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Abstract

Event cameras rely on motion to obtain information about
scene appearance. This means that appearance and motion
are inherently linked: either both are present and recorded
in the event data, or neither is captured. Previous works
treat the recovery of these two visual quantities as separate
tasks, which does not fit with the above-mentioned nature of
event cameras and overlooks the inherent relations between
them. We propose an unsupervised learning framework that
Jjointly estimates optical flow (motion) and image intensity
(appearance) using a single network. From the data gener-
ation model, we newly derive the event-based photometric
error as a function of optical flow and image intensity. This
error is further combined with the contrast maximization
framework to form a comprehensive loss function that pro-
vides proper constraints for both flow and intensity estima-
tion. Exhaustive experiments show our method’s state-of-
the-art performance: in optical flow estimation, it reduces
EPE by 20% and AE by 25% compared to unsupervised ap-
proaches, while delivering competitive intensity estimation
results, particularly in high dynamic range scenarios. Our
method also achieves shorter inference time than all other
optical flow methods and many of the image reconstruction
methods, while they output only one quantity. Project page:
https://github.com/tub-rip/E2FAI

1. Introduction

Event cameras [ 18, 30] are novel bio-inspired vision sensors
that offer attractive properties compared to traditional cam-
eras: high temporal resolution, very high dynamic range
(HDR), low power consumption and high pixel bandwidth,
resulting in reduced motion blur. Hence, event cameras
have a large potential for computer vision and robotics ap-
plications in challenging scenarios for traditional cameras,
such as high speed motion and HDR illumination. However,
novel methods are required to process the unconventional
output of these sensors (a stream of asynchronous per-pixel
brightness changes instead of conventional images) in order
to unlock their potential [9].
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Figure 1. Our method computes accurate optical flow and inten-
sity images from event-camera data despite complex scenarios,
fast motion and high dynamic range. The above result is obtained
using data from interlaken_00_b sequence of DSEC [13].

In the past decade, a variety of computer vision al-
gorithms have been developed to recover fundamental vi-
sual quantities from event streams [4, 9, 14, 50], such as
EV-FlowNet [52] for optical flow estimation, and E2VID
[31] for image intensity reconstruction. Despite achieving
good performance, most of these methods are designed to
estimate a single visual quantity: optical flow or image in-
tensity. This philosophy does not fit well with the fact that,
under constant illumination, motion and appearance are in-
herently entangled in the input data, since events are pro-
duced by moving intensity patterns on the image plane (e.g.,
Fig. la). More accurate and robust estimation becomes pos-
sible when the synergies between both visual quantities are
properly leveraged.

To achieve this goal, we newly derive the event-based
photometric error (PhE) as a function of optical flow and
image intensity, and combine it with the state-of-the-art
contrast maximization (CMax) framework [7], yielding a
comprehensive loss function. Both PhE and CMax provide
constraints on scene appearance and motion. The former
focuses more on appearance (i.e., intensity) while the lat-
ter focuses more on motion (i.e., optical flow). Their com-
plementary properties give rise to a well-behaved loss in
both aspects. In addition, our loss function also includes
a full consideration of the internal synergies between esti-
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mated visual quantities: during training, the predicted flow
is leveraged to warp the predicted image intensity to the ad-
jacent interval so that a temporal consistency (TC) loss can
be calculated, which significantly encourages consistency
and robustness. We train a deep neural network (DNN) with
this loss function in an unsupervised manner. The resulting
model can predict precise optical flow and image intensity

simultaneously from event data (see Fig. 1).

To the best of our knowledge, this paper presents the first
unsupervised learning-based approach that jointly recovers
optical flow and image intensity from event data, with a sin-
gle network (Tab. 1). In the experiments, we evaluate our
method in terms of optical flow and intensity on a variety
of public datasets. For optical flow, our method achieves
the best accuracy in the unsupervised learning category in
the DSEC benchmark [13], with 20% and 25% improve-
ments in terms of EPE and AE, respectively. For intensity,
our method reports competitive results with respect to other
unsupervised methods and even some supervised ones, es-
pecially in HDR scenarios. In terms of speed, our method
reports minimal inference time to obtain both visual quan-
tities. Our method robustly predicts precise flow and inten-
sity on unseen data recorded in different scenarios and with
different event cameras, thus demonstrating generalization.

Our contributions can be summarized as follows:

1. We propose the first unsupervised learning framework
for the joint estimation, with a single network, of event-
based optical flow and image intensity. Its working prin-
ciple fits naturally with the characteristics of event data.

2. We derive event-based PhE, and combine it with CMax,
yielding a comprehensive and well-behaved loss func-
tion for the estimation of motion and scene appearance.
It can be directly adapted to various optimization and
learning-based solutions for similar problems.

3. We conduct comprehensive experiments on public
datasets, where our method shows state-of-the-art per-
formance on optical flow, image intensity and inference
time. Furthermore, our method shows excellent gener-
alization on unseen data recorded in different scenarios
(HDR and fast motion) and with different event cameras.
We hope the clear advantages of our approach and the

source code provided will make its adoption appealing, thus

bringing the tasks of optical flow estimation and intensity
reconstruction closer than they currently are (until now, they
have mostly been treated as independent problems).

