therefore, we use a
specialized routine, BracketMinimum, shown in Alg. 7.

BracketMinimum works in two stages: Given an initial
point x0, it expands the search interval to the right (towards
+∞; Line 4-15) and then to the left (towards −∞; Line
17-28). During this, it generates a sequence of exponentially
increasing intervals (Lines 5 and 18) and, in the second
stage, stops when it detects points that satisfy the condition
in Equation (13). This algorithm was inspired by a Stack
Exchange post by Lavrov (2017), which was in turn inspired
by the exponential search algorithm (Bentley & Yao, 1976).

Most tunable parameters of the adaptation method in § 3.3
come from BracketMinimum. In fact, the parameters of
BracketMinimum most crucially affect the overall com-
putational performance of our schemes. Recall that the
convergence speed of GSS depends on the width of the pro-
vided triplet, |a− c|. Given, this c and r affect performance
as follows: (a) The width of the resulting triplet, |a− c|,
increases with r and c. (b) Smaller r and c requires more
time to find a valid triplet. For a discussion on how to set
these parameters, see § 3.4.

C.4. Minimize (Algorithm 8)

We finally discuss our complete optimization routine, which
is shown in Alg. 8. Given an initial point x0 and suit-
able assumptions, Minimize (f, x0, c, r, ϵ) finds a point
that is ϵ-close to a local minimum. This is done by
first finding an interval that contains the minimum (Line
1) by calling BracketMinimum, which is then used by
GoldenSectionSearch for proper optimization (Line 2).
As such, the computation cost of the routine is the sum of
the two stages.

There are four parameters: x0, c, r, ϵ. Admissible values
of ϵ will depend on the requirements of the downstream
task. On the other hand, c and r can be optimized. The
effect of these parameters on the execution time is analyzed
in Theorem 2, while a discussion on how to interpret the
theoretical analysis is in § 3.4.
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D. Theoretical Analysis
In this section, we will provide a formal theoretical analysis
of the algorithms presented in App. C as well as the omitted
proof of the theorems in the main text.

D.1. Definitions and Assumptions

Formally, when we say “local minimum,” we follow the
following definition:

Definition 1 (Definition 7; Rudin, 1976). Consider some
continuous function f : X → R on a metric space X ⊆ R.
We say f has a local minimum at x∗ ∈ X if there exists
some ϵ > 0 such that f (x∗) ≤ f (x) for all x ∈ X with
|x∗ − x| < ϵ .

Also, unimodal functions are defined as follows:

Definition 2. We say f : [a, b] → R is unimodal if there
exists some point x∗ such that f is monotonically strictly
decreasing on [a, x∗] and strictly increasing on [x∗, b].

Now, recall that our adaptation objective in § 3.2 operates
on R>0. During adaptation, however, the objectives are
log-transformed so that optimization is performed on R.
Therefore, it is convenient to assume everything happens on
R. That is, instead of Assumption 1 and 2, we will work
with the following assumptions that are equivalent up to log
transformation:

Assumption 3. For the objective f : R→ R ∪ {+∞}, we
assume the following:

(a) There exists some x∞ ∈ (−∞,∞] such that x is finite
and continuous on (−∞, x∞) and∞ on [x∞,∞).

(b) There exists some x ∈ (−∞, x∞) such that f is strictly
monotonically decreasing on (−∞, x].

(c) There exists some x ∈ [x, x∞) such that f is strictly
monotonically increasing on [x, x∞)

Assumption 4. f is unimodal on (−∞, x∞).

Evidently, these assumptions are equivalent to Assumption 1
and 2 by setting

f (x) = L (exp (x))
x = log h

x = log h

x∞ = log h∞ .

D.2. Proof of Proposition 1

Proposition 1. Consider joint distributions Q0:T , P0:T .
Then Dpath satisfies the following:

(i) Dpath (P0:T , Q0:T ) ≥ 0 for any Q0:T , P0:T .
(ii) Dpath (P0:T , Q0:T ) = 0 if and only if P0:T = Q0:T .

Proof. (i) is trivial. (ii) follows from the fact that
if P0:T = Q0:T , the incremental KL divergences are
all 0, while if P0:T ̸= Q0:T , Dpath (Q0:T , P0:T ) ≥
Dpath

(
Qt|0:t−1, Pt|0:t - 1

)
> 0 for any t ∈ [T ] by the fact

that the conditional KL divergence is 0 if and only if
Qt|0:t−1 = Pt|0:t−1.

