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Abstract— Foundation models, including Large Language
Models (LLMs) and Vision-Language Models (VLMs), offer
new capabilities for improving robotic autonomy. This paper
presents two independent approaches for applying founda-
tion models to robotic task execution. The first approach
employs LLM-driven task decomposition and teleoperation-
based human-robot collaboration, enabling one-shot learning
and rapid refinement of motion primitives for high-difficulty
tasks. The second approach leverages an aerial robot for top-
down perception, where VLMs process the captured images
to support ground robots in manipulation and navigation.
Experimental results demonstrate that LLM-driven task de-
composition significantly improves robot adaptability to novel
tasks while VLM-assisted multimodal perception enhances task-
specified reasoning and scene understanding.

I. INTRODUCTION

In recent years, foundation models, particularly Large
Language Models (LLMs) and Vision-Language Models
(VLMs), have significantly advanced the field of robotics [1],
[2]. Their ability to process natural language [3] and visual
information [4] enables robots to achieve higher levels of
autonomy and intelligence. However, applying these models
to complex robotic tasks remains a challenge due to the
lack of structured task decomposition and the difficulty
in integrating multimodal perception with low-level motion
execution [5].

This paper explores foundation model-driven task execu-
tion by combining two independent research directions. The
first study, illustrated in Fig. 1, introduces an LLM-based task
decomposition approach that segments high-level tasks into
motion primitives. This method incorporates teleoperation
to refine and adapt motion primitives, enabling one-shot
learning for high-difficulty tasks [6]. The second study,
illustrated in Fig. 2, develops an aerial-ground robotic system
where aerial drones capture top-view images, processed by
VLMs for object detection, scene understanding, and seman-
tic labeling. These visual data assist the ground robot in
object manipulation, obstacle avoidance, and path planning.
Meanwhile, LLMs decompose high-level instructions into
structured sub-tasks and perform reasoning-based tasks such
as constructing and updating a global semantic map, enabling
efficient navigation and execution of complex tasks.

Although these studies address different aspects of robotic
task execution, they share a common goal: leveraging foun-
dation models to enhance robot adaptability and autonomy.
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Fig. 1. An overview of an LLM-based Human-Robot Collaboration System,
featuring user interaction, a basic library for pre-programmed motion

functions, and a DMP library for adaptive motion function generation and
storage to accomplish a complex real-world task (e.g., “warm up my lunch”).

By presenting them together, we provide complementary
perspectives on how LLMs and VLMs can improve both
decision-making and perception in diverse robotic systems.
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Fig. 2. Overview of the proposed aerial-ground robot cooperation system.
For the task ‘move to (XX, XX)’, the system utilizes zero-shot perception
and reasoning to enable the aerial robot to construct a semantic map
according to the local top-view map of the environment. This semantic
map is then used to generate motion planning for the ground robot.
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The contributions of this paper are derived from two
independent research directions, each exploring the role of
foundation models in robotic task execution. Specifically:

o We demonstrate the effectiveness of LLM-driven task
decomposition for complex robotic tasks by breaking
them into motion primitives. Furthermore, we intro-
duce a teleoperation-based Human-Robot Collaboration
(HRC) mechanism that allows real-time refinement and
substitution of motion primitives, enhancing task flexi-
bility and adaptability.

+ We propose a multimodal robot task execution frame-
work that integrates LLM for high-level reasoning and



First-time i 1 Human-robot collaboration @ ul
|nput Input is processed by
LLM and named the task Basic Library @"
Open as “open_oven_handle”

@ base_cycle move()

Original motion
functions sequence gripper_control(close) x
move_to_position(oven_handle) base_cycle_move()

Instruction with manual teleoperation

MY mp_pub(open_oven_handle) dmp_pub(open_oven_handle_cx)

Updated motion functions sequence |

=/
DMP Library
“open_oven_handle”
Same task
The LLM processed and Reuse
named the task as
“open_oven_handle” Open

| Execution * # the
< oven
Execute the updated motion
functions under the task
name “open_oven_handle”
in the DMP library

<
[

Fig. 3.

