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Abstract

Although data augmentation is considered an important
step in the training strategy of 3D object detectors on point
clouds to increase the overall performance and robustness,
in almost all publications the topic of augmentation and
the choice of the individual augmentation methods used are
only addressed very briefly with reference to previous work
and are not backed up with sufficient experiments. The
question therefore arises as to the impact and the transfer-
ability of different augmentation policies. Through a se-
ries of elaborate experiments with four networks on two
datasets, this paper shows that the positive effects of dif-
ferent data augmentation methods are not so clear-cut and
instead depend strongly on the network architecture and the
dataset.

1. Introduction

Over the course of the past years Deep Learning has
been established as a powerful tool for solving many dif-
ferent tasks in various fields. It is well known by now, that
the quality of the results heavily depends on the diversity
and the amount of data the models are trained with. Since
the recording and labelling of training data is in most cases
very time consuming and costly, data augmentation meth-
ods were established to artificially increase the size and di-
versity of the training data. Especially in the field of au-
tonomous driving, specifically the task of 3D object detec-
tion on point clouds, where a lot of labeled data is required,
the precision of networks is a major safety factor. Since
recording rare events is very difficult, augmentation comes
in handy. Therefore, a variety of different augmentation
methods ranging from very simple transformations to more
sophisticated methods has been developed and widely used
for this task. Even though in most publications the usage
of these data augmentation methods is reported, the overall
augmentation policy is in most cases not reasoned. Thus,

in many papers the augmentation policy of previous works
is simply carried over and not backed up with sufficient ex-
periments. There are attempts to shed some light on the
dubious field of augmenting 3D data for the task of object
detection, but none has presented detailed experiments with
a satisfying degree of generality yet [3, 8, 32]. Either the
amount of different network architectures is not sufficient,
the experiments are only performed on a single dataset or
the augmentation policy remains occluded. Thus, neither
a general statement about the effects of the individual aug-
mentation methods nor the transferability of augmentation
policies is possible.

Therefore, in this work a set of elaborate experiments
regarding data augmentation for 3D object detection is per-
formed to fill the aforementioned gap. In distinction from
existing work these experiments are performed on different
networks and datasets covering the current state of the art
approaches of 3D object detection. In the course of this pa-
per it is shown, that the effects of individual augmentation
methods strongly depended on the network architecture as
well as the underlying dataset and thus the transferability of
augmentation policies, as it is current practice, is not ideal.

2. Related Work
For both 3D object detection and its data augmentation

the current state of the art with respect to the present ques-
tion of research is presented in the following section.

2.1. 3D Object Detection

In the current state of the art the research focuses mainly
on two different groups of network architectures for 3D ob-
ject detection distinguished by the amount of stages used.
For the first group only one stage is utilized. This means
only one network is used that produces the final box predic-
tions directly. In contrast, the second group exploits a sec-
ond stage. Here, in a first stage, no final results are created,
but only proposals for box predictions. In a second stage,
these proposals are further refined to the final predictions.
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Most one stage detectors do not work directly on the con-
tinuous point clouds but first transform them into a discrete
voxel grid. One of the first approaches used for 3D object
detection was introduced in [13]. Here, the authors propose
a network architecture consisting of several three dimen-
sional convolutional layers. As input serves a point cloud
mapped to a three dimensional occupancy voxel grid with
handcrafted occupancy models. In [24] and [11] similar
ideas are pursued and further developed still using hand-
crafted feature vectors for each voxel cell. For the approach
proposed in [33] the feature vector for each voxel cell is
created from the points falling inside one voxel by a small
network inspired by [15]. Afterwards this voxel grid is
converted by convolutional layers into a two dimensional
feature map and further processed to achieve the box pre-
dictions. The authors of [26] continue the idea and apply
sparse convolution layers and changes to the loss functions,
but keep the general functionality. In [9] the working prin-
ciple is further enhanced and the voxel grid is reduced to
a grid of pillars. More recent works build further upon the
backbones of [26] and [9] by implementing an anchor free
detection head [2] or utilizing a multi scale approach [23].
In [32] a spatial-semantic feature aggregation module is in-
troduced following the sparse convolutions to enhance the
feature extraction capabilities.

