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ABSTRACT

Pre-trained LLMs that are further trained with image data perform well on vision-
language tasks. While adding images during a second training phase effectively
unlocks this capability, it is unclear how much of a gain or loss this two-step
pipeline gives over VLMs which integrate images earlier into the training process.
To investigate this, we train models spanning various datasets, scales, image-text
ratios, and amount of pre-training done before introducing vision tokens. We then
fine-tune these models and evaluate their downstream performance on a suite of
vision-language and text-only tasks. We find that pre-training with a mixture of
image and text data allows models to perform better on vision-language tasks
while maintaining strong performance on text-only evaluations. On an average of 6
diverse tasks, we find that for a 1B model, introducing visual tokens 80% of the
way through pre-training results in a 2% average improvement over introducing
visual tokens to a fully pre-trained model.

LLM Pre-training Image-text Pre-training Fine-tuning

“Human”: "What could be a 
potential reason for this nearly 
empty bowl?
“GPT”: "A potential reason  [...]

A top view of the electronic 
board of a computer 

3.4T tokens
1B tokens

DCLM DataComp-DR LLaVa

Amount of 
training

Mix of data source

Data 
sources

“Imagine processing 400-billion 
pieces of information per 
second! Sound impossible? 
That's exactly how fast  [...]”

28B tokens

n epochs
…

Figure 1: An overview of our VLM pre-training data recipe. We investigate data mixes and design
choices for text-only pre-training, image-text pre-training, and fine-tuning. Note that while we depict
"LLM Pre-training" and "Image-text Pre-training" as two separate steps in this diagram, in practice,
we continuously transition from the first stage to the second.

1 INTRODUCTION

Numerous work have extensively studied how to train a VLM from a pre-trained LLM (Liu et al.,
2024; Alayrac et al., 2022; Bavishi et al., 2023; Li et al., 2024a; Karamcheti et al., 2024; Tong
et al., 2024; Beyer et al., 2024; Laurençon et al., 2024; Lu et al., 2024). Most existing VLMs
follow roughly the same high-level recipe: 1) Start with a pre-trained LLM, 2) continue training
intermediate layers on image-text tokens (e.g., Flamingo, Pali-Gemma, Idefics, DeepSeek-VL) or
align an image projection layer (e.g., LLaVA, Cambrian, Prismatic), and 3) fine-tune the model
on multi-task instructions or chat templates. Notably, training with images included in the initial
pre-training stage (i.e., step 1) is largely undocumented in these papers, even though a number of
large models (with undocumented training procedures) are known to be natively multimodal (e.g.,
Pixtral, Gemini, Fuyu).

In this paper, we investigate the significance of each step in the pipeline for downstream performance
on vision-language and text benchmarks. Additionally, we examine whether increasing the amount
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of image data in one step can reduce the data requirements in other steps. To understand when image
data should be introduced to VLM training, we train a suite of 300 models over various numbers of
parameters, varying the amount of text-only pre-training data, as well as the amount, type, and ratio
of image pre-training data (Figure 1).

Our experiments suggest several key findings:

First, incorporating image data during pre-training generally helps, especially after a model has
seen many text tokens. However, the timing and method of introducing visual information are
also important. Specifically, we find that it is beneficial to add image data before the LLM is
fully pretrained, during the cooldown phase. Our strategy to interrupt the text pre-training at 80%
completion and add image-text data outperforms the popular alternative of fully training the LLM,
then re-warming and cooling the model with image data (Section 3.1).

Second, the fraction of visual data introduced during cooldown is another key parameter for strong
performance across domains. At the 1B parameter regime, our experiments reveal that 10% to 20%
of tokens should be visual. Going above or below this ratio results in worse downstream performance.
However, this fraction appears to be a function of scale. At the smaller 79M parameter regime, larger
fractions of visual data are preferred (Sections 3.2 and 3.3).

Third, the timing of when to introduce instruction fine-tuning image tokens is crucial for downstream
performance, both for pure text and vision-language tasks. We observe that mixing together instruc-
tion fine-tuning during the image-text pre-training process actively hurts the model (Section 3.4).
Meanwhile, adding instruction tokens during fine-tuning improves vision-language task performance
up to 4 epochs at the 1B parameter scale, at the cost of slightly hurting performance on text-only
tasks (Section 3.5).

2 EXPERIMENTAL SETUP

Image 
encoder

MLP

Text 
embedding

Decoder-only 
Transformer

A top view of 
the electronic 
board of a ...


... computer

Figure 2: The commonly used framework we apply to add vision capabilities to a transformer model.

Our experimental setup is designed to study the impact of image-text data on the model’s downstream
results on both text and vision tasks. To this end, we implement a commonly used model architec-
ture (Liu et al., 2023; Tong et al., 2024; McKinzie et al., 2024; Beyer et al., 2024; Bai et al., 2023; Li
et al., 2023a; Laurençon et al., 2024) consisting of a pre-trained image encoder, a projection block,
and a decoder-only transformer. Unless stated otherwise, the image encoder is SigLIP 400M (Zhai
et al., 2023), the projection block is a two-layer MLP, and the transformer is the 1.4B parameter
model described in Gadre et al. (2024b). Our training procedures (Section 2.1) are applied to the
model prior to its downstream evaluation (Section 2.2).

