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ABSTRACT

Diffusion models have demonstrated remarkable capabilities in image synthesis,
but their recently proven vulnerability to Membership Inference Attacks (MIAs)
poses a critical privacy concern. This paper introduces two novel and efficient
approaches (DualMD and DistillMD) to protect diffusion models against MIAs
while maintaining high utility. Both methods are based on training two sepa-
rate diffusion models on disjoint subsets of the original dataset. DualMD then
employs a private inference pipeline that utilizes both models. This strategy sig-
nificantly reduces the risk of black-box MIAs by limiting the information any sin-
gle model contains about individual training samples. The dual models can also
generate “soft targets” to train a private student model in DistillMD, enhancing
privacy guarantees against all types of MIAs. Extensive evaluations of DualMD
and DistillMD against state-of-the-art MIAs across various datasets in white-box
and black-box settings demonstrate their effectiveness in substantially reducing
MIA success rates while preserving competitive image generation performance.
Notably, our experiments reveal that DistillMD not only defends against MIAs
but also mitigates model memorization, indicating that both vulnerabilities stem
from overfitting and can be addressed simultaneously with our unified approach.

1 INTRODUCTION

In recent years, diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Rombach et al., 2022)
have rapidly emerged as a powerful tool for image generation, outperforming traditional methods
such as Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational Au-
toencoders (VAEs) (Kingma, 2013). These models, including well-known examples like Stable
Diffusion models (Rombach et al., 2022; Podell et al., 2023), DALL-E 2 (Ramesh et al., 2022) and
Imagen (Saharia et al., 2022), utilize a progressive denoising process that results in higher-quality
and more stable image generation compared to previous architectures. By gradually transforming
random noise into clean images, diffusion models excel at producing detailed and realistic visuals
across various applications, from graphic design to medical imaging.

However, the superior performance of diffusion models relies heavily on large and diverse datasets,
which often include sensitive information such as copyrighted images, personal photos, medical
data, and even stylistic elements from contemporary artists. The nature of these datasets poses sig-
nificant privacy risks, as diffusion models can inadvertently memorize and reproduce parts of their
training data during the generation (Carlini et al., 2023). This replication of training data during in-
ference makes diffusion models vulnerable to Membership Inference Attacks (MIAs) (Shokri et al.,
2017; Matsumoto et al., 2023; Wu et al., 2022), which aim to determine whether specific samples
are present in their training data. If a model has been trained on sensitive datasets, an attacker might
extract or infer specific details about the data used in training, leading to unintended exposure of
private or proprietary information.

Therefore, implementing robust defense mechanisms to protect against MIAs and other privacy-
related attacks is crucial. Existing defense methods for MIAs, such as those based on model dis-
tillation (Tang et al., 2022; Shejwalkar & Houmansadr, 2021; Mazzone et al., 2022), have proven
effective in image classification models by reducing overfitting and limiting memorization of train-
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Figure 1: Our proposed defense method DistillMD with model distillation. (Left): We divide the
training dataset into two non-overlapping subsets. Each subset is then used to train a separate diffu-
sion model with the vanilla diffusion loss. (Right): During the distillation phase, for each iteration,
if a data point belongs to subset 1, it is passed through the pre-trained model 2 (which is frozen)
to generate a “soft” label. Similarly, if a data point belongs to subset 2, it is passed through the
pre-trained model 1 (also frozen) to produce a “soft” label. The student model then uses this “soft”
label as the target to compute the diffusion loss.

ing data. However, these approaches cannot be directly applied to diffusion models due to their
unique structure and the resource-intensive nature of distillation processes, especially in large diffu-
sion models.

To address these challenges, we propose a tailored distillation method optimized for diffusion mod-
els, namely DistillMD (see Fig. 1), which is computationally efficient and effective in preventing
MIAs. Compared to other distillation defenses, one key advantage of our method is that it does not
require additional test data for the teacher to produce non-member labels. This limitation of other
approaches hinders their applications in cases where we do not have much data to train and evaluate
the models. To evaluate this benefit, we perform our defense in the model fine-tuning paradigm with
a small dataset in Section 4.2.

While effectively alleviating any attack, the distillation method often requires a high computational
cost to train a student model, hindering the method’s application to resource-constraint settings.
For resource-constrained environments where the overhead of model distillation is impractical, we
propose another dual-model defense (DualMD) method that does not require additional training
other than the two teacher models but can still efficiently mitigate MIAs in black-box settings. The
method is illustrated in Fig. 2.

Although the mentioned techniques can be effective for unconditional diffusion models, they can fail
to protect conditional diffusion models due to the strong overfitting to the conditions. For example,
Pang & Wang (2023) designed their attack to exploit this property using text prompts to guide
diffusion models to produce images in a distribution close to the target images.

Similar to MIAs, model memorization is also related to model overfitting, and prompt overfitting has
been extensively studied in diffusion model memorization. For example, Somepalli et al. (2023b)
observed that prompt overfitting plays a crucial role in model memorization and proposed several
techniques to reduce the effect. Wen et al. (2024) further argued that some tokens can be more
important than others to guide the generation. In Section 4.2, we show that DualMD and DistillMD
alone cannot effectively defend against attacks utilizing the text guidance and propose a technique
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Figure 2: The efficient defense method DualMD with modified inference pipeline. The two models,
which are trained on disjointed subsets, are used to denoise images alternately.

following Somepalli et al. (2023b) to diversify the training prompts. Although this straightforward
approach draws inspiration from model memorization, it appears to be essential in defending against
MIAs, as demonstrated in Section 4.2. Furthermore, in Section 3.6, we highlight that implementing
membership inference defenses can effectively mitigate model memorization. This underscores a
significant and inherent connection between these two areas.