2. Related Work

Given the high-speed and HDR properties of event cameras,
extensive research has been carried out to utilize them for
the estimation of optical flow and image intensity. Let us
review the literature on each of these tasks in Sec. 2.1 and
Sec. 2.2, respectively, and summarize the approaches that
solve for both quantities in Sec. 2.3.

Method Year Type DOFs Joint Loss function

IVM [5] 2011 MB 3 v “Consistency” of the data (Max. Likelihood)
SOFIE [1] 2016 MB 6 v Pixel-wise brightness change + TC

E-cGAN [25] 2021 SL 6 X Supervised: Error w.r.t. ground truth

BTEB [28] 2021 USL 6 X FlowNet: IWE sharpness; ReconNet: LEGM
Ours 2025 USL 6 v CMax + PhE of Flow and Intensity + TC

Table 1. Event-based optical flow and intensity estimation meth-
ods. The columns indicate: the method type, the number of de-
grees of freedom (DOFs) of the camera motion that the method
can handle (3=rotation, 6=free motion), whether the method esti-
mates flow and intensity jointly or separately, and the loss used.

2.1. Event-based Optical Flow Estimation

Previous works can be categorized into model-based (MB),
supervised learning (SL) or unsupervised learning (USL).
State-of-the-art MB methods [3, 39] formulate the prob-
lem using an objective function, and solve for optical flow
through optimization. The most commonly-used objective
is the sharpness of images of warped events (IWEs), such
as the CMax loss [7, 8] used in [39], and the flow warping
loss (FWL) [41] used in [3]. The optimization usually takes
a number of iterations to converge, and it repeatedly warps
all the involved events in every iteration, which makes these
methods costly. Furthermore, the objectives derived from
IWE sharpness may suffer from the issue of event collapse
[36, 38], which affects flow accuracy and requires strong
regularization to mitigate it.

Due to the better fitting capabilities and short inference
times of DNNS, researchers have adopted them to compute
optical flow. SL approaches [11, 13, 17, 19, 21, 45] train
DNNs to learn the mapping from event data to the ground
truth (GT) optical flow. However, the acquisition of GT re-
lies on either simulation [17, 21] or calculation from exter-
nal depth sensors using the motion field equation [13, 51].
Both are expensive. The former suffers from the sim-to-real
gap, that is, the trained model may not perform well on real-
world data, while the latter suffers from sensor inaccuracy
and data sparsity [16, 39]. Although SL methods are gen-
erally ahead in optical flow benchmarks, the above issues
about GT data are inherited by the trained model.

In contrast, USL methods [16, 29, 47, 52] forego costly
data labeling, shifting the focus to the data and the loss func-
tion to learn optical flow patterns. Similarly to MB meth-
ods, current mainstream loss functions are still based on
IWE sharpness [8]. For instance, EV-FlowNet [52] quan-
tifies sharpness in terms of average timestamp images [22].
More recently, [16, 29, 39] adopted the CMax loss to train
DNNs, which achieved obvious improvements with respect
to MB methods that used the same loss functions. In ad-
dition, USL performs expensive event warping only during
training, hence it has much shorter and more constant infer-
ence time than equivalent MB methods.



2.2. Event-based Image Intensity Reconstruction

Similarly, intensity estimation methods can be classified
into MB, SL and USL categories. For the MB category,
early works recovered brightness from events by means of
temporal filtering [34] or temporal integration with mani-
fold denoising [27]. A recent work [49] formulated this task
as a linear inverse problem with image regularization and
solved for intensity using ADMM [2]. However, it required
accurate optical flow as input, which limits its applicability.

SL approaches [10, 31, 35, 44] trained DNNs using syn-
thetic data to learn the mapping from event data to image in-
tensity. In this way, the models were prevented from learn-
ing motion blur and under/over-exposure that happens in
traditional cameras. Besides, these methods were aimed at
video reconstruction and therefore adopted recurrent net-
work architectures while introducing temporal consistency
loss to guarantee the continuity of sequential images. How-
ever, they suffer from the sim-to-real gap and sometimes
perform poorly in HDR scenarios (see, e.g., Fig. 4).

USL methods for intensity reconstruction are underex-
plored. Recent work [28] proposed to supervise the training
with event-based photometric consistency. The loss was de-
fined using the linearized event generation model (LEGM),
as the error between brightness increments measured by
event data and those obtained from the spatial gradient of
the predicted image. However, this method requires accu-
rate optical flow provided externally for both training and
inference, for which the authors had to train a separate net-
work to estimate optical flow (see details of the flow part
in Sec. 2.3). The need to infer sequentially with two sep-
arate models takes more time and amplifies error propaga-
tion, thus significantly limiting practicality.