An overview of the LLM-based autonomy with Human-Robot Collaboration (HRC) in sub-task (short-horizon task). The LLM processes user

input to select motion functions from the basic Library. These selected motions are subsequently modified through the user interface with teleoperation.
The updated motion functions are stored in the DMP Library with a specific name such as “open-oven-handle” (The LLM captures the action “open”

and the target “oven_handle”,
resulting in successful one-shot task execution.

VLM for perception. This framework enables zero-shot
object detection, semantic-aware navigation, and precise
manipulation, significantly improving autonomous task
execution.

o We validate the advantages of foundation model-driven
robotics by demonstrating both human-robot and multi-
robot collaboration in complex task scenarios, high-
lighting the synergy between Al reasoning and physical
robot execution.

II. METHODOLOGY

A. Task Decomposition and Motion Primitives Replacement
with Human-Robot Collaboration

To enable the execution of high-difficulty robotic tasks, we
employ an LLM-driven task decomposition approach. The
LLM interprets high-level user commands and breaks them
down into structured sub-tasks, aligning each step with the
robot’s available skills.

Each sub-task is executed using motion primitives, which
serve as parameterized low-level actions. We utilize Dy-
namic Movement Primitives (DMP) [7] to store and generate
motion trajectories, ensuring adaptability and reusability.
Initially, an operator provides teleoperation-based demonstra-
tions for new tasks, allowing the system to refine and store
motion primitives for future autonomous execution. Once
a motion primitive has been recorded, it can be reused in
subsequent executions of the same task without requiring
further instruction. This enables one-shot learning for high-
difficulty robotic tasks. The workflow is illustrated in Fig.
3.

B. Multimodal Perception and Multi-Agent Robots Collabo-
ration

To enhance task execution and robot collaboration, we
develop a multimodal aerial-ground robotic system where
VLM and LLMs play complementary roles. The workflow
is illustrated in Fig. 4.

then integrates them as “open_oven_handle”) for future application (same task re-input or reusing in the long-horizon task),

The LLM is responsible for high-level task planning and
decomposition. It processes user instructions, breaks down
complex tasks into a sequence of motion primitives, and
assigns execution steps to the aerial and ground robots
accordingly. For global map construction, since the aerial
drone relies on a global map for navigation, the first sub-task
in the execution pipeline is to generate it. The LLM integrates
information from VLM-provided local maps to infer the
overall environment structure, enabling the aerial robot to
navigate and assist the ground robot in task execution.

The VLM is responsible for zero-shot object detection and
semantic scene understanding, enabling adaptive perception
for real-world task execution. It identifies objects in the
environment, assigns semantic labels (e.g., target, obstacle,
main actor), and provides structured scene understanding to
guide motion primitives. The VLM primarily operates within
individual motion primitives, assisting with perception and
environment-aware execution.

III. EXPERIMENTS AND RESULTS

A. Evaluation of Task Decomposition and Motion Primitives
Replacment with Human-Robot Collaboration

To evaluate the effectiveness of our task decomposition
and motion primitive approach, we conducted experiments
involving a variety of tasks, including both zero-shot and
one-shot scenarios. We assessed the performance by mea-
suring the task completion success rate. The tasks include 4
short-horizon task (Easy) - ‘Put&Stack’, ‘Open microwave’,
‘Open oven (HRC)’, ‘Open cabinet (HRC)’ and 3 long-
horizon task - ‘Clean table’ (Medium), ‘Warm up apple’
(Hard), and ‘Roast apple (HRC)’.

o Zero-Shot Tasks: We tested the robot’s ability to
perform tasks without any prior demonstration or fine-
tuning. The results demonstrated the generalizability of
our pre-defined motion primitives.

e One-Shot Tasks (HRC): We evaluated the robot’s
adaptability to novel tasks through teleoperation-based
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Fig. 4.

An workflow of the foundation model-driven aerial-ground heterogeneous robotics system for a real-world long-horizon task. This process

encompasses sub-task identification, motion function selection, environment perception integration, and robot motions generation.

motion primitive updates. The experiments showed a
significant improvement in task success rate after a
single demonstration.

The result in Table I indicates that LLM-based task decom-
position with motion primitives replacement enables efficient
adaptation in dynamic environments, making it suitable for
real-world deployment in household automation.