We summarize our contributions as follows:

• We propose two mitigation strategies to defend against Membership Inference Attacks
(MIAs): DualMD, targeting black-box attacks via an inference-only approach, and Dis-
tillMD, which defends against both white-box and black-box attacks through a distillation-
based method. Our evaluation reveals that the distillation approach is more suitable to
maintain high generation quality of unconditional diffusion models, while dual-model in-
ference better preserves the quality of text-to-image diffusion models.

• We evaluate the effectiveness of our methods in training large text-to-image diffusion mod-
els and propose a technique to prevent the models from overfitting to the prompts. Our
experiments demonstrate that we can significantly reduce the risk of personal data leakage
in both white-box and black-box settings.

• We show that memorization mitigation techniques can be applied to defend MIAs and that
defending against MIAs can mitigate model memorization. To the best of our knowledge,
we are the first to establish this bidirectional connection between these two areas.

2 BACKGROUND AND RELATED WORK

Diffusion Models Recent breakthroughs in diffusion models have demonstrated remarkable suc-
cess across various generative tasks. As powerful generative models, diffusion models (Sohl-
Dickstein et al., 2015; Ho et al., 2020) produce fascinating images by progressively denoising inputs.
They first incorporate noise into data distributions through a forward process, then reverse this pro-
cedure to recover the original data. In particular, starting with an initial data original image x0

sampled from a (unknown) distribution q(x0), the forward process gradually diffuses x0 into a stan-
dard Gaussian noise xT ∼ N (0, I) through T consecutive timesteps, where I is the identity matrix.
Specifically, at timestep t ∈ {1, . . . , T}, the diffusion process q(xt|xt−1) and the denoising process
pθ(xt−1|xt) are defined as follows:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),
(1)

where βt ∈ (0, 1] is an increasing noise scheduling sequence. By denoting αt = 1 − βt and
ᾱt =

∏t
s=1 αs, the diffused image xt at timestep t has a closed form as follows:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt, where ϵt ∼ N (0, I). (2)

During the training process, a noise-predictor ϵθ learns to estimate the noise ϵ that was previously
added to x0 by minimizing the denoising loss:

L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ(xt, t)∥2

]
. (3)
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After that, in the reverse diffusion process, a random Gaussian noise xT ∼ N (0, I) is iteratively
denoised to reconstruct the original image x0 ∈ q(x0). At each denoising step, using the output of
the trained noise-predictor ϵθ, the mean of the less noisy image xt−1 is computed as follows:

µt =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
. (4)

Membership Inference Attacks The membership inference attacks (MIAs), introduced by Shokri
et al. (2017), aim to identify whether a specific data point was part of the model’s training set. Based
on the threat models or the level of access attackers have, MIAs can be classified into white-box
and black-box attacks. White-box MIAs usually utilize the internal parameters and gradients of
the diffusion model to perform threshold-based attacks (Hu & Pang, 2023; Dubiński et al., 2023),
gradient-based attacks (Pang et al., 2023) and proximal initialization (Kong et al., 2024). In con-
trast, black-box MIAs such as Pang & Wang (2023) target the output generated by the diffusion
models without direct access to internal parameters. Studies have demonstrated that these attacks
can effectively differentiate between training and non-training samples by analyzing the generated
image quality (Wu et al., 2022; Matsumoto et al., 2023; Carlini et al., 2023), and the estimation
errors (Duan et al., 2023). Moreover, Li et al. (2024b) recently find that fine-tuning models on small
datasets can augment their vulnerability to MIAs.

Membership Inference Defenses Existing studies have demonstrated that overfitting in the threat
models is a primary factor contributing to their vulnerability to MIAs. Consequently, various de-
fenses have been proposed to counter MIAs, for example, by addressing overfitting, including tech-
niques such as adversarial regularization (Hu et al., 2021), dropout (Salem et al., 2018), overconfi-
dence reduction (Chen & Pattabiraman, 2023), and early stopping (Song & Mittal, 2021). Further-
more, differential privacy (DP) (Yeom et al., 2018; Abadi et al., 2016; Wu et al., 2019) has been
widely used to mitigate MIAs by limiting the influence of any training data point on the model.
However, DP methods often face trade-offs between privacy and utility. Additionally, knowledge
distillation-based defenses such as distillation for membership privacy (Shejwalkar & Houmansadr,
2021) and complementary knowledge distillation (Zheng et al., 2021) aim to protect against MIAs
by transferring knowledge from unprotected models. More recently, multiple techniques (Tang et al.,
2022; Mazzone et al., 2022; Li et al., 2024a) have been proposed to combine knowledge distillation
with ensemble learning to preserve data privacy. Nevertheless, none of the methods are designed
specifically for diffusion models which are usually large and constrained by resource limitation.