D.3. Sufficient Condition for an Interval to Contain a
Local Minimum (Lemma 1)

Our adaptation algorithms primarily rely on GSS (Algo-
rithm 6) to identify a local optimum. To guarantee this,
however, GSS needs to be initialized on an interval that
contains a local minimum. For this, the following lemma
establishes a sufficient condition for identifying such inter-
vals. As such, we will use these conditions as invariants
during the execution of GSS, such that it finds narrower and
narrower intervals that continue to contain a local minimum.

Lemma 1. Suppose f satisfies Assumption 3 and there exist
some a < b < c such that

f (b) ≤ f (a) <∞ and f (b) ≤ f (c) .

Then (a, c) contains a local minimum of f on (−∞, x∞).

Proof. Consider any triplet (a′, b′, c′) consisting of three
points a′ < b′ < c′ with f(b′) ≤ f(a′) < ∞ and f(b′) ≤
f(c′) < ∞. Then (a′, c′) contains a local minimum of
f : f attains its minimum on [a′, c′] by the extreme value
theorem, which is either on (a′, c′)—in which case the
result holds immediately—or on {a′, c′}—in which case the
result holds because b′ is a local minimum since f(b′) ≤
min{f(a′), f(c′)}.

We now apply this result to triplets contained in [a, c].
First, if c < x∞, use the triplet (a′, b′, c′) = (a, b, c).
For the remaining cases, assume c ≥ x∞. If b ≥ x,
set the triplet (a′, b′, c′) = (a, b, d) for any d ∈ (b, x∞).
If b < x and f(x) ≥ f(b), set the triplet (a′, b′, c′) =
(a, b, x). Otherwise, if b < x and f(x) < f(b), set the
triplet (a′, b′, c′) = (b, x, d) for any d ∈ (x, x∞).
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D.4. GoldenSectionSearch (Lemma 2)

We first establish that, under suitable initialization, GSS
is able to locate a local minimum. Most existing results
assume that f is unimodal (Luenberger & Ye, 2008, §7.1)
and show that GSS converges to the unique global minimum.
Here, we prove a more general result that holds under weaker
conditions: GSS can also find a local minimum even when
unimodality doesn’t hold. For this, we establish that our
assumptions in Assumption 3 and initializing at a triplet
(a, b, c) satisfying the condition in Lemma 1 are sufficient.
Furthermore, while it is well known that GSS achieves a
linear convergence rate with coefficient ϕ ≜ (1+

√
5)/2, we

could not find a proof that exactly applied to the GSS variant
by Press et al. (1992), which is the one we use. Therefore, we
also prove linear convergence rate with a proof that precisely
applies to Algorithm 6.

Lemma 2. Suppose Assumption 3 holds. Then, for any
triplet (a, b, c) satisfying a < b < c, f(b) ≤ f(a) <∞, and
f(b) ≤ f(c), GoldenSectionSearch (f, a, b, c, ϵ) returns
a point x∗ ∈ (−∞, x∞) that is ϵ-close to a local minimum
after

Θ

(
log |c− a|1

ϵ

)
objective evaluations, where ϕ =

(
1 +
√
5
)
/2.

Proof. For clarity, let us denote the value of the variables
x0, x1, x2, x3 set at iteration k ≥ 1 of the while loop in Line
13-27 as xk0 , xk1 , xk2 , xk3 . Before the while loop at k = 0,
they are initialized as follows: If |c− b| ≥ |b− a|,(
x00, x

0
1, x

0
2, x

0
3

)
=
(
a, b, b+

(
1− ϕ−1

)
(c− b) , c

)
and(
x00, x

0
1, x

0
2, x

0
3

)
=
(
a, b+

(
1− ϕ−1

)
(b− a) , b, c

)
otherwise. For all k ≥ 0, the following set of variables is
set as follows: If f

(
xk2
)
< f

(
xk1
)
, the next set of variables

is set as(
xk+1
0 , xk+1

1 , xk+1
2 , xk+1

3

)
≜
(
xk1 , x

k
2 , ϕ

−1xk2 +
(
1− ϕ−1

)
xk3 , x

k
3

)
, (14)

and

(xk+1
0 , xk+1

1 , xk+1
2 , xk+1

3 )

≜ (xk0 , ϕ
−1xk1 +

(
1− ϕ−1

)
xk0 , x

k
1 , x

k
2)

otherwise. We also denote fk2 ≜ f
(
xk2
)

and fk1 ≜ f
(
xk1
)
.

