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Abstract

Studying the implicit bias of gradient descent (GD) and stochastic gradient descent
(SGD) is critical to unveil the underlying mechanism of deep learning. Unfortu-
nately, even for standard linear networks in regression setting, a comprehensive
characterization of the implicit bias is still an open problem. This paper pro-
poses to investigate a new proxy model of standard linear network, rank-1 linear
network, where each weight matrix is parameterized as a rank-1 form. For over-
parameterized regression problem, we precisely analyze the implicit bias of GD
and SGD—by identifying a “potential” function such that GD converges to its min-
imizer constrained by zero training error (i.e., interpolation solution), and further
characterizing the role of the noise introduced by SGD in perturbing the form of
this potential. Our results explicitly connect the depth of the network and the initial-
ization with the implicit bias of GD and SGD. Furthermore, we emphasize a new
implicit bias of SGD jointly induced by stochasticity and over-parameterization,
which can reduce the dependence of the SGD’s solution on the initialization. Our
findings regarding the implicit bias are different from that of a recently popular
model, the diagonal linear network. We highlight that the induced bias of our rank-1
model is more consistent with standard linear network while the diagonal one is
not. This suggests that the proposed rank-1 linear network might be a plausible
proxy for standard linear net.

1 Introduction

Gradient Descent (GD) and its stochastic variant, Stochastic Gradient Descent (SGD), are probably
the most important optimization techniques in deep learning. To unveil the underlying mechanism of
modern neural networks, it is highly fundamental to understand the thrilling and mysterious properties
of GD and SGD. Some recent works [24, 18, 3, 22] have made significant efforts in this direction by
exploring their implicit bias: among all global minimum, i.e., interpolation solutions, what particular
ones will GD and SGD prefer without adding an explicit regularization? This question highlights
the crucial roles of these algorithms in the generalization performance of the trained models.

Among the vast number of architectures in deep learning, the first object to investigate is the deep
linear network, i.e., without any nonlinear activations,

F (x;W ) =WL · · ·W1x (1)

whereWk’s are weight matrices and x is the input data. The linear network can be obviously treated as
an over-parameterized model of standard linear model, θT =WL · · ·W1. However, the introduction
of the over-parameterization brings significant non-convexity, and thus complicates dynamics during
learning. Until now, the direct analysis of implicit bias of GD and, particularly, SGD for standard
deep linear networks with any depth and initialization on regression problems is still an open problem.
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Figure 1: (a). Standard linear networks. (b). Rank-1 linear networks. One neuron in the middle
hidden layer is active and fully connected. (c). Diagonal linear networks. Every neuron is active but
not fully connected.

In order to study the implicit bias of linear networks in regression settings, a simplified version of
standard linear network, diagonal linear network (i.e., each neuron is only connected with a single
neuron of the next layer [26, 22]), was proposed as a proxy to underpin the bias of the standard one.
With this simplified model, the solution selected by GD solves a constrained norm minimization
problem that interpolates between the ℓ1 and ℓ2 norms up to the initialization scale [26]. For SGD, the
solution is closer to that of the sparse regression when compared to GD with the same initialization
[22].

However, in Section 3.2, our theoretical analysis shows that the induced implicit bias of diagonal
linear networks is not consistent with standard linear network, at least for GD in regression settings.
It is then natural to ask: are there any proxy architectures that could produce similar implicit bias to
that of standard linear networks? If so, we still expect the new proxy model be amenable to tractable
analysis and provide insights for investigating the implicit bias of SGD and a wider spectrum of
architectures. This is the main goal of our work.

On the other hand, [11] showed that weight matrices of linear networks for linearly separable
classification will become low-rank when trained with GD and logistic loss. [16] also observed such
low-rank bias for deep matrix factorization. [8] showed that SGD and weight decay jointly induces
a low-rank bias in the weight matrices when training a neural network. In fact, for linear networks
with a single output trained with GD, all weight matrices will automatically become rank-1 and will
maintain this property during training when the initialization is balanced [11].

Our contributions. Inspired by this low-rank bias and to avoid the complicated analysis of standard
linear networks, we propose a novel model rank-1 deep linear network as a plausible proxy of
standard linear networks, to reveal the implicit bias of GD and SGD on over-parameterized linear
models for regression problems. A depth-L rank-1 deep linear network f(x;u, v) is defined by

f(x;u, v) := wLWL−1 · · ·W1x = θTx, s.t. Wk = ukv
T
k , ∀k ∈ {1, . . . , L− 1} (2)

where uk ∈ Rdk+1 and vk ∈ Rdk are vectors while u and v are denoted as collections of uk and vk,
respectively. See Figure 1 for the difference between three types of linear networks. In this work we
will show that the formulation above could offer us the possibility to understand the bias of GD and
SGD for standard linear networks through the lens of results on rank-1 linear networks.

With the proposed model, this paper targets on precisely identifying the “potential” function V (θ)
such that GD converges to its minimizer constrained by zero training error (i.e., interpolation solution),
and further characterizing the role of the noise induced by adding sampling stochasticity to GD, i.e.,
SGD, in perturbing the form of V (θ). For the convenience of theoretical analysis, we focus on the
continuous versions of GD and SGD, i.e., we study gradient flow (GF) and stochastic gradient flow
(SGF). In particular, this paper establishes the following findings:

• For GF, we show that the solution implicitly minimizes a potential function V (θ) that
depends on the initialization and depth subject to f(x;u, v) achieving zero training error
(Theorem 1). The single layer case recovers the standard linear regression results, while a
depth larger than one immediately changes the form of V (θ), which clearly connects the
implicit bias of GF with the model architecture. We emphasize that our results explicitly
reveal how depth and initialization jointly influence the implicit bias of GF.
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More importantly, in Theorem 2, by showing the similarity of the implicit bias of GF for
standard and rank-1 linear networks, we conclude that rank-1 linear networks are standard
linear networks with special initialization when trained with GF, highlighting that our rank-1
linear network is a plausible proxy of standard linear networks. This offers us the possibility
to explore the implicit bias of SGD for standard linear networks by analyzing the rank-1
linear nets. On the other hand, the diagonal linear networks exhibit drastically different
implicit bias of GF when compared to standard linear networks, e.g., GF prefers ℓ2 minimum
norm solution for standard linear networks when the initialization is small while, on the
contrary, it prefers such solution when the initialization is large for diagonal linear networks.

• For SGF, we show that the sampling noise brings an extra effect that depends on several
hyper-parameters such as the learning rate, batch size and network depth compared to GF.
When L > 1, this extra effect “alleviates” the influence of the initialization, i.e., the final
solution reduces its dependence on the initialization. More intriguingly, when L = 1, i.e.,
without over-parameterization, this effect brought by SGF immediately disappears. Thus
this implicit bias is jointly induced by both model depth and stochasticity from SGD. To the
best of our knowledge, we are the first to show such an implicit bias jointly affected by the
two factors through the lens of the rank-1 networks, which is also empirically verified on
standard linear and nonlinear networks. Our findings on SGF are summarized in Theorem 3.

Organization. In Section 2, we summarize the notations and the setup of our work. Section 3 and
Section 4 present our main results where Section 3 focues on the implicit bias of GD while Section
4 is about SGD. Numerical experiments are presented in Section 5 and we conclude this paper in
Section 6. Some technical details are deferred to Appendix.

Related Works

The study of implicit bias of GD has been pioneered by [24] on linearly separable classification
problem and was generalized to GD for deep neural networks and different training strategies
[11, 18, 5, 21, 15, 17]. Recently extensive works have made progress in this direction by focusing on
the diagonal linear network model. Assuming the existence of a perfect solution in the regression
setting, [26] showed that the solution selected by GF interpolates between ℓ2 minimum norm solutions
and ℓ1 ones up to the initialization scale. Besides the full-batch gradient descent, [22] then analyzed
SGF for diagonal linear networks and concluded that the sampling noise brought by SGF reduces
the effective initialization scale when compared with GF, leading its solution to be closer to a sparse
one. Aside from the sampling noise induced by SGF, [9, 23] also investigated the influence of the
label noise in the diagonal linear networks setting. For GD and SGD with moderate learning rate, [7]
studied their implicit bias for diagonal linear networks and revealed the corresponding influence of
the finite learning rate.

This paper considers the rank-1 deep linear network to study the implicit bias of GD and SGD.
We briefly introduce differences between the settings considered here and those in previous works.
For GD on standard linear networks, [3] did not restrict the initialization for the 2-layer case while
[28] required the initialization for standard linear networks to be nearly-zero without restricting the
number of layers. [25] considered GD for shallow ReLU nets. In this work, we consider linear
networks without requirements either on the scale of the initialization or the number of layers. For
GD and SGD on the diagonal linear networks [3, 26, 22], we point out that the results are different
with that for standard linear networks. Note that this is not to downgrade diagonal linear network,
and instead the point is to show that different architectures could induce different implicit bias. The
rank-1 linear networks considered here are close to the standard linear networks since it can be
seen as standard linear networks with special initialization. Furthermore, the classification problem
[24, 18, 5] and linear regression problem [1] have been comprehensively investigated and we focus
on the over-parameterized regression. Finally, [4, 10, 19, 27, 9] focused on the flatness of the loss
landscape and model parameters while our analysis is for the overall parametrization θ.

2 Preliminaries and Setup

Notations. Given a dataset of n samples {(xi, yi)}ni=1, xi ∈ Rd represents a d-dimensional data
vector with scalar label yi ∈ R. We useX ∈ Rn×d to denote the data matrix and use y = (y1, . . . , yn)
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to denote the collection of yi. ∥ · ∥ denotes the ℓ2-norm and ∥ · ∥F is the Frobenius norm. ⟨a, b⟩ is the
inner product. For any vector u and matrix A, we use u(0) and A(0) to denote their initialization. We
let tr () be the trace operator. For the weight matrixWk ∈ Rdk×dk+1 ,Wk;ij is its i-th row j-th column
element. For a parametric model f(x; θ) = θTx with parameters θ, we use L(θ) = 1

n

∑n
i ℓi(θ) to

represent the empirical loss where ℓi(θ) is the loss function for the sample (xi, yi).

Over-parameterized regression. We focus on the regression problem where n < d and assume the
existence of solutions that perfectly fit the dataset, i.e., there exist interpolating parameters θ∗ such
that ∀i ∈ {1, . . . , n} : ⟨xi, θ∗⟩ = yi. The quadratic loss ℓi(θ) is used in our setting. The empirical
loss is then L(θ) = 1

n

∑n
i=1 ℓi(θ) =

1
n

∑n
i=1 (yi − ⟨xi, θ⟩)2 .

Rank-1 deep linear networks. In this paper we consider the rank-1 deep linear network f(x;u, v)
(see Eq. (2)). We use u and v to denote the collections of uk’s and vk’s, respectively. For convenience,

ρk = wT
LWL−1 · · ·Wk+2uk+1, ρL−1 = 1, and ρ−k = vTkWk−1 · · ·W2u1, ρ−1 = 1 (3)

such that the network can be written as f(x;u, v) = ρkv
T
k+1ukρ−kv

T
1 x for k ∈ {1, . . . , L−1} when

L ≥ 2. Through this paper, we treat the depth L as a hyper-parameter of the network and try to
precisely characterize its role in the implicit bias.

Definition 1 (Balanced initialization for rank-1 linear networks). Given an L-layer rank-1 linear
network Eq. (2), for any k ∈ {1, . . . , L− 1}, the balanced initialization means that

⟨vk+1(0), uk(0)⟩2

∥vk+1(0)∥2∥uk(0)∥2
= 1, ∥vk+1(0)∥ = ∥uk(0)∥ = ∥v1(0)∥.

We add more discussions on the initialization in Appendix C.1.

3 Equivalence Between Implicit Bias of GD for Standard and Rank-1 Nets

3.1 Implicit bias of GF for rank-1 linear networks

In this section, we characterize the implicit bias of the continuous version of GD for the rank-1 deep
linear networks f(x;u, v) Eq. (2). Note that the model parameters are updated according to the
gradient flow

duk
dt

= −∇uk
L(θ), dvk+1

dt
= −∇vk+1

L(θ) (4)

for k ∈ {1, . . . , L − 1} and dv1/dt = −∇v1L(θ), which clarifies that uk and vk, rather than Wk,
are the model parameters.