Diffusion Memorization and Mitigation It is widely recognized that generative language mod-
els pose a risk of replicating content from their training data (Carlini et al., 2021; 2022). Similarly,
Webster (2023) observe the same behavior of large diffusion models, while Somepalli et al. (2023a)
argue that diffusion models trained on smaller datasets tend to produce images that closely resemble
those in the training set. As the size of the training dataset increases, the likelihood of such replica-
tion decreases. Several mitigation strategies have been explored to address these issues of diffusion
models by either modifying the text conditioning (Somepalli et al., 2023b; Wen et al., 2024; Ren
et al., 2024), manipulating the guidance scale (Chen et al., 2024), or model pruning (Struppek et al.;
Chavhan et al., 2024).

3 METHODOLOGY

3.1 MEMBERSHIP INFERENCE ATTACKS (MIAS) AND DEFENSES

Given an image x and a pre-trained diffusion model ϵθ on the training dataset Dtrain. Denoting the
test dataset byDtest, the goal of MIAs (Shokri et al., 2017) is to detect if this image belongs toDtrain.
By viewing this as a binary classification problem, we have the dataset B = {(xi, yi)}mi=1, where

yi =

{
1, if xi ∈ Dtrain

0, if xi /∈ Dtrain.

The task of MIAs then becomes to learn an attack function fϵθ for the model ϵθ to maximize the
probability of fϵθ (xi) = yi, i.e.,

max
fϵθ

P (fϵθ (xi) = yi) .
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The design of fϵθ depends on the specific choice of attacks and the attack settings. For example, in
white-box attacks, the attacker can access all or parts of the training configuration and the model ϵθ.
In black-box attacks, the attacker can only access the images generated by the model. Regardless
of the settings, MIAs are usually based on the assumption that the models overfit the training data.
For example, consider diffusion models, in which the model ϵθ takes the input image x, condition c
(c = ∅ in unconditional case), timestep t ∈ {1, . . . , T} and a random noise ϵ ∼ N(0, I) to compute
the denoising loss in Eq. 3, we have the following assumption:

E
(xtrain, ctrain) ∈ Dtrain

[
∥ϵθ (xtrain, ctrain, t)− ϵ∥

]
≤ E

(xtest, ctest) ∈ Dtest

[
∥ϵθ (xtest, ctest, t)− ϵ∥

]
.

The larger the gap between the two terms, the more accessible the attacker can extract the training
data. Therefore, our defense aims to make this assumption less intense so that the attacker cannot
separate member data from non-member data using this property. To this aim, we design a new train-
ing paradigm to minimize the gap between train and test data, which is equivalent to the following
optimization problem:

min
ϵθ

E
(xtrain, ctrain) ∈ Dtrain
(xtest, ctest) ∈ Dtest

[
∥ϵθ (xtrain, ctrain, t)− ϵ∥ − ∥ϵθ (xtest, ctest, t)− ϵ∥

]
. (5)

The key idea is to modify the training loss so that our models do not fit directly into the training set.
For this aim, we train two teacher models on two disjoint datasets and then let them produce “soft
targets” from the other dataset to train a student model. Since these targets are the outputs of teacher
models to their “non-member” images, the outputs of the student model to these data will be close
to their outputs to the test data. More details are presented in the following Sections 3.2 and 3.3.

3.2 DISJOINT TRAINING

Although ensemble learning has been used to defend against MIAs in image classification models
(Tang et al., 2022; Li et al., 2024a), they are not applicable to diffusion models, and the growing
number of models poses a significant challenge when applying to large architectures. Therefore, we
propose an efficient method with only two models on two disjoint subsets of the training data.

Formally, given a training dataset Dtrain with no duplicated pairs of images, a test dataset Dtest, and
an original learning model parameterized by θ. Our first step is to subdivide the training dataset
into two disjoint subsets, and each is used to train a separate model, i.e., Dtrain = D1 ∪D2, where
D1 ∩ D2 = ∅. The two trained models parameterized by θ1 and θ2, respectively, can be used to
generate images directly while keeping the privacy of both training subsets thanks to our customized
inference pipeline proposed in Section 3.4. Alternatively, they can be distilled into a new private
student model. Our basic assumption is that the two models “see” the training data of the other as
test data, i.e.,

E
(x2, c2) ∈ D2

t ∈ {1, . . . , T}

[
∥ϵθ1 (x2, c2, t)− ϵ∥

]
= E

(xtest, ctest) ∈ Dtest
t ∈ {1, . . . , T}

[
∥ϵθ1 (xtest, ctest, t)− ϵ∥

]
.

E
(x1, c1) ∈ D1

t ∈ {1, . . . , T}

[
∥ϵθ2 (x1, c1, t)− ϵ∥

]
= E

(xtest, ctest) ∈ Dtest
t ∈ {1, . . . , T}

[
∥ϵθ2 (xtest, ctest, t)− ϵ∥

]
.

(6)

The two models are trained with the typical denoising loss as in Eq. 3. The details of that disjoint
training mechanism is presented in Algorithm 1.