So far all methods are voxelization approaches. There
also exist one stage detectors working directly on the point
cloud such as [28] where an architecture based on Point-
Net++ [16] for feature extraction is used, but they are less
common. Thus, most of the object detectors taking the raw
point cloud as input are two stage detectors. PointRCNN
[18] is a two stage detector that also utilizes PointNet++ as
a feature extraction followed by a proposal generation for
the 3D boxes. These proposals are afterwards refined by a
second network to the final box predictions. In [29] a two
stage detector is presented, that is generating box proposals
based on the raw point cloud with spherical anchors and for
the second stage represents each proposal as a voxel grid.
There exist also two stage detectors with voxelized point
clouds as input such as [19]. Here, a encoder decoder net-
work is applied to the voxel grid to create 3d box proposals.
These are further refined in the second stage of the over-
all architecture by a simultaneous foreground segmentation
and intra-object part location. In [17] an additional keypoint
sampling is applied to further increase the box refinement.
The authors of [5] propose another two stage voxelization
approach exploiting a voxel RoI Pooling for the refinement
of the proposals. In [30] the two stage voxelization ap-
proach is enhanced by using a center based representation
of the box proposals.

2.2. Augmentation

Many different augmentation methods have been devel-
oped and established for the task of 3D Object detection
on point clouds. Most commonly used are simple transfor-
mations of the whole point cloud and all groundtruth boxes
accordingly. Thus, almost every work reports a global rota-
tion of the point cloud [6, 9, 10, 12, 18, 19, 20, 23, 25, 26,
27, 29, 33]. Most of them also make use of a global scal-
ing augmentation method. Here all points and groundtruth
boxes are scaled by the same scaling factor in all directions.
A global translation is not utilized as often. Only a few pub-
lications report its usage [9, 12, 20]. Another approach to
globally augment the whole point cloud is flipping. In the-
ory this can be performed along all three axes, in practice it
is mostly utilized along the longitudinal axis.

The presence of labels for individual objects in the point
cloud allows augmentations to be performed not only on
the entire point cloud, but on each individual object by ap-
plying transformations to the bounding boxes of the ob-
jects and the points they contain. So many publications
report such a local rotation or translation of individual ob-
jects [6, 9, 25, 26, 29, 33]. Note that local scaling of the
point cloud is not used nearly as often although global scal-
ing is commonly applied. In [4] another approach for local
augmentation is presented called part aware augmentation.
Here, the points belonging to an object are further split into
parts of the object and individually augmented.

In addition to these basic transformations in [26] a
groundtruth sampling approach is presented, where the in-
dividual objects and contained points are gathered from
point clouds and randomly inserted into other clouds. This
method was adopted by other works as well [9, 18, 23, 25,
29] and has become one of the common augmentation meth-
ods. In [34] an enhancement of this groundtruth sampling
is mentioned regarding the placement of these new objects.
Additionally, a categorization of the dataset according to the
different classes is applied to tackle the problem of class im-
balance of the nuScenes dataset [1].

Because of the success of the groundtruth sampling in
the original paper, experiments with this method have been
performed in some works, showing its capability to improve
the networks detection quality [18, 32]. This often remains
the only reported experiment regarding augmentation. In
[32] and [31] small experiments are performed, but no de-
tailed augmentation methods or their parameters are men-
tioned. More detailed experiments have been performed in
[8]. Here, a series of experiments is carried out based on
PointPillars [9] used for the detection of cars on the KITTI
dataset [7]. Several augmentation methods are evaluated
with various parameters. They note that some augmenta-
tion methods surprisingly lead to worse results and men-
tion the importance of data augmentation at least for the
KITTI dataset with its relatively small size and the PointPil-
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lars network. Experiments with other networks or datasets
are not performed. In [3] a reinforcement learning approach
is shown with the goal to learn the best augmentation pol-
icy for StarNet [14], which is a point based approach that
tends more into the group of one stage detectors since there
is no secondary refinement network, and PointPillars on the
KITTI and Waymo [21] dataset. The authors use a vari-
ety of different, mostly global augmentation techniques and
run their reinforcement learning algorithm. It is shown, that
augmentation is able to improve the performance of the two
networks and that their via reinforcement learning deter-
mined augmentation policy yields better results than a man-
ually determined policy. But no detailed results are avail-
able and only vague indications are formulated regarding
the single augmentation methods such as the underperfor-
mance of the horizontal flip method. The authors also in-
troduce two new augmentation techniques using frustums.
In the first method, called frustum dropout by the authors, a
random point is selected and all points in the frustum around
that point are randomly deleted. The second method, called
frustum noise, does the same but adds points within the frus-
tum instead of deleting them. The usage of both is not men-
tioned in any other publications.

