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Abstract

Deep neural networks can obtain impressive performance on various tasks under
the assumption that their training domain is identical to their target domain. Perfor-
mance can drop dramatically when this assumption does not hold. One explanation
for this discrepancy is the presence of spurious domain-specific correlations in
the training data that the network exploits. Causal mechanisms, in the other hand,
can be made invariant under distribution changes using transportability theory
as it allows disentangling the domain-specific and stable factors underlying the
data generation. Yet, learning transportable causal mechanisms to improve out-
of-distribution generalisation in deep neural networks remains an under-explored
area. We propose a Bayesian neural architecture that disentangles the learning
of the data distribution from the inference process mechanisms. We show theo-
retically and experimentally that our model approximates reasoning under causal
interventions. We demonstrate the performance of our method, outperforming
point estimate-counterparts, on out-of-distribution image recognition tasks where
the data distribution acts as strong adversarial confounders.

1 Introduction

The training of deep neural networks commonly relies on the assumption that the distribution of
the training data is representative of the distribution at inference. Despite being widely adopted,
this assumption has been heavily criticised as it is often challenged in practice [18, 4, 1, 2, 14].
Indeed, despite tremendous progress on many vision tasks over recent years, deep neural networks
face limitations and reduced performance on tasks requiring the model to shift from its training
distribution at test time [24].

Causality theory under the do-calculus framework [12, 25] provides tools to explain these limitations.
Neural networks extract correlation patterns but do not possess knowledge on the cause-effect
relationships from the data; causal links and potentially spurious correlations are learned alike.
However, the two relationships fundamentally differ as correlations can be non-causal: e.g. a
correlation between X and Y can be explained by a causal link X ← Z → Y . This type of
correlation can be specific to the distribution if Y depends on the domain. Direct causal links make
these relationships explicit and are therefore more robust to changes in the distribution [28]. In
particular, the Independent Causal Mechanisms principle states that causal relationships are only
sparsely connected and altering one should not modify the others [26, 28], allowing some learned
mechanisms to be transported to new environments. Indeed, changes in the distribution can be
modelled via the notion of transportability of causal mechanisms [3, 14]. As such, transportable
causal effects are equivalent to domain-invariant features. These principles motivate the search for
factorised neural models composed of independent modules representing either domain-specific or
domain-invariant conditional distributions.
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(a) Target causal mechanism. R is a latent
representation of X estimating ZR. This rep-
resentation allows computing interventional
queries transportable across domains using
R. However, it is not directly accessible via
supervised learning.
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(b) Causal graph during training. The inference mechanism de-
termining Y is estimated using a function fw(r) parametrised
by the weights w ∼ W and with an input representation
r ∼ R. W is learned from the training data D (training target
DY and representation DR learned from DX ) and stochastic
processes represented by the random variable UW .

Figure 1: Target causal representation and actual causal graph during training. X is the input image
and Y is the output class. Z is the variable representing the factors of distribution generating the
input X , it is composed of domain-specific factors ZS and robust domain-invariant factors ZR. UXY

represents the shared factors of variations between X and Y . The variables in red are unobserved.
S is a selection variable determining the current domain. The target causal graph is different from
the one used in supervised deep learning as it omits the influence of the datasets D = {DX ,DY }.
The datasets depend on the same factors as X and Y and add spurious correlations (UXY and UR)
between the training and target domains that are not captured when using the target representation.

Bayesian neural networks (BNNs) [21, 6, 22] are another line of work attempting to model
robust representations of mechanisms by learning the distribution W of a parametric function
y = fw(x), w ∼W instead of a single point estimate w. BNNs are particular suited to express uncer-
tainty in their response and reduce overconfidence. By differentiating the modelling of uncertainty in
the data distribution (aleatoric uncertainty) from the uncertainty in the process distribution (epistemic
uncertainty), BNNs can better capture the latter [15]. However, BNNs are not fundamentally more
robust against distribution shifts than their point-estimate counterparts [13]. This problem can be
explained by the intractability in the optimisation of the posterior [22]. Motivated by the use of
partially stochastic networks [29], we argue that BNNs should also be integrated in a wider framework
estimating causal mechanisms.