Assuming the algorithm terminates at some k∗ < ∞, the
algorithm outputs either xk∗

1 or xk∗

2 . Therefore, it suffice to
show that k∗ <∞,

∣∣xk∗

2 − xk
∗

1

∣∣ ≤ ϵ/2, and that the interval
(xk

∗

0 , xk
∗

3 ) contains a local minimum.

First, let’s establish that k∗ <∞. GSS terminates as soon
as
∣∣xk3 − xk0∣∣ ≤ ϵ for some 0 ≥ k <∞. We will establish

this by showing that
∣∣xk3 − xk0∣∣ satisfies a contraction. For

this, however, we first have to show that xk1 , xk2 satisfy

xk1 = ϕ−1xk0 +
(
1− ϕ−1

)
xk3 (15)

xk2 =
(
1− ϕ−1

)
xk0 + ϕ−1xk3 (16)

at all k ≥ 0. We will show this via induction. Before we
proceed, notice that the name “golden” section search comes
from the fact that ϕ, the golden ratio, is the solution to the
equation

ϕ2 = ϕ+ 1 ⇒ 1− ϕ−1 = ϕ−2 . (17)

Now, for some k > 0, suppose Equations (15) and (16) hold.
Then, if fk2 < fk1 ,

xk+1
1 = xk2

=
(
1− ϕ−1

)
xk0 + ϕ−1xk3 ,

= ϕ−2xk0 +
(
1− ϕ−2

)
xk3 (Eq. (17))

= ϕ−2xk0 +
(
1 + ϕ−1

) (
1− ϕ−1

)
xk3

= ϕ−1
(
ϕ−1xk0 +

(
1− ϕ−1

)
xk3
)

+
(
1− ϕ−1

)
xk3 ,

= ϕ−1xk1 +
(
1− ϕ−1

)
xk3 (Eq. (15))

= ϕ−1xk+1
0 +

(
1− ϕ−1

)
xk+1
3 . (Eq. (14))

This establishes Equation (15) for k + 1. Similarly,

xk+1
2 = ϕ−1xk2 +

(
1− ϕ−1

)
xk3 ,

= ϕ−1
((
1− ϕ−1

)
xk0 + ϕ−1xk3

)
+
(
1− ϕ−1

)
xk3 (Eq. (16))

= ϕ−1
(
1− ϕ−1

)
xk0

+
(
1− ϕ−1 + ϕ−2

)
xk3

=
(
1− ϕ−1

) (
ϕ−1xk0 +

(
1− ϕ−1

)
xk3
)

+ ϕ−1xk3 ,

=
(
1− ϕ−1

)
xk1 + ϕ−1xk+1

3 (Eq. (15))

=
(
1− ϕ−1

)
xk+1
0 + ϕ−1xk+1

3 . (Eq. (14))

This establishes Equation (16) for k + 1. The proof for the
remaining case of fk2 ≥ fk1 is identical due to symmetry.
Furthermore, the base case for k = 0 automatically holds
due to the condition on (a, b, c). Therefore, Equations (15)
and (16) hold for all k ≥ 0.

From Equations (15) and (16), we now have a precise rate
of decrease for the interval

∣∣xk3 − xk0∣∣. That is, for fk2 < fk1 ,∣∣xk3 − xk0∣∣ = ∣∣xk−1
3 − xk−1

1

∣∣
=
∣∣xk−1

3 −
(
ϕ−1xk−1

0 +
(
1− ϕ−1

)
xk−1
3

)∣∣
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= ϕ−1
∣∣xk−1

3 − xk−1
0

∣∣
and for fk2 ≥ fk1 ,∣∣xk3 − xk0∣∣ = ∣∣xk−1

2 − xk−1
0

∣∣
=
∣∣((1− ϕ−1

)
xk−1
0 + ϕ−1xk−1

3

)
− xk−1

0

∣∣
= ϕ−1

∣∣xk−1
3 − xk−1

0

∣∣ .
Furthermore, This implies, for all k ≥ 1, the interval [xk3 , xk0 ]
shrinks at a geometrical rate∣∣xk3 − xk0∣∣ = ϕ−k

∣∣x03 − x00∣∣ .
Then ∣∣xk2 − xk1∣∣ = (2ϕ−1 − 1

) ∣∣xk0 − xk3∣∣ ≤ ϵ/2
can be guaranteed by iterating until the smallest iteration
count k ≥ 1 that satisfies

ϕ−k
∣∣x03 − x00∣∣ ≤ 1

2ϕ−1 − 1

ϵ

2
,

k =

⌈
1

log ϕ
log

2
(
2ϕ−1 − 1

)
|c− a|

ϵ

⌉
,

which yields the execution time complexity statement.