Previous work [26] showed that the solution selected by GF interpolates between the ℓ1 minimum
norm solution and ℓ2 one depending on the initialization scale for diagonal linear networks. In this
section we examine whether this is the case for the rank-1 deep linear network with depth L. For
convenience, we define

ΩL =
2L

2L− 1
, λL =

2(L− 1)

2L− 1
(5)

where L is the number of layers. Recall that θ(0) represents the initialization of θ, we now state the
main theorem regarding the implicit bias of GF for rank-1 linear networks below:

Theorem 1 (Implicit bias of GF for rank-1 linear networks). For a rank-1 linear network, if the
initialization is balanced across layers (Definition 1) and if the gradient flow solution θ(∞) satisfies
that Xθ(∞) = y, then gradient flow converges to a minimizer of the potential function V (θ):

θ(∞) = argmin
θ

V (θ), s.t. Xθ = y,

where

V (θ) =
1

ΩL
∥θ∥ΩL − θT

θ(0)

∥θ(0)∥λL
. (6)
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Figure 2: The plot of V (θ) for differ-
ent numbers of layers and initialization
scales in a two-dimensional parameter
space. The initialization in the first col-
umn is [0.08, 0.06] and is multiplied by
different scale factors for the other two
columns. In the first column where the
initialization is nearly zero, GD has sim-
ilar implicit bias for rank-1 linear net-
works of different layers. When we in-
crease the initialization scale, the shape
of the contour for linear regression po-
tential function does not change, while
for linear networks as shown in the last
column, the contour of the potential func-
tion gradually presents a sharp angle as
we increase the number of layers.

While previous works focused on 2-layer standard linear networks [3] or multiple-layer linear
networks with nearly zero initialization [28], i.e., ∥θ(0)∥ ≈ 0, Theorem 1 builds the potential
function V (θ) that depends on both the initialization θ(0) and the depth of the network L explicitly.
We also plot the contours of V (θ) for different numbers of layers and scales of initialization in Fig. 2
in a 2-dimensional space. Theorem 1 clearly reveals how over-parameterization and the initialization
of θ guide GD to select different solutions.

Effects of depth. When L = 1, V (θ) becomes 1
2∥θ∥

2−⟨θ, θ(0)⟩ which is the same as the potential
of the least square ∥θ − θ(0)∥2 except for a constant term. When L > 1, V (θ) is no longer an
Euclidean distance. The form of V (θ) depends on the depth and GD will favor different interpolating
solutions. A particular interesting case is when L → ∞ where we have ΩL → 1 and λL → 1.
As a result, V (θ) becomes V (θ) → ∥θ∥ − ⟨θ, θ(0)/∥θ(0)∥⟩, which reflects the difference between
the norm of θ and the norm of its projection on the direction of the initialization θ(0). Therefore,
the direction of the initialization θ(0) matters for the potential function V (θ) and the final solution
θ(∞) while they are rather less sensitive to the scale of θ(0). This may serve as a benefit of the
over-parameterization in the sense that it makes the network more stable to different scales of the
initialization. As a comparison, both direction and scale of θ(0) are crucial for the least square
potential function ∥θ − θ(0)∥2.

Effects of initialization. When L is finite, to inspect the effects of the initialization, we can rewrite
V (θ) = ∥θ∥ΩL/ΩL − ∥θ(0)∥1/(2L−1) ⟨θ, θ(0)/∥θ(0)∥⟩ . The second term will be more important
when the initialization scale ∥θ(0)∥ is getting larger thus the initialization affects the implicit bias of
GD more significantly. On the other hand, as ∥θ(0)∥ → 0, the second term vanishes. Thus we have
the following corollary:

Corollary 1.1. Under conditions of Theorem 1, if we further assume that the initialization is in-
finitesimal ∥θ(0)∥ → 0 and the depth is finite, then the GF solution θ(∞) is an ℓ2-norm minimization
solution:

θ(∞) = min
θ

∥θ∥ s.t. Xθ = y.

We now summarize the effects of initialization on the training regime as follows. (i). According to
[26], for any D-homogeneous model (D is a positive integer), the lazy regime (or NTK regime) is
reached for large initialization. Since the rank-1 linear network is a homogeneous model, the NTK
regime is reached for large initialization and the implicit bias is given by the RKHS norm predictor
accordingly; (ii). For vanishing initialization, according to Corollary 1.1, an ℓ2-norm minimization
predictor which can not be captured by the NTK kernel is returned. Therefore, as the initialization
becomes smaller, we “escape” from the lazy regime and falls into the “Anti-NTK” regime defined
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Figure 3: GD maintains the shape of rank-1 initialization for the weight matrices (the upper panel),
but destroys that of the diagonal initialization for standard linear networks (the lower panel), as
formally described by Proposition 1.

by [3]. Furthermore, based on Corollary 1.1, it is now worth to mention that, assuming vanishing
initialization, linear regression (i.e., 1-layer linear networks), 2-layer standard linear networks [3] and
rank-1 linear networks with finite depth share a similar implicit bias if trained with GD. And the first
column of Fig. 2 shows that rank-1 linear networks with different number of layers exhibit potential
contours with a similar shape.

3.2 Comparison between different architectures

The aforementioned phenomenon that GD will return an ℓ2-norm minimization solution for both 2-
layer standard linear networks and rank-1 linear networks with small initialization drives us to further
investigate the comparison and similarities between different network architectures. For diagonal
linear networks, GD prefers ℓ1-norm minimization solution with nearly-zero initialization, which is
drastically different from the case for rank-1 and standard linear networks. On the contrary, it prefers
ℓ2-norm minimization solution when the initialization is sufficiently large [26]. This inconsistency
begs us to ask the question will standard linear networks and rank-1 linear networks share a similar
implicit bias of GD when the initialization is large? To answer this question, in the following, we
first analyze the implicit bias of GD for standard linear networks f(x;W ) = wT

LWL−1 · · ·W1x
with any depth L, which corresponds to the parameterization θT = wT

LWL−1 · · ·W1, with balanced
initialization (Definition 2).
Theorem 2 (Implicit bias of GF for standard linear networks with any initialization). For an L-layer
standard linear network, if the initialization is balanced across layers, i.e., WT

k+1(0)Wk+1(0) =

Wk(0)W
T
k (0) for all layers, and if the gradient flow solution θ(∞) satisfies that Xθ(∞) = y, then

gradient flow converges to a minimizer of the potential function V (θ):

θ(∞) = argmin
θ

Vstd(θ), s.t. Xθ = y,

where

Vstd(θ) =
L

L+ 1
∥θ∥

L+1
L − θT

θ(0)

∥θ(0)∥L−1
L

, (7)

Although we state before that the parameters of a rank-1 deep linear network are uk’s and vk’s rather
than Wk’s, the form of the potential for rank-1 linear networks Eq. (6) is very similar to that of
standard linear networks Eq. (7): V (θ) for an L-layer rank-1 linear network is the same as Vstd(θ)
for a (2L − 1)-layer standard linear network. In the following, we explain the reason behind this
fact and conclude that rank-1 linear network can be seen as a qualified proxy for the standard linear
network when studying the implicit bias of GD, and potentially SGD.

Rank-1 linear networks are standard linear networks with special initialization. We first
present a useful proposition regarding a special kind of initialization for standard linear networks.
Proposition 1 (Effects of diagonal and rank-1 initialization for standard linear networks). Given
an L-layer standard linear network f(x;W ) = wT

LWL−1 · · ·W1x where Wk ∈ Rdk+1×dk for
k ∈ {1, . . . , L}, if the weights are initialized such that only one column of Wk is non-zero when k is
even and only one row of Wk is non-zero otherwise, i.e., for an integer p

∀k = 2p+ 1 ∈ {1, . . . , L} :Wk;ij(0) = 0 if i ̸= ck, where ck ∈ {1, . . . dk+1}
∀k = 2p ∈ {1, . . . , L} :Wk;ij(0) = 0 if j ̸= ck,
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then for any t > 0:

∀k = 2p+ 1 ∈ {1, . . . , L} :Wk;ij(t) = 0 if i ̸= ck;

∀k = 2p ∈ {1, . . . , L} :Wk;ij(t) = 0 if j ̸= ck.

Furthermore, if the weights are initialized as the diagonal shape, i.e., ∀k ∈ {1, . . . , L −
1},Wk;ij(0) = 0 if i ̸= j, then GD does not maintain the diagonal shape of weight matrices.

Remark. A (2L− 1)-layer standard linear network initialized as in Proposition 1 with ck = 1 for
all layers has the same formulation as our L-layer rank-1 architecture. According to Proposition 1,
the special structure of the initialization of such standard linear network will be maintained if we
run GD, which suggests that it will always have the same formulation as our L-layer rank-1 linear
network, see the upper panel of Fig. 3. Therefore, an L-layer rank-1 linear network can be seen as
a (2L − 1)-layer standard one with special initialization, and they exhibit similar implicit bias of
GD. On the other hand, if the standard linear network is initialized as the diagonal shape as in the
diagonal net, GD will not maintain this property (the lower panel of Fig. 3), i.e., the diagonal structure
cannot be seen as a standard one. In this sense, the diagonal network exhibits special implicit bias
particularly due to its structure, while the rank-1 linear network is a more qualified proxy of standard
linear networks.

4 Implicit bias of SGD for Rank-1 Linear Networks

Recently, [23, 22] developed the characterization of the implicit bias of GD with label noise and
SGD in diagonal linear networks. However, as mentioned earlier, its diagonal structure is special
in the sense that the corresponding results can not be generalized to the case for standard linear
networks. On the contrary, our results in Section 3 reveal that rank-1 linear networks can be seen as
standard linear networks with special initialization. In this section, to take a step forward towards
understanding the implicit bias of SGD for standard linear networks, we explore the continuous part
of SGD, stochastic gradient flow (SGF), for the rank-1 linear networks in the over-parameterized
regression setting. We begin with the introduction of the definition of SGD and our modelling
techniques.

SGD. Unlike the full-batch GD where the parameters are updated according to Eq. (4), the SGD
dynamics is

uk(t+ 1) = uk(t)−
η

b

∑
i∈Bt

∇uk
ℓi(θ), vk+1(t+ 1) = vk+1(t)−

η

b

∑
i∈Bt

∇vk+1
ℓi(θ) (8)

for k ∈ {1, . . . , L− 1} where t denotes the iteration step, η is the learning rate, b is the batch-size,
and Bt consists of b points randomly sampled from the uniform distribution U [1, n].

Continuous Modelling of SGD. The continuous modelling techniques for SGD have been widely
applied in recent works [1, 9, 23, 22] to study the dynamics of SGD. In our setting, recalling the
definition of ρk and ρ−k in Eq. (3), the continuous counterpart of SGD, SGF, is given by the following
set of stochastic differential equations (SDE):

duk = − 2

n
vT1 X

T rρkρ−kvk+1dt+ 2

√
ηL
nb

(ρkρ−k)vk+1v
T
1 X

T dWt (9)

dvk+1 = − 2

n
vT1 X

T rρkρ−kukdt+ 2

√
ηL
nb

(ρkρ−k)ukv
T
1 X

T dWt (10)

where r = (f(x1;u, v) − y1, . . . , f(xn;u, v) − yn)
T ∈ Rn is the residual, and Wt is a standard

Brownian motion in Rn. For the parameterization of θ (Eq. (2)), we now aim to characterize the
implicit bias of SGD by showing the existence of a function V (θ) such that the solution of the
stochastic dynamics converges to its minimizer under the constraint of zero-training loss as follows.
Theorem 3 (Implicit bias of SGF for rank-1 linear networks). For the rank-1 linear network Eq. (2)
that is trained with SGF (Eq. (9) and (10)) in the over-parameterization regression, if the initialization
is balanced across layers, then the dynamics of θ gives us

d∇θV
S(θ, t) = −∇θLdt+ 2

√
η|ξ|L
nb

XT dWt (11)
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(a) The implicit bias jointly induced by stochasticity and architectures
“alleviates" the effects of initialization

12 10 8 6 4 2 0
4
3
2
1
0

Trajectory of 
(0)
( )

(b) The trajectory of α starting from
the origin converging to α(∞)

Figure 4: (a) The blue trajectory is for gradient flow (GF) that converges to θ∗GF (blue square). The
green trajectory that converges to θ∗SGF (green square) is for stochastic gradient flow (SGF). θ(0)
denotes the initialization of θ and θ∗ℓ2 (red square) is the ℓ2-norm minimum solution. Black dot marks
the origin. Compared to θ∗GF, θ∗SGF is closer to θ∗ℓ2 since its dependence on the initialization is reduced.
Note that when θ(0) is nearly zero (the left figure), both θ∗GF and θ∗SGF are close to θ∗ℓ2 (Corollary 1.1).
(b) The red arrow denotes the direction of α(∞) while the black one denotes that of θ(0), which,
as shown in the figure, is particularly important to the direction of α(∞). See more experiments in
Appendix A.3.

where

V S(θ, t) =
1

ΩL
∥θ∥ΩL +

θT θ(0)

∥θ(0)∥λL
− 2λLηθ

T

nb

∫ t

0

L (θ(s)) tr
(
P⊥(θ(s))X

TX
)

∥θ(s)∥2−λL
θ(s)ds (12)

with P⊥(θ) = I − θθT /∥θ∥2 being the orthogonal projection operator of θ. Furthermore, if the
SGF solution θ(∞) satisfies that Xθ = y, then the model parameter θ converges to a minimizer of
V S(θ,∞) as t→ ∞:

θ(∞) = argmin
θ

V S(θ,∞), s.t. Xθ = y.

