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Abstract

Deformable image registration is a crucial component in the analysis of motion in time
series. In medical data, the deformation fields are often predictable to a certain degree:
the muscles and other tissues causing the motion-of-interest form shapes that may be used
as a geometric prior. Using an Implicit Neural Representation to parameterize a deforma-
tion field allows the coordinate space to be chosen arbitrarily. We propose to curve this
coordinate space around anatomical structures that influence the motion in our time series,
yielding a space that is aligned with the expected motion. The geometric information is
therefore explicitly encoded into the neural representation, reducing the complexity of the
optimized deformation function. We design and evaluate this concept using an abdominal
3D cine-MRI dataset, where the motion of interest is bowel motility. We align the coordi-
nate system of the neural representations with automatically extracted centerlines of the
small intestine. We show that explicitly encoding the intestine geometry in the neural rep-
resentations can improve registration accuracy for bowel loops with active motility when
compared to registration using neural representations in the original coordinate system.
Additionally, we show that registration accuracy can be further improved using a model
that combines a neural representation in image coordinates with a separate neural repre-
sentation that operates in the proposed tangent coordinate system. This approach may
improve the efficiency of deformable registration when describing motion-of-interest that is
influenced by the shape of anatomical structures.

Keywords: Deformable image registration, geometric prior, cine-MRI, small intestine.

1. Introduction

Deformable registration is the practice of transforming multiple images into a shared co-
ordinate space while minimizing the local correspondences of image content. This is an
important step in various medical image processing pipelines. It is used for tasks such
as joint analysis of multiple modalities (Wells III et al., 1996), longitudinal disease mon-
itoring (Castadot et al., 2010) and motion estimation in cinematic modalities (Wang and
Amini, 2011). Deep learning has been widely applied for deformable image registration
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Figure 1: Schematic visualization of transformation R mapping image coordinate space xyz
to tangent space uvw. In intestinal motility images, the dominant motion consists
of contractions that are aligned with the intestines. Expressing the motion field
in terms of tangent coordinates is likely to result in a simpler analytic function
than the same motion field expressed in terms of image coordinates, as the latter
would need to implicitly encode the curve w.

in recent years, but it is has not supplanted classical optimization-based methods: such
methods still typically outperform novel learning-based methods in public benchmarks and
challenges (Hering et al., 2022). Recent work has proposed the use of Implicit Neural Rep-
resentations (INRs) for deformable image registration (Wolterink et al., 2022), where the
deformation function is parameterized with a lightweight multi-layer perceptron that can be
optimized during test-time. This approach outperformed various learning-based methods
on the DIR-Lab benchmark.

In the paradigm of registration with INRs, the optimization target is an estimated ana-
lytic function that maps R3 → R3. The complexity of this function determines the required
capacity of the neural network and the required computational effort to optimize it, mean-
ing the complexity of this function should be minimized. In the general case with arbitrary
sets of input images, it is likely that there is no simpler formulation of the deformation
function than the one proposed by (Wolterink et al., 2022), mapping image coordinates to
deformation vectors. However, in medical motion analysis tasks, the deformation fields are
often predictable to a certain degree: the muscles and other tissues causing and constraining
the motion-of-interest form shapes that may be used as a geometric prior. The same is true
for various disease development tracking tasks, provided the images from both time-points
are aligned to a canonical space. We seek to simplify the optimized deformation functions
by exploiting such knowledge of the images to be registered.

Geometric deep learning methods have been proposed to exploit symmetries in data (Bekkers
et al., 2018; Weiler et al., 2018). By explicitly encoding these symmetries in a non-
parametric fashion, the complexity of an approximated function is reduced. This concept
has been extended to gauge-equivariant networks to retain the equivariant structure of con-
volutions on arbitrary surfaces (Cohen et al., 2019). In this work, we aim to achieve a
similar effect in registration of intestinal motility images by aligning our coordinate system
with the dominant motion. Rather than embedding geometric structure in our network,
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we condition our coordinate system on the centerline curve of the small intestine. We then
optimize the deformation function in a tangent space to this curve. A schematic visualiza-
tion of this transformation is shown in Figure 1. This approach was inspired by work on
dynamical system modelling, where aligning local coordinate frames to the motion vectors
of nodes in the system has been shown to improve performance (Kofinas et al., 2021).

