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Abstract

Learning faster on a task by utilizing learned representations from previous similar tasks is an
active area of research in reinforcement learning. Recently proposed progressive neural networks
demonstrate this effectively. We use motivations from reciprocal feedback connections in the visual
cortex to augment lateral connections in the progressive neural network architecture. We evaluate
our modified architecture on Pong-v0 and its variants and show that it improves transfer over the
progressive baseline.

1 Introduction

Progressive neural networks [1] utilize learned knowledge from one task to improve learning and
convergence speed on another task. Learning on every new task combines previously learned features
by learning lateral connections between hidden layers of the new network and those of previous
tasks. This creates a columnar architecture that progressively learns a richer representation combining
learned features with the feature hierarchy of the new network.

Progressive networks start with a single network such as an A3C [2] network which has L layers
with hidden activations hni , for layer i of task n. The network is parameterized by θn and has
ni units in layer i. Whenever a new task is learned, the parameters θ0:n−1 of all previous tasks
are frozen. The layer hni receives inputs from previous layer of the earlier tasks h0:n−1

i−1 and the
current task hni−1. The vector of features that needs to be mapped to the input of hidden layer i
is h(<n)
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different inputs. The resultant hidden activation of layer i and column k is :

hki = f(W k
i h

k
i−1 + Uk:j

i σ(V
(k:j)
i α

(<k)
i−1 h

(<k)
i−1 )) (1)

where W k
i ∈ Rni×ni−1 is the weight matrix of layer i of task column k, U (k:j)

i ∈ Rni×nj are lateral
connections from layer i− 1 of column j to layer i of column k and V is the projection matrix.

We propose architectural changes to progressive neural networks to achieve better transfer and faster
convergence on new tasks. Our prime motivation comes from experimental results from neuroscience
about connections between information processing layers of the visual cortex. Particularly, we drive
inspiration from the observation that higher order concepts from the later layers of visual processing
feed back to early visual areas [3]. We introduce additional lateral connections from higher layers
to lower layers, which we hypothesize will help in transferring higher learned representation to
efficiently learn low level features in the neural network.

2 Methods & Experiments

The traditional view on visual processing in the visual cortex emphasizes a hierarchical information
processing pipeline, where the information about edges and bars is extracted from the visual input



first, which is then combined into contours, and further combined into more complex forms in
higher visual processing areas. This sequential pipeline is the widely accepted classical feed-forward
modular view of how the visual cortex processes information. However, there is evidence from
neuroscience experiments that higher order stimulus attributes and task experiences influence visual
processing in early stages of the pipeline through reciprocal feedback connections from later stages to
earlier stages. Specifically, recent neuroscience experiments demonstrate that higher order concepts
influence information processing in the lower layers and the top down integration through feedback.
The results point towards an incremental integration mechanism comprising of both feedforward and
feedback transmission [3] [4] [5].

In our implementation of progressive networks, we added lateral connections from trained higher
layers of previous columns to the lower layers of the new task column. The proposed architectural
changes are shown in Figure 2.

Figure 1: Progressive Neural Network
Figure 2: Proposed architecture changes

Since we are transferring from higher layer to a lower layer, we have to learn projection from a lower
dimensional to a higher dimensional space. To implement this projection from the higher to the lower
layer, we use deconvolution layers [6].

We focused our experiments Pong-v0. We first trained baseline models on this Atari game using
A3C with 2 convolution layers followed by a fully connected layer before the policy and value output
layers. We used this trained baseline to transfer learning on other tasks. We transferred to 2 variations
of Pong-v0 (referred to as ’Pong soup’ in the original paper): UDPong (received input state from
environment flipped vertically) and LRPong (received state flipped horizontally).

We first trained a two column progressive network where the transfer was from the Pong-v0 baseline.
Next, we trained a two column progressive network with only our modified lateral connections, i.e.,
which only had transfer from the higher to lower layers. We measure the speed of learning based on
the final reward achieved by the networks after the same number of training iterations. We observed
that using feedback from higher to lower layers, we were able to train the networks on an average
2.1 times faster than the LRPong and UDPong baselines (no transfer) and 1.15 times faster than the
LRPong and UDPong baseline progressive network.

Significant improvement in training over the baseline (no transfer) and considerable improvement
over baseline progressive neural networks suggest that transferring from a higher layer to a lower
layer does indeed provide reliable transfer, i.e., transfer of learned higher level features enables faster
learning of lower level representations.
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