We now prove that the interval (xk∗

0 , xk
∗

0 ) contains a local
minima. For this, we will prove a stronger result that
(xk0 , x

k
3) contains a local minimum for all k ≥ 0 by induction.

Suppose, for some k ≥ 1,

min
(
fk1 , f

k
2

)
≤ f(xk0) <∞ (18)

min
(
fk1 , f

k
2

)
≤ f(xk3) (19)

hold. If fk2 < fk1 , the next set of variables is set as

(xk+1
0 , xk+1

1 , xk+1
3 ) = (xk1 , x

k
2 , x

k
3) , (20)

which guarantees that the inequalities

min
(
fk+1
1 , fk+1

2

)
≤ fk+1

1 = fk2 ≤ f(xk+1
0 ) <∞

min
(
fk+1
1 , fk+1

2

)
≤ fk+1

1 = fk2 ≤ f(xk+1
3 )

hold. Otherwise, if fk2 ≥ fk1 ,

(xk+1
0 , xk+1

2 , xk+1
3 ) = (xk0 , x

k
1 , x

k
2) ,

guarantee

min
(
fk+1
1 , fk+1

2

)
≤ fk+1

2 = fk1 ≤ f(xk+1
0 ) <∞

min
(
fk+1
1 , fk+1

2

)
≤ fk+1

2 = fk1 ≤ f(xk+1
3 ) .

The base case k = 0 trivially holds by assumption f(b) <
f
(
x00
)
< ∞, f(b) < f(x03), and the fact that either x01

or x02 is set as b. Therefore, Equations (18) and (19) hold
for all k ≥ 0. Now, Equations (18) and (19) imply that
either (xk0 , xk1 , xk3) or (xk0 , xk2 , xk3) satisfy the condition in
Lemma 1. Therefore, a local minimum is contained in
(xk0 , x

k
3) for all k ≥ 0.

D.5. BracketMinimum (Lemma 3)

We now prove that BracketMinimum returns a triplet
(x−, xmid, x

+) satisfying the condition in Lemma 1. Fur-
thermore, under Assumption 3, we analyze the width of the
initial search interval represented by the triplet, |x+ − x−|.
Note that, while BracketMinimum is designed to be valid
even if x0 ≥ x∞, accommodating this complicates the
analysis. Therefore, in the analysis that will follow, we will
assume x0 < x∞.

Lemma 3. Suppose Assumption 3 holds. Then
BracketMinimum (f, x0, r, c) for x0 ∈ (−∞, x∞) returns
a triplet (x−, xmid, x

+), where x− < xmid < x+,

f (xmid) ≤ f
(
x−
)
<∞, f (xmid) ≤ f

(
x+
)
, (21)

and∣∣x+ − x−∣∣ ≤ r2 ((r + 1)[x− x0]+ + [x0 − x]+) + 3r2c

after

O
{
(log r)

−1
log+ ((r[x− x0]+ + [x0 − x]+)/c)

}
objective evaluations.

Proof. BracketMinimum has two stages: exponential
search to the right (Stage I) and exponential search to the
left (Stage II). In the worst case, Stage I must pass x moving
to the right starting from x0, which takes at most O(k̄r)
iterations, where

k̄r =
⌈
(log r)−1 log+((x− x0)/c)

⌉
.

Similarly, in the worst case Stage II must pass x moving to
the left starting from x0 + crk̄r , which takes at most O(k̄ℓ)
iterations, where

k̄ℓ =
⌈
(log r)

−1
log+

((
x0 + crk̄r − x

)
/c
)⌉

≤
⌈
(log r)

−1
log+

(
x0 +

(
r[x− x0]+ − x

)
/c
)⌉

.

Adding these two costs yields the stated result. At the end of
Stage I, by inspection, we know that f(x) ≤ f(x+), and that
f(x) <∞. Also, Stage II continues until the first increase
in objective value, which guarantees that ∞ > f(x−) ≥
f(xmid) and f(xmid) ≤ f(x) ≤ f(x+). Finally,∣∣x+ − x−∣∣ ≤ (x0 + crk̄r+1

)
−
(
x0 + crk̄r − crk̄ℓ+1

)
≤ rc

(
rk̄r + rk̄ℓ

)
≤ r

(
r[x− x0]+ + rc+ r[x0 + crk̄r − x]+ + rc

)
≤ r2

(
[x− x0]+ + [x0 − x]+ + crk̄r + 2c

)
≤ r2 ([x− x0]+ + [x0 − x]+ + r[x− x0]+ + 3c)

= r2 ((r + 1)[x− x0]+ + [x0 − x]+) + 3r2c .
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D.6. Minimize (Theorem 2)

We prove that combining BracketMinimum and
GoldenSectionSearch, which we call Minimize, results
in an optimization algorithm that finds a point ϵ-close to
local minimum in O(log (∆/ϵ)) time.