TABLE I
EXECUTABILITY, FEASIBILITY, AND SUCCESS RATES OF LLM-BASED
AUTONOMY AND HUMAN-ROBOT COLLABORATION

Tasks Num of trials Executability Feasibility Success rate
Put&Stack 23 100.0% 100.0% 91.3%
Open microwave 23 100.0% 100.0% 82.6%
Open oven (HRC) 23 100.0% 100.0% 91.3%
Open cabinet (HRC) 23 100.0% 100.0% 87.0%
Clean table 23 100.0% 95.7% 87.0%
Warm up apple 23 100.0% 100.0% 60.9%
Roast apple (HRC) 23 95.7% 87.0% 56.5%
Total 161 99.4% 97.5% 79.5%

B. Evaluation of Aerial-Ground Robots System

The experiments for the aerial-ground robots system were
more extensive, covering various aspects of the system’s
performance.

1) Effectiveness of GridMask in VLM Fine-Tuning: To
enhance the performance of VLM in describing environments
and improving their integration within multimodal systems,
we propose a GridMark-based fine-tuning method designed
to improve 2D perception. The appearance of the GridMark
is depicted in Fig. 9.

We investigated the impact of using GridMask during the
fine-tuning of the VLM. The results indicated that GridMask
significantly improved the robustness and accuracy of the
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Fig. 5. Comparison of VLM accuracy with and without GridMask. The
values show the average deviation of objects position. The number 200 or
400 means the datasets number, G-FT or -FT means if the GridMask is
used for fine-tuning, GridMask or NoGridMask means if the GridMask is
used for deployment.

VLM in parsing aerial images. The result is shown in Fig.
5. The adapter for Gemini’s fine-tuning procedure is set to
4.

2) Accuracy of Target Localization by VLM: We evaluated
the precision of the VLM in localizing target objects from
aerial images. In our system, VLM provides local object
coordinates, which are then transformed into global positions
using the aerial robot’s SLAM-estimated pose (orientation is
kept to 0). To validate the accuracy of this approach, we
compare the SLAM-based global localization with ground-
truth positions obtained from a motion capture system. Fig.
6 presents the error analysis. In (a), we first assess the
aerial robot’s SLAM position errors compared to Mo-cap to
understand the reliability of SLAM-based localization. In (b),
we calculate the global position errors of the ground robot
using both SLAM and Mo-cap reference positions. Finally,
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Fig. 6. Global localization error analysis of the ground robot based on aerial robot positioning data.

(c) illustrates the orientation estimation errors of the ground
robot. The adapter for Gemini’s fine-tuning procedure is set
to 1.

3) Real-World Task Completion: To valid the system’s
practicability, we set high-intelligent word assembling task
for the aerial-ground system, requiring the system to as-
semble letter blocks into specified words, such as “LOVE”
and “OK,” under different constraints and configurations. For
instance, the system was tasked with aligning “LOVE” from
right to left, arranging “BE” without repositioning the “B”
block, among others.

We assessed the overall quality of task completion using
multiple metrics, including:

o Task Decomposition: Human evaluators were involved
in assessing whether the task decomposition adhered
to the user’s requirements, ensuring that the system
correctly interpreted and planned tasks according to the
specified goals.

o Global Map Construction Accuracy: This metric fo-
cused on the system’s ability to generate precise global
maps, which are crucial for effective aerial path plan-
ning. The accuracy of these maps directly impacts the
aerial robot’s navigation and task execution capabilities.

o Recognition & Labeling: This aspect assessed the
model’s ability to accurately recognize and position ob-
jects within the environment and apply correct semantic
labels to different objects in the scene according to
current task.

o Collision Times: To evaluate this, we recorded the
average number of collisions occurring during one pick-
transportation-placement task. This metric provides in-
sight into the planner’s capability to utilize semantic
map information for collision-free motion planning.

o Task Completion Success: Finally, this metric ex-
amined whether the final arrangement of the letter
blocks matched the user’s specifications and constraints,
indicating the overall effectiveness and accuracy of task
execution.

The results shown in Table II demonstrated The aerial-
ground system demonstrates how multimodal foundation
models enable precise manipulation and adaptive task ex-
ecution in heterogeneous robot collaboration. These results

TABLE I
PERFORMANCE EVALUATION OF THE AERIAL-GROUND ROBOT SYSTEM

Metric Accuracy/Success Rate  Times
Task Decomposing 1.0 5
Global Map Construction 0.8 5
Recognition & Labeling 0.74 171
Collision Times — 0.4
Task Completion Success 0.8 5

suggest potential applications in automated object handling,
logistics, and assistive robotics.