We compare our proposed method with INR-based registration in image coordinates
and analyze the differences in the optimization process and registration performance. We
evaluate on an intestinal motility dataset that contains small intestine segments from healthy
volunteers, as well as data from inflammatory bowel disease (IBD) patients. A relevant
symptom of IBD is reduced intestinal motility (Menys et al., 2018). While some bowel
loops in the IBD set express normal motile motion, the average motility in these scans is
much lower. Hence, a smaller component of the motion in these cases is aligned with the
proposed geometric prior.

2. Data

We use an abdominal 4D MRI dataset that contains scans of 14 healthy volunteers, and
10 patients with IBD that were scheduled for ileocecal resection surgery. Each scan con-
sists of volumetric sequences acquired at 1.0 volume per second during a breath-hold. At
least 16 timepoints are available for each case. Volumes were acquired at a resolution
of 2.5x2.5x2.5 mm and reconstructed to 1.4x1.4x2.5 mm with an FOV of 400x400x35 mm.
Small intestine centerline annotations were automatically generated from the first timepoint
using the method described by (van Harten et al., 2022). This method yields centerline seg-
ments using a neural tracker that terminates either at the border of the field of view, or
at the point where the uncertainty of the tracker reaches a threshold. Additional details
regarding the centerline extraction can be found in Appendix B. The resulting set contained
117 centerline segments: 67 segments from healthy volunteers and 50 segments from IBD
patients.

3. Methods

We propose a method for deformable image registration using implicit neural representations
conditioned on small intestine centerlines. We explicitly encode the centerline information
into the model by transforming the coordinate space of the images into a tangent frame
that is aligned with the centerline curve. We compare two versions of our method: one
where only the tangent coordinates are input to the model, and one where both the image
space and the tangent space coordinates are input to the model.

3.1. Implicit neural representations

Implicit Neural Representations are neural networks applied as function approximators,
which operate on continuous coordinates rather than image values. The image information
only enters the network through backpropagation of gradients from a loss function that
relates the coordinates to pixel values.

The method uses neural representation Φ(x̄) = υ(x̄) + x̄ mapping coordinates from
source domain S to target domain T, where υ(x̄) is a sinusoidal representation network
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Figure 2: A schematic overview of combined model ΦC , which uses two networks to oper-
ate on both image coordinates and tangent coordinates. R and R−1 transform
samples between the two coordinate systems as shown in Figure 1.

(SIREN) (Sitzmann et al., 2020) that parameterizes the deformation vector field. In contrast
to previous work (Wolterink et al., 2022), x̄ is not sampled from image space R3, but from
tangent space uvw, where w is the curve that describes the small intestine centerline and
u, v are basis vectors such that uvw forms a locally Euclidean tangent space around this
centerline. Our optimization objective for the tangent space model is:

L = Ldata + αLjac

=
1

bs

bs∑
i=1

(
−NCC( T [R−1(x̄i)], S[R−1(Φ(x̄i))] ) + α|1− det∇Φ[x̄i]|

)
,

(1)

where α is a weighting factor, bs is the batch size, NCC is the normalized cross corre-
lation and R is the function that maps tangent coordinates to images coordinates.

Additionally, we propose a combined model that operates on both image space and tan-
gent space coordinates simultaneously. This is achieved by using a separate representation
network for each coordinate system and summing the resulting deformation vectors. A
schematic visualization of this model is shown Figure 2.

3.2. Tangent space definition

Tangent coordinate space uvw is constructed as a parallel transport frame (Hanson and
Ma, 1995) around the centerline. Given a smooth centerline, this yields a smoothly varying
function of rotation matrices along the centerline curve. To ensure a locally Euclidean space
around central axis w, we resample each centerline segment as a least-squares polynomial
before curve framing. While locally Euclidean, this frame is not an injective function that
maps image coordinates to unique coordinates in tangent space: when mapping image
coordinates to tangent coordinates, we select the rotation matrix that corresponds to the
closest point on the centerline curve.
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Figure 3: Comparison of the tangent space registration method and the combined tangent
space and image space registration method. Results shown for the set of healthy
volunteers (left) and the set of IBD patients (right), averaged over all intestine seg-
ments for one (top) and fifteen second (bottom) time differences between source
and target (∆T). A: 1-SSIM within the foreground mask after each optimization
iteration. B: The average improvement of the proposed methods compared to the
image space baseline. Shaded areas indicate 95% confidence intervals.