Theorem 2. Suppose Assumption 3 holds. Then
Minimize (f, x0, c, r, ϵ) returns a point that is ϵ-close to a
local minimum after Cbm+Cgss objective evaluations, where

Cbm = O

{
1

log r
log+

(
∆
r

c

)}
Cgss = O

{
log+

(
r3∆+ r2c

) 1
ϵ

}
,

where ∆ ≜ [x0 − x]+ + [x− x0]+ .

Proof. Cbm immediately follows from Lemma 3, while Cgss,
on the other hand, follows from Lemma 2 as

Cgss = O

{
log+

(
x+ − x−

) 1
ϵ

}
= O

{
log+

(
r3∆+ r2c

) 1
ϵ

}
,

where we plugged in the bound on |x+ − x−| from
Lemma 3. This yields the stated result. Furthermore, since
BracketMinimum returns a triplet (x−, xmid, x

+) that satis-
fies the requirement of GoldenSectionSearch as stated in
Lemma 2, the output x∗ ∈ (−∞, x∞) is ϵ-close to a local
minimum.

Remark 1. In Theorem 2, the “difficulty” of the problem is
represented by ∆ ≥ 0, where the magnitude of [x0 − x]+
and [x− x0]+ represent the quality of the initialization x0
(how much x0 undershoots or overshoots x and x). Further-
more, we have ∆ ≥ |x− x|, where |x− x| can be thought
as the quantitative multimodality of the problem. Therefore,
the execution time of Minimize becomes longer as the prob-
lem becomes more multimodal and the initialization is far
from [x, x].

Remark 2. The execution time of Minimize(f, x0, c, r, ϵ)
depends on r and c. In general, the best-case performance
(∆ = 0) can only become worse as c increases. On the
other hand, in the worst-case when ∆ is large, increasing r
reduces Cbm, while slowly making Cgss worse. Therefore, a
large r improves the worst-case performance.

D.7. AdaptStepsize (Proof of Theorem 1)

We now present the proof for the theoretical guarantees
of Alg. 2 in the main text, Theorem 1. Since most of the
heavy lifting in Alg. 2 is done by Alg. 8, Theorem 1 is
almost a corollary of Theorem 2. The main difference is
that Alg. 2 invokes Alg. 5 at t = 1 and operates in log-space.
Therefore, the proof incorporates these two modifications
into the results of Theorem 2.

Theorem 1. Suppose Assumption 1 holds. Then
AdaptStepsize (L, t, hguess, δ, c, r, ϵ) returns a step size
h ∈ (0, h∞) that is ϵ-close to a local minimum of L
in log-scale after Cfeas + Cbm + Cgss objective evalua-
tions, where, defining ∆ ≜ log+

(
h/h0

)
+ log+(h0/h)

and h0 ≜ min(hguess, h
∞),

Cfeas = O
{
δ−1 log+ (hguess/h∞)

}
Cbm = O

{
(log r)

−1
log+

(
∆rc−1

) }
Cgss = O

{
log+

((
r3∆+ r2c

)
ϵ−1
)}

.

Proof. Since Assumption 1 implies that the functionLlog (h)
satisfies Assumption 3 with

f = Llog (h) , x = log h, x = log h, x∞ = log h∞ .

Then the result is a simple application of the lemmas in the
previous sections.

First, under Assumption 1, Alg. 5 can find a point ℓ′ ∈
(−∞, log h∞) that guarantees Llog (ℓ) <∞ within

Cfeas ≤ O
(
δ−1 log+ (hguess/h

∞)
)

steps. Furthermore, ℓ′ = log hguess if hguess < h∞, and
ℓ′ < log h∞ otherwise. Then, Theorem 2 states that Line 6
of Alg. 2 is guaranteed to find a local minimum of L after
Cbm + Cgss iterations, while

∆ = [x− x0]+ + [x0 − x]+
=
[
log h− ℓ′

]
+
+ [ℓ′ − log h]+

= log+
(
h/h0

)
+ log+ (h0/h) .
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E. Backward Kernels
E.1. Some backward kernels are not like the others

Here, we will discuss some options for the “backward kernel”
used in SMC samplers in the static model setting (Del Moral
et al., 2006; Neal, 2001).