2.1 TRAINING PROCEDURE

We train all our models with a three-step process illustrated in Figure 1:

1. Partial text-only pre-training
2. Image-text pairs mixed with text-only continued pre-training
3. Image-text pairs multi-task fine-tuning

We can view the first and second steps as a single pre-training stage, where we introduce images before
the model has finished pre-training, as opposed to previous methods where images are introduced
to a model which had already been pre-trained. In practice, this is implemented by resuming from

2
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Table 1: The conventional approach to VLM training first fully trains a language model on text-only
data, and adds images in a second or third stage of training. In this work, we instead introduce image
data earlier in pre-training. To do this efficiently, we resume a language model during the course
of its pre-training at various stages (e.g., 20% of the way through training) and introduce images
midway through training.

Model Text-Only Pre-training Image-Text Pre-training Multitask Fine-Tuning
BLIP3
(Xue et al., 2024)

Fully pre-trained
(Phi3-mini)

Re-warmup
Caption and interleaved text-image data; no pure text

Re-warmup

Flamingo
(Alayrac et al., 2022)

Fully pre-trained
(closed model)

Re-warmup
Caption and interleaved text-image data; no pure text

(Skipped)

IDEFICS
(Laurençon et al., 2024)

Fully pre-trained
(Mistral-7B-v0.1)

Re-warmup
Interleaved text-image data; no pure text

Re-warmup

MM1
(McKinzie et al., 2024)

Fully pre-trained
(closed model)

Re-warmup
Various image-text ratios (100::0, 91::9, 86::14, 66::33)

Re-warmup

DeepSeek-VL
(Lu et al., 2024)

Fully pre-trained
(DeepSeek)

Re-warmup
Multitask; 30::70 image-text ratio

Re-warmup

Qwen-VL
(Bai et al., 2023)

Fully pre-trained
(Qwen)

Two-stage (re-warmup then re-warmup)
Caption then multitask; no pure text

Re-warmup

PaliGemma
(Beyer et al., 2024)

Fully pre-trained
(Gemma)

Two-stage (re-warmup then continue LR schedule)
Multitask; no pure text

Continued LR schedule

Prismatic
(Karamcheti et al., 2024)

Fully pre-trained
(Llama)

No image-text pre-training. Re-warmup

Ours Partially pre-trained
(OpenLM)

Continued LR schedule
Various image-text ratios

Re-warmup

the same learning rate schedule (Section 2.1.2). A more detailed comparison overview of different
models can be found in Table 1.

2.1.1 TEXT-ONLY PRE-TRAINING

During the initial pre-training process, only the LLM backbone is trained with the training recipe
from Gadre et al. (2024b). Rather than re-training from scratch, we instead leverage existing open
checkpoints from DCLM-1B (Li et al., 2024b) 1. This is a 1.4B parameter model trained on text
tokens from DCLM-Baseline mixed with Starcoder (Li et al., 2023b) and ProofPile (Azerbayev et al.,
2024), for a total of 4.3T tokens, and it outperforms the recent LLaMA-3.2 1B model 2 on several
commonly used text benchmarks.

The pre-training learning rate schedule is warmup-cosine with a peak learning rate of 10−2 and a
final learning rate of 10−5. In addition to using the final model, we also use checkpoints from 20%,
40%, 60%, and 80% through training, which correspond to 860B, 1.72T, 2.58T, and 3.44T training
tokens respectively. Since these checkpoints are taken from the middle of training, their learning
rates are higher than the typical last learning rates of most released model weights, allowing us to
effectively resume pre-training (Figure 3).

Additional hyperparameters for the text-only pre-training stage can be found in Appendix A.

2.1.2 IMAGE-TEXT PRE-TRAINING

We take checkpoints from the text-only pre-trained model and resume the cosine learning rate
schedule with a cooldown phase, as illustrated in Figure 3.

For our experiments, we perform multi-modal training using both caption data and task-related
instruction data. As opposed to other VLMs like MM1 (McKinzie et al., 2024), BLIP3 (Xue et al.,
2024), and IDEFICS (Laurençon et al., 2024) which use interleaved data in addition to caption data,
we limit our setting to either text only or text + a single image. Our minimal setting allows us to
control as many factors as possible to isolate the most fundamental factors to train a performant
multi-modal model.

There are a number of design choices involved in this stage. We give an overview of these design
choices below:

1https://huggingface.co/TRI-ML/DCLM-1B
2https://huggingface.co/meta-llama/Llama-3.2-1B
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Figure 3: Representation of the different learning rate schedules used for our experiments. ‘Main
schedule’ corresponds to the learning rate for the initial, text-only pretraining. Other colored schedules
are the ones used for image-text training and extend over 28B tokens each. They have been upscaled
and appear as extending over 280B tokens for readability.

Text dataset selection: During the image-text pre-training stage, we train with the DCLM-baseline
dataset, mixed with StarCoder and MathPile. This is selected to match the dataset used during the
text-only pre-training step to ensure continuity from the LLM checkpoints that we resume.

Caption dataset selection: We train with the DataCompDR-1B caption dataset (Vasu et al., 2024),
which is an enhancement over DataComp-1B (Gadre et al., 2024a) by regenerating higher quality
captions. To arrive at this selection, we ablated over several caption datasets (Appendix I.1).

Image-text ratio: The effect of mixing text and images has not been thoroughly documented and
is one of the key questions we explore in this paper. McKinzie et al. (2024) show that adding some
text tokens helps with few-shot and text-only performance, though they show only up to 33% text
and operate at slightly different settings (fully pre-trained vs partially pre-trained model). DeepSeek-
VL (Lu et al., 2024) uses a fixed 70% text ratio but does not discuss other ratios. We conduct a
thorough investigation on the image-text ratio in Sections 3.3 and 3.2.

