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Abstract— Building dynamic 3D semantic maps that scale
over days and weeks is central for household robots operating
in unstructured real-world environments and interacting with
humans over long periods. Such a long-term object map can
assist human users by grounding their natural language queries
and retrieving the object’s spatial-temporal information 1. To
our knowledge, there does not exist an integrated approach
for building a spatial-temporal map that handles days/weeks
of diverse robotic sensor data in a partially observable envi-
ronment, including dynamic objects. Our approach is agnostic
to the object recognition algorithms used and the space of
user queries in advance. We propose a representation for the
long-term spatial-temporal semantic map that enables the robot
to answer real-time queries about the unique object instances
in an environment. We also present a Detection-based 3-level
Hierarchical Association approach (D3A) that builds our long-
term spatial and temporal map. Our representation stores a
keyframe that best represents the unique objects and their
corresponding spatial-temporal information organized in a key-
value database. Our representation allows for open vocabulary
queries and even handles queries without specific concepts,
such as specific attributes or spatial-temporal relationships.
We discuss the retrieval performance of our system with a
parameterized synthetic embedding detector. When D3A is
queried for 59 ground truth objects, the ground truth object
instance is found on average in the 5th return frame, while
for baseline, the ground truth object can be found in the 20th
frame. We also present preliminary results for a self-collected
robotics-lab environment dataset of 22 hours. We show that our
queryable semantic scene representation occupies only 0.17%
of the total sensory data.

INTRODUCTION

Building 3D map representations for robotics with un-
supervised learning enables enhanced reasoning capabilities
for the robot without retraining every time. Home-service
robots equipped with 3D semantic maps have great potential
to assist human users by retrieving spatial-temporal infor-
mation about objects from their long-term observations. For
example, a person can ask a simple query such as ”What
are my top favorite locations to place my keys and watch?”.
Service robots with such an ability will be well-suited to
help the home, office users, and the elderly, especially those
with dementia.

Many works have been introduced that build a semantic
map by performing object detection and segmentation on
visual sensor data acquired by a robot [11, 9, 14]. However,
this line of research is limited by the closed set of concepts,
a fixed set of labels available at training time. Further,
these works do not focus on scaling over long periods and

1Spatial-temporal information of object referred to the whereabouts of the
object such as the location(s) and the time(s) when the object was identified
in the physical environment

Fig. 1: Sample queries asked from our long-term semantic
map, along with their retrieved keyframes, are shown. The
retrieved frames and their associated temporal information
are 2D projected on the map. Also shown are the partial view
detections that are aggregated into the keyframe cluster.

handling dynamic environments with partially observable
moving objects. Recently, foundational models like CLIP
[12], DINO [3] and their variants VLMaps [7], LM-Nav [13],
CoWs [5], NLMap-Saycan [4], and ConceptFusion [8] have
shown impressive performance on the open set scenarios,
where the concepts of interest are supplied only at inference
time. These works focus on building a semantic map of
static scenes. One key challenge for building a long-term
spatial-temporal map using 2D feature representation from
pre-trained models such as CLIP or DINO is the multi-
view association of partial views of unique objects over time
and space and condensing them in a compact queryable
scene representation for efficient retrieval during run-time.
There are lines of work focusing on robotic object retrieval
- handling partial views[1, 2] with point cloud matching, but
these do not build a queryable semantic map of dynamic
scenes. The above set of approaches when queried, leave
the robot searching over countless detections in visual sensor
data from many different time slices, which take up a lot
of space and time. In addition, these detections contain
overlapping partial views of the same object instances; not
all of these objects will be relevant to the user query during
run-time retrieval.

To our knowledge, there has not been an integrated
solution that addresses all of the following challenges: 1)



Fig. 2: Visualization of D3A Algorithm

not knowing the objects and the query type in advance,
2) aggregating detections of object instances from different
views in a map over days of sensory information, and 3)
handling the uncertainty of object poses and the objects going
out of the view. To mitigate these challenges, we introduce
a new algorithm that extends the concept of keyframe
extraction that has been previously used for video frame
retrieval to condense multiview detections of unique objects
over both physical space and time for long observation
periods into a compact and queryable unsupervised spatial,
temporal semantic representation. This enables the robot to
answer queries about unique object instances more efficiently
regarding memory space and query retrieval time.

Our algorithm performs three-tier incremental clustering
and filtering of visual observations into unique spatial-
temporal instances. While performing association via cluster-
ing, our method keeps track of the keyframe that best repre-
sents each unique spatial-temporal location of the object. The
information about keyframe-centroid clusters is then stored
in a spatial-temporally in key-value database, leading to a
compact and query-able representation for efficient object
retrieval. Hence, making it storage efficient.