Detailed Balance Formula. In the literature, the choice

Ldbf
t−1 (xt, xt−1) ≜

γt (xt)Kt (xt−1, xt)

γt (xt−1)
, (22)

which we will refer to as the “detailed balance formula
backward kernel,” has been the widely used (Dai et al.,
2022; Bernton et al., 2019; Heng et al., 2020). Conveniently,
Eq. (22) results in a simple expression for the potential

Gt (xt−1, xt) =
γt (xt−1)

γt−1 (xt−1)
,

which does not involve the densities ofKt. The origin of this
backward kernel is that many πt-invariant MCMC kernels
used in practice satisfy the detailed balance formula (Robert
& Casella, 2004, Def. 6.45) with πt,

πt (xt−1)Kt (xt−1, xt) = πt (xt)Kt (xt, xt−1) ,

which, given Ldbf
t−1 (xt−1, xt) = Kt (xt−1, xt), yields

Eq. (22) after re-aranging.

The detailed balance formula backward kernel is biased.
Now, let’s focus on the fact that Kt = Ldbf

t−1 only holds
under the detailed balance condition. Said differently, Ldbf

t−1

is a properly normalized kernel only when Kt satisfies
detailed balance. This implies that, for non-reversible kernels
like LMC, using the detailed balance formula kernel with
h > 0 may result in biased normalized constant estimates.
This bias can be substantial, as we will see in App. E.2.
Fortunately, this bias does diminish as ht → 0 and T →∞
since the continuous Langevin dynamics is reversible under
stationarity (Heng et al., 2020). However, the need for
smaller step sizes means that a larger number of SMC steps
T has to be taken for the Markov process to converge.

Forward Kernel. The properly normalized analog ofLdbf
t−1

at time t ≥ 1 is the “forward” kernel

Lfwd
t−1 (xt, xt−1) ≜ Kt (xt, xt−1) .

This has been used, for example, by Thin et al. (2021).
Recall that the “optimal” Lt−1 is a kernel that transports the
particles following Pt to follow Pt−1. The fact that we are
usingKt to do this implies that we are assuming Pt ≈ Pt−1,
which is only true if T is large. We propose a different
option, which should work even when T is moderate or
small.

Detailed	Balance	Formula
Forward
Time-Correct	Forward
True

lo
g	
Z

−60

−40

−20

0

20

Number	of	Particles	(N)
128 256 512 1024 2048 4096

Figure 7. Comparison of backward kernels for SMC-LMC. The
solid lines are the median, while the colored bands mark the 80%
empirical quantile over 256 replications.

Time-Correct Forward Kernel. In § 4.1, we used the
forward kernel at time t− 1,

Ltc-fwd
t−1 (xt, xt−1) ≜ Kt−1 (xt, xt−1) ,

which we will refer to as the time-correct forward kernel.
Unlike Lfwd

t−1, the stationary distribution of this transport
map is properly πt−1. Informally, the reasoning is that

(πt ⊗Kt−1) (xt, xt−1)

(πt−1 ⊗Kt) (xt−1, xt)
≈ (πt ⊗ πt−1) (xt, xt−1)

(πt−1 ⊗ πt) (xt−1, xt)
= 1 .

Therefore, this should result in lower variance.

E.2. Empirical Evaluation

Setup. We compare the three backward kernels on a
toy problem with d = 10 dimensional Gaussians: π =
N (30 · 1d, Id), q0 = N (0d, Id). Since the scale of the
target distribution is constant under geometric annealing, a
fixed step size h = ht = 0.5 should work well. We use a
linear schedule with T = 64.
Results. The results are shown in Fig. 7. The backward
kernel from the detailed balance formula severely overes-
timates the normalizing constant due to bias, while the
forward kernel exhibits significantly higher variance than
the time-correct forward kernel.