3. Method
In this section the augmentation methods as well as the

networks used for the experiments will be introduced.

3.1. Augmentation Methods

In the following let pi = (xi, yi, zi) be the points of an
arbitrary point cloud P and bj = (cxj , c

y
j , c

z
j , lj , hj , wj , φj)

the elements of a set B of the according groundtruth boxes,
where c = (cx, cy, cz) denotes the center position, l, h, w
denote the dimensions and φ is the yaw angle of the boxes.
Let P ∗ and B∗ be the augmented sets of points and boxes
accordingly. The parameters used are based on the current
state of the art and are in most cases congruent to those that
have proven to be the best in [8] for the respective augmen-
tation method. All methods are illustrated in figure 1 for a
minimal example.

3.1.1 Global Augmentation

Global augmentations refer to those methods, that are ap-
plied to the whole point cloud and all annotations in the
same way [8]. Here, the groundtruth sampling is also re-
ferred to as global augmentation method, since it changes
the scene in a global sense as well.

Groundtruth sampling adds additional objects to the
current scene. These objects, i.e. the bounding box and its
inner points, are previously collected in a database from the
part of the dataset used for training. For each point cloud

objects are randomly drawn from the database so that 15
objects are present at the current scene. Before an object
is inserted into the current cloud a collision test to the al-
ready existing objects is performed. If a new object collides
with an object already existing in the point cloud it gets dis-
carded. Thus, at most 15 − |B| objects are added to one
scene. Additionally, the database is filtered such that only
objects with more than 5 points are included.

Global Flip mirrors the whole point cloud and all
groundtruth boxes along the x axis if q ∈ B(1, 0.5) equals
1 such that all points p∗i = (xi,−yi, zi) and all boxes
b∗j = (cxj ,−c

y
j , c

z
j , lj , hj , wj , φj + π). A flip along other

axes is also possible. Since for the Kitti dataset [7] the point
cloud is cropped to the corresponding front camera image,
it is not used in the experiments.

Global Translation shifts each point of the cloud by ran-
dom values for each direction such that the augmented
points p∗i = (xi + ∆x, yi + ∆y, zi + ∆z) and the centers
of the augmented groundtruth boxes c∗j = (cxj + ∆x, cyj +
∆y, czj + ∆z) with ∆x,∆y,∆z ∈ N(0, 0.25) drawn for
each point cloud from a Gaussian Distribution.

Global Rotation performs a rotation around the vertical
z-axis for the whole point cloud and all objects accordingly
in the way that all p∗i = Rz(ψ)pi and all c∗j = Rz(ψ)cj
with ψ ∈ U(−π4 ,

π
4 ) drawn from an uniform distribution.

Global Scaling applies an isotropic scaling by a factor s
in all three dimensions to the points and the boxes accord-
ingly so p∗i = s · (xi, yi, zi) and b∗j = (s · cxj , s · c

y
j , s · czj , s ·

lj , s · hj , s · wj , φj) with s ∈ U(0.95, 1.05) drawn from an
uniform distribution.

3.1.2 Local Augmentation

Local augmentations are not applied to the whole point
cloud P but only to the groundtruth boxes B and the points
within the bounding boxes. Thus, only the objects inside
the point cloud like cars or pedestrians are effected by this
augmentation techniques. Before an object is augmented a
collision test is applied. There also exist variations of object
augmentations, where not only the points within a box but
also a portion of the surrounding points are augmented in
the same way to keep more of the local information [32].
Though, for the following experiments the first presented
approach is used because it is more often utilized so far. In
the following, let Pbj be the points enclosed by an arbitrary
bounding box bj ∈ B.
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No augmentation Groundtruth sampling Global Flip Global Translation Global Rotation

Global Scaling Local Translation Local Rotation Local Scaling

Figure 1: Illustration of the different augmentation methods for a minimal example.

Local Translation shifts each bounding box and its in-
ner points by random values for each direction, such that
p∗ibj = (xi + ∆xj , yi + ∆yj , zi + ∆zj) and c∗j = (cxj +

∆xj , c
y
j + ∆yj , c

z
j + ∆zj) if box b∗j does not collide. The

translation vector (∆xj ,∆yj ,∆zj) ∈ N3(0, 0.25) is inde-
pendently drawn for each bounding box from a Gaussian
Distribution.