One can immediately notice that the R.H.S of Eq. (11) includes a noise term, which can be interpreted
as that the model parameter θ follows a mirror flow with a noise term. Furthermore, Eq. (12), which
characterizes the optimization geometry, depends on time explicitly. This partly reflects its stochastic
nature—the optimization trajectory is not deterministic. Furthermore, as in [7], it is also possible
to generalize the current vanishing learning rate results to the moderate learning rate analysis by
deriving a stochastic mirror descent recursion with time varying potentials.

Implicit bias jointly induced by stochasticity and architectures. The sampling noise of SGD
introduces an extra term (the last term of Eq. (12)) that depends on several parameters such as the
learning rate and the data matrix X when compared with that of GD (Eq. (6)). Interestingly, this extra
term only exists when the model is simultaneously over-parameterized and trained with the existence
of the sampling noise. If the model is not over-parameterized, i.e., standard linear regression when
L = 1, then λL = 0 and this term disappears. On the other hand, if there is no sampling noise this
term also vanishes. Indeed, the L = 1 case has been widely studied by recent works [1], and it turns
out that GD and SGD share similar implicit bias when there is no over-parameterization. Theorem 3
confirms this phenomenon and, more importantly and intriguingly, reveals a new connection between
the architecture-induced over-parameterization and the implicit bias of the optimization algorithms.

“Alleviating” the effects of initialization. When L → ∞, the last term of Eq. (12) brought by
the sampling noise can be seen as “alleviating" the influence of the initialization θ(0) such that
the training dynamics reduces its dependence on the initialization (Fig. 4(a)). Due to the difficulty
of explicitly solving the stochastic integral in Eq. (12), we give here a qualitative interpretation of
this alleviating effect. As L → ∞, i.e., infinitely deep linear network, we have λL → 1, therefore
the integral in Eq. (12) becomes − 2η

nb

∫∞
0

L(θ)tr
(
P⊥(θ)X

TX
)

θ
∥θ∥ds. In a d-dimensional space,

we let α(t) :=
∫ t

0
L(θ)tr

(
P⊥(θ)X

TX
)
θ/∥θ∥ds be the position of a particle A that starts from

the origin. Then the integral of Eq. (12) amounts to the final position α(∞) of A, which moves
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Figure 5: For different ∥θ(0)∥: (a) D(θ(∞), θ∗ℓ2) for rank-1 linear networks. (b) D(θ(∞), θ∗) for
rank-1 linear networks. (c) D(θ(∞), θ∗ℓ2) for standard linear networks. (d) D(θ(∞), θ∗) for standard
linear networks.

along the direction of θ(t)/∥θ(t)∥ with speed proportional to L (θ(t)) tr
(
P⊥ (θ(t))XTX

)
. Since

∥X∥2F − ∥X∥22 ≤ tr
(
P⊥ (θ(t))XTX

)
≤ ∥X∥2F where ∥X∥2F is finite, it is highly likely that

the direction of α(∞) heavily depends on θ(0). This is because the velocity magnitude, which is
proportional to the value of empirical loss L(θ(t)), is large when t = 0 and quickly shrinks along
its trajectory. As a result, in Eq. (12), the effect coming from the initialization θT θ(0)/∥θ(0)∥ is
alleviated by the extra term −θTα(∞) induced by the sampling noise and over-parameterization.
In this sense, V S(θ,∞) is closer to a simple ℓ2-norm ∥θ∥ when compared with GD, i.e., the SGD
solution is more likely to be an ℓ2 minimum norm solution when compared to GD. We also present the
trajectory of α in Fig. 4(b). The trajectory is obtained by first training a rank-1 linear network using
SGD for 5000 iterations and computing α(t) at every step followed by a projection of the trajectory
{α(t)}5000t=1 into a 2-dimensional space according to the method described in [13]. It can be seen that
the direction of the final position α(∞) is close to that of θ(0) (⟨α(∞), θ(0)⟩ /(∥α(∞)∥θ(0)∥) =
0.9314). We also conduct additional experiments in Appendix A.3 to further verify our finding.

Comparison with diagonal linear networks. In [22], the authors showed that the extra effects of
the sampling noise of SGD is equivalent to multiplying a shrinking coefficient which depends on
the training dynamics to the initialization scale. This effect leads the solution of SGD to be closer
to that of sparse regression when compared with GD. Our Theorem 3 does not show such bias that
the solution interpolates between the ℓ2-norm and ℓ1-norm minimization solution. Therefore the
conclusion of implicit bias of SGD for diagonal linear networks can not be directly applied to rank-1
linear networks and standard linear networks. This reveals an important finding that the implicit bias
of GD or SGD is strongly tied with network architecture. On the other hand, similar to the case of
diagonal linear networks, Theorem 3 also reveals an initialization cancellation effect induced by the
SGD sampling noise. It is interesting for future work to explore whether this effect can be generalized
to other architectures and can be seen as a special benefit brought by SGD.

5 Numerical Experiments

In this section, we consider the over-parameterized regression problem with rank-1 linear, standard
linear, and non-linear networks for different initialization scales to verify our theoretical claims. We
define the distance D(θ1, θ2) = ∥θ1 − θ2∥2/∥θ2∥2 to measure the relative difference between θ1 and
θ2. For a linear network and the parameterization θT = wT

LWL−1 · · ·W1, we use θ(∞) to denote the
solution returned by the optimization algorithms (GD or SGD) and θ(0) to denote the corresponding
initialization. θ∗ is the ground truth solution, and θ∗ℓ2 is the ℓ2 minimum norm solution (Corollary
1.1). Details of the experiments and more numerical experiments are deferred to Appendix A.1 and
we focus on the results here.

Rank-1 linear networks. As shown in Fig. 5(a), for all different initialization scales ∥θ(0)∥,
D(θ(∞), θ∗ℓ2) is smaller if θ(∞) is returned by SGD, i.e., the SGD solution is closer to the ℓ2
minimum norm solution θ∗ℓ2 when compared to the GD solution. Similarly, Fig. 5(b) shows a benefit
of such alleviating dependence of initialization bias of SGD: its solution is closer to the ground truth
solution θ∗ when compared to the GD solution for different ∥θ(0)∥. Furthermore, in Fig. 6(a), we
show D(θ(t), θ∗ℓ2) along training, which further reveals that the final solution returned by SGD is
closer to θ∗ℓ2 . Note that when the initialization scales are small, both GD solution and SGD solution
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are close to θℓ∗2 . These experiments well support our theoretical findings. Besides, we present
additional experiments to compare diagonal and rank-1 linear networks in Appendix A.2.
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Figure 6: Numbers in the bracket denote the scale of the initialization. (a). D(θ(t), θ∗ℓ2) along
training for rank-1 linear networks. (b). D(θ(t), θ∗ℓ2) along training for standard linear networks. (c).
Test error along training for non-linear networks.

Standard linear networks and non-linear networks. Proposition 1 states similarity between rank-
1 and standard linear nets, therefore they have similar results. We conduct numerical experiments for
standard linear networks as in the case of rank-1 linear networks and show in Fig. 5(c) and 5(d) that
D(θ(∞), θ∗ℓ2) and D(θ(∞), θ∗) are also smaller if we run SGD, which supports the generalization of
conclusion of rank-1 linear network to standard linear networks. D(θ(t), θ∗ℓ2) along training plotted
in Fig. 6(b) further supports this phenomenon. For non-linear networks (Fig. 6(c)), we report the test
error on a newly sampled test set for both GD and SGD along training, where SGD solutions have
smaller test error when compared to GD solutions.

6 Discussion & Conclusion

Our work proposes the rank-1 linear network that is a plausible proxy of standard linear networks.
We analyze the implicit bias of GD and SGD for this new net and find that it approximates stan-
dard linear networks better than diagonal linear networks. We further reveal the joint role of
over-parameterization and stochasticity in characterizing the implicit bias of SGD. Similar to the
diagonal linear networks, our results also reveal an initialization alleviating effect of SGD sampling
noise, suggesting a future direction that investigates whether such effect is general across different
architectures. See Appendix B for more discussions.

Limitation. We do not generalize the analysis to non-linear networks due to its lack of the form of θ
as in our current approach. Furthermore, an exact characterization of the stochastic integral is absent.
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Appendix

Organization of Appendix. In Appendix A we present details of the numerical experiments and
additional numerical experiments. We give more discussions of our work in Appendix B. Appendix
C provides missing technical details of Section 3 while Appendix D provides those of Section 4.

A Details of Numerical Experiments and Additional Experiments

In A.1, we present the details of the numerical experiments. We compare the rank-1 linear networks
with the diagonal linear networks empirically in A.2. Finally, in A.3, we conduct additional experi-
ments to further verify the “alleviting” effect of the SGD sampling noise mentioned in Theorem 3. In
A.4, we conduct experiments when the balanced initialization condition is not satisfied.

Data. We conduct over-parameterized regression with different linear networks. For the dataset
{(xi, yi)}ni=1 where xi ∈ Rd and yi ∈ R, we set n = 40, d = 100 and xi ∼ N (0, I). For
i ∈ {1, . . . , n}, yi is generated by yi = θ∗Txi where θ∗ ∈ Rd, i.e., θ∗ is the ground truth solution.
We let 20 components of θ∗ be informative.

A.1 Details of Numerical Experiments in Section 5
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iterations

101

102

D
(

(
),
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Large initialization, || (0)|| = 124.77

GD
SGD

Figure 7: D(θ(t), θ∗ℓ2) along training for rank-1 linear networks when the initialization is extremely
large. SGD solution is closer to θ∗ℓ2 when compared to the GD solution for rank-1 linear networks.

We now present the details of numerical experiments conducted in Section 5.

ℓ2 minimum norm solution. To get the ℓ2 minimum norm solution θ∗ℓ2 , we train a single layer
linear network with zero initialization using GD for 20000 iterations, since GD will return an ℓ2
minimum norm solution solution in this case according to Corollary 1.1 and [26].

Rank-1 linear networks. For the rank-1 linear network f(x;u, v) = wT
LWL−1 · · ·W1x where

Wk = ukv
T
k ∈ Rdk×dk+1 , we let L = 3 and ∀k ∈ {1, . . . , L} : dk = 100. The learning rate is 10−3

and the batch size is 4 if we run SGD. We construct different rank-1 linear networks as follows: for a
randomly sampled θ̃ ∈ R100, we let the initialization θi(0) of the i-th rank-1 networks have the same
direction as θ̃ but with different scales. We then train each rank-1 linear network with GD and SGD,
respectively, for 20000 iterations. In particular:

1. Fig. 5(a) presents the results of the distances between θ∗ℓ2 and GD and SGD solutions,
respectively, of each trained rank-1 networks with different initialization scales.
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2. In Fig. 5(b), we measure the distances between θ∗ and GD and SGD solutions, respectively,
for each trained rank-1 networks with different initialization scales.

3. Fig. 6(a) plots the distances between θ∗ℓ2 and the model parameters θ along training when
the initialization scales are different for both GD and SGD. The numbers in the bracket
denote ∥θ(0)∥.

4. Fig. 7 is about the distances between θ∗ℓ2 and the model parameters θ along training for both
GD and SGD when ∥θ(0)∥ is extremely large.

Standard linear networks. For the standard linear network f(x;W ) = wT
LWL−1 · · ·W1x where

Wk ∈ Rdk×dk+1 , we let L = 4 and ∀k ∈ {1, 2, 3} : dk = 100. The learning rate is 10−3 and the
batch size is 4 if we run SGD. Other settings are similar to that of rank-1 linear networks.

1. In Fig. 5(c), we plot the distances between θ∗ℓ2 and GD and SGD solutions, respectively.
Similar to the case of rank-1 linear networks, for all initialization scales, D(θ(∞), θ∗ℓ2) is
smaller if the network is trained with SGD when compared to GD.

2. Fig. 5(d) presents the results of the distances between θ∗ and GD and SGD solutions.
3. Fig. 6(b) plots the distances between θ∗ℓ2 and the model parameters θ along training when

the initialization scales ∥θ(0)∥ are different for both GD and SGD. The numbers in the
bracket denote ∥θ(0)∥.

Non-linear networks. For the non-linear network f(x;W ) = wT
Lσ(WL−1 · · ·σ(W1x)) where

Wk ∈ Rdk×dk+1 , we let L = 4 and ∀k ∈ {1, 2, 3} : dk = 100. The learning rate is 10−3 and the
batch size is 4 if we run SGD. We use the ReLU activation σ(x) = ReLU(x). We use the same
dataset as in the experiments of rank-1 linear networks. Since the non-linear networks do not have
the overall parameterization of θ as in the linear networks case, to measure the initialization scale, we
first straight all weight matrices to vectors and stack them to get a single vector, then we calculate
the ℓ2 norm of this vector as the scale of the initialization of a non-linear network, i.e., we use√
(
∑

k ∥Wk(0)∥2F ) as the initialization scale where ∥ · ∥F is the Frobenius norm. Due to the same
reason, we can not measure quantities such as D(θ, θ∗ℓ2), therefore, we report the test error of the
model in a newly sampled test set instead. Fig. 6(c) plots the test error of the model along training
when the initialization scales are different for both GD and SGD. The numbers in the bracket denote
initialization scales.