We propose a Causal-Invariant Bayesian (CIB) neural network taking advantage of the causal
structure of the supervised learning process to differentiate domain-specific and domain-invariant
mechanisms. Compared to previous work, we integrate a more realistic causal graph that takes into
account the Bayesian model update during learning. We use variational inference and partially-
stochastic Bayesian neural networks to model the causal paths in an interventional setting. We verify
theoretically and experimentally the applicability of our method. In particular, we perform tests on
standard out-of-distribution (o.o.d) image recognition tasks. Our contributions are as follows:

• We reformulate the Bayesian inference problem to include causal interventions and the
supervised learning mechanism and propose a factorised model explicitly modelling domain-
invariant mechanisms in an unsupervised fashion,

• We propose an architecture wrapped around a neural network inspired by this factorised
model and test it on challenging tasks requiring domain shifts,

• We show that adding our model can increase the i.i.d and o.o.d performance of the underlying
neural network and reduce overfitting,

• Additionally, we find with our model that adding unsupervised contextual information with
a Bayesian classifier to a standard ResNet improves its robustness and training stability,
even with a small number of context and Bayesian weight samples.

Our code is available at this anonymous repository: https://anonymous.4open.science/r/
cibnn-1B0B.
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2 Background and Related Work

Causal Inference and Transportability Causal inference methods aim to estimate the result of
causal queries. Answering these queries require an inference model to have a partial knowledge
of the causal mechanisms underlying the studied system. The problem of formally representing
causal quantities is addressed by the do-calculus framework, which introduces the do(·) operator
corresponding to an intervention on a causal variable [25]. For example, given a treatment T and
background covariates X , the probability of getting cured given by C can be expressed with the query
P (C|do(T ), X). The do-operation implies that the treatment is received in an unbiased manner (i.e.
as in a double-blind study). An interventional query as described in the example can be reduced
to observations using the rules of do-calculus. We describe them in Appendix B.1. Recent work
has attempted to model domain generalisation in classification tasks using causal representations
[23, 20, 8, 30, 33]. However, they handle domain shifts in different ways. For instance Mahajan et al.
[23] considers the domain as an observed causal variable while it in unobserved in Wang et al. [33].

Transportability theory [3] provides a unified representation of domain shifts in causal graphs and
allows representing causal mechanisms across multiple domains by differentiating domain-specific
and domain-invariant causal variables. Assuming the domains can be represented with a unified
causal graph, domain-specific mechanisms can be modelled by a selection variable whose value
depends on the current domain. The S-admissibility criterion [14] states that the value of a causal
variable A is invariant when shifting from a domainMi to a domainMj if it can be d-separated
from all selection variables Sij (given observations Z), i.e. A ⊥⊥ Sij |Z =⇒ P i(A|Z) = P j(A|Z).
Mao et al. [24] also integrate causal transportability for vision tasks but do not include the Bayesian
learning process. They combine input and contextual information differently and only select context
with the same label during training. Conversely, we make the assumption that the context should be
diverse and representative of the label distribution. We use label mixup to this end. We also include
new regularisation techniques.

Bayesian Neural Networks and Variational Inference Bayesian deep learning methods teach
neural networks to simulate Bayesian reasoning when learning new information. This approach allows
dealing with uncertainty and has been argued to help mitigate overconfidence and improve robustness
in neural networks [22]. Bayesian Neural Networks (BNNs) model the distribution of parametric
functions solving a task: the parameters w of a BNN are not directly optimised but sampled from
a learned posterior distribution P (w|D). This distribution can be obtained via the Bayes objective:
P (w|D) = P (D|w)P (w)

P (D) . However, training BNNs is challenging because the computation of the
denominator (called the evidence) is often intractable [13]. A standard way to circumvent this issue
is to approximate the posterior P (w|D) with a variational distribution q(w). This distribution can
be estimated by maximising the Evidence Lower Bound (ELBO) [6]. This quantity can have many
expressions, the one most suitable for our work is shown in Equation 1. It simultaneously maximises
the likelihood of the data D = {Dx,Dy} given the model w while maintaining the distribution q(w)
close to the prior P (w).

ELBO(q) = Eq(w)[logP (Dy|Dx, w)]− KL(q(w)||P (w)) (1)

Izmailov et al. [13] showed that the posterior distribution of BNNs have a high functional diversity
and can outperform their point-estimate counterparts on downstream tasks. However, they do not
necessarily show a high diversity in the parameters space and strictly following Bayesian posteriors
can lead to reduced robustness against distribution shifts. Sharma et al. [29] further showed that
partially-stochastic BNNs outperform networks containing only Bayesian layers. Roy et al. [27]
recently showed that inducing BNNs to assign similar posterior densities to reparametrisations of the
same functions (i.e. different weights realising the same function) could improve their ability to fit
the data. These findings motivate our work on integrating BNNs as a part of a larger causal neural
network.