Local Rotation independently rotates each bounding box
and its inner points by a random angle around the vertical
axis of the center of the bounding box. Let Rjz(ψj) be the
according rotation matrix, then p∗ibj = Rjz(ψj)(pibj − cj) +
cj and φ∗j = φ+ψj if box b∗j does not collide. The rotation
angles ψj ∈ U(−π4 ,

π
4 ) are independently drawn for each

bounding box from an uniform distribution.

Local Scaling isotropically scales each bounding box and
its inner points with respect to the center of the bounding
box such that p∗ibj = sj ·(xi, yi, zi) and b∗j = (cxj , c

y
j , c

z
j , sj ·

lj , sj ·hj , sj ·wj , φj) if box b∗i does not collide. The scaling
factor sj ∈ U(0.95, 1.05) is independently drawn for each
bounding box from an uniform distribution.

3.2. Networks

For the experiments four networks were chosen accord-
ing to the basic working principles of the current state of the
art mentioned in section 2.

PointPillars is a one stage detector based on a variation
of voxelization [9]. The inital point cloud is converted into
a grid of pillars. For each pillar a feature encoding is per-
formed. The resulting feature map is fed forward through a
backbone consisting of two dimensional convolutions. The
final predictions are performed by a SSD detection head.

PointRCNN is a two stage detector working directly on
point clouds [18]. The first stage consists of a point cloud

encoder decoder to create point-wise feature vectors. These
are fed into two different modules. One is generating three
dimensional boxes based on bins, the other is segmenting
foreground points that actually belong to the object. The
box proposals are enlarged by a constant factor and all
points inside these regions of interest are extracted and used
as input for the second stage together with the segmentation
mask and the learned feature vector for each point of in-
terest. Afterwards, the points belonging to each proposal
are transformed into a canonical coordinate system with the
center of the box proposal as the origin and a fixed heading
angle along the longitudinal x-axis. These proposal are then
refined to the final box predictions by applying an encoder
network to the proposal points and the features extracted in
the first stage.

PartA2 is a two stage detector as well but utilizing a vox-
elgrid as input [19]. The point cloud is first converted into
such a discrete voxelgrid, where each voxel contains the av-
erage values of points falling inside. First, the voxel grid
is convoluted to a feature map by an encoder. Following
[26] this feature map is used as input for a RPN that gen-
erates the first box proposals. Additionally, the feature map
is also deconvoluted to get voxelwise features. These are
used to learn a foreground segmentation and an intra-object
part location for each foreground point. For the second state
the points within the regions of interest are transformed and
normalized to canonical coordinates and converted into a
voxelgrid. The intra-object part locations for the proposed
points are further processed to match the max pooled fea-
tures per point from stage one. Afterwards, both are con-
catenated and fed into a small sparse convolutional network,
which outputs the final box refinement and scores for each
box.

3DSSD is like PointPillars a single stage approach, but
uses point clouds directly as input [28]. First, a backbone
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Method mAP Moderate Car ↑
PointPillars PointRCNN PartA2 3DSSD

no aug 58.72 78.24 75.43 61.51
0.00 0.00 0.00 0.00

full aug 76.71 78.73 79.62 78.69
17.99 0.49 4.18 17.18

Table 1: Results for Kitti moderate Car mAP on validation
split with no augmentation and full augmentation for Point-
Pillars, PointRCNN, ParA2 and 3DSSD. The best results
for each network are marked in bold. Colored values are
the difference to no augmentation.

network down samples each point cloud via farthest point
sampling based on the spatial distance and feature distance
to create global features for all representative points of the
initial point cloud. Afterwards, points chosen via feature
distance sampling are sampled and shifted towards the in-
stance centers to create candidate points. These candidate
points are then used to create further features. Finally, these
set of features is used as input for an anchor free regression
head.

4. Experiments

In the following section the performed experiments are
presented. For the experiments the KITTI [7] dataset is
used. As usual, the publicly available part of the dataset
is split into a training set containing 3712 frames and a
validation set with 3769 frames. The general experimen-
tal setup is oriented to [3] and [8]. Therefore, each training
is performed and evaluated three times on the training and
validation set respectively and the best results of all runs
according to the mean average precision for the moderate
car difficulty are reported. All experiments are trained and
evaluated on the car class only to reduce the complexity of
the results. The augmentation techniques are applied on the
fly during the training in the order they are presented in sec-
tion 3.1 if not stated otherwise. The implementation for
the different networks as well as the augmentation methods
is based on OpenPCDet [22]. PointPillar, PointRCNN and
PartA2 are trained for 80 epochs in total, while 3DSSD is
trained for 120 epochs as suggested by the OpenPCDet au-
thors.