3.3 ALTERNATING DISTILLATION (DISTILLMD)

Choosing teacher models Based on the assumption given in Eq. 6, we alternately use the two
teacher models to generate targets for the student model to learn from. Specifically, the first model
θ1, which is trained on the first subset D1, will infer on the second subset D2, while the second
model θ2 trained on D2 will infer on the first subset D1. Fig. 1 illustrates the training pipeline, and
the algorithm is described in Algorithm 2.
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Algorithm 1 Disjoint Training with DDPM

Require: Training dataset Dtrain, number of time steps T , learning rate η
1: Divide Dtrain into disjoint subsets D1 and D2

2: Initialize two networks ϵθ1 and ϵθ2 with parameters θ1, θ2
3: for i = 1, 2 do
4: for number of training iterations do
5: Take sample x0 ∼ Di // Sample a data point from the corresponding data distribution
6: Sample t ∼ Uniform({1, . . . , T}) // Randomly choose a time step
7: Sample ϵ ∼ N (0, I) // Sample noise from a Gaussian
8: Compute xt =

√
αtx0 +

√
1− αtϵ // Diffuse data at time step t

9: Compute loss: L = ∥ϵ− ϵθi(xt, t)∥2 // Noise prediction loss
10: Update model parameters: θi ← θi − η∇θiL
11: end for
12: end for
13: return ϵθ1 , ϵθ2

Algorithm 2 Alternating Distillation (DistillMD)

Require: Disjoint data subsets D1 and D2, denoising networks ϵθ1 and ϵθ2 , number of time steps
T , number of distillation iterations n, learning rate η

1: Initialize student model ϵθ with parameters θs
2: for i ∈ n do
3: if i is even then
4: Sample x0 ∼ D1 // Sample a data point from the first subset
5: ϵteacher = ϵθ2 // Take the second model as the teacher
6: else
7: Sample x0 ∼ D2 // Sample a data point from the second subset
8: ϵteacher = ϵθ1 // Take the first model as the teacher
9: end if

10: Sample t ∼ Uniform({1, . . . , T}) // Randomly choose a time step
11: Sample ϵ ∼ N (0, I) // Sample noise from a Gaussian
12: Compute xt =

√
αtx0 +

√
1− αtϵ // Diffuse data at time step t

13: Compute loss: L = ∥stopgrad(ϵteacher(xt, t))− ϵθs(xt, t)∥2 // Distillation loss
14: Update model parameters: θs ← θs − η∇θsL
15: end for
16: return ϵθs

Distillation loss To prevent the student model from overfitting to training data, the real noise term
in Equation 3 is replaced by outputs of the teacher models as in Equation 7.

L(θ) = Ex0,t

[
∥stopgrad(ϵteacher(xt, t))− ϵθ(xt, t)∥2

]
. (7)

By minimizing the loss in Eq. 7 with suitable choices of the teacher models, we can make the
outputs of the student model on train data closer to its outputs on test data. This closes the gap in
Eq. 5 thanks to the assumption provided in Eq. 6.

In practice, our defense method can effectively mitigate both white-box and black-box attacks while
maximally preserving the generation capability of the model, as shown in Section 4.

3.4 SELF-CORRECTING INFERENCE PIPELINE (DUALMD)

Motivation Black-box MIAs typically rely on training shadow models or assessing the distance
between the target image and generated samples, exploiting the model’s tendency to generate images
close to its training data due to overfitting. However, our training paradigm ensures that for any given
sample, there always exists a model that treats it as a test sample, enabling uniformly diverse sample
generation.

6
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Figure 3: Distribution of the values of
the loss in Eq. 8 between 500 memo-
rized prompts and 500 non-memorized
prompts on Stable Diffusion v1.5 (Rom-
bach et al., 2022).

Table 1: Mitigation results of our methods. Bold and
underlined numbers are the best and the second best,
respectively.

Method SSCD (↓) CLIP Scores (↑)
No mitigation 0.60 0.26

Wen et al. (2024) 0.28 0.25

DualMD 0.52 0.27

DistillMD 0.27 0.28

Diffusion models uniquely require an iterative inference process that run the model multiple times.
We leverage this characteristic by using our two teacher models to “correct” each other during in-
ference. For instance, if the noisy image at time step t causes model 1 to produce output close to
the target image, model 2 will generate a more uniformly distributed image at time step t− 1. This
“self-correcting” inference process ensures diverse generation instead of concentration near training
samples. Our experimental results in Section 4 demonstrate that this method efficiently mitigates
black-box MIAs on text-to-image diffusion models.

3.5 ENHANCING PRIVACY FOR CONDITIONAL DIFFUSION MODELS

Although disjoint training divides the data into disjoint subsets, text prompts in different subsets
can still have overlapping words or textual styles that can be overfitted by both models. Therefore,
we propose to enhance prompt diversity during training by using an image conditioning model to
generate multiple prompts for each image of the training dataset. Then, a prompt is randomly
sampled for each image in each epoch during training. More details about the limitations of DualMD
and DistillMD on text-to-image diffusion models and the significance of prompt diversification are
presented in Section 4.2.

3.6 MEMBERSHIP INFERENCE DEFENSES HELP MITIGATING DATA MEMORIZATION

Recently, an increasing body of research (Somepalli et al., 2023a;b) has highlighted the issue of
data memorization in modern diffusion models, where some generated images are near-identical
reproductions of images from the training datasets. Previous studies (Shokri et al., 2017; Yeom et al.,
2018) have shown that overfitting renders models vulnerable to MIAs. Given that data memorization
is often considered a more extreme form of overfitting, this raises an important question: Is there a
connection between MIAs and data memorization?