Amount of training: We train all our models with a token multiplier of 20, following approximate
Chinchilla optimal scaling (Hoffmann et al., 2022). For a 1.4B model, this equates to around 28B
tokens. From our experiments at smaller scale, we observe that trends generally hold across higher
token multipliers (Appendix G).

Image encoder selection: We found the SigLIP encoder to work well for our setting, which
confirms findings from Beyer et al. (2024). The DINO+SigLIP combination from Karamcheti et al.
(2024) gave slightly better results on some benchmarks; for simplicity, however, we use SigLIP for
most of our experiments. See Appendix I.2 for full ablations.

Frozen encoder weights: The vision encoder can be kept frozen (Karamcheti et al., 2024) (i.e., its
parameters are not trained) or trained end-to-end with the language model (Tong et al., 2024; Beyer
et al., 2024). In our small-scale ablations, we found it more effective to freeze the image encoder
weights in both the pre-training and fine-tuning stages (Appendix H), so we freeze the weights for
the rest of this section.

Each image is encoded to 729 tokens, and we train all models for a sequence length of 1024. We
provide additional implementation details in Appendix C.

2.1.3 INSTRUCTION FINE-TUNING

We fine-tune our pre-trained models with the LLaVA dataset (Liu et al., 2024) using the Prismatic
framework (Karamcheti et al., 2024). For each model trained in the previous step, we fine-tune for
{1, 2, 3, 4} epochs. We use a cosine learning rate schedule with warmup. To account for different
epoch numbers having different learning rate schedules, we treated each epoch number as its own
separate run. A full list of hyperparameters can be found in Appendix D.

2.2 EVALUATION

We want our VLMs to perform well in vision language tasks while still retaining their performance
in text-only tasks. As such, we conduct evaluations over a suite of diverse tasks, both image-based
and text-based. In our early experiments, we trained a 79M parameter model with text and used it to
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search the training space before scaling to the 1B experiment presented in this work. We only keep
the downstream text tasks where a 79M parameter model performs better than random chance. We
test our model without any in-context learning, thus all results reported are 0-shot.

Vision-language tasks: We evaluate on a subset of vision-language tasks used by Karamcheti
et al. (2024)3. These tasks test general visual reasoning, spatial reasoning, ability to read text, object
localisation and hallucination. For a full set of vision-language evaluation tasks, see Appendix E.

In addition to reporting the scores on individual tasks, we also report an aggregate metric. All our
results are accuracy scores (between [0, 1]). To aggregate them, we subtract the random baseline
accuracy, then average the result over all tasks. We call this aggregate metric the stable score. Its
absolute value can be interpreted as the percentage points of advantage over random guessing. Its
trend can be understood as average percentage points on the suite of benchmarks.

Text tasks: We evaluate on a suite of tasks taken from Gadre et al. (2024b) and conduct our
evaluations with Eleuther’s LM Harness (Gao et al., 2024). These tasks test for general and specific
knowledge, reasoning, and commonsense. We also compute the stable score as previously described.
For a full list of our text evaluation tasks, see Appendix E.

3 RESULTS

This section presents a series of experiments exploring different aspects of multi-modal training. We
aim to find important choices that affect the downstream performance of the model on a set of diverse
visual tasks and text-only question answering.

All experiments below are conducted on the 1.4 billion parameter regime. We make use of various
checkpoints of the DCLM-1B model along its text-only pre-training. This is explored in more detail
in Section 3.1 below.

All experiments use in different proportions three dataset sources. (1) A text-only dataset, DCLM-
baseline (Li et al., 2024b), which was used to pre-train the 1B language model. (2) An image caption
dataset, DataCompDR-1B (Vasu et al., 2024), and (3) An image instruction tuning dataset, mix of
openly available data described in A.1/Multimodal Instruct Tuning (Karamcheti et al., 2024).

Each section below discusses a different set of experiments with a given setup summarized in a
green box labeled Setup. The setup describes which checkpoint of the text-only pre-trained model is
used, the mix of text and image captioning data used for image-text pre-training, and the number of
fine-tuning epochs performed on the image instruction tuning dataset. Within each description, we
use x to denote the variable that we are changing for that particular experiment, while keeping the
rest of the variables constant.

For each of the sections below, there will be two plots, each with two axes, representing our experiment
results on vision-language and text tasks. Each point on a plot represents a 1B model initialized from
one of the text-only pre-trained checkpoints, pre-trained with text and image captions, and fine-tuned
with image instruction tuning data. The plot on the left represents the stable score across the vision
and text benchmarks. The plot on the right represents the VQA-v2 (Goyal et al., 2017) results and the
ARC-easy (Clark et al., 2018) results. The full list of benchmarks as well as detailed graphs for the
vision performance can be found in Appendix F.

3.1 THE IMPACT OF TEXT-ONLY PRE-TRAINING

Setup
• x% checkpoints of 1B model
• Image-text pre-trained for 28B tokens:

◦ 90% Text-only
◦ 10% Image captions

• Fine-tuning 4 epochs

For this experiment, we use different check-
points along the text-only pre-training. The
initial text model was trained with a warmup-
cosine learning rate schedule. All continued
image-text pre-training runs follow the learn-
ing rate schedules represented in Figure 3. We
continue training starting from the last text-only
learning rate value, if not too low, and continue

3https://github.com/TRI-ML/vlm-evaluation/
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training for 28B. For 0% and 100% the learning rate would be too low, thus we adopt a linear
warmup-cosine decay with a maximum learning rate of 3× 10−3. This is illustrated more clearly in
Figure 3.