A.2 Additional Experiments of Comparison with Diagonal Nets

Results in Section 3.2 indicate that diagonal linear networks exhibit different implicit bias in compari-
son with rank-1 and standard linear networks, e.g., both rank-1 and standard linear networks prefer ℓ2
minimum norm solution for GD when the initialization is nearly-zero while, on the contrary, diagonal
linear networks prefer such solution when the initialization is sufficiently large. In this section, we
empirically compare the implicit bias for rank-1 linear networks and diagonal linear networks to
show this phenomenon.

In particular, we use the same settings as in the experiments for rank-1 linear networks in A.1
while only change the model to diagonal linear networks. As in previous works [3, 22], the re-
parameterization of diagonal linear network is

θ = w+ ⊙ w+ − w− ⊙ w−,

where w+ ∈ R100, w− ∈ R100 and ⊙ is the elementwise product. Let e = (1, · · · , 1)T ∈ R100, we
set the initialization as

w+(0) = Ce, w−(0) = Ce,

where C is a positive constant measuring the initialization scale. For each diagonal linear network
with different C, we run GD for 20000 iterations and calculate D(θ(∞), θ∗ℓ2) and D(θ(∞), θ∗).
The results are plotted in Fig. 8, where, for convenience of comparing the implicit bias of GD for
rank-1 linear networks with that of diagonal linear networks, we also plot the results of rank-1 linear
networks of Fig. 5(a) and Fig. 5(b) in Fig. 8(a) and Fig. 8(b), respectively.

As shown in Fig. 8(a), as the initialization scale (∥θ(0)∥ for rank-1 linear networks, C for diagonal
linear networks) increases, D(θ(∞), θ∗ℓ2) decreases for rank-1 linear linear networks trained with
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Figure 8: For different initialization scale (∥θ(0)∥ for rank-1 linear networks and C for diagonal
linear networks): (a) D(θ(∞), θ∗ℓ2) for rank-1 linear nets and diagonal linear networks (the green
solid line). (b) D(θ(∞), θ∗) for rank-1 linear nets and diagonal linear nets (the green solid line).

both GD and SGD, while it increases for diagonal linear networks trained with GD. This indicates the
drastic difference between the implicit bias of GD exhibited by diagonal linear networks and rank-1
linear networks (also standard linear networks).

A.3 Additional Experiments for the “Alleviating” Effect in Theorem 3

Recall the form of V S(θ, t) in Theorem 3

V S(θ, t) =
1

ΩL
∥θ∥ΩL +

θT θ(0)

∥θ(0)∥λL
− 2λLηθ

T

nb

∫ t

0

L (θ(s)) tr
(
P⊥(θ(s))X

TX
)

∥θ(s)∥2−λL
θ(s)ds,

we let

pθ(t) =
θT (t)θ(0)

∥θ(0)∥λL
, (13)

qθ(t) =
2λLηθ

T (t)

nb

∫ t

0

L (θ(s)) tr
(
P⊥(θ(s))X

TX
)

∥θ(s)∥2−λL
θ(s)ds. (14)

To quantitatively measure the “alleviating” effect of the SGD sampling noise, we train 3 rank-1 linear
networks with different initialization scales using SGD. The batch size is 4 and the learning rate
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Figure 9: SGD sampling noise alleviates the dependence on the initialization. Numbers after the
comma denote the initialization scales. The solid lines are for pθ (Eq. (13)) and the dotted lines are
for pθ − qθ (Eq. (14)).

is 5×10−5. For the rank-1 linear network f(x;u, v) = wT
LWL−1 · · ·W1x where Wk = ukv

T
k ∈

Rdk×dk+1 , we let L = 3 and ∀k ∈ {1, . . . , L} : dk = 100. We calculate both pθ(t) and qθ(t) along
training, where qθ(t) measures the alleviating effect of the SGD sampling noise and their difference
pθ(∞) − qθ(∞) is the alleviated initialization dependence of the SGD solution compared to GD
solution.

As shown in Fig. 9, the effect coming from the SGD sampling noise, qθ, is equivalent to make the
dependence of V S on the initialization closer to 0 (after about 1000 iterations, every dotted line is
closer to the x-axis compared to the corresponding solid line with the same color), thus it controls the
dependence of the SGD solution on the initialization. This phenomenon further verifies our claims.

A.3.1 Training loss for Fig. 4(b)

Fig. 4(b) indicates that the final direction of the integral term in Eq. (12) highly depends on the
initialization θ(0) since the loss decays along training. To further support this argument, here we
present the training loss when we perform the experiments of Fig. 4(b) in Fig. 10. It can be seen that,
for a random initialization, the loss, the magnitude of the speed of α, has a high value at the start of
the training, and decays very quickly, which explains why the direction of θ(0) is crucial to that of
α(∞).

A.4 Additional Experiments for Biased Initialization

In this section, we provide additional experiments to show that our conclusion still holds when
removing the balanced initialization condition (Definition 1).

To make the initialization unbalanced, we add a small perturbation to the balanced initialization.
Specifically, we define

∆ =
1

2L− 1

L−1∑
k=1

|∥vk+1∥2 − ∥uk∥2|
∥uk∥2

as the scale of the perturbation to the balanced initialization (larger ∆ implies that the initialization is
more unbalanced). All the other experiment details are kept unchanged as in Section 5. As shown in
Fig. 11 and Fig. 12, we still observe similar phenomenons as in the case of the balanced initialization,
e.g., SGD solutions are closer to the ℓ2-norm minimization solution compared to GD, when a small
perturbation is added to the balanced initialization. Thus the implicit bias is not unique to the balanced
initialization. In particular:
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Figure 10: The empirical loss L(θ) along training for Fig. 4(b).

• We reportD(θ(∞), θ∗ℓ2) for both GD and SGD for different levels of perturbation ∆ (denoted
in the title of each figure) in Fig. 11. In the last figure, we fix the initialization scale and
report D((θ(∞), θ∗ℓ2) of both GD and SGD for different ∆. It can be seen that, without
the balanced initialization, GD and SGD still prefer ℓ2-norm minimization solution θ∗ℓ2 for
small initialization, while the SGD solution is closer to θ∗ℓ2 due to its initialization reduction
effect.

• We report D(θ(t), θ∗ℓ2) during optimization for both GD and SGD for different levels of
perturbation ∆ and the same scale of initialization (∥θ(0)∥ = 0.8696) in Fig. 12, which
further clearly reveals that there are still similar phenomenons when ∆ ̸= 0 as in the case
when the initialization is balanced.

B More Discussions

Our work proposes the rank-1 linear network which is a plausible proxy of standard linear networks
with some neurons fully connected with neurons in its last and next layers. By showing that
the proposed rank-1 linear networks are standard linear networks with special initialization, our
conclusions may be generalized to standard linear networks. In comparison, the diagonal linear
network, a special kind of linear networks that receives a lot of attention recently, does not have fully
connected neurons. Furthermore, we find that the implicit bias of both GD and SGD for diagonal
linear networks are not consistent with ours. The diagonal linear networks also exhibit drastically
different implicit bias of GD when compared to standard linear networks, while the conclusions for
rank-1 linear networks are consistent with those of standard linear networks. We also reveal the key
role of the over-parameterization in characterizing the implicit bias of SGD, namely that it will only
be different with that of GD for over-parameterization model.

The inconsistency between the implicit bias of GD and SGD for diagonal linear networks and rank-1
linear networks leads us to suggest intriguing questions for future work such as what about other
architectures and is there any unified analytical approach for studying implicit bias of GD and SGD
for different architectures? And it is interesting to reveal whether the “alleviating” initialization effect
of the SGD sampling noise is general accross different architectures.

We precisely characterize the implicit bias of both GD and SGD for rank-1 linear networks, where the
dependence on the initialization and depth is explicit and clear. In this sense, we take a step forward
in the direction of characterizing the implicit bias of optimization algorithms.

Finally, our analysis characterizes the implicit bias of SGD through analyzing the overall parametriza-
tion θ. This is different with another line of recent work [4, 10, 19, 27, 9] which focused on the
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Figure 11: D(θ(∞), θ∗ℓ2) for different ∥θ(0)∥ when the initialization is unbalanced (∆ ̸= 0, larger ∆
means the initialization is more unbalanced). We use solid lines for the results of GD and dashed
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Figure 12: D(θ(t), θ∗ℓ2) along training for rank-1 linear networks when the initialization is unbalanced
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flatness of the loss landscape by directly analyzing the independent model parameters, i.e., u and v
for the rank-1 linear networks, which is also crucial to fully understand the learning dynamics.

It is worth to mention that removing the balanced initialization (Definition 1) is also a promising
direction. As verified by the numerical experiments in Appendix A.4, similar phenomena exist for
unbalanced initialization. From the theoretical aspect, balanced initialization enables us to derive
the exact dynamics of the overall parameter θ, which is necessary to precisely characterize the
implicit bias of GD/SGD. And it is difficult to discuss arbitrary initialization without the balanced
initialization assumption. The effect of removing the balanced initialization is that the induced mirror
flow potential should be composed of two parts: the original potential presented in Section 3 and a
perturbation due to the imbalance of the initialization to it. This implies that the ℓ2-norm solution is
still returned for small initialization. On the other hand, the case for SGD is much more complicated:
the Brownian motion term of the corresponding SDE will also be affected by the imbalance of the
initialization, which in turn induces a much more complex time varying mirror flow potential. We
believe that the exact theoretical characterization of the implicit bias of SGD without the balanced
initialization is a valuable future direction.

There are also some limitations in the current work. For example, although the conclusions of
numerical experiments conducted on non-linear networks resemble that of rank-1 and standard linear
networks, we can not directly generalize the current theoretical analysis to non-linear neural networks,
which normally do not have overall parametrization vectors as θ that is necessary for our analysis.
Moreover, the exact characterization of the stochastic integral is also absent in the current work, while
we expect that the integral term L(θ)tr

(
P⊥(θ)X

TX
)

θ
∥θ∥ in Eq. (12) might have close relation with

the property of the training dynamics.

C Proofs for Section 3

In this section, we present the technical details of Section 3. In particular, Section C.1 discusses the
balanced initialization, Section C.2 proves Theorem 1 for rank-1 linear networks and Section C.3
proves Theorem 2 for standard linear networks.

For a rank-1 linear network f(x;u, v) = wT
LWL−1 · · ·W1x where Wk = ukv

T
k for any k ∈

{1, . . . , L − 1}, recalling the definition Eq. (3) and that the network f(x;u, v) can be written as
f(x;u, v) = ρkv

T
k+1ukρ−kv

T
1 x. For convenience, we let ξ = wT

LWL−1 · · ·W2u1.

C.1 Balanced initialization

For a rank-1 linear network Eq. (2), dynamics of gradient flow is given by

duk
dt

= − 2

n
ρkρ−kv

T
1 X

T rvk+1, (15)

dvk+1

dt
= − 2

n
ρkρ−kv

T
1 X

T ruk. (16)

Based on this set of dynamics, we first discuss he following useful lemma that characterizes the
dynamics of norms of model parameters:

Lemma 1. For f(x;u, v) trained with gradient flow, we have

∀k ∈ {1, . . . , L− 1} :
d∥uk∥2

dt
=
d∥vk∥2

dt
=
d∥vk+1∥2

dt
, (17)

i.e., layer norms grow at the same rate. Furthermore, if ∀k ∈ {1, . . . , L − 1} : ∥uk(0)∥ =
∥vk+1(0)∥ = ∥vk(0)∥, we have

∀k ∈ {2, . . . L− 1} :
d ⟨vk+1, uk⟩2

dt
=
d ⟨vk, uk−1⟩2

dt
. (18)
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Proof. Using Eq.(16), we have

1

2

d∥uk∥2

dt
=

(
duk
dt

)T

uk = − 2

n
ρkρ−kv

T
1 X

T rvTk+1uk = − 2

n
ξvT1 X

T r, (19)

1

2

d∥vk+1∥2

dt
=

(
duk
dt

)T

uk = − 2

n
ρkρ−kv

T
1 X

T ruTk vk+1 = − 2

n
ξvT1 X

T r. (20)

Therefore, both d∥uk∥2

dt and d∥vk+1∥2

dt do not depend on k and are same then Eq. (17) follows.