E.3. Conclusions

We have demonstrated that caution must be taken when
using the popular backward kernel based on the detail-
balance formula. Instead, we have proposed the “time-
correct forward kernel,” which is not only valid but also
results in substantially lower variance. Unfortunately, the
time-correct forward kernel is only available for MCMC
kernels that have a tractable density, which may not be the
case; for instance, the KLMC kernel used in § 4.2 does not
have this option. However, whenever it is available, it should
be preferred.
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F. Additional Experimental Results
F.1. Comparison Against Fixed Step Sizes

F.1.1. SMC-LMC
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Figure 8. SMC-LMC with adaptive tuning v.s. fixed step sizes. The solid lines are the median estimate of logZ, while the colored
regions are the 80% empirical quantiles computed over 32 replications.
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F.1.2. SMC-KLMC
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Figure 9. SMC-KLMC with adaptive tuning v.s. fixed step sizes and refreshment rates. For SMC-KLMC with fixed parameters h, ρ,
we show the result of the best-performing refreshment rate. The solid lines are the median estimate of logZ, while the colored regions are
the 80% empirical quantiles computed over 32 replications.

31



Tuning SMC Samplers via Greedy Incremental Divergence Minimization

F.2. Comparison Against End-to-End Optimization
For all results, the “cost” is calculated as the cumulative number of gradients and Hessian evaluations used by each method.
Also, end-to-end optimization with variational tuning of the reference q is referred as “End-to-End + VI.” (End-to-end
optimization methods require Hessians.) For all figures, the error bars/bands are 80% empirical quantiles computed from 32
replications, while γ is the Adam step size used for end-to-end optimization.
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Figure 10. Comparison against end-to-end optimization on Funnel.
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Figure 11. Comparison against end-to-end optimization on Brownian. The result for variational reference tuning (End-to-End + VI)
for γ = 10−2 is omitted as most runs diverged.
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Figure 12. Comparison against end-to-end optimization on Sonar.
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Figure 13. Comparison against end-to-end optimization on Pines.
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F.2.2. SMC-KLMC
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Figure 14. Comparison against end-to-end optimization on Funnel.
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Figure 15. Comparison against end-to-end optimization on Brownian.
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Figure 16. Comparison against end-to-end optimization on Sonar.
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Figure 17. Comparison against end-to-end optimization on Pines.
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F.3. Adaptation Cost
In this section, we will visualize the cost of adaptation of our algorithm. In particular, we show the number of objective
evaluations used at each SMC iteration during adaptation. Recall that the cost of evaluating our objective is in the order
of O (B) unnormalized log-density evaluations (log γ) and its gradients (∇ log γ), where B is the number of subsampled
particles (§ 3.2). Therefore, the cost of N/B adaptation objective evaluations at every SMC step roughly amounts to the cost
of a single vanilla SMC run with N particles. That is, for N = 1024 and B = 128, the cost of running our adaptive SMC
sampler is comparable to two to three times that of a vanilla SMC sampler. The exact number of objective evaluations spent
at each SMC iteration is shown in the figures that will follow. All experiments used N = 1024, B = 128, and T = 64
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Figure 18. Number of objective evaluations spent during adaptation at each SMC iteration. The size of the markers represents the
proportion of runs that spent each respective number of evaluations among 32 independent runs.
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Figure 19. Number of objective evaluations spent during adaptation at each SMC iteration. The size of the markers represents the
proportion of runs that spent each respective number of evaluations among 32 independent runs.
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Figure 20. Number of objective evaluations spent during adaptation at each SMC iteration (continued). The size of the markers
represents the proportion of runs that spent each respective number of evaluations among 32 independent runs.
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Figure 21. Number of objective evaluations spent during adaptation at each SMC iteration (continued). The size of the markers
represents the proportion of runs that spent each respective number of evaluations among 32 independent runs.

37



Tuning SMC Samplers via Greedy Incremental Divergence Minimization

F.3.2. SMC-KLMC
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Figure 22. Number of objective evaluations spent during adaptation at each SMC iteration. The size of the markers represents the
proportion of runs that spent each respective number of evaluations among 32 independent runs.
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Figure 23. Number of objective evaluations spent during adaptation at each SMC iteration (continued). The size of the markers
represents the proportion of runs that spent each respective number of evaluations among 32 independent runs.
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Figure 24. Number of objective evaluations spent during adaptation at each SMC iteration (continued). The size of the markers
represents the proportion of runs that spent each respective number of evaluations among 32 independent runs.
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Figure 25. Number of objective evaluations spent during adaptation at each SMC iteration (continued). The size of the markers
represents the proportion of runs that spent each respective number of evaluations among 32 independent runs.
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F.4. Adaptation Results from the Adaptive SMC Samplers

Finally, we will present additional results generated from our adaptive SMC samplers, including the adapted temperature
schedule, step size schedule, and normalizing constant estimates. The computational budgets are set as T1 = 64 and
N = 1024 with B = 256.