Figure 4 below shows the progression of the model performance as a function of the text pre-training
completion of the initial checkpoint. We see that up to 80%, a larger amount of text-only pre-training
improves performance for both text and vision tasks, suggesting that it’s helpful to start with a
stronger model which has been trained for a greater number of text tokens. However, at 100% the
learning rate schedule is different and could affect the results. Many similar works all initialize
their model to a 100% text-only pre-trained model and all re-warmup the learning rate during the
image-text pre-training phase. From our experiments, we observe a decrease in performance at 100%,
suggesting that continued training is preferable to re-training a 100% fully pre-trained text model.

Figure 4: Varying the length of text-only pre-training. We analyze the impact of adding image data
after varying amounts of text-only pre-training, showing results on vision benchmarks (green) and
text benchmarks (blue). On the left, we show results across a suite of vision and text benchmarks; on
the right, we plot two common benchmarks, VQA-v2 and ARC-easy. Introducing images at around
80% of the way through training performs best, maintaining high vision and text task performance.
Note: The points at 100% are marked with hollow circles to highlight that they are trained with a
different learning rate schedule, as shown in Figure 3

Longer text pre-training improves performance but, when adding image input, continued
training gives better performance than re-warming up.

3.2 THE IMPACT OF ADDING IMAGES BEFORE THE END OF PRE-TRAINING

Setup
• 80% pre-trained 1B model
• Image-text pre-trained for 28B tokens:
◦ 1− x% text
◦ x% image captions

• Fine-tuning 4 epochs

Building on the results from Figure 4, we take
the 80% checkpoint and vary the image-text ra-
tio we add during pre-training. Figure 5 shows
the evolution of the model performance as we
pre-train (from a text-only pre-trained model)
with more image data. We make sure to keep
the total number of pre-training tokens constant
at 28B, adjusting only the image-text ratio.

From Figure 5, we see that as more image data is added to the mix, better downstream performance is
obtained on vision tasks. However, text-only downstream performance decreases. When only image
data is used for image pre-training, both text and vision task performance drop significantly. We
observe that from 0% images (i.e. train on 100% text) to 1% images, there is a slight drop in vision
stable score performance. We believe this can possibly be attributed to the model being confused at
the addition of this new task, and that it requires some minimum number of tokens in order to truly
learn the image representations. Interestingly, performance on text-only tasks gets slightly better
when some image data is added to the pre-training mix.

Introducing image data at a late stage during pre-training improves vision performance while
maintaining text performance.

6
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Figure 5: Varying the ratio of image to text data, after some text-only pretraining. We analyze
the impact of the ratio of image to text data in pre-training, after the model has seen text-only data for
most of pre-training (80%). Unlike when training from scratch (Figure 6), we find that adding vision
data significantly helps vision performance, while maintaining high text accuracy.

3.3 THE IMPACT OF ADDING IMAGES WHEN TRAINING FROM SCRATCH

Setup
• 0% randomly initialized 1B model
• Image-text pre-trained for 28B tokens:
◦ 1− x% text
◦ x% image captions

• Fine-tuning 4 epochs

This section mirrors Section 3.2, with the only
change being starting the image-text pre-training
from scratch as opposed to from an 80% check-
point. Figure 6 shows the evolution of the model
performance as we pre-train the model from
scratch with more image data.

We observe slighly different trends for models
trained from scratch (Figure 6) as compared to the models trained from the 80% checkpoint
(Figure 5). Here, as more image data are added to the mix, we obtain worse downstream performance
on both text and vision tasks. These models were trained for 28B tokens each and would likely
benefit from more training; it is possible that at larger scales, these trends will more closely resemble
those in Figure 5. Interestingly, just like in Figure 5, adding 1% image data strongly degrades the
ability of the model to be fine-tuned for vision tasks.

Figure 6: Varying the ratio of image to text data, when training from scratch. We analyze the
impact of the image-text ratio in pre-training from scratch without any language-only pre-training.
Perhaps surprisingly, when training from scratch, adding vision data consistently hurts both vision
and text performance, suggesting a period of language-only training early on is important for VLMs.

Introducing image data when training from scratch at small scales does not improve down-
stream vision performance.

3.4 THE IMPACT OF INSTRUCTION TUNING DATA IN PRE-TRAINING

Setup
• 80% pre-trained 1B model
• Image-text pre-trained for 28B tokens:
◦ 90% text
◦ 10− x% image captions
◦ x% image instruction tuning data

• Fine-tuning for 4 epochs

We train a 1B model with a mix of 10% image-
text and 90% text-only data and vary the source
of the image-text data from purely image cap-
tions to purely instruction tuning data. Figure 7
shows the evolution of the model performance
as we increase the proportion of image instruc-
tion tuning in the mix of image-text data. We
observe from this experiment that the best per-

7
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formance on vision-language tasks occurs when there are no instruction tuning data included in
the pre-training mix, although adding instruction-tuning data seems to positively affect scores on
text-only tasks. From a vision-langauge standpoint, we conclude that image instruction tuning data
should not be added to the pre-training mix and only be used in a separate fine-tuning stage.