4.1. Experiment I - Impact of Augmentation

In the first experiment on the Kitti dataset all four pre-
sented networks in section 3.2 are trained completely with-
out any augmentation and with all augmentation methods
presented. Based on previous works [3, 8, 32] it is expected
that the application of augmentation increases the quality of
the detection results of the networks by a considerable mar-
gin. The results can be seen in table 1. For all four networks
it can be seen, that full augmentation yields to better results

than no augmentation. For PointPillars the increase of the
mAP metric for moderate car is 17.99 percentage points.
Thus, 23.45% of the networks performance stems from the
augmentation, which is consistent with the results of [8].
The same can be observed for 3DSSD. Here, augmentation
with every of the above mentioned methods increases the
precision by 17.18 percentage points, which means 21.83%
of the performance is due to the applied augmentation meth-
ods. So far, these results are in line with the expectations
formulated above. The precision for PointRCNN increases
as well with augmentation compared to without augmenta-
tion, But in contrast to PointPillars and 3DSSD the results
for PointRCNN only improve by the very small margin of
0.49 percentage points, which is only 0.39% of the overall
precision. A similar, though not as drastic, observation can
be made with the PartA2 network. The precision of the net-
work does increase by 4.18 percentage points, or 5.25% of
the overall performance, but this is significantly less than
when compared to PointPillars and 3DSSD. This may be
because PointPillars and 3DSSD are one stage detectors,
while PointRCNN and PartA2 utilize a second stage for box
refinement. Like described in section 3.2 the second stage
of PointRCNN and PartA2 takes the points belonging to
each box proposal as input and transforms them into canon-
ical coordinates. Thus, global as well as the proposed lo-
cal changes of the scene by the augmentation methods have
only a small effect on the input of the second stage. Fur-
thermore, it can be assumed that the box proposals from the
first stage, which serve as input for the second stage, vary
and are not the same for every unaugmented point cloud.
Both might be the reason augmentation shows little effects
on these two stage detectors. Since each of PointPillars
and 3DSSD as well as PointRCNN and PartA2 are a point
based and voxelization approach, the input format of the
point cloud does not seem to affect the effectiveness of the
augmentation.

4.2. Experiment II - One at a time

In the previous experiment it was seen, that the impact
of augmentation in general depends on the network archi-
tecture, mainly the existence of a second stage. The ques-
tion remains if, even if the overall impact differs, the im-
pact of the individual augmentation methods is consistent.
Thus, for the second experiment each augmentation method
is applied on its own and compared to training without any
augmentation.

The results can be seen in table 2. At a first glance it
is visible, that the different augmentation methods do not
have the same effect for each network. Groundtruth sam-
pling for example increases the results of PointPillars by
1.13 percentage points and thus has a positive impact on
the training. For 3DSSD this positive impact is with an im-
provement of 14.22 percentage points of the mean average
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Augmentation method mAP Moderate Car ↑
PointPillars PointRCNN PartA2 3DSSD

no augmentation 58.72 78.24 75.43 61.51
0.00 0.00 0.00 0.00

+ groundtruth sampling 59.85 78.04 76.00 75.73
1.13 -0.20 0.57 14.22

+ global flip 65.25 78.69 76.89 65.64
6.53 0.45 1.46 4.13

+ global translation 63.09 77.94 78.14 61.78
4.37 -0.30 2.71 0.27

+ global rotation 67.28 78.26 78.78 74.48
8.56 0.02 3.35 12.97

+ global scaling 63.34 78.71 77.70 64.11
4.62 0.47 2.27 2.60

+ local translation 54.40 77.70 78.08 55.71
-4.32 -0.54 2.64 -5.80

+ local rotation 54.15 77.99 78.02 67.50
-4.57 -0.25 2.58 5.99

+ local scaling 61.07 78.52 76.82 63.61
2.35 0.28 1.39 2.10

Table 2: Results for Kitti moderate Car mAP on validation
split with no augmentation and each augmentation method
applied on its own. The best results for each network are
marked in bold. Colored values are the difference to no
augmentation.