Our findings suggest that loss-based MIA techniques can effectively detect memorization in dif-
fusion models. Specifically, we use the t-error (Eq. 8) introduced by Duan et al. (2023) to detect
whether the model memorizes a prompt. This detection is applied to a set of 500 memorized prompts
and 500 non-memorized prompts (Wen et al., 2024). The resulting detection performance is reported
in Fig. 3, where it is evident that the loss function effectively distinguishes between memorized and
non-memorized prompts. Given this observed link between data memorization and MIAs, we are led
to explore a further question: Can membership inference defenses help mitigate data memorization?

To investigate this, we conduct experiments on Stable Diffusion v1.5 (Rombach et al., 2022) as
detailed in Section 4.3. More information about the t-error and the memorization experiments are
presented in Appendix A.1.
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Table 2: Quantitative evaluation of the quality of the defended models compared to the original
model. Unconditional diffusion model is evaluated on CIFAR10 with DDPM, and text-to-image
diffusion model is evaluated on Pokemon and Naruto datasets with SDv1.5. Bold and underlined
numbers are the best and the second best, respectively.

CIFAR10 Pokemon Naruto
Method FID (↓) IS (↑) FID (↓) IS (↑) FID (↓) IS (↑)

Original model 14.127 8.586 0.22 3.02 0.18 2.16
DualMD 21.389 8.011 0.26 3.34 0.18 2.12

DistillMD 14.192 8.391 0.44 3.52 0.22 2.19

4 EXPERIMENTS

We present the effectiveness of our defenses against white-box MIAs in Section 4.1 and against
black-box MIAs in Section 4.2. We also analyze the importance of prompt diversification and find
that this technique significantly enhances defense in black-box case. Ablation studies on adaptive
attacks and distillation algorithms are provided in the Appendix.

Datasets We utilize various datasets to verify the effectiveness of the methods. The unconditional
experiments use CIFAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky et al., 2009), Tiny-
ImageNet (Le & Yang), and STL10-Unlabeled (Coates et al., 2011) datasets. For the text-to-image
experiments, we employ the popular Pokemon 1 and Naruto2 datasets. Each dataset is divided
equally, with one half used for training the models (member set) and the other half serving as the
non-member set. For the model, we fine-tune the Stable Diffusion v1.5 (SDv1.5) 3 (Rombach et al.,
2022) and the Stable Diffusion v2.1 (SDv2.1) 4 (Rombach et al., 2022) on Pokemon and Naruto
datasets so that it overfits to the dataset. We train the default DDPM (Ho et al., 2020) from scratch
for other datasets. More training details are given in Appendix A.2.

Metrics Following Kong et al. (2024), we utilize Area Under the ROC Curve (AUC) and True
Positive Rate when the False Positive Rate is 1% (TPR@1%FPR) as the key metrics to measure the
vulnerability of the models to MIAs. Since we are defending MIAs, an AUC closer to 0.5 indicates
better performance. For quality measurements, the popular Frenchet Inception Distance (FID) and
Inception Score (IS) are measured. For unconditional models, FID and IS are computed on 25,000
generated images. In contrast, for text-to-image models, these metrics are calculated on images
generated from training prompts.

Table 2 presents the quantitative performance of our methods in terms of quality preservation com-
pared to the baseline model. It can be seen that DistillMD shows superior quality preservation in
unconditional models, whereas DualMD performs better for conditional models. Additional quan-
titative and qualitative results are provided in Appendices A.3 and A.7, respectively. Moreover, we
later observe a similar trend in defending against MIAs, which indicates that DualMD is more effec-
tive for text-to-image diffusion models, while DistillMD is better suited for unconditional diffusion
models.

4.1 WHITE-BOX ATTACKS

For white-box MIAs, we perform two attacks SecMIA (Duan et al., 2023) and PIA (Kong et al.,
2024) and defend against them with DistillMD. Since the attackers are assumed to have white-box
access to the model, it is not realistic to perform DualMD defense. The results for unconditional
diffusion models are given in Table 3, and for text-to-image diffusion models in Table 4. Although

1https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions
2https://huggingface.co/datasets/lambdalabs/naruto-blip-captions
3https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5
4https://huggingface.co/stabilityai/stable-diffusion-2-1-base
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Table 3: Effectiveness of our DistillMD against white-box MIAs on DDPM. The closer AUC to 0.5,
the better. Bold numbers are the best.

CIFAR10 CIFAR100 Tiny-ImageNet STL10-Unlabeled
Attack Method AUC TPR@1%

FPR (↓)
AUC TPR@1%

FPR (↓)
AUC TPR@1%

FPR (↓)
AUC TPR@1%

FPR (↓)
SecMIA No defense 0.93 0.35 0.96 0.45 0.96 0.53 0.94 0.30

DistillMD 0.59 0.03 0.61 0.02 0.57 0.02 0.58 0.02
PIA No defense 0.89 0.13 0.88 0.14 0.84 0.08 0.83 0.09

DistillMD 0.59 0.02 0.59 0.03 0.56 0.02 0.58 0.02

Table 4: Effectiveness of our DistillMD without prompt diversification against white-box MIAs on
SDv1.5 and SDv2.1. The closer AUC to 0.5, the better. Bold numbers are the best.