Figure 7: Varying the proportion of instruction tuning data in the image mix. We assess whether
including instruction tuning data during pre-training is helpful for VLMs. Surprisingly, we find
that adding this data to pre-training harms performance. We hypothesize that this may be due to
overfitting, or because mixing instruction tuning data with image-caption pairs degrades learning at
this scale.

The presence of image instruction tuning data in pre-training harms downstream evaluations.

3.5 THE IMPACT OF FINE-TUNING ON VISION AND TEXT PERFORMANCE

Setup
• 80% pre-trained 1B model
• Image-text pre-trained for 28B tokens:
◦ 90% text
◦ 10% image captions

• Fine-tuning for x epochs

Figure 8 shows the evolution of the model
1B performance as it is fine-tuned for 1 to 6
epochs. Looking at the stable score, we observe
that up to 4 epochs, image instruction tuning
downstream vision task performance improves
and the downstream text performance degrades.
Beyond 4 epochs of fine-tuning, both vision
and text performance degrade, likely due to
overfitting.

Figure 8: Varying the number of fine-tuning epochs. We find that fine-tuning for 2-4 epochs after
pre-training performs best for vision tasks, with 2 epochs being a sweet spot for maintaining text
performance while achieving high vision performance.

Fine-tuning for image instruction improves vision-language tasks up to 2-4 epochs, but
degrades text-only task performance.

8
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4 RELATED WORK

The related work covers three subjects, first, two-stage vision language models (VLMs), which
rely on pre-training with text-only data, then recent VLMs which introduce vision data earlier in
pre-training, and finally, multimodal datasets for VLM training.

Two-stage VLMs. The standard approach for training vision language models involves first training
a large language model on text-only data, and then incorporating vision data in a second fine-tuning
phase. This strategy is employed effectively by models including Liu et al. (2024; 2023) (LLaVA
and variants), Alayrac et al. (2022) (Flamingo), Li et al. (2023a); Xue et al. (2024) (BLIP-2 and
BLIP-3), Laurençon et al. (2024) and Laurençon et al. (2023) (IDEFICS and Obelics), among others.
McKinzie et al. (2024) explore design choices for training VLMs complementary to the ones we
assess, namely the vision-language connector choice, the pretraining strategy for the image encoder,
and the image resolution, while using a two-stage training strategy with a fixed, pre-trained language
model.

Pre-training with visual data. Bavishi et al. (2023) (Fuyu-8B) is a notable exception which trains
a vision-language model from scratch, but the training strategy is not publicly released. Team (2024)
introduces a series of early-fusion VLMs, which, similar to our work, introduce image data during
pre-training, but choose a specific, handcrafted strategy for training. For multi-modal pre-training,
Aghajanyan et al. (2023) find scaling laws for pre-training from text, code, image-text, image and
speech data in terms of unimodal and bi-modal combinations. They investigate training dynamics for
various mixtures of pre-training data and model sizes in terms of perplexity. Their study is related
to ours in the sense of pre-training with mixtures of data, but it differs in that it does not involve
any downstream evaluations. We focus specifically on the setting of VLM training, and thoroughly
investigate the results on standard benchmarks.

Datasets Collecting image-text pre-training and instruction data is challenging, due to the low
quality of image-text pairs on the internet. Most datasets use a combination of curation and re-
captioning to address this, including Desai et al. (2021) (RedCaps), or Thomee et al. (2015) (YFCC-
100M). In this work, we specifically rely on recent large-scale, high-quality datasets that perform
well for training multimodal models: Changpinyo et al. (2021) (ConceptualCaptions-12M) follows
the ConceptualCaptions-3M (Sharma et al., 2018) pipeline, curating images and alt-text pairs from
the internet, with relaxed filters to increase the dataset size. Gadre et al. (2024a) (DataComp-1B)
uses CLIP-based filtering to curate a high-quality set of 1 billion image-text pairs, and Vasu et al.
(2024) (DataCompDR-1B) uses a vision-language model to generate synthetic captions for the
original DataComp-1B dataset. For finetuning, we use the LLaVA-1.5 (Liu et al., 2024; 2023) mix,
which consists of high quality, curated image datasets, along with instruction-tuning data generated
using a large language model. Recent datasets further explore interleaved data, where the same
sequence counts several images and text piece that relate to each other. Interleaved datasets include
OBELICS (Laurençon et al., 2023), the Cauldron (Laurençon et al., 2024), and MINT-1T (Awadalla
et al., 2024). We leave the analysis of this data for VLM pretraining to future work.

5 CONCLUSION

In this paper, we address some key gaps and challenge several common assumptions in vision-
language model (VLM) pre-training. Specifically, our work questions the traditional practice of
separating text and image pre-training phases, demonstrating that a more integrated approach of
incorporating image data during pre-training can yield superior downstream results. We recommend
future VLM efforts leverage intermediate pre-training checkpoints to incorporate images before
completing the pre-training process. In this setting, it’s important to carefully manage the image-
to-text ratio: unlike the typical approach where a separate image training stage is done with 100%
caption images, this integrated setting requires a balanced image-text ratio to avoid performance
degradation. We plan to make our code and our testbed of models publicly available, and we hope
that our findings will provide a strong empirical foundation for open-source VLM pre-training.
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A TEXT-ONLY PRE-TRAINING HYPERPARAMETERS

We preformed initial exploratory experiments with a 79M parameter model and scale our final
experiments to a 1B model with settings from Gadre et al. (2024b) given in Table 2. Our text models
are trained with the OpenLM (Gururangan et al., 2023) codebase for next token prediction on the
DCLM-baseline dataset (Li et al., 2024b).