precision disproportionately larger. Thus, the relative im-
pacts are different but overall positive for both networks.
Looking at groundtruth sampling in case of PointRCNN
as well, it can be observed, that its usage actually has a
negative impact of −0.20 percentage points for the PointR-
CNN network. For PartA2 groundtruth sampling yields an
improvement of the results again, but only by a relatively
small margin. Similar observations regarding the different
effects of the single augmentation methods can be made
for global translation as well. Here, again the positive im-
pact of the augmentation differs for PointPillars, PartA2 and
3DSSD, while yielding worse results for PointRCNN. For
local translation and local rotation the results are inconsis-
tent as well across the four networks. While for PointPillars
and PointRCNN the precision ends up lower, both augmen-
tation methods cause better results for PartA2 and both bet-
ter and worse results for 3DSSD respectively. Compared
to the results reported in [8], that also performed experi-
ments with the PointPillars network like stated in section
2, an inconsistency for PointPillars itself can be found with
these two augmentation methods. The authors report a pos-
itive effect of local translation and rotation for the same set
of parameters. This indicates, that not only the general ar-
chitecture of the network but also the specific implementa-
tion is relevant. The other augmentation methods applied
on its own yield better results for all four networks with
changing influence. The best results are achieved by using
global rotation for PointPillars and PartA2, global scaling
for PointRCNN and groundtruth sampling for 3DSSD.

The high fluctuation of the results for each single aug-
mentation method is rather counter intuitive and hard to

Method mAP Moderate Car ↑
PointPillars PointRCNN PartA2 3DSSD

full aug 76.71 78.73 79.62 78.69
0.00 0.00 0.00 0.00

Only positive 77.63 78.80 79.62 78.86
0.92 0.07 0.00 0.17

Table 3: Results for Kitti moderate Car mAP on validation
split with positive augmentation methods based on table 2
for PointPillars, PointRCNN, PartA2 and 3DSSD. The best
results for each network are marked in bold. Colored values
are the difference to full augmentation.

explain. Neither the input format of the point cloud nor
the existence of a refinement network seem to be decisive,
since the results of the two groups are inconsistent in both
cases. Despite the ambiguous results a few statements can
be formulated. First, it seems that the global augmenta-
tion techniques are of more importance. They yield in al-
most all cases better results, in many cases of considerably
large margin. The best results for each network are achieved
by an augmentation method modifying the point cloud in a
global manner. The local augmentation methods, that were
used in this experiment, show on the other hand less con-
sistent and as high improvements. Reason here might be
the disturbance of local context and the physical properties
of LiDAR scans. Thus, local translation leaves unnatural
wholes in the point cloud and the rotation of single objects
results in wrong points of view. Local scaling, on the other
hand, changes the local context and physical properties only
slightly and thus yields the best results of the local augmen-
tation methods, although it has a comparatively small im-
pact. Then again, the results of groundtruth sampling can
be used to argue against this reasoning, as groundtruth sam-
pling also disturbs the local context by adding objects such
as cars off road for example. Once more, this represents an
inconsistency, thus the influence of augmentation by and on
the receptive field of the network remains unclear.

Table 3 shows the results for all four networks trained
with only the augmentation methods that yielded an im-
provement in the mean average precision for each network.
It can be seen, that the precision for PointPillars, PointR-
CNN, and 3DSSD further improve by a small margin com-
pared to the usage of all augmentation methods consid-
ered here. Note that for PartA2 all augmentations methods
yielded an improvement and thus the precision is the same
as for full augmentation. That the results improve if nega-
tive augmentations are omitted was to be expected. But the
impact of leaving out these augmentations methods is rather
small compared to the negative influence when applied on
their own. While the usage of local translation and rotation
worsens the results of PointPillars by more than four per-
centage points each, omitting these augmentation methods
only leads to an improvement of 0.92 percentage points. A
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similar observation can be made for the other networks as
well. The different augmentation methods overlap and the
influence of each single augmentation techniques seems to
be weakened as a result. Thus, applying full augmentation
seems to be a valid policy, which yields good, although not
optimal results, without the need of extensive experiments.