3 Interventional Bayesian Inference

We propose to learn deep domain-invariant representations that can be leveraged to solve o.o.d tasks.
In this section, we show the necessary assumptions needed to learn this representation in a supervised
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fashion and identify an interventional query that can solve the task. We show that this query can be
answered using Bayesian Neural Networks [21, 6, 22]. Section 4 describes our proposed architecture.

Interventional queries The causal graph in Figure 1b shows the causal dependencies between
the variables involved in the learning process. The standard inference query P (Y |x) is affected by
spurious correlations as they do not distinguish the causal links X

...−→ Y (i.e. X → · · · → Y )
and their common causes Z

...←− UXY
...−→Y . In causality theory, the do(·) operator removes the

incoming dependencies of the target variable [25]. Therefore, the interventional query P (Y |do(x))
solves the confounding issue [24]. However, it does not take into account the conditioning on the
training data D. We specify an interventional query that makes the dependency on the data explicit.
Note that we simplify the formalism by considering the label Ytrue and predicted value Ypred with
a single variable Y . This is equivalent to having a prediction loss L(Ypred, Ytrue) = 0. Conditional
distributions independent from the domain selection variable S are transportable across domains [14].
This independence can be obtained using the do(·) operation by removing the outgoing dependencies
of S. The conditional distribution P (y|do(x), do(DX),DY ) is transportable across domains but
is not tractable as it requires marginalising over all possible input distributions (via the frontdoor
criterion). We give more details in Appendix B.3. Instead, we use a partially transportable query
P (y|do(x),DX ,DY ). Equation 2 formulates it using observations only (proof in Appendix B.2):

P (y|do(x),DX ,DY )

=

∫
w

P (w|DX ,DY )︸ ︷︷ ︸
marginalisation over W

∫
r

P (r|x,w,DX ,DY )︸ ︷︷ ︸
marginalisation over R

∫
x′
P (x′|DX ,DY )︸ ︷︷ ︸

marginalisation over X

inference︷ ︸︸ ︷
P (y|x′, r, w,DX ,DY ) dx

′ dr dw

(2)

The interventional query must be decomposed into four components to be represented using obser-
vations only. The marginalisation over W is equivalent to an application of the backdoor criterion
and ensures that no backdoor paths exist between Y and W . The marginalisations over X and R
are applications of the frontdoor criterion. The combination of these mechanisms ensure that no
backdoor paths exist between the input X and the output Y that could bias the training.

Transportability We have identified an unbiased interventional query from observational in-
formation only. We now study the transportability of each component across domains using the
S-admissibility criterion [14]: conditional probabilities independent from the domain selection vari-
able S are transportable. We assume a training source domainMs and a target test domainMt, it
follows graphically that:

(W ⊥⊥ S|DX ,DY )G∆st (3)
(R ⊥⊥ S|X,W,DX ,DY )G∆st (4)

(X ̸⊥⊥ S|DX ,DY )G∆st (5)
(Y ̸⊥⊥ S|X,R,W,DX ,DY )G∆st (6)

The first two quantities are S-admissible and can be written as P s(w|DXs
,DYs

) =
P t(w|DXt

,DYt
) = P ∗(w|DX ,DY ) and P s(r|x,w,DXs

,DYs
) = P t(r|x,w,DXt

,DYt
) =

P ∗(r|x,w,DX ,DY ). The last two quantities are not S-admissible and require to have access
to information DXt

,DYt
on the target domain. This is an expected result for P (x′|DX ,DY ). Indeed,

the input X directly depends on the distribution of its factors of variations. We must learn a suitable
representation of X to use it for inference. Note that this probability is independent of Y and does not
require access to labelled data. Under the current SCM problem formulation, P (y|x′, r, w,DX ,DY )
is not S-admissible because of the backdoor path between the training data D and the inference
target Y . However, in out-of-distribution settings, the training and target domains can differ and the
backdoor path may not exist. This is a reasonable expectation as the converse of the S-admissibility
criterion does not hold: non S-admissibility does not implies non-transportability.
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Figure 2: Architecture of the Causal-Invariant Bayesian (CIB) neural network. At the top (in blue),
a variational encoder generates the respective parameters of the distributions of the intermediate
representations R and {R′

i}Ni=1 of X and the contextual information {X ′
i}Ni=1. R and {R′

i}Ni=1 are
then provided to the inference module (in orange) that retrieves Y . This procedure aims to disentangle
the learning of the representation R from the learning of the inference mechanisms and force the
inference module to only learn the latter. The weights W of the inference module are sampled from a
distribution learned using variational inference (in green). The weight sampling and the variational
encoding are regularised using an ELBO loss.