Table 2: The two models and set of hyperparameters used in our experiments. Models have
number of parameters N , with number of layers nlayers, number of attention heads nheads, model width
dmodel, and width per attention head dhead. Batch sizes are global and in units of sequences. Each
sequence has 2,048 tokens. A100 GPU hours are at M = 150. For the 1.4B scale, a batch size of 256
performs slightly better than 512.

N nlayers nheads dmodel dhead Warmup Learning rate Batch size Training tokens A100 hours

79M 8 4 512 128 400 3e-3 512 237B 1.2k
1.4B 24 16 2,048 128 5000 1e-2 256 4.3T 106k

B IMAGE-TEXT PRE-TRAINING HYPERPARAMETERS

We add an image encoder, loaded from a pre-trained model (or randomly initialized, in the case
of patch projection). We define a 2-layer MLP with GELU activation to project the image patches
from the image encoder dimension to a dimension 4 times larger and then down to the LLM input
dimension.

Image-test pre-training follows the same procedure as text pre-training except that the image patches
are not predicted by the auto-regressive model and are masked out of the auto-regressive cross-entropy
loss.

We use the learning rate schedules defined in Figure 3.

C IMAGE ENCODING IMPLEMENTATION DETAILS

We encode each image to the vocabulary space of the language model, with each image taking 729
tokens. When dealing with caption data, we always place the image first before the text, and we add a
separator token to separate the image and the text. We then mask out the image and only compute
loss over the text tokens. However, we do not use a PrefixLM architecture as used in Beyer et al.
(2024) and Zhou et al. (2024). We believe this is a promising direction to explore in the future.

Meanwhile, when dealing with LLaVa data, we do a similar process of adding the image before the
text and masking the image. This time, we also make sure to mask out any system prompt and human
question, only keeping the model responses unmasked. We also add a separator token at the end of
every human question and model response.

D FINE-TUNING HYPERPARAMETERS

As described in Karamcheti et al. (2024), our image-text instruction tuning dataset is composed of
665K examples. Each sequence that is fed to the model begins with 729 items matching image patch
embedding followed by different numbers of embedded text tokens. The model is trained using the
Prismatic codebase Karamcheti et al. (2024). Instruction tuning follows the same training strategy as
pre-training except that the image patch and question tokens are masked out of the cross-entropy loss.

We use the following non-default hyperparameters:

• Learning rate: 3.10−4

• Warmup ratio: 0.05
• Adam optimizer: β2 : 0.95

• Finetune epochs: 4
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• Batch size: 256

• Image resize strategy: "letterbox"

E EVALUATION BENCHMARK DESCRIPTIONS

VQA benchmarks:

• VQAv2 (Goyal et al., 2017): General visual reasoning

• GQA (Hudson & Manning, 2019): Spatial reasoning

• TextVQA (Singh et al., 2019): Text-based reasoning

• POPE (Li et al., 2023c): Yes/No hallucination test

Object localisation benchmarks:

• RefCOCO (Kazemzadeh et al., 2014; Yu et al., 2016): Object localisation

• OCID-Ref (Wang et al., 2021): Cluttered object localisation

These are a subset of the tasks considered in Karamcheti et al. (2024). We evaluate and report VizWiz
results but leave them out of the average performance computation because its system prompt is
out of the training distribution and is often misunderstood by the 1b model. The “unanswerable”
answer suggested in the prompt is rarely used by the model, which would often answer reasonable
but different responses such as empty responses or “I don’t know”. The exact match scoring does not
reflect that, causing a large variance of the results. With different initial random seeds, most results
stay similar, but VizWiz results vary by several percentage points.

We also left out challenge tasks VSR, TallyQA and AI2D because the difficulty of these tasks make
them out of scope for small scale models.

Text benchmarks: The following benchmark descriptions are taken from Li et al. (2024b)

• AGI Eval LSAT-EN (Zhong et al., 2023) tests for model knowledge in the legal domain and
evaluates analytical reasoning capabilities.

• ARC-easy (Clark et al., 2018) contain four-way multiple choice questions taken from grade
3-9 science exams, where questions in the easy dataset require knowledge of basic science,
and the challenge questions require some procedural reasoning.

• BigBench (bench authors, 2023) Conceptual combinations 4-way multiple choice ques-
tion answering dataset which discriminate combinations of objects and attributes that are
appropriate to each other or not.

• BoolQ (Clark et al., 2019) binary question answering dataset where the model is expected
to answer questions about relevant passages.

• COPA (Roemmele et al., 2011) causal reasoning questions where the model is given two
possible outcomes to a scenario and must use commonsense to select the outcome that is
more likely.

• HellaSwag (Zellers et al., 2019) a conversational question answering dataset where the
model is given a passage and conversation between two participants and then expected to
extract an answer from the passage to a question from one of the participants.

• MathQA (Amini et al., 2019) 5-way multiple choice question answering dataset that evalu-
ates math word problem solving capabilities, built on top of AQuA.

• PIQA (Bisk et al., 2020) binary multiple choice question answering dataset that requires the
model to use physical commonsense reasoning to answer correctly.

• PubMedQA (Jin et al., 2019) 3-way multiple choice question answering dataset which
evaluates the model’s ability to answer biomedical research questions given context from a
relevant research article.
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F DETAILED RESULTS

F.1 THE IMPACT OF TEXT-ONLY PRE-TRAINING

Figure 9 shows the detailed vision benchmarks results and global text benchmark results as the initial
text-only pre-trained model is trained to completion. All tasks except VizWiz perform the best with
the text backbone trained to 80% of completion.