2.3. Event-based Flow-Intensity Estimation

Table | summarizes the main works that estimate both op-
tical flow and image intensity with event cameras. The ear-
liest work [5] proposed a joint estimation approach recov-
ering optical flow, image intensity and camera ego-motion.
However, it was limited to pure rotational motion. Bardow
et al. [1] developed a variational algorithm that simultane-
ously optimized optical flow and image intensity. However,
optical flow was only constrained by the brightness con-
stancy between estimated intensity images, while the mo-
tion information in event data was not utilized. Hence, the
resulting intensity and optical flow showed poor accuracy.
In the learning-based category, [25] presented an SL
method for image reconstruction from events using condi-
tional generative adversarial networks (cGANs), and also
showed the applicability to predict depth and optical flow.
The networks were trained and performed inference for
each quantity separately, so the bonds between them were
ignored. More recently, [28] proposed training an intensity
reconstruction DNN (same architecture as [31]), but in an

unsupervised manner. To do so, they separately trained a
network for optical flow estimation using the same loss as
[52], and subsequently fed its output flow into a second net-
work for intensity reconstruction (see Sec. 2.2).

Our method overcomes and simplifies previous designs:
it jointly estimates intensity and flow in an unsupervised
manner by leveraging their synergies via the proposed loss
function and architecture (i.e., using a single DNN).

3. Method

In this section, we first explain the preliminaries (Sec. 3.1),
then introduce our proposed comprehensive loss function,
including newly derived event-based PhE (Sec. 3.2), CMax
loss (Sec. 3.3) and regularization terms (Sec. 3.4). Finally,
we present the training pipeline in Sec. 3.5.

3.1. Preliminaries

Event Generation Model (EGM). Every pixel of an event
camera independently measures brightness changes, gen-
erating an event e, = (Xp,tr,pr) When the logarithmic
brightness change AL reaches a contrast threshold C' [9]:

AL = L(xg,tr) — L(xp, tr, — Aty) = ppC, (1)

where p, € {+1, —1} indicates the polarity of the intensity
increment, and Aty is the time elapsed since the previous
event at the same pixel xg.

Event warping. Given a set of events & = {ej}r°,, we
can warp them to a reference time t,s with a motion model
W, yielding a set of warped events &/ = {e], }iv;, where:
er = (Xk, tk,pk) — B;C = (X;c, tref,pk). Provided that the
time span of £ is small, we can assume all pixels move with
constant but different velocities on the image plane, that is,
the motion model W is given by:

X), = Xpp + (trer — ti) F(x5), (2
where F'(xy,) is the optical flow at xj, [39].

3.2. Event-based Photometric Error (PhE)

We leverage the original EGM to derive the event-based
PhE. Starting from (1), we warp an event e, = (X, tx, Pk)
and its predecessor (at the same pixel) ex_1 = (X, tx —
Atg, pr—1) to a reference time ¢.r. According to (2), their
warped locations on the camera plane at ¢.¢ are:

Xp, = Xpp + (tref — ti) F(x1),

3
X;€71 =Xi + (tref — (tr — Atk)>F(X’€)' ®

Let the image intensity at ¢t be' L(x), then we substi-
tute (3) into (1) to obtain the PhE for the event e:

er = (L(x},) — L(x}_1)) — prC, )

'We omit “logarithmic” in the following text for simplification.
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Figure 2. The training pipeline of our proposed flow-intensity joint estimation method. In every training step, two consecutive event data
samples are input to the network, respectively. The CMax and PhE losses for each sample are calculated with the output optical flow and
image intensity. The TC loss is defined by the photometric error between the predicted L; 1 and the one warped from L; through F;_, ;1.

which is the difference between the predicted intensity in-
crement and the measured one. In practice, X;C and X;f—1
have sub-pixel precision, so we use bilinear interpolation to
compute L(x},) and L(xj,_,). Therefore, every PhE term
(4) provides constraints for the intensity values at up to eight
pixels around x}, and xj,_, as well as the optical flow value
at one pixel x. Finally, we sum the photometric error terms
of all events in &, obtaining the PhE loss:

N,
Dl

EPhE(LaF) = ﬁ E |€k|- @)
€ k=1

It is an objective function of both intensity and flow,
which opens the door to the joint estimation of both quanti-
ties. It is worth emphasizing that the PhE loss does not have
the event collapse problem [36, 38] that CMax suffers from.

3.3. Contrast Maximization (CMax)

The CMax framework [7, 8] assumes events are triggered
by moving edges, so that optical flow estimation can be de-
termined by seeking the best motion compensation. Specif-
ically, warped events &/ are aggregated on the image plane
at t..r, forming an image of warped events:

Nc
IWE(x; &/, F) = > N(x; %}, 0> = 1px),  (6)
k=1

where every pixel x counts its number of warped events.
In this work, we adopt the inverse of the L' magnitude
of the gradient to quantify the CMax loss:

Lemax (F) =1 / <|§12 /Q | VIWE(x)||, dx). ()

In contrast to PhE, the CMax loss recovers scene appear-
ance in the form of a sharp edge map, which is the objective
instead of the variable. The only optimizable variable is op-
tical flow, which reflects that CMax loss focuses more on
motion parameters, as mentioned in Sec. 1.