We test our generated semantic map’s compactness and
query retrieval performance on a self-collected environment
dataset. Our dataset includes 22 hours of observations col-
lected by the social robot Kuri Mayfield [10] over four days2.
We show that our queryable semantic scene representation
occupies only 0.17% of the total sensory data. We also
discuss the retrieval performance of our system with a
parameterized synthetic embedding detector. When D3A is
queried for 59 ground truth objects, the ground truth object
instance is found on average in the 5th return frame, while
for baseline, the ground truth object can be found in the 20th
frame.

TECHNICAL APPROACH

A robot monitoring the environment over long periods
is given a query Q to retrieve spatial temporal information
of target objects seen in the environment. The query is an
open-vocabulary query asking about the whereabouts of a
single object. The robot is initially equipped with the map

2 A visualization of the initial state of the environment, along with
its 2D map and sample of the collected dataset can found at this link:
https://github.com/IfrahIdrees/D3A.git

of the environment, and at every given time step i gathers
the following sensory information si =< probot,i, di, fi >,
where probot,i ∈ Probot is the associated robot’s pose, and
di ∈ D is the corresponding depth information for image
frame fi. The robot collects large amounts of sensor data
S = {s1, s2, ..., si} However, the robot has partial observ-
ability of the environment, and the information required to
answer the object retrieval query is going to be dispersed
throughout S in the form of multiple partial view detections.
To answer object-retrieval queries efficiently, the robot needs
to condense the multi-view detections of the objects in S
into a memory-efficient and query-able representation R. A
diagram of our algorithm creating R is shown in Fig-2.

For compactness and speed efficiency, D3A reduces the
dimensionality of the visual sensory data fi in si =<
probot,i, di, fi >, as well as aggregate multiple detections
of the same object over long periods. D3A extracts the
relevant 2D pixel embedding lij for every detected object
oj in frame fi using an visual-language pre-trained model.
These embeddings are fused with the object’s pose estimates
pobj,ij that is calculated from probot,i and di using geometric
segmentation. Then, we apply a three-tier online clustering
algorithm to aggregate lij’s. The fused representation for the
jth detection in the ith frame lij is noisy because of the
uncertainty in the object’s pose estimate pobj,i and noise in
the extracted embedding – embij . To aggregate the different
view detections of the same object and to identify the unique
objects in the environment, we consider a sliding window w
over sensory data {si−w, ..., si}. The fused representation
lij of all detections in this sliding window’s frames are then
clustered to create a set of clusters G, each identifying a
unique object instance. The motivation behind this is that
the object instances with similar embeddings and positions
in space will be associated with the same cluster hence
pruning the noisy detections. We then perform an aggregation
operation

⊗
on every cluster g ∈ G to create a unified

feature representation l′ijof each of the clusters.
We also need to aggregate the detections of unique in-

stances across the objects’ multiple partial views in the
past. This requires sharing information across multiple slid-
ing windows via second-tier filtering. To facilitate this, we
maintain a fixed-length short-term memory (STM) indexed
over object instance ids and aggregate information in it for
all instances in STM. G from the current sliding window



Performance Metric Naive D3A

Database Size (MB) 3312 244
Total Processing Time 0m 8s 2m 26s

TABLE I: System Performance (On 3 Hours of Data)

either updates the existing cluster based on similarity with the
associated unified representation l′ij or else it will be entered
as a new object instance. The keyframe of g is chosen to
be the frame with the highest detection probability probij
among the frames f ′

is associated with the cluster in STM. If
a new instance is to be added to the STM when it has reached
its maximum capacity, our algorithm evicts the last recently
viewed (least-recently viewed entry), lrv entry, from the
STM and moves it to the persistent storage key-value store
R. This eviction strategy ensures that objects currently being
viewed by the robot remain in the STM for further noise
filtering and aggregation of fused representation from partial
views.

The filtered entry lrv entry from the STM could be di-
rectly added as the final aggregated cluster into our compact
representation R. However, we want to aggregate detections
of unique object instances over not just recent times but also
long periods of time. To do so, every time a lrv entry is
evicted from STM, our third-tier filtering level looks up and
updates the aggregated clusters stored in R.

We organize our aggregated spatial-temporal representa-
tion R in a key-value database over two collections. The
Object Identification Collection (OIc) is updated using
the object information of the evicted clusters represented
by the lrv entry, while the other store Spatial-temporal
Collection (STc) stores the object entries indexed over time
and position in physical space. Every object inserted in
OIc is associated with a unique identifier ObjectID, which
indexes STc to get the object detections over space and time.
This allows for efficient retrieval during run-time.