4 Causal-Invariant Bayesian Neural Network

We now propose our Causal-Invariant Bayesian (CIB) architecture estimating the posterior probability
defined above using sampling strategies for each quantity. The architecture is summarised in Figure 2.
It can be decomposed into three components:

• A variational encoder (in blue) learning domain-invariant information R by jointly optimis-
ing the inference loss with an ELBO loss,

• An inference module (in orange) combining domain-specific and domain-invariant informa-
tion to solve the task,

• A weight distribution W (in green) learned by optimising the inference objective with an
ELBO loss and from which are sampled the parameters of the inference module.

The variational encoder is used to learn the intermediate domain-invariant representations R and
{R′

i}Ni=1. The network weights are learned by optimising an ELBO loss. Existing work attempting to
disentangle domain-specific and domain-invariant features typically use a Variational Autoencoder
(VAE) and add a reconstruction loss [10, 34, 35]. However, we find that a single encoder can yield
better performance. By jointly giving the input and the context to the encoder, we teach it to discard
irrelevant domain-specific features at once. We use a pre-trained ResNet-18 [11] without the final
classification layer as the encoder. For comparison, we perform additional experiments with the
Causal Transportability architecture that integrates a VAE and a reconstruction loss [24]. Following
the methodology of partially-stochastic neural networks [29], we use a point-estimate network for the
encoder and only use a Bayesian network for the inference network. This choice allows to maintain
the expressivity on the level of uncertainty inherent to Bayesian neural networks while having a
limited impact on the optimisation efficiency. For the inference model, we use a dense network with
stochastic layers for the input and output and a single point-estimate hidden layer. The inference
module takes batches of N inputs. Each input is a sum of the input representation R and one context
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Table 1: Accuracy on CIFAR-10. The CIFAR-10 column shows the results on the i.i.d test set while
the columns on the right show the results with an increasing level of perturbation of the test set. The
mean and standard deviation across three runs are shown. Our model outperforms the baselines and
the ablated models. Particularly, mixup information has a significant impact on the final accuracy.

CIFAR-10 CIFAR-10-o.o.d-perturb.
0.1 0.2 0.4

ResNet-18 0.739 ± 0.005 0.599 ± 0.017 0.471 ± 0.022 0.284 ± 0.010
ResNet-18-CT 0.682 ± 0.004 0.507 ± 0.010 0.397 ± 0.006 0.244 ± 0.010
-w/-pretrainedVAE 0.641 ± 0.004 0.464 ± 0.017 0.358 ± 0.015 0.229 ± 0.010

CIBResNet-18 (ours) 0.763 ± 0.004 0.646 ± 0.006 0.510 ± 0.012 0.301 ± 0.006
-w/o-mixup 0.761 ± 0.004 0.625 ± 0.013 0.494 ± 0.009 0.297 ± 0.004
-w/o-weight-func 0.762 ± 0.009 0.635 ± 0.010 0.505 ± 0.009 0.305 ± 0.007

representation R′
i. We select the mean of the results with respect to N to estimate the marginalisation

over the context.

We use a reparametrisation trick [5] to maintain the full differentiability of the network. Following
Elfwing et al. [9], we change the activation layers from ReLU to SiLU. We add a label-mixing
regularisation scheme to complement the contextual information during training, following the
procedure used in Mixup [36] and Manifold Mixup [32]. We also regularise the weights sampling of
the inference module to enhance the diversity of the weights while aligning it with functional diversity
Roy et al. [27]. The loss function comprises a cross entropy prediction loss and the additional
regularisation terms from the ELBO losses and the mechanisms described above. Additional details
are provided in Appendix A.