3.4. Regularization

Smoothness of Flow and Intensity. As stated in Sec. 3.2,
the PhE loss only provides supervisory constraints on pix-
els that contain events (called valid pixels). To infer the
values of the remaining pixels, regularization is needed;
we use the total variation (TV) [33] to encourage smooth-
ness of optical flow and intensity predictions: Lpry(F) =
ar Jo IVE)|1 dx, and Lirv (L) = g f, IVL(x)]1 dx.
Additionally, the smoothness of the flow mitigates the event
collapse caused by the CMax loss.

Temporal Consistency (TC). A key advantage of joint es-
timation (over a separate one) is being able to leverage the
synergies between the quantities for better consistency. We
achieve this by establishing associations between tempo-
rally consecutive predictions. As depicted in Fig. 2, in each
training step, the network takes as input two consecutive
data samples to predict the corresponding optical flow and
image intensity. We leverage flow F;_,; 1 to transport L; to
ti+1, yielding Lj_ ;, whose photometric error with respect
to L; 1 (predicted from the other data sample) is calculated
to encourage temporal consistency (TC):

1
Lre = / |Lisr(x) — W(x: i, Fisin)| dx, ()
Q

where )V warps an image according to the optical flow. The
introduction of the TC loss greatly improves the prediction
quality, especially in image intensity (see Sec. 4.4).



3.5. Training Pipeline

An overview of the training pipeline is displayed in Fig. 2.
During training, the loss terms (5), (7), etc. are evaluated
with the predictions of each sample, while the TC loss (8),
between consecutive samples. Consequently, the total loss
is the weighted sum of all these terms:

Liotat = M Lpre + A2Lomax + A3Lerv + AaLiry + AsLrc,

where the first four terms are the sum for the two data
samples (Fig. 2). For every sample, the reference time of
CMax is set to a random number within the time span of
the event set [16], that is, keeping the IWE sharp at any
time, which helps reduce the possibility of event collapse,
while that of PhE is always set to the end time of the sam-
ple. For inference, users just need to input one event voxel
grid V(t;—1,t;) to predict flow F;_;_,; and intensity L;.

4. Experiments

We begin by describing the experimental setup (Sec. 4.1),
then present the results of optical flow evaluation (Sec. 4.2)
and of image intensity evaluation (Sec. 4.3), before finally
introducing the ablation study (Sec. 4.4).

4.1. Experimental setup

Datasets. Table 2 summarizes the datasets used in our ex-
periments. The ECD dataset [26] is collected with a hand-
held DAVIS240C camera in indoor scenarios, where the
motion speed varies from slow to fast. The DSEC dataset
[13] features urban and highway driving scenarios in day-
light and night. It is recorded with an on-board Prophesee
Gen3 camera, and the GT optical flow is computed from the
LiDAR disparity data. The HDR dataset [3 1] contains event
data captured in HDR illumination conditions, such as the
Sun and a car driving out of a tunnel. It highlights the HDR
property of event cameras. The BS-ERGB dataset [42] pro-
vides high-resolution event data recorded by a handheld co-
capture system composed of a Prophesee Gen4 camera (1
megapixel) and a FLIR RGB camera, in complex outdoor
scenes. The high quality of the GT frames makes them suit-
able for the evaluation of event-based intensity reconstruc-
tion. For intensity evaluation, we use the EVREAL tool [6],
and adopt its sequence selection. The sole change made is
the removal of the last seconds of the may29_rooftop se-
quences from the evaluation, where the camera does not
move and event data consists of pure noise.

Metrics. For optical flow, we adopt standard met-
rics: end-point error (EPE), angular error (AE) and %Out
(the percentage of flow estimates whose EPE>3px). We
also report the flow warp loss (FWL) proposed in [41].
For image intensity, we report full-reference metrics when
GT images are available (e.g., BS-ERGB dataset): mean
square error (MSE), structure similarity index (SSIM) [43]

Dataset Camera Pixels Scenarios & Features

ECD [26] DAVIS240C 240 x 180 Indoor handheld, varying speed
DSEC [12] Prophesee Gen3 640 x 480 Outdoor driving, daylight & night
HDR [31] Samsung DVS Gen3 640 x 480 Indoor & outdoor, handheld

& driving, HDR
BS-ERGB [42] PSEE Gen4 & FLIR 970 x 625 Outdoor handheld motion, HDR

Table 2. Configurations of the datasets used in the experiments.
The BS-ERGB data is cropped; its resolution is a bit smaller than
the event camera resolution.

and perceptual similarity (LPIPS) [48]. Otherwise, we
use no-reference metrics: BRISQUE [23], NIQE [24],
MANIQA [46] (e.g., HDR dataset).

Implementation Details. We train our model only on
the DSEC training split for 130 epochs with an AdamW
optimizer [20], whose learning rate is 10~2 for the first
100 epochs and then decays to 10~%. The training is car-
ried out on four NVIDIA RTX A6000 GPUs with a to-
tal batch size of 24. This trained model is used for the
evaluation of optical flow on the test split of DSEC and
those of image intensity on BS-ERGB and HDR datasets,
without fine-tuning. The weights of the loss terms are:
A1 = 30,22 = 1,A3 = 10, 4 = 0.001,A5 = 1. The
contrast threshold C'is set to 0.2. We adopt the classical U-
Net architecture [32], which has 15 input channels (number
of time bins in the event voxel grid [52]) and three output
channels (first two: optical flow, third one: intensity).