SDv1.5 SDv2.1

Dataset Attack Method AUC TPR@1%FPR (↓) AUC TPR@1%FPR (↓)

Pokemon

SecMIA No defense 0.99 0.79 0.98 0.189
DistillMD 0.48 0.02 0.54 0.019

PIA No defense 0.46 0.02 0.45 0.012
DistillMD 0.49 0.01 0.47 0.007

Naruto

SecMIA No defense 0.93 0.475 0.90 0.333
DistillMD 0.46 0.005 0.45 0.006

PIA No defense 0.45 0.007 0.47 0.008
DistillMD 0.48 0.006 0.48 0.008

PIA cannot attack fine-tuned Stable Diffusion model, it is still clear that DistillMD significantly
increases the privacy of both unconditional diffusion models and text-to-image diffusion models.

4.2 BLACK-BOX ATTACKS

For black-box MIAs, we employ the recently proposed attack in Pang & Wang (2023), which utilizes
text guidance to augment the attack. The SDv1.5 model is fine-tuned on the Pokemon dataset with
and without our methods. The results in Table 5 show that training defenses alone cannot completely
defend against MIAs. To address this, we introduce prompt diversification training, utilizing the
BLIP model (Li et al., 2022) to generate five additional prompts for each image. During training,
one prompt is randomly drawn from the six (including the original) to serve as the text condition for
the image. Both DistillMD and DualMD significantly mitigate MIAs with prompt diversification,
highlighting the importance of prompt overfitting. Moreover, DualMD can not only better preserve
the generation quality but also better defend in the case of text-to-image diffusion models.

Table 5: Effectiveness of our defenses against black-box MIA on SDv1.5. The closer AUC to 0.5,
the better. Bold and underlined numbers are the best and the second best, respectively.

w/o prompt diversification w/ prompt diversification

Method AUC TPR@1%FPR (↓) AUC TPR@1%FPR (↓)
No defense 0.90 0.57 0.45 0.009
DualMD 0.82 0.35 0.52 0.014

DistillMD 0.66 0.09 0.46 0.005

4.3 MEMBERSHIP INFERENCE DEFENSES MITIGATE DATA MEMORIZATION

We use the fine-tuned SDv1.5 model using our methods to evaluate its capability of data memoriza-
tion. For comparison, we employ the inference-time memorization mitigation method proposed by

9
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Wen et al. (2024), which reduces memorization by adjusting the prompt embedding to minimize the
difference between unconditional and text-conditional noise predictions.

To measure the level of memorization, we calculate the SSCD similarity score (Pizzi et al., 2022;
Somepalli et al., 2023b) between the generated images and the images in the training dataset, given
the same set of prompts. In addition, the CLIP score (Radford et al., 2021) is used to assess the
alignment between the generated images and their corresponding prompts. A lower SSCD similarity
score indicates reduced memorization, while a higher CLIP score reflects better alignment between
the generated image and the prompt.

Results and Discussion Table 1 shows the effectiveness of our proposed method in mitigating
data memorization. A thoroughly fine-tuned model without any mitigation produces highly similar
images with an SSCD similarity score of 0.60 for given prompts, indicating significant memoriza-
tion. In contrast, our DualMD and DistillMD approaches significantly reduce the SSCD score to
0.52 and 0.27, respectively, suggesting that membership inference defenses can help mitigate data
memorization. Notably, both methods also show a slight improvement in CLIP scores. Furthermore,
the method proposed by Wen et al. (2024), which directly targets mitigating memorization, achieves
an SSCD similarity score of 0.28. Our DistillMD approach, despite being designed to defend against
MIAs, not only reduces data memorization more effectively but also improves image-text alignment
compared to the most recently proposed method in Wen et al. (2024).

5 CONCLUSION

This paper presents comprehensive and novel approaches to protect diffusion models against train-
ing data leakage while mitigating model memorization. Our methodology focuses on training two
models using disjoint subsets of the training data. This results in two significant contributions, in-
cluding DualMD for private inference and DistillMD for developing a privacy-enhanced student
model. Both techniques effectively reduce model overfitting to training samples. We further en-
hance privacy protection for text-conditioned diffusion models by diversifying training prompts,
preventing models from overfitting specific textual patterns. Notably, our experiments reveal that
model memorization represents a more severe form of overfitting than membership inference at-
tacks (MIAs), and our unified approach successfully addresses both vulnerabilities simultaneously,
eliminating the need for separate mitigation strategies. In short, our paper presents inference-time
and training-time strategies to defend diffusion models against MIAs. It provides new insights into
the intersection between MIAs and model memorization, advancing our understanding of privacy
preservation in generative models.

Limitations and Future Directions Our methods rely on dividing the training dataset into two
halves, which may limit the generative capabilities of the teacher models in data-scarce scenarios.
This limitation can affect the quality of the distilled model, as evidenced by the slight performance
degradation shown in Table 2. Future research could focus on developing methods that allow models
to leverage the entire dataset during training while maintaining strong privacy guarantees, potentially
enhancing the performance of all models.

Furthermore, our inference-time defense method (DualMD) requires storing and alternating between
two models, which may limit its applicability in resource-constrained environments. Future work
could explore inference-time solutions that, like our DistillMD method, do not necessitate additional
model storage while maintaining robust privacy protection.