5 Experiments

5.1 Experimental Setup

We perform experiments on i.i.d and o.o.d image recognition tasks. We first use the CIFAR10
dataset [17]. We build the o.o.d sets by performing random translations of the input images. We
also use the OFFICEHOME dataset [31] which contains four subsets of images containing objects
in various configurations (real world, product sheet, art, clipart). We train on one configuration and
evaluate o.o.d in another configuration. We compare our method against a base ResNet-18 and the
causal-Transportability (CT) algorithm of Mao et al. [24]. More details about this model and the
experimental setup are given in Appendices C and D.

5.2 Results

We compare our model against ResNet-18 and ResNet-18-CT on CIFAR10. The results are shown
in Table 1. Curiously, the base ResNet-18 outperforms the ResNet-18-CT models. This result
reinforces our hypothesis that a reconstruction loss is not necessary and can even be adversarial
in some situations. We further study how our model behaves on a more challenging dataset and
compare it with ResNet-18. Figure 3 shows the results on OFFICEHOME. Our model systematically
outperforms the baselines. Ablation studies in Table 1 demonstrate the importance of adding
contextual mixup information to the label during training to help the model incorporate the context
images during learning. We perform additional experiments in Appendix E that show that our model
yields higher stability during training and that increasing the amount of weight sampling improves
the data efficicency of our method.

6 Conclusion

We propose a Causal-Invariant Bayesian neural network architecture to improve domain generalisation
on visual recognition tasks. We build a theoretical analysis based on causality theory and taking into
account the parameter learning process. We show experimentally that following causal principles can
improve robustness to distribution shifts and reduce overfitting. We perform our analysis under the
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RealWorld 0.253 0.124 0.091 0.084

0.034 0.509 0.023 0.023

0.06 0.019 0.125 0.035

0.064 0.03 0.038 0.462

(±0.019) (±0.01) (±0.016) (±0.006)

(±0.013) (±0.061) (±0.005) (±0.009)

(±0.001) (±0.003) (±0.017) (±0.001)

(±0.01) (±0.007) (±0.006) (±0.025)

(a) ResNet-18.

RealWorld Product Art Clipart

Clipart

Art

Product

RealWorld 0.303 0.191 0.121 0.123

0.052 0.574 0.036 0.042

0.076 0.033 0.159 0.034

0.083 0.055 0.046 0.517

(±0.009) (±0.016) (±0.009) (±0.004)

(±0.003) (±0.015) (±0.002) (±0.007)

(±0.019) (±0.015) (±0.023) (±0.009)

(±0.009) (±0.01) (±0.012) (±0.009)

(b) CIBResNet-18.

Figure 3: Domain transfer results on the OfficeHome dataset. Rows show the training category and
columns show the test category. Accuracy with a random guess is 0.015. In the right figure, a cell is
shown in green if its value is higher than the baseline. We show the mean and standard deviation
across three runs. Our proposed model (right) systematically outperforms the baseline (left).

SCM framework [25]. The underlying causal model is represented by a DAG that does not allow
feedback loops. As the training of a neural network is an iterative process, a representation that
allows cycles could better represent the inner causal mechanisms behind the learning process and
help improve generalisation. This is a challenging task [7] that we will tackle in our future work.
This investigation also provides elements to motivate developing a causal theory of deep learning that
follows the Independent Causal Mechanisms principle [26, 28] as it could improve robustness and
generalisation and provide additional benefits such as improved interpretability and modularity.
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A Additional Details on the Causal-Invariant Bayesian Neural Network

This section describes additional implementation details of our proposed model.

Tractable Approximation The quantities desribed in equation 2 are not directly tractable and must
be estimated. The marginalisation over W is a standard technique from Bayesian inference [22]. The
integral can be approximated using Markov Chain Monte Carlo (MCMC) or Variational Inference
[6, 22]. Specifically:

P (y|do(x),DX ,DY )

=

∫
w

P (w|DX ,DY )

∫
r

P (r|x,w,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, w,DX ,DY ) dx

′ dr dw

≈ 1

M

M∑
j=1

∫
r

P (r|x,wj ,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, wj ,DX ,DY ) dx

′ dr

where wj ∼ P (w|DX ,DY ) and M is the amount of weight samples. The distribution of the weights
W can be learned by a Bayesian Neural Network (BNN) [21, 6, 22]. The network does not directly
learn the weights w but instead estimate the parameters of the distribution in which the weights
belong and sample the weights from this distribution at inference. The learning objective cannot be
directly optimised because of the high-dimensional and non-convex posterior distribution P (w|D).
Instead, MCMC [13] and Variational Inference [6] algorithms are preferred. The marginalisation
over R is approximated similarly:

∫
r

P (r|x,wj ,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, wj ,DX ,DY ) dx

′ dr

≈ 1

L

L∑
k=1

∫
x′
P (x′|DX ,DY )P (y|x′, rk, wj ,DX ,DY ) dx

′

where rk ∼ P (r|x,wj ,DX ,DY ) and L is the amount of latent representation samples. Variational
Autoencoders (VAEs) [16] are commonly used to estimate this distribution. In practice, we consider
a single representation R per input and context image, i.e. L = 1. Finally, the last marginalisation
can be obtained by sampling input images from the current data distribution:∫

x′
P (x′|DX ,DY )P (y|x′, r, wj ,DX ,DY ) dx

′ ≈ 1

N

N∑
k=1

P (xi|DX ,DY )P (y|xi, rk, wj ,DX ,DY )

where N is the amount of input image samples.

Context Regularisation We add a label-mixing regularisation scheme to complement the contextual
information during training, following the procedure used in Mixup [36] and Manifold Mixup [32].
We mix the true instance label yt with the labels Yxi

of the N context images xi, as described in
Equation 7.

y = α · yt + (1− α) · 1
N

N∑
i=1

yxi
(7)

Weight Function Regularisation We further regularise the weights sampling of the inference
module to enhance the diversity of the weights while aligning it with functional diversity. Following
the work of Roy et al. [27], we add a regularisation loss inducing the network to assign the same
posterior distribution to weights realising an identical function. For a batch of inputs x and a set
of weight samplesW = {wi}Mi=1, we define our weight function regularisation loss in Equation 8.
Comb(W, 2) denotes the set of 2-combinations fromW .
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Lweight_func =
∑

(wi,wj)∈Comb(W,2)

||fwi(x)− fwj (x)||2 (8)

Loss function The final loss function comprises the mixed labels loss, the weight function regulari-
sation and the regularisation terms of the ELBO losses. The mixed label loss is a cross entropy loss
between the predicted distribution and the true mixed distribution as described above. We add the
weight function regularisation loss described in the previous paragraph, weighted by a hyperparame-
ter β. Then, KL divergence losses are added for regularising the variational parameters for the input
representation (νR, σR), the context representation (νR′ , σR′) and the Bayesian weights (νW , σW ).
These additional losses are weighted by their respective hyperparameters γ, µ and ϵ. The complete
loss is shown in Equation 9.

L = CrossEntropy(ypred,y) + β · Lweight_func + γ · KL(N (νR, σR)||N (0, 1))

+ µ · KL(N (νR′ , σR′)||N (0, 1)) + ϵ · KL(N (νW , σW )||N (0, 1))
(9)

B Proofs for the Interventional Bayesian Inference

B.1 Rules of do-calculus

We first describe the three rules of do-calculus [25] as they are required for the proofs in Sections B.2
and B.3. The first rule states that an observation z can be ignored if it does not affect the outcome y
of the query given the current causal graph. The second rule states that an intervention on a variable
do(z) can be considered an observation z if there are no backdoor paths linking it to the outcome y,
i.e. if the variables Z and Y do not share any common ancestors not captured by the observation z.
The third rule states that an intervention do(z) can be ignored if there are no direct paths between Z
and Y or backdoor paths between Y and observed descendants W of Z.

The three rules are formally defined as follows. For each rule, the equality holds if the independence
test between the variable of interest Z and the outcome Y is verified in the given causal graph. The
graph GX corresponds to the initial graph with the incoming links to X removed, corresponding to
an intervention on X . The graph GX furthermore removes the outgoing links of Z. The term Z(W )
removes the incmoing links of Z if Z is not an ancestor of the observed variable W .

• Rule 1 Deletion of observation

P (y|do(x), z, w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )GX
(10)

• Rule 2 Reduction of intervention to observation

P (y|do(x), do(z), w) = P (y|do(x), z, w) if (Y ⊥⊥ Z|X,W )GXZ
(11)

• Rule 3 Deletion of intervention

P (y|do(x), do(z), w) = P (y|do(x), w) if (Y ⊥⊥ Z|X,W )G
X,Z(W )

(12)

B.2 Identifiability of P (y|do(x),DX ,DY )

Proof. Proof of Equation 2. We start by marginalising on W to block the backdoor path between
R and Y (R← UR → DR → W → Y ) and use the rules of do-calculus to simplify the quantities.
This step ensures that we can later apply the frontdoor criterion with R and block the backdoor paths
between X and Y.