During training and inference, we first apply average
pooling with a kernel size of 16 to the raw output flow,
and then perform bilinear interpolation to recover the origi-
nal resolution for the output flow, to further guarantee flow
smoothness. For inference, like [28], we convert the pre-
dicted logarithmic intensity into the linear scale through
I = exp (L), then perform the robust min/max normaliza-
tion before evaluation and visualization: I = (I—m) /(M —
m), where m and M are the 1% and 99% percentiles of I,
respectively. The inference time reported in Tabs. 3 and 5 is
measured on a single GPU of the same type (NVIDIA RTX
A6000).

4.2. Optical Flow Evaluation

Accuracy. Table 3 presents a comprehensive comparison
between our method and baseline approaches, where the
methods that require GT optical flow (SL) and those that do
not (MB/USL) are compared respectively in two categories.
As mentioned in Sec. 2.1, SL methods achieve smaller er-
rors because they are not only trained with GT, but also the
GT of training and test sequences are from the same sensor
(no distribution gap). In the MB/USL category, our method
significantly outperforms all others in the summarized met-
rics (“All” columns) and the per-sequence values. The only
exception is that our value of %Out on interlaken_00_b is
slightly bigger than that of MotionPriorCM. Overall, our



All interlaken_00_b interlaken_01_a thun_01_a

Type Method tinflms] EPE| AE] %Out|l FWL1 EPE| AE| %Out| FWL1 EPE| AE| %Out| FWLT EPE| AE] %Out| FWL 1
SL E-RAFT [13] 46.33 0.79 1056  2.68 1.29 139 622 619 132 090 6.88 391 142 065 975 1.87 1.20
IDNet [45] 072 272 2.04 - 125 211 435 - 077 225  2.60 - 0.57 266 147 -
RTEF [3] 4.88 - 4195 251 859 - 59.84 289 594 - 4733 292 301 - 2970 239
MultiCM [37] 9.9-10% 347 1398 30.86 1.37 574 9.19 3893 1.50  3.74 977 31.37 151 212 11.06 17.68 1.24
MB/ BTEB [28] 3.86 - 31.45 1.30 632 - 4795 146 4091 - 36.07 142 233 - 20.92 1.32
ysl, Paredes etal. [29] 40.1 2.33 1056 17.77 - 334 622 2572 - 249 688 19.15 - .73 9.75 10.39 -
EV-FlowNet [52] 3.86 - 31.45 1.30  6.32 - 4795 146 491 - 36.07 142 233 - 20.92 1.32
MotionPriorCM [16] 17.86 320 853 1521 1.46 321 489 2045 1.58 238 546 1740 .70 139 699 736 1.30
VSA-SM [47] 222 886 16.83 - 320 623 2461 - 246  7.00 20.23 - 1.55  6.63 10.67 -
Ours 15.12 1.78 644 11.24 1.79  3.08 3.87 20.76 192 190 411 12.62 206 126 569 6.61 1.56
thun_01_b zurich_city_12_a zurich_city_14_¢ zurich_city_15_a
Type Method EPE| AE| %Out] FWL{ EPE| AE| %Out| FWL{ EPE| AE| %Out| FWL{T EPE| AE] %Out| FWL 1
SL E-RAFT [13] 0.58  8.41 1.52 1.18  0.61 23.16 1.06 112 071 1023 191 147 059 888 1.30 1.34
IDNet [45] 055 207 135 - 060 456 1.16 - 076 374 274 - 0.55 255  1.02 -
RTEF [3] 391 - 3469 248 3.14 - 34.08 142 4.00 - 4567 267 378 - 3799 2.82
MultiCM [37] 248 12.05 23.56 1.24  3.86 28.61 43.96 1.14 272 12,62 30.53 1.50 235 11.82  20.99 1.41
MB/ BTEB [28] 3.04 - 25.41 133 2.62 - 25.80 1.03 336 - 3634 124 297 - 2553 1.33
usL, Paredes etal. [29] 1.66 841  9.34 - 272 23.16  26.65 - 2.64 1023 23.01 - 1.69 888  9.98 -
EV-FlowNet [52] 3.04 - 25.41 133 262 - 25.80 .03 3.36 - 36.34 1.24 297 - 25.53 1.33
MotionPriorCM [16] 1.54 655  9.69 1.33 833 20.16 22.39 113 1.78 879 12.99 156 145 627 834 1.51
VSA-SM [47] 1.74  6.76  13.07 - 219 17.13  15.24 - 1.69  7.57 11.02 - 1.85 8.06 13.55 -
Ours 115 489 581 1.63  1.92 1435 1331 140 150 693 10.51 1.92 126 546 641 1.89

Table 3. Optical flow evaluation. Results on the DSEC optical flow benchmark [13]. Bold is the best in each category, except the column
of tinr, Wwhere only the shortest tiy¢ is marked. Note that our model predicts both flow and intensity, while others only predicts the former.
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Figure 3. Qualitative comparisons on DSEC. From left to right: (a) input events; (b) image of warped events (IWE) with our predicted
flow; (c) our predicted intensity; (d) our predicted flow; (e)-(f) two baseline methods that predict optical flow (USL and SL, respectively).