Query Processing and Answering: The robot then uses
this representation to return a small set of keyframes in
response to a given query. This enables a person to find
relevant information about the target object quickly. Our
representation allows for open vocabulary queries and even
handles queries without specific concepts, such as specific
attributes or spatial-temporal relationships. We provide eval-
uation results for the queries with specific attributes provided
for a single object of interest in each query. Text embedding
for the given query is computed using the corresponding pre-
trained CLIP text encoder. Given a query q, and a map with
fused features L, we compute a per-cluster score s ∈ [−1; 1]
as the cosine similarity defined as s = < l, q > and rank
the clusters of object instances based on the score s and the
probability associated with the key frame.

EVALUATION

The aim of our evaluation is to test the hypothesis that a
database-backed system with our algorithm D3A improves
both 1) the compactness of the spatial-temporal representa-
tion of objects in the environment and 2) the object retrieval

performance by returning a small subset of keyframes as
measured by the mean reciprocal rank, and miss rate as
described in Experiment Design subsection. As a result, the
user will have to search over just a few returned results to
find the answer to their question. To test our hypothesis,
we perform a real-world evaluation, using both a range of
synthetic detectors built from ground truth data to control the
noise level and real detectors deployed on a mobile robot.

Dataset Collection

The robotics lab environment in which our robot Kuri [10]
patrolled for four days was uncontrolled and cluttered: people
were allowed to use the space as is. The illumination was
kept the same throughout the data collection. It has 10,132
image frames over 22 hours and contains static and dynamic
objects, such as various cups and bottles. More details of
dataset collection and robot localization are in the appendix
section - Table II.

Dataset Annotation

For evaluation purposes, the collected dataset was manu-
ally annotated by the authors. Every unique instance in the
dataset was assigned a unique id and a ground truth location
that was used to perform object association over time and
space. Due to time and manual labor constraints, we could
only annotate 3 hours of data.

Parameter Selection

We use Detectron’s object detector Girshick et al. [6]
object detector to extract the latent representation. The
sliding window length, the normalized threshold for feature
matching (cosine similarity), and the size of short-term
memory (STM) were set to 10, 0.4, and 400 (our RAM’s
maximum capacity), respectively. We performed a parameter
sweep offline on the collected data and found this setting to
be optimal.

Experiment Designs

We conduct two experiments with one baseline.
Baseline: Our baseline is a “Naive” baseline similar to

Nlmap-Saycan’s scene representation [4] that inserts every
detection’s spatial-temporal information directly into the
database without aggregation. This baseline can still index
detections on space and time but ablates the three-tier pro-
cessing that is integral to our system for aggregating partial
views of the objects.

Metric Definitions: We measure the quality of keyframes
returned for a query with the MRR@50 evaluation metric,
which is the multiplicative inverse of the rank of the correct
keyframe in the top 50 returned frames ordered by their
similarity score. We want the rank of the correct frame to
be as close as the start of the list of returned frames; hence,
higher MRR closer to 1 is better. We measure the miss rate
(the number of objects missed by the algorithm during the
clustering phase due to detection or classification error, hence
cannot be found in the returned frames).



Fig. 3: Exp 1 - Retrieval performance with a synthetic
embedding generator with increasing uncertainty

Exp 1 - Query Retrieval Performance with a Synthetic
Embedding Generator with Increasing Uncertainty: The
performance of D3A depends on the accuracy of the pre-
trained visual-language model and object pose estimates. In
this experiment, we design a synthetic embedding generator
that replaces the object detector. Our synthetic embedding
generator is parameterized with a false positive rate (fpr)3

and false negative rate (fnr)4. We keep the fnr low since
we assume that the object is not in the environment if the
detector fails to detect the object. We annotate ground truth
object embeddings as one-hot encodings ohe of the unique
instances, where each index represents the unique id of a
ground truth object. We then use the fpr and fnr to generate
noise in the synthetic embedding by flipping the bits of the
ohe. Results: We test our system on the query pattern with
specific attributes provided for a single object of interest in
each query - Did you ever see an orange bowl?, for all
ground truth object instances. Results are shown in Fig-3.
Our method’s MRR@50 decreases as fpr increases. Despite
this trend, D3A’s MRR@50 remains considerably higher than
Naive’s MRR@50. This indicates that even when the object
detector used in D3A is not good, D3A retreieves the ground
truth queried object on average in the 5th return frame while
for baseline, the ground truth object can be found in the 20th
frame.