4. Experiments and results

4.1. Optimization details

The networks for the INRs are SIRENs that contain 3 hidden layers, initialized with ω = 64.
The networks for the baseline and the tangent space model contain 256 neurons per layer.
To match the number of parameters in all models, the number of neurons per layer is
reduced to 180 in the combined model. The networks are optimized for 2, 500 iterations
using the Adam optimizer (Kingma and Ba, 2014) with a learning rate of 1e−4, a batch size
of 10, 000 and regularisation weighting factor α = 0.05. The foreground mask is defined
as a tube around the intestinal centerline with a diameter of 40 mm. This is twice a
typical non-contracted small intestine diameter, chosen to account for possible inaccuracies
in the extracted centerlines, as well as for possible pathological distension. We center the
foreground mask in the coordinate system and we scale the axes to range [−1, 1], constraining
the input domain of the function to a single period of the sinusoidal network activation.
The code is publicly available1.

4.2. Experiments

We perform pairwise registration for each bowel segment in the dataset, registering the
first timepoint to every other timepoint in the sequence. As optimization is a stochastic
process, we repeat our experiments with 40 different random seeds to evaluate consistency.

1. https://github.com/Louisvh/tangent INR registration 3D
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Figure 4: Registration results for a case with breathing motion. Left: The SSIM averaged
over the centerline segments from one patient for three time differences (∆T).
Middle: The average relative improvement resulting from the proposed tangent
space registration method. Right: The average relative improvement from the
proposed combined method. Shaded areas indicate 95% confidence intervals.

To investigate the impact of our centerline prior on the optimization process, we assess the
mean absolute error (MAE) and the structural similarity metric (SSIM) between the target
image and the transformed source image within the foreground mask after each iteration.
First, we compare the optimization performance of the image space registration with the
performance of the proposed tangent space registration method and to the combined image
space and tangent space registration method for varying differences between the acquisition
times of the registered volumes. The results in terms of SSIM are shown in Figure 3. We
observe that in all scenarios, the performance in the first 150 iterations is substantially
better for both proposed methods. For small time differences, the registration in image
space eventually catches up with the tangent space registration method. For large time
differences, the average improvement is positive for the healthy volunteers, but negative for
the IBD patients. Conversely, the combined method that uses both image space coordinates
and tangent space coordinates results in a positive improvement in all evaluated scenarios.
Quantitative results for other timepoints can be found in Appendix A.

The results in the IBD set are skewed by a number of outliers, caused by cases in which
breathing motion is present. The results for the patient with the most severe breathing
artifacts are shown in Figure 4. For this patient, the registration results from the proposed
method are similar to the results from the baseline method for time differences of 1 and 5
seconds. However, the tangent space results are approximately 20% worse than the baseline
when the method is applied to the timepoint in which the patient lost control of their breath.

Several qualitative results are shown in Figure 5, comparing the properties of the image
space and the tangent space models for three different scenarios. The first are cases where
the tangent space registration is beneficial, as shown in 5.A. In these cases, the dominant
motion in the bowel loop is caused by its motility, resulting in a deformation function that
is easier to express in tangent coordinates. The second are cases where the tangent space
method is not beneficial, either due to an incorrectly extracted centerline or due to an
absence of motility, as shown in 5.B. The third are cases where aligning the coordinate
system with the intestinal centerline is actively harmful to the registration result. This
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Source Target Result Difference

A

C

B

MAE

0.0670.121

0.102

1-SSIM

0.047

0.0170.140

0.140 0.019

0.0350.148

0.210 0.091

Figure 5: Three examples of registration results from the image space registration (top)
and the proposed tangent space registration (bottom). A) Registration with
geometric prior is beneficial (16% MAE improvement); the centerline is correctly
positioned in both timepoints and there is motile activity. B) The prior is not
beneficial (−0.4% MAE improvement); no motile activity is present in the bowel
loop. C) The prior is harmful (−42% MAE improvement); breathing motion
moved the bowel loop away from the centerline curve in one of the timepoints.

includes cases where the subject is unable to maintain the breath-hold, such that breathing
becomes the dominant motion (as shown in 5.C).