method achieves great improvements of 20%, 25% and 26% dataset. It is clear that the output flow maps (column d)

in terms of EPE, AE and %Out, respectively. Note that our
method even outperforms E-RAFT (SL) in terms of AE,
with a reduction of 39%. RTEF directly adopts FWL as the
objective function to optimize, so it has the highest FWL
scores on all sequences, followed by our method in the sec-
ond place. Note that a high FWL value may not always
be good, as it can be indicative of event collapse [39]. In
addition to the overall metrics, our method shows the best
performance on all individual sequences that are recorded in
various scenarios (urban and highway) and various illumi-
nation conditions (daylight and night). This demonstrates
the robustness and versatility of the proposed approach.

Figure 3 presents a qualitative comparison on the DSEC

of our method are more precise than those of the most re-
cent USL method (MotionPriorCM, column e). Regard-
ing scene appearance, our method not only generates sharp
edge maps using the predicted flow (column b) —like flow-
based methods—, but also simultaneously produces detailed
intensity images (column c).

Runtime. We also compare the inference time of some
methods in Tab. 3 (“fj,¢” column). Our method shows the
best efficiency despite predicting two quantities (flow and
intensity). Note that MotionPriorCM also uses a U-Net ar-
chitecture, where the only difference from ours is the way
of up-sampling features in the decoder (we use bilinear in-
terpolation whereas [16] uses 2D transposed convolutions).
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Figure 4. Qualitative image-intensity comparisons on ECD, BS-ERGB, HDR and ECD-fast data. Best viewed when zoomed in.

4.3. Evaluation of Image Intensity Reconstruction

The results of the benchmarks with and without GT refer-
ence images on the BS-ERGB and HDR datasets are pre-
sented in Tab. 4. In addition, the inference times of all meth-
ods are reported in Tab. 5.

Among supervised-learning (SL) approaches, ET-Net
achieves the best image quality in five out of six metrics,
but it is the slowest by a margin. Conversely, FireNet re-
ports the shortest inference time, but its quality metrics are
not as good as other methods.

In the unsupervised-learning (USL) category, our
method reports comparable results in full-reference metrics
as those of BTEB [28]. However, our method significantly
outperforms BTEB in all three metrics on the HDR dataset,
with an improvement of around 50%, where many SL meth-
ods are also surpassed. In particular, we achieve the best
MANIQA value compared to all baselines. This implies
that our method better unlocks the HDR properties of event
cameras. In terms of inference time, our model stands in
the middle of the ranking; however, our model outputs both
flow and intensity, while the others only output intensity.

An important remark to make is that the above metrics
have limitations: as analyzed in [49], different metrics of-
ten lead to divergent conclusions, where discrepancies oc-
cur. For example, some methods achieve better MSE just
by darkening the predictions (as GT images are dark). Our
method reports better LPIPS, but worse MSE and SSIM val-
ues than BTEB; E2VID reports better BRISQUE than ET-
Net, but it performs worse in terms of NIQE and MANIQA.
The numbers do not seem to entirely reflect visual quality
from a human perspective, as we present in the qualitative
comparisons of Fig. 4. From the images, it is clear that

BS-ERGB HDR
Type Method MSE} SSIMt LPIPS, BRISQUE| NIQE| MANIQA?
E2VID [31] 0.14 033 056 12.63 427 0.30
g FireNet [35] 0.10 034 053 18.57 3.85 0.30
SPADE-E2VID [10] 0.09 035  0.63 2451 7.17 0.28
ET-Net [44] 0.07 037 044 19.20 3.45 0.32
Ust, BTEB [28] 0.09 036 0.62 51.47 6.24 0.18
Ours 0.10 031 056 25.03 3.78 0.40

Table 4. Image-intensity quality assessment. Full-reference eval-
uation results on the BS-ERGB [42] dataset (left), and non-
reference evaluation results on the HDR [31] dataset (right). Bold
is the best in each category. The between-frame event slicing is
used for BS-ERGB while the fixed-duration slicing (At = 100ms)
is used for HDR, where no frame is available.

E2VID  FireNet SPADE-E2VID ET-Net  BTEB Ours

Resolution  (2019)  (2020) (2021) (2021)  (2021)  (2024)
640 x 480 10.95 4.94 36.07 17356 1059  15.11
1280 x 720 31.04  14.67 105.87 160633 29.89  40.78

Table 5. Runtime evaluation [ms] of event-based intensity esti-
mation methods at VGA and HD resolutions. Note that our model
infers both flow and intensity, while others only infer intensity.

our approach is able to recover fine details (sharp image)
of scene appearance despite the HDR illumination (selfie)
and fast motion (poster fast). Figure 4 also illustrates the
shortcomings of the above quantitative metrics. All images
from SPADE-E2VID are visually blurred, but it reports bet-
ter MSE and SSIM than FireNet and our method, whose
images are markedly sharper and cleaner.