6 REPRODUCIBILITY STATEMENT

We provide comprehensive details of all hyperparameters and experimental settings in Section 4
and Appendices A.1 and A.2. Our implementation code, included in the supplementary materials,
contains clear instructions for reproduction. All models and datasets employed in our study are
publicly accessible.
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A APPENDIX

A.1 SECMI LOSS

Diffusion models optimize the variational bound pθ(x0) by matching the forward process posteriors
at each step t. The local estimation error for a data point x0 at time t is then expressed as:

ℓt,x0 = ||x̂t−1 − xt−1||2,

where xt−1 ∼ q(xt−1|xt, x0) and x̂t−1 ∼ pθ(xt−1|xt). Due to the non-deterministic nature of
the diffusion and denoising processes, calculating this directly is intractable. Instead, deterministic
processes are used to approximate these errors:

xt+1 = ϕθ(xt, t) =
√
ᾱt+1fθ (xt, t) +

√
1− ᾱt+1ϵθ (xt, t) ,

xt−1 = ψθ(xt, t) =
√
ᾱt−1fθ (xt, t) +

√
1− ᾱt−1ϵθ (xt, t) ,

where fθ (xt, t) =
xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
. Define Φθ (xs, t) as the deterministic reverse and Ψθ (xt, s)

as the deterministic denoise process:

xt = Φθ (xs, t) = ϕθ (· · ·ϕθ (ϕθ (xs, s) , s+ 1) , t− 1)

xs = Ψθ (xt, s) = ψθ (· · ·ψθ (ψθ (xt, t) , t− 1) , s+ 1)

Duan et al. (2023) define SecMI loss or t-error as the approximated posterior estimation error at step
t:

ℓ̃t,x0
= ||ψθ(ϕθ(x̃t, t), t)− x̃t||2, (8)

given sample x0 ∈ D and the deterministic reverse result x̃t = Φθ (x0, t) at timestep t.

This SecMI loss helps identify memberships as member samples tend to have lower t-errors com-
pared to hold-out samples. We leverage this t-error to separate memorized and non-memorized
prompts. The experiment is performed similar to Wen et al. (2024) in which we plot the distribu-
tion of the loss values of the member set and the hold-out set. We utilize 500 memorized prompts
of Stable Diffusion v1 extracted by Webster (2023) for the member set, and 500 non-memorized
prompts that are randomly sampled from the Lexica.art prompt set 5 for the hold-out set. The result
is illustrated in Fig. 3.

A.2 TRAINING DETAILS

A.2.1 DATASET

Table 6 provides a summary of the diffusion models used, the datasets, and the details of the data
splits.

Table 6: Adopted diffusion models and datasets.

Model Dataset Resolution # Train # Test Condition

DDPM
CIFAR10 32 25,000 25,000 -

CIFAR100 32 25,000 25,000 -
STL10-Unlabeled 32 50,000 50,000 -

Tiny-ImageNet 32 50,000 50,000 -

SDv1.5 and SDv2.1 Pokemon 512 416 417 text
Naruto 512 610 611 text

5https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
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Table 7: Quantitative evaluation of the quality of the defended models compared to the original
model. The evaluation utilizes the Pokemon and Naruto datasets with SDv2.1. Bold and underlined
numbers are the best and the second best, respectively.

Pokemon Naruto
Method FID (↓) IS (↑) FID (↓) IS (↑)

Original model 0.44 2.99 0.16 2.30
DualMD 0.41 3.41 0.18 2.55

DistillMD 0.41 3.55 0.20 2.35

Table 8: Effectiveness of our DistillMD combining with prompt diversification against white-box
MIAs on SDv1.5. The closer AUC to 0.5, the better. Bold numbers are the best.

w/o prompt diversification w/ prompt diversification

Attack Method AUC TPR@1%FPR (↓) AUC TPR@1%FPR (↓)
SecMIA No defense 0.99 0.79 0.99 1.00

DistillMD 0.48 0.02 0.44 0.01
PIA No defense 0.46 0.02 0.61 0.03

DistillMD 0.49 0.01 0.50 0.02

A.2.2 TRAINING AND ATTACK HYPERPARAMETERS

According to Matsumoto et al. (2023), the vulnerability of the models to MIAs increases with the
number of training steps because overfitting makes the models more susceptible to attacks. There-
fore, in order to ensure a fair comparison, we train both the baseline model, the two models trained
on two disjoint subsets, and the distilled model with the same number of training steps.

For unconditional diffusion models, we train all the models for 780,000 iterations with a batch size
of 128, a learning rate of 2e-4.

For SDv1.5 and SDv2.1, we use the Huggingface Diffusers codebase 6 to fine-tune the model in
20,000 iterations, with batch size of 16 and learning rate of 1e-5.

For white-box attacks on all models, we use the codebase and default settings of SecMIA 7 (Duan
et al., 2023) and PIA 8 (Kong et al., 2024)

For black-box attacks on SDv1.5, we generate 3 images for each prompt, each is generated using
DDIM (Song et al., 2021) with 50 inference steps.

For evaluating data memorization in Section 4.3, we use the codebase from (Wen et al., 2024) 9.

A.3 ADDITIONAL QUANTITATIVE RESULTS

Table 7 presents the additional quantitative performance of our methods, highlighting quality preser-
vation compared to the baseline model with the SDv2.1 backbone.