5. Discussion and Conclusion

We have presented a method for deformable image registration with implicit neural represen-
tations that incorporate knowledge of the physical geometry in the optimization process.
By aligning the coordinate system of our problem space with small intestine centerline
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curves, we construct a locally Euclidean tangent space to simplify the estimated function
that describes the intestinal motility. In all of our experiments, the proposed tangent space
registration method resulted in the average mean absolute error and SSIM improving faster
than the image space baseline. This suggests that the functions estimated in tangent space
are indeed simpler to optimize than their counterparts in the original coordinate system.

Our proposed tangent space registration method outperforms the image space baseline
in bowel segments where motility is present, but has no benefit in dysmotile bowel seg-
ments. This is in line with intuition: the geometric information simplifies the function
describing the local motion, which is aligned with the centerline curve. Motion from other
sources, such as nearby bowel segments, is not aligned with this same curve. In cases where
breathing motion is present, the proposed tangent space registration resulted in a perfor-
mance reduction. Breathing motion can be captured in a simple mathematical function
when expressed in image coordinates, as all voxels of interest move in approximately the
same direction. Conversely, in tangent coordinates, this function has to implicitly encode
the centerline curve to capture the same motion. This effect could explain the success of the
combined method, which can implicitly decompose the deformation fields into components
that are more simple to express in either image space or tangent space coordinates.

In registration of timepoints with small time differences, the tangent space method
attains adequate registration results faster than the baseline. However, these differences
disappear as the models are optimized for more iterations. We initially assumed that this
happens because the registration problem for small time differences is sufficiently simple that
explicitly providing the shape of centerline curve w has no benefit over implicitly learning
this same curve. However, as the combined method does result in better performance for
this setting, this assumption seems to be invalid. Instead, this effect may have been caused
by the chosen evaluation strategy. We evaluate the registration results within a tubular
foreground mask with twice the diameter of a typical non-contracted small intestine. Hence,
part of the evaluated voxels picture adjacent bowel segments and other abdominal tissues.
The deformation of the tissues outside of the central bowel segment are generally likely
simpler to express in image coordinates than in tangent coordinates.

The tangent space used in this work is common to the source and target images. It
is constructed from a centerline that was automatically extracted in the first timepoint.
This relies on the assumption that the abdominal centerlines have little to no movement
in position and shape throughout the breath-hold. In many of our images, this assumption
is violated to some degree. Centerlines drift away from their original positions due to the
natural movement of the bowels, as well as due to clenching muscles when subjects have
trouble holding their breath. This effect could be avoided by using separate centerlines in
each timepoint. However, if there are any geometric differences (e.g. if either centerline
is slightly off-center in any curved section), the resulting tangent spaces in the source and
target domains would be inconsistent, with mismatched relative rotations of the normal
planes. Hence, this approach would only be feasible with very high quality centerline
annotations, which is challenging to ensure. The resulting quality control burden would
make clinical application infeasible. However, as shown in our experiments, it is possible to
circumvent the limitations of using a single centerline by combining the tangent space with
image space information.
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Reducing the complexity of a deformation function by expressing the problem in a more
suitable coordinate system is not constrained to parallel transport frames around centerlines.
The same concept could be applied to any motion estimation problem where a component
of the expected motion is aligned with a known curve or surface. For example, this concept
could be applied in the description of cardiac motion, where a coordinate system aligned
with a myocardium boundary may be beneficial, or in ischemic stroke follow-up, where a
spherical coordinate system could be aligned with the center of the stroke lesion.

In conclusion, this work has presented a deformable registration method that uses
geometry-aware implicit neural representations. These representations are explicitly con-
ditioned on the shapes of anatomical structures that influence the expected motion. Our
experiments show that this method may improve the efficiency of deformable registration
when describing motion-of-interest that is influenced by known anatomical shapes.