4.4. Ablation Study

We conduct an ablation study to illustrate the effects of
some loss terms and the superiority of joint flow-intensity



estimation over flow-only estimation. The quantitative and
qualitative results are presented in Tab. 6 and Fig. 5. Please
refer to the supplementary for the ablation studies on loss
weights and camera contrast threshold C'.

TC Loss. First, we disable the TC loss (A5 = 0).
Although flow accuracy does not decrease dramatically
(around 10%), intensity accuracy is reduced significantly
(Tab. 6, 1st row). This is also revealed in Fig. 5 (column
a), where texture at valid pixels is recovered, while invalid
pixels are filled with markedly incorrect values due to the
lack of constraints. This confirms our claim in Sec. 1, that
better estimation for both visual quantities is achieved by
leveraging their synergies.

TV regularization. Next, we disable the TV regulariza-
tion of both flow and intensity (A3 = Ay = 0). Contrary
to the previous test, intensity accuracy remains while flow
accuracy drops considerably (Tab. 6, 2nd row). The same
conclusion can be drawn from Fig. 5 (column b), where the
estimated flow shows artifacts, mostly at invalid pixels. As
a consequence, the output image intensity at such pixels is
not as smooth as that of our main model (column c).

Flow-only Estimation. Finally, we train the network to
predict only optical flow (A\; = A4 = A5 = 0, thus chang-
ing the number of output channels from three to two). In
this case, the loss function basically reduces to the one used
by recent purely CMax-based optical flow estimation meth-
ods [16, 37]. As reported in the third row of Tab. 6, the
flow accuracy is slightly better than that of w/o TV reg., but
still falls far behind our main model, with respective gaps
of 43%, 33%, 53% in terms of EPE, AE and %Out. This
again confirms the advantages of our proposed joint estima-
tion method over the separate ones.

4.5. Single Network vs. Dual Network

To illustrate the superiority of joint learning with a single
network, we compare it to a dual network (two U-Nets, one
for optical flow prediction and the other for intensity recon-
struction), with configuration identical to ours (loss func-
tion, loss weights and training settings). Table 6 show that
the estimation results of the dual network (4th row) are con-
siderably worse than those of the single U-Net model (last
row). Our joint learning scheme enables one single network
to learn the motion and appearance, as well as their syner-
gies, thus achieving better performance than separately.

5. Limitations

The event camera output depends on scene texture and cam-
era motion. In regions where no events are produced, it
is thus difficult to recover motion parameters and/or scene
appearance. In this case, regularization is used to fill in
those pixels by encouraging spatial smoothness. However,
this may cause inaccuracies. This issue could be overcome
by combining two visual modalities (events and frames),

(c) Ours ‘

(a) w/o TC loss  (b) w/o TV reg. (d) References

Figure 5. Qualitative results of ablation study. The above are re-
sults from the thun_01_b sequence of DSEC. The reference optical
flow is generated using E-RAFT [13].

Flow Intensity
Ablation EPE| AE| %Out| MSE| SSIM? LPIPS|

w/oTCloss 201 792 13.96 0.16 023 0.64
w/o TVreg. 3.30 14.93 2495 0.10 030 055
Flow-only 3.13  9.61 23.56 - - -

Dual network 3.30 10.15 22.85 0.11 029 0.59
Ours 178 644 11.24 0.10 031 0.56

Table 6. Quantitative results of an ablation study. Flow evaluation
is performed on the DSEC dataset and intensity evaluation is done
on the BS-ERGB dataset.

not without considering data fusion challenges, and/or by
adding recurrent connections (at the expense of increasing
the initialization time and inertia of the system [31]).
Events triggered by flickering lights or hot pixels do not
satisfy the brightness constancy assumption, which is the
basis of all involved MB/USL methods. As outliers, they
can undermine estimation accuracy. Learning-based meth-
ods have some capacity to deal with such outliers. However
outliers would be more sensibly treated in pre-processing
by some denoising method, or more recently, jointly [40].

6. Conclusion

We have presented the first unsupervised joint learning
framework for optical flow and image intensity estimation
with event cameras. This enabled us to train a single and
lightweight network for predicting both visual quantities si-
multaneously, exploiting their synergies. It is designed to
match the natural sensing principle of event cameras, that
is, that motion and appearance are intertwined and, there-
fore, shall be jointly estimated. A comprehensive and well-
behaved loss function is proposed by combining the event
generation model, photometric consistency, event align-
ment and regularization. The experiments demonstrate that
our method is accurate and efficient: (i) it achieves the high-
est accuracy among MB/USL optical flow methods; (ii) it
shows competitive intensity quality, especially in HDR con-
ditions; and (i) it reports very short inference time while
predicting both flow and image intensity.
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Supplementary Material

7. Additional Ablation Study

As an expansion of Sec. 4.4, we present the results of the
ablation studies on loss weights and contrast threshold C.

7.1. Loss Weights

In addition to disabling some loss terms to show their ef-
fects (Sec. 4.4), an ablation study on the weight of CMax
loss Ag is performed to show how the ratio between CMax
and PhE influences model performance. The results are re-
ported in the upper half of Tab. 7. It turns out that increasing
or decreasing A\, does not lead to a further improvement in
performance. Therefore, the choice of A; and As to train
our main model yields a sensible combination of the CMax
and PhE loss terms.