4.3. Experiment III - Leave one out

Augmentation method mAP Moderate Car ↑
PointPillars PointRCNN PartA2 3DSSD

full Augmentation 76.71 78.73 79.18 78.69
0.00 0.00 0.00 0.00

- groundtruth sampling 72.93 78.41 79.18 74.92
-3.78 -0.32 -0.44 -3.77

- global flip 76.41 78.32 79.59 78.41
-0.30 -0.41 -0.02 -0.28

- global translation 77.09 78.74 79.46 78.39
0.38 0.01 -0.16 -0.30

- global rotation 76.68 78.50 79.69 78.30
-0.03 -0.23 0.08 -0.39

- global scaling 76.79 78.58 79.63 78.62
0.08 -0.15 0.02 -0.07

- local translation 78.04 78.67 79.50 78.82
1.33 -0.06 -0.12 0.13

- local rotation 77.20 78.86 79.60 78.75
0.49 0.13 -0.02 0.06

- local scaling 76.67 78.57 79.65 78.15
-0.04 -0.16 0.04 -0.54

Table 4: Results for Kitti moderate car on validation split
with full augmentation and full augmentation with one aug-
mentation method left out respectively. The best results for
each network are marked in bold. Colored values are the
differences to full augmentation.

The results presented in the last section were ambiguous
and hard to interpret. Thus, no general augmentation pol-
icy could be derived. To further investigate the ambiguity
of the different augmentation methods another experiment
is performed. This time the networks are trained with full
augmentation with one augmentation method left out. It
is to be expected, that the relative improvements or deteri-
oration of the previous experiment can be also found when
leaving out the according augmentation method. The results
can be seen in table 4. In accordance with the previous re-
sults from table 2 the results when leaving out groundtruth
sampling, global flip, global rotation and local scaling get
worse for PointPillars, while the precision increases if lo-
cal translation and local rotation are left out. But it can be
observed, that the impact of the augmentation methods dif-
fers. In case of PointPillars for example the omission of
groundtruth sampling decreases the precision by 3.78 per-
centage points, but increases the results only by 1.13 per-
centage points if used on its own. The same, but the other
way around, can be observed with global rotation and global
scaling. The usage of global rotation improves the results by
8.56 percentage points if used on its own, but worsens the
results by only 0.03 percentage points if omitted. Same can

be observed with the other networks for global scaling for
PointRCNN, global translation for PartA2 or groundtruth
sampling for 3DSSD to name only a few. Furthermore, for
some augmentation methods the influence is not clear com-
paring table 2 and 4, but rather ambiguous. Taking PointPil-
lars as example again the results for global translation and
global scaling improve when they are omitted, while this is
also the case when they are the only augmentation methods
used. This is an unexpected behaviour in the continuity of
the augmentation methods, that can also be observed for the
other networks. Thus, groundtruth sampling and local trans-
lation for PointRCNN, global rotation, global scaling and
local scaling for PartA2 and local rotation and local scaling
for 3DSSD show the same inconsistency of the results com-
pared to table 2. The best results are achieved by omitting
local translation for PointPillars, local rotation for PointR-
CNN, global rotation for PartA2 and local translation for
3DSSD.

Similar to the previous experiment II the results are hard
to interpret and rather ambiguous, but the findings of the
previous experiments can be encouraged. Again, it is not
possible to derive one general augmentation strategy for
all networks. Input format and the amount of stages seem
not be relevant for the impact of the single augmentation
methods. Overall, the global augmentation methods seem
once again more favorable. In addition to the previously
observed overlap of different augmentation methods, it can
be concluded that there are manifold interactions between
the augmentation methods resulting in the ambiguous be-
haviour which was observed. Because of this interactions
the impact of the augmentation methods can not be correctly
measured by applying them or omitting them on their own.
Thus, such greedy strategies for finding an optimal augmen-
tation policy are not appropriate.

4.4. Experiment IV - Validation on nuScenes

All previous experiments were performed on the Kitti
dataset, which is compared to other state of the art datasets
rather small. Thus, to validate the findings and get a feeling
for the impact of augmentation on larger and more diverse
datasets as well, the experiments I to III are repeated on
the nuScenes dataset. The common train-validation split is
used with 28130 frames for the train set and 6019 for val-
idation. Again, all experiments are performed on the car
class only, to simplify the results. Additionally, due to the
much longer training time these are only performed once
for PointPillars. Therefore, the experiments are not as thor-
ough, but anyways sufficient to investigate further inconsis-
tencies of augmentation on different datasets. Intuitively,
one would expect the influence of data augmentation with
the nuScenes dataset to be smaller, as the dataset is larger
and more diverse, but the trends of the individual augmen-
tation methods remain the same as with Kitti.
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Augmentation method mAP Car ↑
no augmentation 73.05