References

Erik J Bekkers, Maxime W Lafarge, Mitko Veta, Koen AJ Eppenhof, Josien PW Pluim,
and Remco Duits. Roto-translation covariant convolutional networks for medical image
analysis. In International conference on medical image computing and computer-assisted
intervention, pages 440–448. Springer, 2018.

Pierre Castadot, Xavier Geets, John Aldo Lee, Nicolas Christian, and Vincent Grégoire. As-
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Appendix A. Additional results
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Figure 6: Results for the set of healthy volunteers, averaged over all intestine segments for
increasing time differences between source and target (∆T). A: 1-SSIM within the
foreground mask after each optimization iteration. B,D: The average improve-
ment of the proposed methods compared to the image space baseline. C: MAE
within the foreground mask after each optimization iteration. Shaded areas indi-
cate 95% confidence intervals.
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0 1000 2000

0.020

0.025

0.030

0.035

1-
SS

IM

IBD
T=1s

A
baseline
tangent
combined

0 1000 2000
10

0

10

20

30

Im
pr

ov
em

en
t (

%
)

B
tangent
combined

0 1000 2000

0.06

0.07

0.08

M
AE

IBD
T=1s

C
baseline
tangent
combined

0 1000 2000

0

10

Im
pr

ov
em

en
t (

%
)

D
tangent
combined

0 1000 2000

0.03

0.04

0.05

0.06

1-
SS

IM

IBD
T=5s

baseline
tangent
combined

0 1000 2000
10

0

10

20

30

Im
pr

ov
em

en
t (

%
) tangent

combined

0 1000 2000

0.09

0.10

0.11

M
AE

IBD
T=5s

baseline
tangent
combined

0 1000 2000

0

10

Im
pr

ov
em

en
t (

%
) tangent

combined

0 1000 2000

0.04

0.05

0.06

0.07

1-
SS

IM

IBD
T=10s

baseline
tangent
combined

0 1000 2000
10

0

10

20

30

Im
pr

ov
em

en
t (

%
) tangent

combined

0 1000 2000

0.10

0.11

0.12

0.13

M
AE

IBD
T=10s

baseline
tangent
combined

0 1000 2000

0

10

Im
pr

ov
em

en
t (

%
) tangent

combined

0 1000 2000
Iteration

0.04

0.05

0.06

0.07

0.08

1-
SS

IM

IBD
T=15s

baseline
tangent
combined

0 1000 2000
Iteration

10

0

10

20

30

Im
pr

ov
em

en
t (

%
) tangent

combined

0 1000 2000
Iteration

0.12

0.13

0.14

0.15

0.16
M

AE

IBD
T=15s

baseline
tangent
combined

0 1000 2000
Iteration

0

10

Im
pr

ov
em

en
t (

%
) tangent

combined

Figure 7: Results for the set of IBD patients, averaged over all intestine segments for in-
creasing time differences between source and target (∆T). A: 1-SSIM within the
foreground mask after each optimization iteration. B,D: The average improve-
ment of the proposed methods compared to the image space baseline. C: MAE
within the foreground mask after each optimization iteration. Shaded areas indi-
cate 95% confidence intervals.
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Appendix B. Supplementary dataset details
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Figure 8: Number of selected centerline segments per image in each set.

In addition to image volumes, the presented method requires a geometric prior to con-
struct a tangent coordinate space. For the experiments presented in this work, we construct
this tangent space around automatically extracted centerlines of small intestine segments.
Centerline segments were extracted from manually placed seed points using the method
described in (van Harten et al., 2022). This method yields centerline segments using a neu-
ral tracker that terminates either at the border of the field of view, or at the point where
the uncertainty of the tracker reaches a threshold. Performance for this method in healthy
volunteers and IBD patients has been reported as similar.

Only segments of at least 10cm were selected for analysis, as short segments are unlikely
to be relevant in downstream motility analysis tasks. The extracted segments may partially
overlap due to tracking mistakes; in cases where multiple extracted centerline segments
overlap more than 33%, the shortest segment was discarded. An overview of the number of
selected segments per image is shown in Figure 8.
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