F.4.1. SMC-LMC
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Figure 26. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-LMC. The dotted line is the ground truth value obtained from a large budget run. For the normalizing constant estimate,
the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications. The temperature
schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(d) Loss Curves

Figure 27. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained
by running SMC-LMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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Figure 28. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained
by running SMC-LMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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Figure 29. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained
by running SMC-LMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.

45



Tuning SMC Samplers via Greedy Incremental Divergence Minimization
lo
g	
Z

59800
59850
59900
59950
60000
60050

#	of	Gradient	Evaluations
0 2M 4M 6M

Te
m
pe
ra
tu
re
	(λ

t)

10−5

10−4

10−3

10−2

10−1

100

SMC	Iteration	(t)
0 200 400 600 800

Lo
ca
l	B

ar
rie

r

102

103

104

105

Temperature	(λt)
10−4 10−3 10−2 10−1 100

St
ep
	S
iz
e	
(h
t)

10−4

10−3

10−2

10−1

100

Temperature	(λt)
10−4 10−3 10−2 10−1 100

(a) Birds

lo
g	
Z

−100
0

100
200
300
400

#	of	Gradient	Evaluations
0 2M 4M 6M

Te
m
pe
ra
tu
re
	(λ

t)

10−5

10−4

10−3

10−2

10−1

100

SMC	Iteration	(t)
0 200 400 600 800

Lo
ca
l	B

ar
rie

r

102

103

104

105

Temperature	(λt)
10−510−410−310−210−1 100

St
ep
	S
iz
e	
(h
t)

10−4

10−3

10−2

10−1

100

Temperature	(λt)
10−510−410−310−210−1 100

(b) Drivers

lo
g	
Z

−40

−20

0

20

40

#	of	Gradient	Evaluations
0 2M 4M 6M

Te
m
pe
ra
tu
re
	(λ

t)

10−5

10−4

10−3

10−2

10−1

100

SMC	Iteration	(t)
0 200 400 600 800

Lo
ca
l	B

ar
rie

r

102

103

104

105

Temperature	(λt)
10−4 10−3 10−2 10−1 100

St
ep
	S
iz
e	
(h
t)

0.01

0.1

1

Temperature	(λt)
10−510−410−310−210−1 100

(c) Capture

lo
g	
Z

−3300

−3200

−3100

−3000

−2900

#	of	Gradient	Evaluations
0 2M 4M 6M 8M

Te
m

pe
ra

tu
re

	(λ
t)

10−5

10−4

10−3

10−2

10−1

100

SMC	Iteration	(t)
0 200 400 600 800

Lo
ca

l	B
ar

rie
r

102

103

104

105

Temperature	(λt)
10−4 10−3 10−2 10−1 100

St
ep

	S
iz

e	
(h
t)

10−4

10−3

10−2

10−1

100

Temperature	(λt)
10−4 10−3 10−2 10−1 100

(d) Science

Figure 30. Normalizing constant estimate, temperature schedule, local communication barrier, and stepsize schedules obtained
by running SMC-LMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(b) TIMSS

Figure 31. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained
by running SMC-LMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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Figure 32. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-KLMC. The dotted line is the ground truth value obtained from a large budget run. For the normalizing constant estimate,
the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications. The temperature
schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(d) Loss Curves

Figure 33. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-KLMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(d) Downloads

Figure 34. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-KLMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(a) Rats
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(b) Radon
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(c) Election88
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(d) Butterfly

Figure 35. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-KLMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(a) Birds

lo
g	
Z

100

200

300

400

#	of	Gradient	Evaluations
0 1M 2M 3M

Te
m
pe
ra
tu
re
	(λ

t)

10−5
10−4
10−3
10−2
10−1
100

SMC	Iteration	(t)
0 20 40 60 80

Lo
ca
l	B

ar
rie
r

101

102

103

104

Temperature	(λt)
10−4 10−3 10−2 10−1 100

St
ep
	S
iz
e	
(h
t)

0.01

0.1

1

Temperature	(λt)
10−4 10−3 10−2 10−1 100

(b) Drivers
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(d) Science

Figure 36. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-KLMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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(a) Three Men
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(b) TIMSS

Figure 37. Normalizing constant estimate, temperature schedule, local communication barrier, and step size schedules obtained by
running SMC-KLMC (continued). The dotted line is the ground truth value obtained from a large budget run. For the normalizing
constant estimate, the confidence intervals in the vertical and horizontal directions are the 80% quantiles obtained from 32 replications.
The temperature schedule, local communication barriers, and the step sizes from a subset of 8 runs are shown.
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