Figure 9: Evolution of the performance of the 1b model on vision benchmarks and text benchmarks
as functions of the text-only pre-training completion.
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F.2 THE IMPACT OF ADDING IMAGES BEFORE THE END OF PRE-TRAINING

For some tasks such as POPE and RefCOCO, the best performance is obtained without any image in
the second stage. Most other tasks do benefit from image-text pre-training.

Figure 10: Evolution of the performance of the 1b model on vision benchmarks and text benchmarks
as functions of the ratio of image caption data in the image pre-training phase.
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F.3 THE IMPACT OF FINETUNING ON VISION AND TEXT PERFORMANCE

The trend of progress over finetuning for individual benchmark is only clear for some benchmarks
such as RefCOCO and OCID. For VQA-v2, GQA, TextVQA, and POPE, the best results are not at
4 epochs but less than one percentage point is lost between their maximum performance and their
performance at epoch 4.

Figure 11: Evolution of the performance of the 1b model on vision benchmarks and text benchmarks
as functions of the number of fine-tuning epochs.
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F.4 THE IMPACT OF ADDING IMAGES FROM THE START WHEN TRAINING FROM SCRATCH

Although not by a large margin, in this pre-training from scratch experiments, best results are obtained
without image in the pre-training mix.

Figure 12: Evolution of the performance of the 1b model trained from scratch on vision benchmarks
and text benchmarks as functions of the ratio of image caption data in the image pre-training phase.
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F.5 THE IMPACT OF INSTRUCTION TUNING DATA DURING PRE-TRAINING

Including instruction tuning data degrades VQA performance of the downstream model for all tested
benchmarks. However, surprisingly, it improves the overall performance on downstream text tasks.
We believe this is due to the instruction tuning data that help the model understanding question
answering tasks.

Figure 13: Evolution of the performance of the 1b model on vision benchmarks and text benchmarks
as functions of the ratio of image instruction tuning in the image-text pre-training phase.
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Figure 14: We train for {1,2,4} times the Chinchilla optimal number of tokens for 79M models. The
above plots are taken for a 60% checkpoint, with VQA-v2 as the y-axis. Plots from other checkpoints
look similar.

G TRAINING FOR HIGHER CHINCHILLA SCALES

In Figure 14, we train a 79M model for up to 4× the Chinchilla scale, which is approximately an
80× token multiplier. Overall, the trends for Cx1, Cx2, and Cx4 look quite similar. Consider, for
example, the blue (epochs=1) trend lines for Cx1 (circle), Cx2 (cross), and Cx4 (star). We see that all
three trend lines generally follow the same shape. The same can be said for the trend lines of the
other epoch counts. We believe that this will be very interesting (albeit costly) to test at the 1B level
to observe what role model size plays in these scale calculations.

H WHAT DO THE RESULTS LOOK LIKE IF WE UNFREEZE ALL THE WEIGHTS?

There has been a debate about whether or not to freeze the image encoders when training VLMs.
Certain papers such as Prismatic (Karamcheti et al., 2024) claim that the performance is better if the
encoders are frozen, whereas other papers such as Cambrian (Tong et al., 2024) and PaliGemma (Beyer
et al., 2024) claim the opposite.

We conduct a few experiments to test this ourselves. Our results on the frozen vs unfrozen were
conducted on 79M models. We report our results in Table 3. As the results for the unfrozen model
were significantly worse across the board, we decided to stick with frozen image encoders for the rest
of our experiments.
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Table 3: All results are taken with the mix of DataComp-DR caption data and DCLM text data and
fine-tuned on 3 epochs. Across multiple settings, the unfrozen models perform worse in general.

Checkpoint Frozen? Text-Image Ratio VQA-v2 score
80% yes 5% 58.71
80% yes 30% 60.22
80% yes 50% 60.85
80% no 5% 68.55
80% no 30% 69.42
80% no 50% 71.0

Table 4: Effect of image dataset

Dataset Mix
Vision Sta-
ble Score

Text Stable
Score

DataComp 0.4603 0.1168
DataComp-DR 0.4607 0.1503
CC12M 0.4556 0.1298
ShutterStock 0.4518 0.1310

Table 5: Effect of image encoder

Image Encoder
Vision Sta-
ble Score

Text Stable
Score

SigLIP 0.4607 0.1503
SigLIP + DINO 0.4696 0.1347
Patch
Projection

0.1564 0.1503

I ABLATIONS

I.1 EFFECT OF IMAGE DATASET

In Table 4 we ablate over the caption dataset we use. We find that DataComp-DR is the best for both
vision and text, though the gap is larger in text than in vision. This was one key reason we decided to
use DataComp-DR for the majority of our experiments.

I.2 EFFECT OF IMAGE ENCODER

In Table 5 we ablate over image encoders. Here, we observe that SigLIP and DINO-SigLIP are quite
close to each other for vision, with DINO-SigLIP narrowly edging out SigLIP. However, SigLIP is
better by a large margin in text. We hence select SigLIP for the majority of our experiments.

J RANDOM SEEDS

One question that arises when comparing our different experiments is to what extent a small variation
of the result is significant. To control this factor, we experiment with different random seeds. The
resulting variation of the result, shown in Table 6 below, is representative of the variability of our
pipeline. Overall, we observe from Table 6 that the variation across seeds is quite small, although the
variation may get slightly larger as we go to smaller image ratios such as 1%.