Unlike black-box attacks discussed in Section 4.2, prompt diversification training shows only a slight
improvement in defense against white-box attacks, as presented in Table 8.

6https://github.com/huggingface/diffusers/blob/main/examples/text_to_
image/README.md

7https://github.com/jinhaoduan/SecMI
8https://github.com/kong13661/PIA
9https://github.com/YuxinWenRick/diffusion_memorization
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A.4 ATTACK ANALYSIS

To further understand our defense capability, we provide the ROC curves for various configurations
under black-box MIAs in Fig. 4. While the original model is severely vulnerable to MIAs, it is
evidenced that our defenses can effectively mitigate this risk, even in worst-case scenarios when the
FPR is very low.

Original Model Original Model + Prompt 
Diversification

DualMD + Prompt 
Diversification

DistillMD + Prompt 
Diversification

Figure 4: ROC curves of black-box MIAs comparing the originally trained model with our defense
methods.

A.5 ADAPTIVE ATTACK

To extend the robustness evaluation of our defense mechanism, we investigate its vulnerability to
adaptive attacks where adversaries have complete knowledge of the defense strategy. We design an
iterative attack targeting DualMD’s dual-model architecture by manipulating the denoising process
across multiple generation rounds. The attack proceeds as follows: First, we generate an image
using n denoising steps, alternating between Sub-Model1 (SB1) and Sub-Model2 (SB2). We then
introduce noise at the second-to-last timestep, effectively nullifying all denoising steps except the
initial one performed by SB1. This noisy image and its corresponding timestep serve as the starting
point for a subsequent generation round with n−1 steps, beginning with SB1. By iteratively repeat-
ing this process, we systematically reduce the influence of SB2 while preserving SB1’s denoising
effects. When combined with black-box MIAs, this approach provides a comprehensive evaluation
of our defense mechanism. As shown in Table 9, DualMD maintains its defensive efficacy even after
multiple rounds of this adaptive attack on the Pokemon dataset, with an AUC remaining close to 0.5
and very low TPR at 1% FPR.
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Table 9: Performance of DualMD against our designed adaptive attack.

Number of generation rounds AUC TPR@1%FPR (↓)
2 0.53 0.024

3 0.51 0.048

A.6 DISTILLATION ANALYSIS

Knowledge distillation has emerged as a prominent approach for mitigating Membership Inference
Attacks (MIAs) in classification models (Shejwalkar & Houmansadr, 2021; Zheng et al., 2021; Tang
et al., 2022; Mazzone et al., 2022; Li et al., 2024a). To demonstrate the advantages of our dual-
model architecture in DistillMD, we conduct a comparative analysis against conventional knowledge
distillation under SecMI attack Duan et al. (2023) using the CIFAR10 dataset. The key distinction
lies in the training methodology. In particular, traditional knowledge distillation employs a single
teacher model trained on the complete dataset, whereas DistillMD leverages two specialized teacher
models, each trained on mutually exclusive subsets of the training data.

The experimental results presented in Table 10 reveal significant differences in defense efficacy.
Although conventional knowledge distillation provides modest protection, reducing the AUC from
0.93 (no defense) to 0.74, this improvement falls short of the robustness required for real-world
applications. These findings underscore the crucial role of our dataset partitioning strategy and
dual-teacher architecture in DistillMD. Notably, existing distillation-based defense mechanisms for
classification models often incorporate supplementary techniques, such as confidence-based sample
selection Shejwalkar & Houmansadr (2021), to enhance privacy guarantees. Although these tech-
niques have proven effective in classification scenarios, their direct application to generative models
presents unique challenges. Our work establishes a foundation for future research to bridge this gap
and adapt these distillation methods for diffusion models while maintaining their privacy-preserving
properties.

Table 10: Performance of DualMD against our designed adaptive attack. Bold and underlined
numbers are the best and the second best, respectively.

Methods AUC TPR@1%FPR (↓)
No defense 0.93 0.35

Normal KD 0.74 0.06

DistillMD 0.59 0.03

A.7 QUALITATIVE RESULTS

In this section, we present images generated by trained models with and without our methods. Fig.
5 shows images generated on the CIFAR10 dataset in the unconditional setting, while Fig. 6 and
Fig. 7 display images generated on the Pokemon dataset in the conditional setting.
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Original Model Sub-Model 1 Sub-Model 2

DistillMDDualMD

Figure 5: Images generated by models trained on CIFAR10. The Original Model was trained on the
full dataset, whereas Sub-Model 1 and Sub-Model 2 were trained on two disjoint subsets. DualMD
and DistillMD images were generated using our proposed methods.

Original Model Sub-Model 1 Sub-Model 2

DistillMDDualMD

Figure 6: Images generated by models without prompt diversification trained on Pokemon. The
Original Model was trained on the full dataset, whereas Sub-Model 1 and Sub-Model 2 were trained
on two disjoint subsets. DualMD and DistillMD images were generated using our proposed meth-
ods.
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Original Model Sub-Model 1 Sub-Model 2

DistillMDDualMD

Figure 7: Images generated by models with prompt diversification trained on Pokemon. The Original
Model was trained on the full dataset, whereas Sub-Model 1 and Sub-Model 2 were trained on two
disjoint subsets. DualMD and DistillMD images were generated using our proposed methods.
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