We now discuss Eq. (18). Since we assume ∀k ∈ {1, . . . , L−1} : ∥uk(0)∥ = ∥vk+1(0)∥ = ∥vk(0)∥
and Eq. (17) implies that for any t > 0:

∥uk(t)∥2 − ∥uk(0)∥2 = ∥vk+1(t)∥2 − ∥vk+1(0)∥2 = ∥vk(t)∥2 − ∥vk(0)∥2, (21)

we have
∥uk(t)∥2 = ∥vk+1(t)∥2 = ∥vk(t)∥2 = ∥u1(t)∥2 (22)

To show Eq. (18), we note that

d ⟨vk+1, uk⟩
dt

=

(
dvk+1

dt

)T

uk + vTk+1

duk
dt

= − 2

n
ρkρ−kv

T
1 X

T r(∥uk∥2 + ∥vk+1∥2)

= − 2

n
ξvT1 X

T r
∥uk∥2 + ∥vk+1∥2

⟨vk+1, uk⟩
= − 4

n
ξvT1 X

T r
∥u1∥2

⟨vk+1, uk⟩
, (23)

where we use Eq.(16) in the second equality and the third equality is because ξ = ρkρ−k ⟨vk+1, uk⟩.
As a result, the above equation implies that

1

2

d(⟨vk+1, uk⟩)2

dt
= − 4

n
ξvT1 X

T r∥u1∥2, (24)

which does not depend on k, and Eq. (18) follows.

To simplify the analysis, in Theorem 1, we have required the balanced initialization across layers
(Definition 1). Recall that the balanced initialization is defined as

Definition 1 (Balanced initialization for rank-1 linear networks). Given an L-layer rank-1 linear
network Eq. (2), for any k ∈ {1, . . . , L− 1}, the balanced initialization means that

⟨vk+1(0), uk(0)⟩2

∥vk+1(0)∥2∥uk(0)∥2
= 1, (25)

∥vk+1(0)∥ = ∥uk(0)∥ = ∥v1(0)∥. (26)

Eq. (25) states that uk of the k-th layer is aligned with vk+1 of the (k + 1)-th layer in direction
while Eq. (26) means they have the same magnitudes as v1(0). The balanced initialization has been
suggested by several previous works [3, 2, 6, 28] for standard linear networks defined as follows.
Definition 2 (Balanced initialization for standard linear networks). Given an L-layer standard linear
network f(x;W ) = wT

LWL−1 · · ·W1x, for any k ∈ {1, . . . , L − 1}, the balanced initialization
means that

WT
k+1(0)Wk+1(0) =Wk(0)W

T
k (0)

for any k ∈ {1, . . . , L}.

This directly means that Wk+1(0) and Wk(0) share same singular values and Wk+1’s right singular
vector aligns with the left singular vector of Wk(0). In our case, such reasoning gives us

vk+1(0)

∥vk+1(0)∥
=

uk(0)

∥uk(0)∥
(27)

∥vk+1(0)∥∥uk+1(0)∥ = ∥vk(0)∥∥uk(0)∥, (28)

where Eq. (27) is similar to Eq. (25), which shows that uk(0) aligns with vk+1(0), and we adapt the
condition (28) to Eq. (26) for rank-1 linear net since vk and uk are the independent model parameters.
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A nice property of GD is that the balanced property across layers will be maintained during training
[6, 11, 2], i.e., WT

k+1(t)Wk+1(t) = Wk(t)W
T
k (t) for t > 0 and k ∈ {1, . . . , L}, which can be

showed by taking derivative with respect to time on WT
k+1(t)Wk+1(t) and Wk(t)W

T
k (t). For the

rank-1 linear network case, according to Lemma 1 and Eq. (25), ⟨vk+1(t), uk(t)⟩ are the same for all
k ∈ {1, . . . , L− 1}, thus GD also maintains the balanced property for rank-1 deep linear networks.
Although the balanced initialization conditions are slightly strict, it can be approximately accurate
if the initialization scale is not large, which is rather common in practice. Under such initialization
conditions, we are able to precisely characterize the implicit bias of GD and focus more on the effects
coming from the overall initialization of model parameters, rather than the difference between layers.

C.2 Proof of Theorem 1

In this section, we prove Theorem 1. Basically the idea is to show the existence of a potential function
V (θ) such that the model parameter θ follows a mirror descent with respect to V (θ):

θ(∞) = argmin
θ
V (θ) s.t. Xθ = y. (29)

This method is called infinitesimal mirror descent (IMD) approach and can be found in, e.g., [3].
Note that, to apply this method, the dynamics of θ should satisfy certain condition, which might
be strict. For example, given the linear model f(x; θ) = θTx for θ ∈ Rd, both parameterization of
θ with standard linear networks, i.e. θT = wT

LWL−1 · · ·W1, and a much simpler one θ = cv for
c ∈ R and v ∈ Rd do not satisfy the condition of applying the IMD approach, while the rank-1 linear
networks satisfy the condition, which implies that the parameterization of rank-1 linear networks is
different with a scalar times a vector. Furthermore, the above example also confirms our motivation
of studying rank-1 linear networks as a proxy of standard linear networks, especially considering that
the implicit bias of SGD for rank-1 linear networks is more amenable.

We first present a useful Lemma in [20]:
Lemma 2. If H has rank 1 and G is invertible, then

(G+H)−1 = G−1 − 1

1 + g
G−1HG−1. (30)

where g = tr
(
HG−1

)
.

We now prove Theorem 1.

Proof. Recall that r ∈ Rn with ri = (fi − yi), we let

Φ =

L−1∑
k=1

ϕk, (31)

ϕk = ρ2kρ
2
−k(∥uk∥2 + ∥vk+1∥2). (32)

The key step is to derive the dynamics of the overall parameter θ which can be done by noting that
dθ

dt
= v1

dξ

dt
+ ξ

dv1
dt
,

where, according to Lemma 1,

dξ

dt
=

L−1∑
k=1

ρkρ−k
d ⟨vk+1, uk⟩

dt

= − 2

n
rTXv1

L−1∑
k=1

ρ2kρ
2
−k(∥uk∥2 + ∥vk+1∥2)

= − 2

n
ΦvT1 X

T r (33)

dv1
dt

= − 2

n
ξXT r (34)

=⇒ dθ

dt
= − 2

n

(
ξ2I +Φv1v

T
1

)
XT r. (35)

21



Eq. (35) can be rewritten as (
ξ2I +Φv1v

T
1

)−1 dθ

dt
= − 2

n
XT r. (36)

According to Lemma 2, note that

tr
(
Φ
v1v

T
1

ξ2

)
=

Φ∥v1∥2

ξ2
,

the inverse appeared in Eq. (36) is

(ξ2I +Φv1v
T
1 )

−1 =
1

ξ2
I − ξ−2v1v

T
1 Φξ

−2

1 + Φ∥v1∥2

ξ2

=
1

ξ2
I − θθT

ξ6

Φ + ξ2∥θ∥2
. (37)

It is now left for us to express ξ2 and Φ in terms of θ. In the following, we assume the balanced
initialization in Theorem 1 and apply Lemma 1.

1. ξ2. This can be done by noting that ∥θ∥2 = ξ2∥v1∥2, where ξ2 is given by

ξ2 =
L−1∏
k=1

⟨vk+1, uk⟩2 . (38)

Note that ⟨vk+1, uk⟩2 grow at the same rate for different k according to Lemma 1 and
⟨vk+1, uk⟩2 are the same at initialization for different k due to our assumption, we have
⟨vk+1, uk⟩2 = ⟨v2, u1⟩2 and ξ2 = ⟨v2, u1⟩2(L−1). Note that

1

2

d ⟨v2, u1⟩2

dt
= − 4

n
ξvT1 X

T r∥u1∥2 = − 4

n
ξvT1 X

T r∥v1∥2 =
1

2

d∥v1∥4

dt
, (39)

we have ⟨v2, u1⟩2 − ⟨v2(0), u1(0)⟩2 = ∥v1∥4 − ∥v1(0)∥4. Since we have ⟨v2, u1⟩2 =
∥u1∥4 = ∥v1∥4 at initialization according to our assumption, ξ2 can be finally written as

ξ2 = ∥v1∥4(L−1). (40)

As a result,

∥θ∥ = ∥v1∥2L−1 =⇒ ∥v1∥ = ∥θ∥
1

2L−1 , ξ2 = ∥θ∥
4(L−1)
2L−1 . (41)

2. ξ6/Φ. By taking some simple algebra, we have

Φ =
2(L− 1)ξ2

∥v1∥2
=⇒ ξ6

Φ
=

ξ4∥v1∥2

2(L− 1)
. (42)

Now Eq. (36) becomes

∥θ∥−
2(L−1)
2L−1

I − θθT

∥θ∥2

2(L−1) + ∥θ∥2

 dθ

dt
= −2|ξ|

n
XT r. (43)

These conditions are now sufficient for us to find the form of the potential V (θ). Suppose that V (θ)
can be written as

V (θ) = V̂ (∥θ∥) + hT θ (44)
for some vector h and satisfies the following relation:

∇2
θV (θ) = ∇2

θV̂ (θ)

= ∥θ∥−
2(L−1)
2L−1

(
I − 1

1 + 1
2(L−1)

θθT

∥θ∥2

)
, (45)

then Eq. (43) gives us

d

dt
(∇θV (θ)) = − 2

n
XT r (46)
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and the integration relation

∇θV (θ)−∇θV (θ)|θ=θ(0) =

n∑
i=1

xi

∫
r̃i(τ)dτ (47)

where we let r̃ = −2|ξ|r/n. Requiring ∇θV (θ)|θ=θ(0) = 0 and denoting λi =
∫∞
0
r̃i(τ)dτ gives us

the condition at t = ∞:

∇θV (θ)|θ=θ(∞) =

n∑
i=1

xiλi. (48)

Eq. (48) coincides with the KKT stationary condition of the optimization problem (29). Therefore,
we can prove the theorem by deriving the explicit form of V (θ).

Solving V (θ). According to Eq. (44), we can derive the following relation:

∂θV (θ) = V̂ ′ θ

∥θ∥
+ hT (49)

∂2θV (θ) =
1

∥θ∥2

[(
V̂ ′′ θθ

T

∥θ∥
+ V̂ ′I

)
∥θ∥ − V̂ ′ θθ

T

∥θ∥

]
=

V̂ ′

∥θ∥

[
I −

(
1− ∥θ∥ V̂

′′

V̂ ′

)
θθT

∥θ∥2

]
. (50)

Comparing this with Eq. (45), we conclude that

1− ∥θ∥ V̂
′′

V̂ ′
=

1

1 + 1
2(L−1)

=⇒ V̂ ′′

V̂ ′
=

1

∥θ∥

(
1− 1

1 + 1
2(L−1)

)
, (51)

which, by noting that ∂∥θ∥ ln V̂ ′(∥θ∥) = V̂ ′′(∥θ∥)
V̂ ′(∥θ∥) , can be solved as follows

V̂ ′′(∥θ∥)
V̂ ′(∥θ∥)

=
1

∥θ∥
1

2L− 1

=⇒ ln V̂ ′(∥θ∥) = 1

2L− 1
ln ∥θ∥

=⇒ V̂ (∥θ∥) = 2L− 1

2L
∥θ∥

2L
2L−1 . (52)

Furthermore, since
V̂ ′

∥θ∥
= ∥θ∥−

2(L−1)
2L−1 ,

Eq. (45) is automatically satisfied when V̂ (∥θ∥) has the form of Eq. (51). It is now left for us to get
the form of h, which can be done by noting that

∂θV (θ(0)) = 0

=⇒ ∥θ(0)∥
1

2L−1
θ(0)

∥θ(0)∥
+ h = 0.

Thus the final form of V (θ) is

V (θ) =
1

ΩL
∥θ∥ΩL − θT

θ(0)

∥θ(0)∥λL
. (53)

This completes the proof.

C.2.1 Remove the assumption of convergence to the interpolation solution

The assumption that Xθ(∞) = y in Theorem 1 can be removed if the dimension of the span of XT

is larger than the number of samples n, i.e., when dim
(
span(XT )

)
≥ n.1 This can be proved as

follows.
1Since max(dim(span(XT ))) = n, this condition is in fact dim(span(XT )) = n.
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Proposition 2. For the over-parameterized regression of rank-1 linear networks Eq. (2) and the
dataset {(xi, yi)}ni=1 where xi ∈ Rd and n < d, if

dim
(
span(XT )

)
≥ n,

then the gradient flow solution θ(∞) satisfies that

Xθ(∞) = y.

Proof. To prove this proposition, we study the dynamics of the loss function L = 1
n

∑
i r

2
i , where

ri = ⟨θ, xi⟩ − yi, that is given by

dL
dt

=
∂L
∂θ

dθ

dt

=
2

n
rTX

[
−2ξ2

n

(
I + 2(L− 1)

θθT

∥θ∥2

)
XT r

]
= −4ξ2

n2

[
rXTXr + 2(L− 1)

rTXθθTXT r

∥θ∥2

]
= −4ξ2

n2

[
∥XT r∥2 + 2(L− 1)

(θTXT r)2

∥θ∥2

]
≤ 0,

where we have the equality in the last line when r = (0, . . . , 0)T ∈ Rd, i.e., Xθ = y, or XT r = 0,
which is not possible since we have assumed that dim(span(XT )) ≥ n. Therefore, L(θ(t)) keeps
decreasing untilXθ(t) = y, i.e., until GD finds the interpolation solution. Noting that minθ L(θ) = 0,
we complete the proof.