K LIMITATIONS AND FUTURE WORK

While we strive to be thorough in our experiments, the space of exploration of multi-modal trans-
formers is large and costly to cover. Many promising directions remain to be explored in this
area.

• Interleaved images – This is something several recent papers have done (Laurençon et al.,
2024; Awadalla et al., 2024; McKinzie et al., 2024). There are currently also several datasets
available to use, such as Awadalla et al. (2024) and Laurençon et al. (2023). It is possible
that using interleaved images will lead to new interesting results. To better handle this usage,
we would need to re-think our image encoding scheme to reduce the sequence length of a
sample counting several images.

• Higher token multipliers for 1B models – Right now, we have experiments with higher
token multipliers (up to 4 times the Chinchilla (Hoffmann et al., 2022) optimal) for 79M
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Table 6: All models above were trained from a 20% checkpoint on a mix of DataComp-DR caption
data and DCLM text data.

Random Seed Image Ratio FT epochs VQA-v2 score
7 1% 1 73.83
7 1% 2 75.39
7 5% 1 75.36
7 5% 2 76.39
7 10% 1 75.39
7 10% 2 76.5

365 1% 1 74.46
365 1% 2 75.9
365 5% 1 75.39
365 5% 2 76.47
365 10% 1 75.55
365 10% 2 76.58

models (Section G). However, we do not have these for 1B, as they can be costly to run. It
would also be interesting to go beyond 4x Chinchilla, as this would bring our training a lot
closer to full pre-training as opposed to the cooldown that we are currently doing.

• Scaling laws – Through our experimentation at 79M parameter scale and 1B parameter
scale, we discovered large differences in the model behavior and results through similar
training pipelines. It might be a sign that scaling laws of VLMs are more complex than
those of LLMs. More experimentation across model sizes would be needed to confirm if
these behavioral shifts persist across scales and data, uncovering the unique scaling laws of
Vision-Language Models (VLMs) compared to Large Language Models (LLMs).

• Image resolution training – This as well as other tricks from PaliGemma (Beyer et al.,
2024) contribute to improve performance. However, they add complexity to the model and
training pipeline, departing from the mainstream VLM training recipe. While we do not
study the compounding effect these choices could have on the factors that we study, we
believe these to be orthogonal improvement directions.

• PrefixLM – Using PrefixLM allows the model to attend bidirectionally over image patches
and the task definition. This can possibly interplay with other factors such as freezing vs
unfreezing the model, ultimately affecting the downstream performance after pre-training.
By bringing part of the model closer to the usual ViT architecture, this could unlock some
ability of the model to better capture the image input information, and potentially remove
the need for a pre-trained image encoder.
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L BENCHMARK RESULTS

To provide further analysis, we detail below the result per benchmark at different stages of our training
process. Most text benchmarks see a decreasing score as the model is trained on images and then
fine-tuned for visual question answering. Interestingly, AGIEval score actually increases with image
training, while PubMedQA sees a sharp decrease in the score.

Metric Ours Ours (No FT) Base 80% Base 100% Llama 3.2 1B Qwen 2.5 1.5B

AGIEval 32.5 27.7 19.4 28.2 21.4 63.6
ARC Easy 59.3 72.3 74.7 77.1 69.5 80.6
BigBench CC 27.2 30.1 40.8 47.6 27.2 57.3
BigBench CS 35.8 46.2 44.6 46.7 46.5 56.5
COPA 71.0 83.0 86.0 92.0 83.0 85.0
HellaSwag 58.2 66.5 69.2 72.8 65.1 67.78
MathQA 22.9 25.9 26.9 27.3 30.52 40.84
PIQA 70.5 74.4 76.6 79.1 76.0 76.22
PubMedQA 35.0 38.6 66.2 69.6 65.8 66.6
Stable-Score 15.44 21.26 25.73 29.67 23.52 35.68

Table 7: Benchmark results at different stages of the training process. "Ours" is our model trained
with 10% image captioning and 90% text before 4 epochs of LLaVA fine-tuning.

To help provide a qualitative assessment of our model performance, we also produce some data
samples from VQAv2 with different question types. These samples are available at Zenodo.

M COMPARISON WITH PRIOR SOTA MODELS

While our primary focus in this paper is on studying training recipes, grounding our findings with
a comparison to prior state-of-the-art (SOTA) visual language models (VLMs) provides valuable
context and strengthens the validity of our results. Below, we present a comparison of our results
with those reported by Prismatic VLM and PaliGemma. Although these models are larger, we were
unable to find similarly sized models reporting the same set of evaluations as ours. We also plan to
evaluate the Qwen-VL-2B-Instruct model and include it in this comparison.

Metric Ours Prismatic 7B PaliGemma 3B

TextVQA 49.05 51.78 73.2 ± 0.2
RefCOCO 61.29 73.62 77.9 ± 0.1
POPE 87.33 88.28 87.0
GQA 61.11 64.16 67.0 ± 0.3
VQAv2 76.82 79.05 85.6 ± 0.2
OCID 40.80 50.56 N/A
Stable Score (No OCID) 47.13 51.38 58.14
Stable Score (With OCID) 46.08 51.25 N/A

Table 8: Comparison of evaluation metrics between our model, Prismatic 7B, and PaliGemma 3B.
"Ours" is our model trained with 10% image captioning and 90% text before 4 epochs of LLaVA
fine-tuning.
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