D3A’s miss rate increases as the synthetic detector be-
comes noisier but is always lower than Naive’s miss rate.
The slight decreasing trend of D3A’s miss rate for fpr > 0.3
is because, with a higher probability of flipping the bits of
the ohe, the probability of different object instances being
assigned a similar embedding also increases. At the time of
retrieval for a given object, this causes more keyframes to
be returned one of which includes the queried object.

Exp 2 - Compactness Comparison: We measure the cumu-
lative number of cluster insertions in the database per hour
over the complete 22 hours for both D3A and the “Naive”
baseline. As seen in Fig-4, the number of insertions per hour
for D3A is much less than that of the baseline and scales well
as the amount of data increases. This demonstrates D3A’s
success in aggregating partial views. D3A takes two orders

3 fpr denotes the probability of falsely labeling the detected instance
4fnr denotes the detector’s probability of not detecting the object

Fig. 4: Exp 2 - Cumulative number of insertions to the
database per hour

of magnitude more time to process the raw data than the
baseline but outputs a representation 14.7x more compact and
efficient in answering questions, as shown in Table I. This
demonstrates that D3A allows for scalable spatial-temporal
representation of objects.

DISCUSSION & FUTURE WORK

There are certain limitations of our system that we plan to
improve. The performance of our system depends on the pa-
rameters selected and the pre-trained model used. We notice
that increasing the feature matching threshold increases the
number of false positives during tier-1 processing. For short-
term memory, the greater the buffer size, the more noise there
will be in the object’s pose and embedding to be filtered
and processed. For our method, the more accurate the pre-
trained model, the better the cluster aggregation. But even
with the noisier model, our model performs better than the
Naive baseline.

We plan to run more robust experiments for measuring
query retrieval and plan to report the speed efficiency of our
system by measuring the mean number of frames and object
clusters returned for the queries, the total time taken by a
query divided into retrieval time, and the evaluation time to
find the correct frame by matching against the ground truth.

CONCLUSION

We present a novel algorithm for robots to efficiently
answer spatial-temporal queries about objects in the envi-
ronment over long periods. Our algorithm aggregates partial
view detections of unique instances to create a compact and
query-able representation of the objects. By explicitly per-
forming detection-based three-level associations to identify
the keyframes for unique object instances, our algorithm
outperforms the baseline in answering queries regarding the
mean reciprocal rank, missed rate, and processing time. A
robot deployed with our algorithm was able to process 22
hours of sensor data and develop a compact representation
of objects in its environment, which is an encouraging step
towards enhancing the sensory capabilities of home-service
robots that can help users find their lost forgotten objects.
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[13] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. Lm-
nav: Robotic navigation with large pre-trained models
of language, vision, and action. In Conference on Robot
Learning, pages 492–504. PMLR, 2023.

[14] Niko Sünderhauf, Trung T Pham, Yasir Latif, Michael
Milford, and Ian Reid. Meaningful maps with object-
oriented semantic mapping. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems
(IROS), pages 5079–5085. IEEE, 2017.



Duration 22hrs 3hrs

Total Number of Frames 10, 132 991
Frame Rate (per minute) 7.67 7.67
Sensor Data Size (GB) 10.53 1.43
Total Number of Detections 13, 565 2, 558
Ground Truth Objects N/A 59

Static = 49, Dynamic = 10
Number of Times N/A Mean = 2.1± 1.3,
Dynamic Objects move Max = 5.0

TABLE II: Dataset Details

APPENDIX

DATASET COLLECTION DETAILS

Details of our self-collected dataset can be found in Table-
II. The robotics lab area used for data collection and experi-
mentation included the kitchen and general areas with tables
and chairs. Our dataset includes both static and dynamic
objects. Our method will not be able to differentiate between
two objects that exactly look the same and will consider them
as one. For data collection, the robot collects observations by
doing multiple scans over the scene at different times. During
one scan, the robot collects multiple sliding windows and
within one sliding window if the object moves, our method
based on how good the object detector’s visual features will
either we will store both the positions or consider one the
positions as noise.

ROBOT LOCALIZATION

We use the adaptive (or KLD-sampling) Monte Carlo
localization approach (as described by Dieter Fox), which
uses a particle filter to localize the robot’s pose. Our method
depends on the accuracy of the SLAM’s output for estimating
the robot’s location and, inadvertently, object positions. For
this work, we assume that we are limited by the SLAM
algorithm,, and if SLAM fails, the object’s location stored in
the map will be noisy. Our proposed method aims to solve
the object association and retrieval problem in a 3D world. It
can be extended to Object-based SLAM Relocalization, but
currently, our method does not support this.