C.3 Proof of Theorem 2

In this section we prove Theorem 2. The techniques are similar to those in C.2, and we still need
a time wrapping technique introduced in [3] to derive the form of Vstd(θ), since the condition for
applying the IMD approach is violated in this case. Recall that, for the standard linear networks
f(x;W ) = wT

LWL−1 · · ·W1x = θTx where Wk ∈ Rdk×dk+1 , our purpose is to find a potential
function Vstd(θ) such that the gradient flow solution θ(∞) satisfies that

θ(∞) = argmin
θ
Vstd(θ), s.t.Xθ = y. (54)

Since we assume the balanced initialization (Definition 2), then according to [11, 6, 2], the norms of
all layers grow at the same rate and are the same for any t > 0:

WT
k+1(t)Wk+1(t) =Wk(t)W

T
k (t).

Furthermore, following the procedure of [2], we obtain that the dynamics of θ is

dθ

dt
= −∥θ∥

2(L−1)
L

[
I + (L− 1)

θθT

∥θ∥2

]
XT r. (55)

We now present the proof.

Proof. Eq. (55) can be written as

∥θ∥
2(1−L)

L

[
I + (L− 1)

θθT

∥θ∥2

]−1
dθ

dt
= −XT r,

where, according to Lemma 2, the inverse in above equation is given by[
I + (L− 1)

θθT

∥θ∥2

]−1

= I − 1

1 + tr
(

(L−1)θθT

∥θ∥2

) (L− 1)
θθT

∥θ∥2

= I − L− 1

L

θθT

∥θ∥2
. (56)
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As a result, we have

∥θ∥
2(1−L)

L

(
I − L− 1

L

θθT

∥θ∥2

)
dθ

dt
= −XT r. (57)

In this case, we still assume that Vstd(θ) has the following form

Vstd(θ) = V̂std(∥θ∥) + βT θ (58)

for some constant vector β ∈ Rd. Then following a similar procedure as in C.2, we have that

∂θVstd(θ) = V̂ ′
std

θ

∥θ∥
+ hT (59)

∂2θVstd(θ) =
V̂ ′
std

∥θ∥

[
I −

(
1− ∥θ∥ V̂

′′
std

V̂ ′
std

)
θθT

∥θ∥2

]
. (60)

In the IMD approach, Vstd(θ) should satisfy that
d

dt
(∂θVstd(θ)) = − 2

n
XT r, (61)

which requires that ∂2θVstd(θ) = ∥θ∥
2(L−1)

L

(
I − L−1

L
θθT

∥θ∥2

)
dθ
dt . But this is not possible. Therefore,

we multiply a time re-scale factor g(θ), as long as g(θ) is positive, to both sides of Eq. (57) and
only require that Vstd(θ) satisfies the above relation under the new time scale τ : R → R such that
τ ′ = g(θ):

g(θ)∥θ∥
2(1−L)

L

(
I − L− 1

L

θθT

∥θ∥2

)
dθ

dt
= −g(θ)XT r. (62)

Then the limit point at t = ∞ in Eq. (61) is also visited at the point τ =
∫∞
0
g(θ(s))ds in Eq. (62).

We now solve the explicit form of Vstd(θ) that satisfies Eq. (62). By comparing Eq. (60) and the right
hand side of Eq. (57), we obtain that the following relation should be satisfied:

V̂ ′
std

∥θ∥

[
I −

(
1− ∥θ∥ V̂

′′
std

V̂ ′
std

)
θθT

∥θ∥2

]
= g(θ)∥θ∥

2(1−L)
L

(
I − L− 1

L

θθT

∥θ∥2

)
. (63)

This implies that we need:

• the terms in the bracket on both sides should match:

1− ∥θ∥ V̂
′′
std

V̂ ′
std

=
L− 1

L
=⇒ 1

xL
=
V̂ ′′
std

V̂ ′
std

=⇒ ln V̂ ′
std =

1

L
ln ∥θ∥+ C =⇒ V̂std =

C ′L

L+ 1
∥θ∥ 1

L+1 (64)

for some constant C and C ′, where we can simply choose C ′ = 1;

• the terms outside the bracket on both sides should also match:
V̂ ′
std

∥θ∥
= g(θ)∥θ∥

2(1−L)
L =⇒ g(θ) = V̂ ′

std∥θ∥
2(L−1)

L −1. (65)

To obtain the form of the constant vector β, we note that ∂θV (θ(0)) = 0, which immediately gives us

∥θ(0)∥ 1
L
θ(0)

∥θ(0)∥
+ β = 0 =⇒ β = −θ(0)∥θ(0)∥ 1

L−1. (66)

Combining all these terms, we have the final form of Vstd(θ):

Vstd(θ) =
L

L+ 1
∥θ∥ 1

L+1 − θ(0)T θ∥θ(0)∥ 1
L−1. (67)

As in C.2, denoting λi =
∫∞
0
ri(s)ds and noting that ∂θVstd(θ(0)) = 0 give us

∂θVstd =

n∑
i=1

xiλi,

which is exactly the KKT stationary condition of the optimization problem (54).
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Convergence to the interpolation solution. Similar to C.2.1, we can also show the convergence to
the interpolation solution when dim

(
span(XT )

)
≥ n by deriving the dynamics of L:

dL
dt

=
∂L
∂θ

dθ

dt

= −2∥θ∥
2(1−L)

L

n
rTX

[
I + (L− 1)

θθT

∥θ∥2

]
XT r

= −2∥θ∥
2(1−L)

L

n

[
∥rTX∥2 + (L− 1)

(
θTXT r

)2]
.

Since we assume that dim
(
span(XT )

)
≥ n, dL/dt < 0 until Xθ(t) = y, i.e., L keeps decreasing

until GD finds the interpolation solution.

C.4 Proof of Proposition 1

In this section, we prove Proposition 1 by analyzing the gradient of model parameters. It is helpful to
recall that for a matrix A, we use Aij to denote its i-th row j-th column element. For weight matrices,
e.g., Wk, we use Wk;ij to denote its i-th row j-th column element.

Proof. For a standard linear network that has the initialization of Proposition 1 and L is an odd
number, i.e., for an integer p

∀k = 2p+ 1 ∈ {1, . . . , L} :Wk;ij(0) = 0 if i ̸= ck, where ck ∈ {1, . . . dk+1}
∀k = 2p ∈ {1, . . . , L} :Wk;ij(0) = 0 if j ̸= ck,

note that the L− 1-th layer satisfies that WL−1;ij =WL−1;ijδjcL−1
where δjl = 1 if j = l otherwise

δjl = 0, we can write the networks at t = 0 as

f(x;W ) =
∑
i

∑
j

wL;iWL−1;ijδjcL−1
(WL−2 · · ·W1x)j .

Then the gradient w.r.t WL−1 at t = 0 is(
∇WL−1

L(θ)
)
ij
=

2

n

n∑
µ=1

rµwL;i(WL−2 · · ·W1x)jδjcL−1
(68)

=⇒
(
∇WL−1

L(θ)
)
ij
= 0 if j ̸= cL−1. (69)

This means that the parameter WL−1;ij will be updated only when j = cL−1. As a result, the
initialization shape for WL−1 will be maintained, i.e., only the non-zero column of WL−1 at t = 0
will be updated and all other elements of WL−1 will be zero for any t > 0 since the corresponding
gradients vanish. Similarly, for WL−1, we can write the network at t = 0 as:

f(x;W ) =
∑
j

∑
l

(wT
LWL−1)jδjcL−1

WL−2;jl(WL−3 · · ·W1x)l,

then (
∇WL−2

L(θ)
)
ij
= 0 if i ̸= cL−1

and the initialization shape for WL−2 will also be maintained. Following a similar procedure, we
conclude that all the initialization shapes will be maintained for any t > 0.

We now consider the diagonal initialization for weight matrices, namely that

Wk;ij = 0 if i ̸= j, ∀k ∈ {1, . . . , L− 1}.
For any k ∈ {1, . . . , L− 1}, the gradient w.r.t Wk at t = 0 is

(∇Wk
L(θ))ij =

2

n

n∑
µ=1

rµ(w
T
L · · ·Wk+1)i(Wk−1 · · ·W1x)j ,

where, clearly, there is not any constraint on which elements of (wT
L · · ·Wk+1)

T ∈ Rd and
(Wk−1 · · ·W1x) ∈ Rd are zeros if we do not require that many diagonal elements of the initialization
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matrices are zeros, which clearly violates the diagonal initialization requirements. Thus we can not
conclude that

(∇Wk
L(θ))ij = 0 if i ̸= j,

i.e., the off-diagonal elements of Wk will also be updated to be non-zeros. Thus the diagonal
initialization of weight matrices can not be maintained. The conclusions for other layers can be easily
derived by following similar arguments.

D Proofs for Section 4

In this section, we present the technical details for Section 4. In particular, we introduce our modelling
details of the SGD dynamics in D.1, derive the SDE of the model parameter θ in D.2, and, finally,
prove Theorem 3 in D.3.

D.1 SDE modelling details

Similar to the case of GD, to derive the implicit bias of SGD for rank-1 linear networks, we need to
first derive the dynamics of the overall model parameter θ. For this purpose, the structure of the noise
of SGD is crucial. For convenience, we first discuss the basic SGD where only one data is randomly
sampled at each step, while the generalization to batch-size SGD is straightforward.

Structure of the noise. We present the details for uk, and the case for vk+1 is similar. Recall
that the empirical loss is L =

∑
i ℓi / n, η is the learning rate and that the network can be written

as f(x;u, v) = ρkρ−kv
T
k+1ukv

T
1 x, we start with the SGD update equation for uk where we let jt

denote the index of the sampled data at the t-th step:

uk(t+ 1) = uk(t)− η
∂ℓjt
∂uk

= uk(t)− η
∂L
∂uk

+ η

(
∂L
∂uk

− ∂ℓjt
∂uk

)
= uk(t)−

2η

n
vT1 X

T rρkρ−kvk+1

+ 2η

(
1

n

∑
i

riρkρ−kv
T
1 xivk+1 − rjtρkρ−kv

T
1 xjtvk+1

)

= uk(t)−
2

n
vT1 X

T rρkρ−kvk+1 + 2ηρkρ−kvk+1v
T
1 X

TZjt (70)

where we let
→
ejt be the basis vector in Rn such that the jt-th element is 1 while all other elements are

0 and

Zjt = Ejt [rjt
→
ejt ]− rjt

→
ejt , cov[Zjt ] ∼

L
n
In. (71)

As a result of this, the noise of SGD for uk is now

Σ(uk(t)) =
4η2L
n

(ρkρ−k)
2vT1 X

TXv1vk+1v
T
k+1. (72)

Continuous Modelling of SGD. The continuous modelling techniques for SGD have been widely
applied in recent works [1, 9, 23, 22] to study the dynamics of SGD. In our setting, the continuous
counterpart of SGD is established as follows. First, the discrete SGD updating equations Eq. (8) can
be equivalently written as

uk(t+ 1) = uk(t)− η∇uk
L(θ) + η

[
∇uk

L(θ)−∇uk
ℓi(t)(θ)

]
,

vk+1(t+ 1) = vk+1(t)− η∇vk+1
L(θ) + η

[
∇vk+1

L(θ)−∇vk+1
ℓi(t)(θ)

]
for k ∈ {1, . . . , L − 1} where both ∇uk

L(θ) − ∇uk
ℓi(t)(θ) and ∇vk+1

L(θ) − ∇vk+1
ℓi(t)(θ) are

zero-mean noises with covariance matrices in Rdk×dk

Σ(uk) =
4L(ρkρ−k)

2

n
vT1 X

TXv1vk+1v
T
k+1,

Σ(vk+1) =
4L(ρkρ−k)

2

n
vT1 X

TXv1uku
T
k ,
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with ρk and ρ−k defined in Eq. (3). Second, as we identify the noise covariance, letting η → 0 2,
then we obtain the continuous counterpart of the discrete SGD that is a set of stochastic differential
equations (SDE):

duk = − 2

n
vT1 X

T rρkρ−kvk+1dt+ 2

√
ηL
n

(ρkρ−k)vk+1v
T
1 X

T dWt (73)

dvk+1 = − 2

n
vT1 X

T rρkρ−kukdt+ 2

√
ηL
n

(ρkρ−k)ukv
T
1 X

T dWt (74)

where we let r = (f(x1;u, v) − y1, . . . , f(xn;u, v) − yn)
T ∈ Rn be the residuals and Wt is a

standard Brownian motion in Rn. Similarly, recalling the definition of ξ = wT
LWL−1 · · ·W2u1, the

SDE of v1 is

dv1 = − 2

n
ξXT rdt+ 2

√
ηL
n
ξXT dWt. (75)

Generalization to batch-SGD. When b (a positive constant) data points Bt are sampled in each
iteration of SGD, i.e., batch-SGD, we can change the SGD update equation as follows (taking uk as
an example)

uk(t+ 1) = uk(t)−
η

b

∑
jt∈Bt

∂ℓjt
∂uk

.