P (y|do(x),DX ,DY )

=

∫
w

P (y|do(x),DX ,DY , w)P (w|do(x),DX ,DY ) dw Marginalisation over W

=

∫
w

P (y|do(x),DX ,DY , w)P (w|DX ,DY ) dw Rule 3: (W ⊥⊥ X|DX ,DY )GX
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We now focus on the quantity in the red box. We must use the frontdoor criterion to block all backdoor
paths between X and Y: X ← UXY → Y , X ← Z → DX ← UXY → Y . We marginalise on R.

P (y|do(x),DX ,DY , w)

=

∫
r

P (y|do(x),DX ,DY , w, r)P (r|do(x),DX ,DY , w) dr Marginalisation over R

=

∫
r

P (y|do(x),DX ,DY , w, r)P (r|x,DXDY , w) dr Rule 2: (R ⊥⊥ X|DX ,DY ,W )GX

Again, we focus on the quantity in the blue box. We continue to apply the frontdoor criterion and
marginalise on X after switching the intervened variable using do-calculus rules.

P (y|do(x),DX ,DY , w, r)

=P (y|do(x), do(r),DX ,DY , w) Rule 2: (Y ⊥⊥ R|X,DX ,DY ,W )GXR

=P (y|do(r),DX ,DY , w) Rule 3: (Y ⊥⊥ X|R,DX ,DY ,W )GXR

=

∫
x′
P (y|do(r),DX ,DY , w, x

′)P (x′|do(r),DX ,DY , w) dx
′ Marginalisation over X

=

∫
x′
P (y|r,DX ,DY , w, x

′)P (x′|do(r),DX ,DY , w) dx
′ Rule 2: (Y ⊥⊥ R|X,DX ,DY ,W )GR

=

∫
x′
P (y|r,DX ,DY , w, x

′)P (x′|DX ,DY , w) dx
′ Rule 3: (X ⊥⊥ R|DX ,DY ,W )GR

=

∫
x′
P (y|r,DX ,DY , w, x

′)P (x′|DX ,DY ) dx
′ Rule 1: (X ⊥⊥W |DX ,DY )G

We put together all the quantities and obtain Equation 2:

P (y|do(x),DX ,DY )

=

∫
w

P (w|DX ,DY )

∫
r

P (r|x,w,DX ,DY )

∫
x′
P (x′|DX ,DY )P (y|x′, r, w,DX ,DY ) dx

′ dr dw

B.3 Intractability of P (y|do(x), do(DX),DY )

Proof. Proof of the intractability of P (y|do(x), do(Dx),Dy). We show that estimating this query
from observational data requires to marginalise on DX . We take as a postulate that this is an
intractable operation because it implies to access all possible input domains. We also note that
estimating this operation via sampling can be achieved but goes against the purpose of domain
generalisation as we aim to adapt to new domains from limited information.

From the causal graph in Figure 1b, we observe two causal paths linking DX to Y :

1. A direct path: DX → DR →W → Y

2. A backdoor path: DX ← Z → X → R→ Y

3. A backdoor path: DX ← UXY → Y

The third path is blocked by the do operation on X but the first two paths realise the frontdoor criterion
as shown in the simplified causal graph in Figure 4. The expression can therefore be simplified as
follows:

P (y|do(x), do(DX),DY )

=

∫
a

P (a|DX , do(x),DY )

∫
D′

X

P (y|do(x),D′
X ,DY )P (D′

X |do(x),DY ) dD′
X frontdoor criterion
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DX A Y

UXY

Figure 4: Simplified causal graph linking the input domain DX to the output label Y . The paths can
be simplified as a backdoor path via UXY and a direct path through an an abstract variable A.
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Figure 5: Illustration of the Causal Transportability baseline model.

Answering this query from observations requires marginalising on DX , as highlighted in blue.

We can see graphically that this path cannot be blocked by any other variable than DX because the
variable UXY is not observed, therefore marginalising on DX is necessary.