0.00
full augmentation 79.29

6.24
+ -

groundtruth sampling 75.16 79.26
2.11 -0.04

global flip 77.25 79.57
4.20 0.28

global translation 78.06 78.96
5.01 -0.33

global rotation 80.71 79.17
7.66 -0.13

global scaling 77.17 79.17
4.12 -0.12

local translation 77.28 80.18
4.23 0.89

local rotation 75.54 81.69
2.49 2.39

local scaling 72.33 79.41
-0.72 0.11

Table 5: Results for nuScenes car class mAP on validation
split for PointPillars with no augmentation, full augmen-
tation, each augmentation method applied on its own (+)
and full augmentation with one augmentation method left
out respectively (-). The best results for each network are
marked in bold. Colored values are the differences to no
augmentation for (+) and full augmentation for (-).

The upper half of table 5 shows the results of a train-
ing without and with all augmentation methods presented in
section 3.1. It can be seen, that with augmentation a better
mean average precision is reached, but the impact is much
smaller as it was with Kitti for PointPillars. So now, only
7.87% of the network performance stem from augmentation
instead of the previously reported 23, 45%. This behaviour
was to be expected. The size of the nuScenes dataset and the
amount of objects belonging to the car class in comparison
to Kitti are most likely the reason for the observed effect.

In the lower half of table 5 the results for the other two
performed experiments are shown, where the single aug-
mentation methods are applied on its own or omitted from
the overall set of augmentations respectively. Looking at the
left-hand side, all global augmentation methods increase the
mean average precision. Again, global rotation yields the
best result, with 80.71 percentage points even better than the
results for all augmentation methods at once. Interestingly,
the increase for each global augmentation method is quite
similar to that found for Kitti, while the overall increase
for full augmentation is rather small. It is possible that the
PointPillars model has reached its upper limit at around 80
percentage points, so that the potential of all augmentation
methods cannot be fully developed. While the global aug-
mentation methods show the expected behaviour, the local
augmentation methods show inconsistencies to the results
on Kitti. Local translation and local rotation increase the
performance on nuScenes, while on Kitti the results were

decreased. The same, but the other way around, can be
observed for local scaling, although with the relative small
decrease of −0.72 percentage points which may be due to
the missing repetitions of the experiment and the resulting
larger influence of the random effects during training.

Looking at the leave one out experiments also reported in
table 5 incongruities similar to the experiments on the Kitti
dataset can be found. While the global augmentation meth-
ods applied on its own increase the results by a consider-
ably margin, omitting these decreases the results by a much
smaller value. For example, groundtruth sampling applied
on its own increases the results by 2.11 percentage points,
if left out, the results only decrease by −0.04 percentage
points. Furthermore, the ambiguity of some methods can
be observed as well on the nuScenes dataset for global flip
and global rotation, where omission as well as usage of the
same augmentation methods increase the results. This was
also obversed for PointPillars on the Kitti dataset but for dif-
ferent augmentation methods. Thus, other than intuitively
expected the trends of the individual augmentation meth-
ods change with the usage of the nuScenes dataset. This
might be due to a possible different distribution of the object
parameters in the dataset, which again would not explain
the inconsistencies for the experiments performed only on
nuScenes. Therefore, it can be concluded that the effects
of augmentation methods diverge not only for different net-
work architectures but also for different datasets.

5. Conclusion
In this work a series of elaborate experiments was per-

formed to show the impact of various augmentation tech-
niques on 3D object detectors. It was shown, that the in-
fluence of augmentation on the results are ambiguous and
hard to interpret. The two stage detectors were less influ-
enced by augmentation, thus they generalize better than one
stage detectors. In general there is no optimal augmentation
policy for all networks, but for each network individually
depending on the architecture of the network and the under-
lying dataset. Finding this individual optimal augmentation
strategy is cumbersome, because of the overlap and mani-
fold interactions between the different augmentation meth-
ods and the large search space. It was shown that using all
of the most common methods presented in this work may
not be ideal, but seems to be a good first attempt to test the
effects of augmentation in general for the network at hand
and to determine whether further efforts to identify the op-
timal strategy are worthwhile.
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