This only changes the noise Σ(uk(t)) to a batch version

Σb(uk(t)) =
1

b
Σ(uk(t)),

which only affects the noise part of the SDE of uk and leads it to become a batch version SDE:

duk = − 2

n
vT1 X

T rρkρ−kvk+1dt+ 2

√
ηL
nb

(ρkρ−k)vk+1v
T
1 X

T dWt.

This is equivalent to re-scale the learning rate η to

ηb =
η

b
,

and leaving other parts unchanged. Thus the generalization to batch-SGD is straightforward—simply
replacing all η with ηb.

D.2 The SDE of θ

In this section, we carefully derive the continuous dynamics of SGD for the parameterization of our
rank-1 linear networks. We first discuss the balanced initialization condition.

Balanced initialization. Similar to the case for GD (Definition 2), we also assume the balanced
initialization Eq. (26) across layers. Although the dynamics of SGD is different with that of GD,
it still applies the gradient to update the parameters at every step that will maintain the balanced
property thus the dynamics of SGD will also maintain the balanced property, i.e.,

⟨vk+1(t), uk(t)⟩2

∥vk+1(t)∥2∥uk(t)∥2
= 1

and
∥vk+1(t)∥ = ∥uk(t)∥ = ∥v1(t)∥

for t > 0 and k ∈ {1, . . . , L− 1}, during the training of rank-1 linear networks.

With the equations for uk and vk+1, we now derive the SDE of θ summarized in the following lemma.

2More details of this modelling technique can be found in [14].
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Lemma 3. For an L-layer rank-1 linear network Eq. (2), if we assume balanced initialization, then
the stochastic gradient flow of θ is

dθ = −2ξ2

n
H(θ)XT rdt+ 2ξ2

√
ηL
n
H(θ)XT dWt

+
8ηL(L− 1)

n∥θ∥
2

2L−1

[
I +

2L− 3

2

θθT

∥θ∥2

]
XTXθdt

where H(θ) = I + 2(L− 1)θθT /∥θ∥2.

Proof. According to the Ito’s Lemma, we have

dθ = d(ξv1) = dξv1 + ξdv1 + dξdv1. (76)

Thus to obtain the SDE of θ, we need to analyze every term of the above equation. We first give dξ.

The form of dξ. Let ωk = vTk+1uk and ψk = ∥vk+1∥2 + ∥uk∥2, we first characterize the SDE of
ωk. According to the Ito’s calculus, we obtain that

dωk = d(vTk+1uk) = uTk dvk+1 + vTk+1duk︸ ︷︷ ︸
♣

+ duTk dvk+1︸ ︷︷ ︸
♢

, (77)

where, by applying Eq. (73) and Eq. (74) and noting that (dWt)
2 = dt,

♣ = − 2

n
vT1 X

T rρkρ−kψkdt+ 2

√
ηL
n
ρkρ−kψkv

T
1 X

T dWt

♢ =
4ηL
n

(ρkρ−k)
2ωkv

T
1 X

TXv1dt.

Combining the above two terms gives us the SDE of ωk

dωk =

[
− 2

n
vT1 X

T rρkρ−kψk +
4η(ρkρ−k)

2L
n

ωkv
T
1 X

TXv1

]
dt+ 2

√
ηL
n
ρkρ−kψkv

T
1 X

T dWt.

Since ξ = d(
∏L−1

k=1 ωk), its SDE can be done by repeatedly applying the Ito’s Lemma and the SDE
of ωk:

dξ = d(
L−1∏
k=1

ωk)

=

L−1∑
k=1

ξ

ωk
dωk︸ ︷︷ ︸

♠

+
1

2

L−1∑
k′,k=1,k ̸=k′

ξ

ωkωk′
dωkdωk′︸ ︷︷ ︸
♡

. (78)

For convenience, we first define several helper notations:

Φ1 =

L−1∑
k=1

ϕk =

L−1∑
k=1

ψk

ω2
k

,

Φ2 =

L−1∑
k=1

1

ω2
k

,

Φ3 =
1

2

L−1∑
k,k′=1,k ̸=k′

ψkψk′

ω2
kω

2
k′
.
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Now plugging the form of dωk into ♠ gives us the first term of dξ:

♠ = − 2

n
vT1 X

T rξ2

(
L−1∑
k=1

ψk

ω2
k

)
dt+

4ηLξ3vT1 XTXv1
n

(
L−1∑
k=1

1

ω2
k

)
dt

+ 2

√
ηL
n
ξ2

(
L−1∑
k=1

ψk

ω2
k

)(
vT1 X

T dWt

)
= − 2

n
vT1 X

T rξ2Φ1dt+
4ηLξ3vT1 XTXv1

n
Φ2dt+ 2

√
ηL
n
ξ2Φ1

(
vT1 X

T dWt

)
, (79)

and applying again (dWt)
2 = dt and the form of dωk gives us each term of the second sum of dξ:

♡ =
ξ

ωkωk′

4ηξ2L
nωkωk′

ψkψk′vT1 X
TXv1dt.

Summing all ♡ and ♠, we obtain the SDE of ξ:

dξ =

[
− 2

n
vT1 X

T rξ2Φ1 +
4ηLξ3vT1 XTXv1

n
Φ2 +

4ηξ3LvT1 XTXv1
n

Φ3

]
dt

+ 2

√
ηL
n
ξ2Φ1

(
vT1 X

T dWt

)
=

[
− 2

n
vT1 X

T rξ2Φ1 +
4ηLξ3vT1 XTXv1

n
(Φ2 +Φ3)

]
dt+ 2

√
ηL
n
ξ2Φ1

(
vT1 X

T dWt

)
. (80)

The SDE of v1 is much simpler. To get this, we start with the SGD update equation for v1:

v1(t+ 1) = v1(t)− η
∂L
∂v1

+ η

(
∂L
∂v1

− ∂ℓjt
∂v1

)
= v1(t)−

2η

n
ξXT r + 2η

(
1

n

∑
i

ξxiri − rjtξxjt

)

= v1(t)−
2η

n
ξXT r + 2ηξXTZjt , (81)

which implies that the noise covariance in this case is

Σ(v1(t)) =
4η2ξ2L
n

XTX.

Then using a similar approach as that of uk, we get the SDE of v1

dv1 = − 2

n
ξXT rdt+ 2

√
ηL
n
ξXT dWt. (82)

Now it is sufficient for us to derive the form of dθ.

The form of dθ. Combined with the SDE of ξ, we now have

dθ = d(ξv1) = ξdv1 + v1dξ︸ ︷︷ ︸
♣

+ dξdv1︸ ︷︷ ︸
♠

. (83)

For the ♣ term, as we already have the form of dv1 in Eq. (82) and dξ in Eq. (80), we simply plug
them into ♣ and obtain that:

♣ = − 2

n
ξ2XT rdt+ 2

√
ηL
n
ξ2
(
XT dWt

)
+ v1

[
− 2

n
vT1 X

T rξ2Φ1 +
4ηLξ3vT1 X

TXv1
n

(Φ2 +Φ3)

]
dt

+ 2

√
ηL
n

Φ1ξ
2v1v

T
1 X

T dWt

= − 2

n

(
ξ2I + ξ2Φ1v1v

T
1

)
XT rdt+

4ηLξ3v1vT1 XTXv1
n

(Φ2 +Φ3)dt

+ 2

√
ηL
n

(
ξ2I + ξ2Φ1v1v

T
1

)
XT dWt. (84)
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For the ♠ term, we only need to consider the dWt terms of Eq. (82) and (80):

♠ = 4
ηLξ3

n
Φ1X

TXv1dt.

Combining the above two equations gives us the final SDE of dθ:

dθ = − 2

n

(
ξ2I + ξ2Φ1v1v

T
1

)
XT rdt+

4ηL
n

[
ξ3Φ1I + ξ3(Φ2 +Φ3)v1v

T
1

]
XTXv1dt

+ 2

√
ηL
n

(
ξ2I + ξ2Φ1v1v

T
1

)
XT dWt. (85)

On the other hand, recall that our assumptions regarding the initial conditions of f(x;u, v) in the
Lemma (Definition 1) and following similar techniques as in the case for GD, we have that for any
t > 0:

1. ∀k : ∥uk(t)∥2 = ∥vk(t)∥2 = ∥v1(t)∥2

2. ∀k : ω2
k = ⟨uk(t), vk+1(t)⟩2 = ∥uk(t)∥4 = ∥v1(t)∥4.

Plugging these terms back to the definitions of Φ1, Φ2 and Φ3, we obtain that

ψk = 2∥v1∥2 and ξ2 = ∥θ∥
4(L−1)
2L−1 (86)

as in the case for GD and

Φ1 =
2(L− 1)

∥v1∥2
=

2(L− 1)ξ2

∥θ∥2
, (87)

Φ2 =
L− 1

∥v1∥4
=
ξ4(L− 1)

∥θ∥4
, (88)

Φ3 =
2(L− 1)(L− 2)

∥v1∥4
=

2ξ4(L− 1)(L− 2)

∥θ∥4
, (89)

where we use that ∥θ∥ = ∥ξv1∥ = |ξ|∥v1∥. Therefore, the final form of dθ is now

dθ = −2ξ2

n
H(θ)XT rdt+ 2ξ2

√
ηL
n
H(θ)XT dWt

+
8ηL(L− 1)

n∥θ∥
2

2L−1

[
I +

2L− 3

2

θθT

∥θ∥2

]
XTXθdt

where

H(θ) = I + 2(L− 1)
θθT

∥θ∥2
.

D.3 Proof for Theorem 3

In this section, we determine the form of V S(θ) such that θ follows a stochastic mirror flow

d∂θV
S(θ, t) = −∂L

∂θ
dt+ 2

√
ηL
n

(XT dWt), (90)

which then proves the claims of Theorem 3. For this purpose, we start with manipulating the SDE of
θ derived in Lemma 3. Note that Eq. (85) can be written as

(
ξ2I + ξ2Φ1v1v

T
1

)−1
dθ − 4ηL

n
Pdt = − 2

n
XT rdt+ 2

√
ηL
n
XT dWt, (91)

where
P =

(
ξ2I + ξ2Φ1v1v

T
1

)−1 [
ξ3Φ1I + ξ3(Φ2 +Φ3)v1v

T
1

]
XTXv1.
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To solve the inverse appeared in the above equation, we apply Lemma 2 and noting that

tr
(
ξ2Φ1v1v

T
1 ξ

−2I
)
= Φ1∥v1∥2,

then (
ξ2I + ξ2Φ1v1v

T
1

)−1
=

1

ξ2
I − 1

1 + Φ1∥v1∥2
ξ2Φ1v1v

T
1

ξ4

=
1

ξ2

(
I − Φ1v1v

T
1

1 + Φ1∥v1∥2

)
=

1

ξ2

(
I − 1

1 + ξ2

Φ1∥θ∥2

θθT

∥θ∥2

)
,

where we use that θ = ξv1 in the last equality, which enables us to simplify P:

P =
(
ξ2I + ξ2Φ1v1v

T
1

)−1 [
ξ3Φ1I + ξ3(Φ2 +Φ3)v1v

T
1

]
XTXv1

= Φ1

(
I − 1

1 + ξ2

Φ1∥θ∥2

θθT

∥θ∥2

)[
I +

Φ2 +Φ3

ξ2Φ1
θθT

]
XTXθ

= Φ1

[
I −

(
1

∥θ∥2 + ξ2

Φ1

− Φ2 +Φ3

ξ2Φ1
+

∥θ∥2

∥θ∥2 + ξ2

Φ1

Φ2 +Φ3

ξ2Φ1

)
θθT

]
XTXθ

= Φ1

[
I − Φ2

1 − Φ2 − Φ3

Φ2
1∥θ∥2 + ξ2Φ1

θθT
]
XTXθ.