C Details on the Causal Transportability Model

We implement the Causal Transportability algorithm defined by Mao et al. [24] as a baseline. The
model is illustrated in Figure 5. The algorithm realises the following quantity:

P (y|do(x)) = P (r|x)
N∑

k=1

P (y|r, xi)P (xi) (13)

The sampling strategy is the same as the one used in our work. The authors use a small network
composed of three convolution layers followed by two fully connected layers to realise the quantity
P (y|r, xi). For a fair comparison with our model, we replace it with a modified ResNet-18. We alter
the first layer is modified to take a concatenation of an input image x with the representation r. The
rest of the network is left untouched. The quantity P (r|x) can be obtained via several methods. We
use a VAE in our implementation, as the main method described in the original paper. We use the
model in two settings. First, we jointly train the VAE and the inference network. Second, we compare
this baseline against a second model where we train the VAE separately on a reconstruction task and
then include the weights to the full model. We allow the training of the VAE weights at the second
stage as we observed that freezing the weights leads to decreased performance.
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D Experimental Details

We compare our CIBResNet-18 against ResNet-18 and ResNet-18-CT in i.i.d and o.o.d settings.
The second baseline is the causal-Transportability (CT) algorithm of Mao et al. [24]. Following
their methodology, we use a VAE for the P (R|X) encoder. Their proposed inference network is a
three-layers convolution network followed by a two-layers dense classifier. For a fair comparison, we
use a modified ResNet-18 (the same size as our model) that takes input and contextual information.
More details are given in Appendix C. We conduct our experiments on a single GPU Nvidia A100
with the AdamW optimiser [19]. We initialise the Bayesian classifier parameters from the Normal
distribution N (0, 1). On CIFAR-10, we train our model and the baselines for 20 epochs. We find
that all models usually do not show improvements after 10 epochs. On OFFICEHOME, we train
the models for 80 epochs. The training sets contain less samples than CIFAR-10 and more epochs
are required for convergence. ResNet-18 stops improving after 40 epochs while CIBResNet-18
keep improving until around 60 epochs. We use hyperparameter grid search on the validation set of
CIFAR-10 to set the hyperparameters. We use the default learning rate of 0.005 for the baselines and
0.01 for CIBResNet-18. We use a batch size of 64. By default, we use N = 16, M = 16, α = 0.4,
β = 0.01, γ = 10−6, ν = 10−6 and ϵ = 10−6. The remaining hyperparameters are set to their
default values. When evaluating the models in o.o.d settings, we use the batch statistics to build the
mean and variance in the batch normalisation layers instead of the values learned on the training set
that follow a different distribution.

E Additional Experiments

E.1 Training Stability

We compare the training of our model with the baseline on CIFAR-10 and the first domain of
OFFICEHOME in Figure 6. We observe that the validation accuracy of the baselines first decreases
to reach a plateau but then increases again, highlighting an overfitting to the training data. However,
this behaviour is not observed with CIBResNet-18, which steadily decreases across the entire training,
demonstrating higher stability. We can also note that our proposed model yields a lower standard
deviation in the accuracy.
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(a) CIFAR-10 dataset.
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(b) OFFICEHOME-RealWorld dataset.

Figure 6: Evolution of the validation loss during training. The mean and standard deviation across
three runs are shown. After a period of improvement, the ResNet-18 and ResNet-18-CT baselines
overfit as the training progresses. This behaviour is not observed with CIBResNet-18, which also
demonstrates a lower standard deviation.

E.2 Impact of Sampling on Posterior

We perform additional experiments to investigate the impact of the number of samples. We vary
the quantities N and M of context images and inference weights, respectively. Figure 7 shows the
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evolution of the accuracy of our model when varying N and M . The main contributing factor for
performance is the number of context samples: using four context samples instead of one significantly
improves accuracy. We hypothesize that a lower number is not sufficient to be representative of the
distribution and have an adversarial effect instead. Figure 8 shows the evolution of the accuracy
during training for several values of N and M . We observe that increasing the number of weight
samples M improves sample efficiency and reduces the amount of training steps required to converge.
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Figure 7: Accuracy heatmap of CIBResNet-18
on the CIFAR-10 test set as a function of the
number of weight and context samples. The
amount of weight samples has a negligible effect
on performance. Only increasing the context size
improves accuracy.
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Figure 8: Evolution of the validation accuracy
of CIBResNet-18 on CIFAR-10 during training
with varying context images N and weight sam-
ples M . Increasing the weight samples reduces
the amount of training steps required for learn-
ing.
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