IV. CONCLUSION

In this paper, we presented two independent approaches
for foundation model-driven robotic task execution: LLM-
based task decomposition with motion primitives and a
VLM-assisted aerial-ground robotic system. By examining
these approaches together, we demonstrated how LLMs
enable structured task decomposition and reasoning, while
VLMs facilitate zero-shot perception and semantic naviga-
tion.

Experimental results validate the effectiveness of each
approach in its respective domain. The first study highlights
how LLM-driven task decomposition and motion primitives
enable one-shot learning for high-difficulty tasks, improving
robot adaptability with minimal human intervention. The
second study showcases the role of foundation models in
multi-robot collaboration, where LLMs decompose complex
tasks and reasoning steps, while VLMs accurately parse
aerial images to support ground robot navigation.

These findings highlight the potential of foundation mod-
els in enhancing robotic autonomy across different levels
of task execution. Future work will explore more dynamic
and complex task scenarios, including real-time adaptation of
LLM-generated motion primitives and enhanced robustness
of VLM-based perception in unstructured environments. Ad-
ditionally, we aim to extend 3D environment navigation ca-
pabilities in aerial-ground robotic systems, integrating foun-
dation models for improved spatial awareness and decision-
making in real-world applications.
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APPENDIX

A. Experiment Devices
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Fig. 7. HSR joint configuration, experiment environment setup, and objects
utilized in the experiments

1) Task Decomposition and Motion Primitives: The sys-
tem has undergone real-world testing on the Human Support
Robot (HSR) from Toyota. Oculus’s VR device is used for
teleoperation. The experiment objects are shown in Fig. 7.

The experiments were set in a well-lit kitchen environment
as shown in Fig. 7b, where the robot was tasked with per-
forming a variety of domestic tasks initiated through natural
language commands provided by users. The experiments aim
to evaluate the performance of the system for routine zero-
shot tasks and more intricate and specialized one-shot tasks.
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Fig. 8. The illustration of how the aerial-ground robots system interact
with the objects which need pick-transport-place.

2) Aerial-Ground Robot System: The multimodal robots
framework is implement on an aerial-ground robot system
which including one Gol - quadruped robot from Unitree



and one self-designed quadrotor aircraft which equipped with
SLAM system [8].

Besides, serval letter blocks are provided for Pick-
Transportation-Placement, the ground robot need to assemble
them to words according to the command from user.

The appearance of the aerial-ground system and the letter
blocks are depicted in Fig. 8.
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Fig. 9. A illustration of the fine-tuning dataset, including ‘system’ for
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‘assistant’ for ideal answer designing.

B. Prompt Engineering

1) LLM - Task assignment: These prompts are designed
to decompose the command into sub-tasks and assign the

sub-tasks to according to the robot characteristics.

# Duty Clarify

You are a task decomposer for a heterogeneous
multirobot system. Decompose complex tasks into
sub-tasks for each robot according to their
abilities. Assume the robots already know the
positions of all objects. Each sub-task should
align with a specific ability of a robot.

# Robots List

— Drone Abilities:

1. Construct the map.
- Robot Dog Abilities:
1. Attaching objects.

2. Detaching objects.

— Drone and Robot Dog Cooperation Ability:
1. Move or carry something to somewhere.

(Must be the first step).

2) LLM - Motion Functions Selection: These prompts are

used to give the available motion functions of each robot to
the LLM.

# Drone

You are responsible for choosing the motion
function to finish the task.

Motion Functions Library:

1. construct-map ()

— Controls the drone to construct a global map.
# Robot Dog

You are responsible for choosing the motion
function to finish the task.

Motion Function Library:

1. gol.attach_start (‘name_of_target_object’)
2. gol_detach_start (‘name_of_target_object’)

- ‘name_of_target_object’. Name of the object
need to be attached or detached. Example:
‘A_letter_cube’, ‘green_cube’

C. Fine-tuning

This section illustrate appearance of GridMask and dataset
structure in Fig. 9. Including ‘system’ for prompting, ‘user’
for task requiring and GridMask-equipped images input, and
‘assistant’” for ideal answer designing.