Thus Eq. (91) for the overall SDE of θ now becomes

1

ξ2

(
I − 1

1 + ξ2

Φ1∥θ∥2

θθT

∥θ∥2

)
dθ − 4ηL

n
Pdt = −∂L

∂θ
dt+ 2

√
ηL
n

(XT dWt). (92)

The balanced initialization gives us Eq. (87), (88), and (89), and recall that

λL =
2(L− 1)

2L− 1
,

thus we can further rewrite

1

ξ2

(
I − 1

1 + ξ2

Φ1∥θ∥2

θθT

∥θ∥2

)
=

1

ξ2

(
I − 1

1 + 1
2(L−1)

θθT

∥θ∥2

)

=
1

ξ2

(
I − λL

θθT

∥θ∥2

)
(93)

and

P =
1

ξ2

(
I − λL

θθT

∥θ∥2

)[
ξ2Φ1I + (Φ2 +Φ3)θθ

T
]
XTXθ

=
1

ξ2

[
ξ2Φ1I +

(
(Φ2 +Φ3)(1− λL)−

λLξ
2Φ1

∥θ∥2

)
θθT

]
XTXθ

=
1

ξ2

[2(L− 1)ξ4

∥θ∥2
I + ((L− 1 + 4(L− 1)(L− 2))(1− λL)− 2(L− 1)λL)

ξ4

∥θ∥4
θθT

]
XTXθ

=
ξ2

∥θ∥2

[
2(L− 1)I − 3(L− 1)

2L− 1

θθT

∥θ∥2

]
XTXθ

=
2(L− 1)ξ2

∥θ∥2

(
I − θθT

2∥θ∥2

)
XTXθ. (94)
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Thus, Eq. (91) now3 can be rewritten as

1

ξ2

(
I − λL

θθT

∥θ∥2

)
dθ − 8ηL

n

(L− 1)ξ2

∥θ∥2

(
I − 1

2

θθT

∥θ∥2

)
XTXθdt

= −∂L
∂θ
dt+ 2

√
ηL
n

(XT dWt). (95)

Finding the form of V S(θ). We now proceed to find the form of V S(θ). For convenience, we
apply a time re-scaling technique such that dτ = |ξ|dt (dWτ =

√
|ξ|dWt according to [12]) to the

above equation. For convenience, we still use t to represent the time after re-scaling. Then the above
equation becomes

1

∥θ∥
2(L−1)
2L−1

(
I − λL

θθT

∥θ∥2

)
dθ − 8ηL

n

(L− 1)ξ2

∥θ∥2

(
I − 1

2

θθT

∥θ∥2

)
XTXθdt

= −∂L
∂θ
dt+ 2

√
η|ξ|L
n

(XT dWt). (96)

Recall that θ(0) ∈ Rd is the initialization of θ, since V S(θ) for SGD should have similar form as that
for GD, we borrow from the GD results and first define a constant vector γ ∈ Rd

γ = −∥θ(0)∥−
2L−2
2L−1 θ(0).

Suppose now that V S has the following form:

V S(θ, t) =
2L− 1

2L
∥θ∥

2L
2L−1 + γT θ + g(t)T θ for g ∈ Rd, (97)

by similar techniques as in the case of GD, we obtain the first and second derivatives of V S(θ) w.r.t
θ:

∂θV
S(θ, t) = ∥θ∥−

2(L−1)
2L−1 θ + γ + g(t),

∂2θV
S(θ, t) =

1

∥θ∥
2(L−1)
2L−1

[
I − λL

θθT

∥θ∥2

]
.

There exists a function of θ, G(θ) whose exact form can be derived but not necessary for us,
corresponding to our V S(θ, t) defined above, such that d∂θV S(θ, t) can be written as

d∂θV
S(θ) = ∂θ

(
∂θV

S(θ, t)
)
dθ + ∂t

(
∂θV

S(θ, t)
)
dt+

∂2

∂θ∂θ
∂θV

S(θ, t)(dθ)2

= ∂θ
(
∂θV

S(θ, t)
)
dθ +

[
∂t
(
∂θV

S(θ, t)
)
+G(θ)

∂2

∂θ∂θ
∂θV

S(θ, t)

]
dt

Now suppose that we can choose a particular g(t), thus a particular G(θ), such that the following
relation is satisfied:

∂

∂t
∂θV

S(θ, t) +G(θ)
∂2

∂θ∂θ
∂θV

S(θ, t)

= − 8ηL
n

(L− 1)ξ2

∥θ∥2

(
I − 1

2

θθT

∥θ∥2

)
XTXθ, (98)

then we can rewrite the SDE of ∂θV S(θ, t) as follows:

d∂θV
S(θ) = ∂θ

(
∂θV

S(θ, t)
)
dθ + ∂t

(
∂θV

S(θ, t)
)
dt+G(θ)

∂2

∂θ∂θ
∂θV

S(θ, t)dt

=
1

∥θ∥
2(L−1)
2L−1

(
I − λL

θθT

∥θ∥2

)
dθ − 8ηL

n

(L− 1)ξ2

∥θ∥2

(
I − 1

2

θθT

∥θ∥2

)
XTXθdt (99)

3Note that when L = 1 we do not have the second dt term in the LHS of the equation, this term is brought
by adding layers to the model.
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which will give us the desired “mirror flow” equation:

d∂θV
S(θ) = −∇θLdt+ 2

√
η|ξ|L
n

XT dWt.

It is now suffice for us to find the particular g(t) that makes Eq. (98) satisfied. For convenience, recall
that for a vector a we use aµ to denote its µ-th component, we define the following helper notations:

k = 2ξ2
√
ηL
n

∈ R, (100)

B =

[
I + 2(L− 1)

θθT

∥θ∥2

]
XT ∈ Rd×n, (101)

dθµ = Oµdt+
∑
i

BµidWt,i, (102)

Dµ(θ, t) =

(
∂V S(θ, t)

∂θ

)
µ

= ∥θ∥−λLθµ + γµ + gµ(t), D(θ, t) ∈ Rd, (103)

δρσ = 1 if ρ = σ otherwise δρσ = 0, (104)

where the exact form ofO can be obtained from Lemma 3 but is not necessary for us. In the following,
we use D to represent D(θ, t) for convenience. For our purpose of choosing the particular g(t),
dD(θ, t) = d∂θV

S(θ, t) should match the R.H.S of Eq. (99). To make this relation clear, according
to the Ito’s Lemma, we obtain that

dD = ∂tDdt+ ∂θDdθ +
1

2

∑
ρ,σ

∂2D

∂θρ∂θσ
dθρdθσ︸ ︷︷ ︸

♠

,

where the last term is crucial. From the SDE of θ (Lemma 3), we have that the dθρdθσ appeared in ♠
can be written as

dθρdθσ = k2
∑
j,i

BjσBρidWt,idWt,j = k2
∑
i

BiσBρidt.

On the other hand, according to

∂θD = ∂2θV
S(θ, t) =

1

∥θ∥λL

(
I − λL

θθT

∥θ∥2

)
,

we have that, with explicit subscripts of vectors,

∂2Dµ

∂θρ∂θσ
=

∂

∂θσ

[
∥θ∥−λL

(
δµρ − λL

θρθµ
∥θ∥2

)]
= −λL∥θ∥−λL−2δµρθσ − λL

∂

∂θσ

(
∥θ∥−λL−2θρθµ

)
= −λL∥θ∥−λL−2δµρθσ

− λL
[
−(λL + 2)∥θ∥−λL−4θσθµθρ + ∥θ∥−λL−2(δρσθµ + δµσθρ)

]
= − λL

∥θ∥λL+2
(δµρθσ + δµσθρ)−

λL
∥θ∥λL+2

θµ

(
δρσ − (λL + 2)

θρθσ
∥θ∥2

)
. (105)

Note that the above expression implies that ∂2D
∂θ∂θ is in fact a rank-3 tensor. Combined with the

expression of dθρdθσ derived above, we have that

♠ = − k2λL
2∥θ∥λL+2

∑
ρ,σ

∑
i

δµρθσ + δµσθρ︸ ︷︷ ︸
Hρ

µσ

+θµ
(
δρσ − (λL + 2)

θρθσ
∥θ∥2

)
︸ ︷︷ ︸

Pρσ

BσiBiρdt (106)

where H ∈ Rd×d×d is a rank-3 tensor. To get the exact form of ♠, we need to have the exact forms
of
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1.
∑

ρ,σ,iH
ρ
µσBσiBiρ. Note that HBB ∈ Rd and there are two different terms, both of which will

induce a same vector. In particular,∑
ρ,σ,i

δρµθσBσiBiρ =
∑
ρσ,i

BµiBiσθσ = (BBT θ)µ∑
ρ,σ,i

δµσθρBσiBiρ = ((θTBBT )T )µ = (BBT θ)µ.

Thus we have ∑
ρ,σ,i

Hρ
µσBσiBiρ = 2(BTBθ)µ,

where

BBT θ =

(
I + 2(L− 1)

θθT

∥θ∥2

)
XTX

(
I + 2(L− 1)

θθT

∥θ∥2

)
θ

=

(
I + 2(L− 1)

θθT

∥θ∥2

)
XTX (θ + 2(L− 1)θ)

= (2L− 1)

[
I + 2(L− 1)

θθT

∥θ∥2

]
XTXθ. (107)

2.
∑

ρ,σ,i P
σ
ρ B

i
σB

ρ
i . Using the matrix notation, we can easily find that∑

ρ,σ,i

Pσ
ρ B

i
σB

ρ
i = tr

(
BTPB

)
,

where, recall the definition of B in Eq. (101),

BTPB = X

(
I + 2(L− 1)

θθT

∥θ∥2

)(
I − (λL + 2)

θθT

∥θ∥2

)(
I + 2(L− 1)

θθT

∥θ∥2

)
XT

= X

[
I + (2(L− 1)− (λL + 2)− 2(L− 1)(λL + 2))

θθT

∥θ∥2

]
×
[
I + 2(L− 1)

θθT

∥θ∥2

]
XT

= X

[
I − 2(2L− 1)

θθT

∥θ∥2

] [
I + 2(L− 1)

θθT

∥θ∥2

]
XT

= X

[
I − (8L2 − 10L+ 4)

θθT

∥θ∥2

]
XT . (108)

Taking the trace of the above equation gives us the second term of ♠:

tr
(
BTPB

)
= tr

(
XTX

)
− (8L2 − 10L+ 4)

θT

∥θ∥2
XTXθ.

Now removing the µ subscript of the derived
∑

ρ,σ,iH
ρ
σ,µBσiBiρ and recovering the matrix notation,

we have the final form of ♠ by combining it with the result of tr
(
BTPB

)
♠ = − k2λL

2∥θ∥λL+2

[
2(2L− 1)

(
I + 2(L− 1)

θθT

∥θ∥2

)
XTXθ

]
− k2λL

2∥θ∥λL+2

[
θtr
(
XTX

)
− (8L2 − 10L+ 4)

θθT

∥θ∥2
XTXθ

]
=
k2

2

[
− λL
∥θ∥λL+2

tr
(
XTX

)
θ − 4(L− 1)

∥θ∥λL+2

(
I − L

2L− 1

θθT

∥θ2∥

)
XTXθ

]
dt. (109)

Thus the SDE of D now becomes

dD = ∂θDdθ

+

[
∂tD − k2λL

2∥θ∥λL+2
tr
(
XTX

)
θ − 2k2(L− 1)

∥θ∥λL+2

(
I − L

2L− 1

θθT

∥θ2∥

)
XTXθ

]
dt
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To find the particular g(t) such that Eq. (98) is satisfied, we need to require that

∂tD − k2λL
2∥θ∥λL+2

tr
(
XTX

)
θ − 2k2(L− 1)

∥θ∥λL+2

(
I − L

2L− 1

θθT

∥θ2∥

)
XTXθ

= −8ηL
n

(L− 1)ξ2

∥θ∥2

(
I − 1

2

θθT

∥θ∥2

)
XTXθ.

Recall that D = ∥θ∥−λLθ + γ + g(t), we have

∂tD = g′(t),

which, noting that k2 = 4ξ4ηL/n, further gives us that the following relation should be satisfied

g′(t)− 2ξ4ηL
n∥θ∥λL+2

[
λLtr

(
XTX

)
θ + 4(L− 1)

(
I − L

2L− 1

θθT

∥θ2∥

)
XTXθ

]
= −8ηL

n

(L− 1)ξ2

∥θ∥2

(
I − 1

2

θθT

∥θ∥2

)
XTXθ.

As a result of this, we can, noting that ξ2 = ∥θ∥2λL from ∥θ∥2 = ξ2∥v1∥2, give the required g(t)
that makes Eq. (98) satisfied by solving the following equation:

g′(t) =
2λLηtr

(
XTX

)
L∥θ∥ λL−2

n
θ

+
8η(L− 1)L∥θ∥λL−2

n

[
I − I −

(
L

2L− 1
− 1

2

)]
XTXθ

=
2λLηL∥θ∥ λL−2

n
tr
((

I − θθT

∥θ∥2

)
XTX

)
θ. (110)

Now let the orthogonal projection operator of θ be P⊥(θ) = I − θθT

∥θ∥2 , then we can solve g(t) as

g(t) =
2λLη

n

∫ t

0

L(θ)∥θ∥ λL−2θtr
(
P⊥(θ)X

TX
)
ds. (111)

With this particular g(t), we can then give V S(θ, t)

V S(θ, t) =
1

ΩL
∥θ∥ΩL + θT

[
2λLη

n

∫ t

0

L(θ)∥θ∥ λL−2θtr
(
P⊥(θ)X

TX
)
ds− θ(0)

∥θ(0)∥λL

]
(112)

that satisfies the relation

d∂θV
S(θ) = −∇θLdt+ 2

√
ηLξ
n
XT dWt.

Moreover, a particular interesting case is that, as L→ ∞,

lim
L→∞

V (θ, t) = ∥θ∥+ θT

[
2η

n

∫ T

0

L(θ)
∥∥P⊥(θ)X

T
∥∥2
F

θ

∥θ∥
ds− θ(0)

∥θ(0)∥

]
. (113)
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