7.2. Contrast Threshold

The contrast threshold C' can vary across event cameras and
change even within the same dataset [41]. Hence, it is worth
analyzing the influence of C' on model performance.

The works of [14, 15] have shown that the PhE and its
linearized version are insensitive to the value of C, due to
the PhE being calculated using thousands or millions of
events instead of a few. The user just needs to set a mean
value for C, and then the optimizer seeks a balanced mo-
tion and brightness to best explain the events. This finding
has also been verified by the results in Fig. 4 in our main
paper and Figs. 6 to 8 in this supplementary: our model
was trained only on the DSEC dataset (Prophesee Gen3)
with C' = 0.2, but nevertheless it is able to predict precise
optical flow and image intensity on several other datasets,
such as ECD (DAVIS240C), HDR (Samsung DVS Gen3)
and BS-ERGB (Prophesee Gen4).

Furthermore, we also train models with different C' val-
ues, and report the results in the lower half of Tab. 7. The re-
sults agree with the statements above; the accuracy remains
approximately constant for different C' values.

8. DSEC: Training Sequence Selection

As mentioned in Sec. 5, all MB/USL methods rely on the
brightness constancy assumption to estimate optical flow or
image intensity. Events triggered by flickering lights or by
hot pixels would undermine the estimation accuracy. To this
end, the sequences in the training split of the DSEC dataset
[13] are screened before being used for training, according

Flow Intensity
Ablation Value EPE|, AE] %Out] MSE| SSIMt LPIPS)
A\ 0.2 278 812 18.93 0.10 031 0.57
2 5.0 234 973 1642 0.10 031 0.56
c 0.1 1.89  6.80 12.34 0.11 030 0.5
0.4 1.88 642 1232 0.10 032 0.56

Main (A\; =1.0,C =0.2) 178 644 11.24 0.10 031 0.56

Table 7. Results of ablation studies on Ao and C.

to the data quality. Here we present the list of the selected
training sequences in Tab. 8.

zurich_city 02_a zurich_city 02_b zurich_city_02_c¢ zurich_city 02_d
zurich_city_02_e zurich_city_03_a zurich_city_04_a zurich_city_04_b
zurich_city_04_c zurich_city_04_d zurich_city_04_e zurich_city_04_f
zurich_city_05_a zurich_city_06_a zurich_city_07_a zurich_city_08_a
zurich_city_11_a zurich_city_11_b interlaken_00_c interlaken_00_d
interlaken_00_e interlaken 00_f interlaken_00_g thun_00_a

Table 8. Sequences from the DSEC training split that were used
for training our model.

9. BS-ERGB: Evaluation Sequence Cropping

Here we describe the removal of the last seconds of the
may29_rooftop sequences, for the intensity evaluation on
the BS-ERGB [42] dataset (970 x 625 px resolution), as
presented in Tab. 9. We perform the cropping because the
camera is not moving in the last seconds (mentioned in
Sec. 4.1) of those sequences, thus the recorded event data
is pure noise.

Sequence Start Time [s] End Time [s]
may29_rooftop_handheld_01 0.0 24.0
may29_rooftop_handheld_02 0.0 17.0
may29_rooftop_handheld_03 0.0 14.0
may29_rooftop_handheld_05 0.0 9.5

Table 9. Details of the cropping of the may29_rooftop sequences
in the BS-ERGB dataset.

10. Additional Qualitative Results

In this section, we present additional qualitative results of
our model on the high-resolution BS-ERGB [42] datasets
in Fig. 6, including (a) input events, (b) image of warped
events (IWE) with the predicted flow, (c) optical flow, (d)
image intensity and (e) reference images. A qualitative
comparison between our method and other baselines on the
same dataset is also presented in Fig. 7, where some regions
of interest (ROIs) are highlighted for further zoomed-in vi-
sualization in Fig. 8.



may29_01

may29_03

rooftop_01

rooftop-02

rooftop_02

rooftop_03

rooftop-03

rooftop_05

(a) Events (b) IWEs

Figure 6. Additional qualitative results on the BS-ERGB dataset.
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From left to right: (a) input events; (b) image of warped events (IWE)

with our predicted flow; (c) our predicted flow; (d) our predicted intensity; (e) reference image.

Figure 6 demonstrates that our model recovers precise
optical flow and image intensity on unseen data (i.e., not
used for training). In column c (optical flow), independent
moving objects (IMOs) are clearly identified with respect
to the background (e.g., the cars in the first row and the

motorbike in the second row). Besides, flow discontinu-
ities agree with the contours of different objects at different
depths (e.g., the fence in the third and fourth rows and the
bench in the last row). For image intensity, our model re-
constructs fine details at the valid pixels (e.g., the contours



rooftop_03  rooftop-03  rooftop_02  rooftop_01

rooftop_02
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E2VID FirNet SPADE-E2VID ET-Net » BTEB 7 Ours References

Figure 7. Additional qualitative comparison of image intensity reconstruction on the BS-ERGB dataset. For the last two rows, the regions
marked by red boxes are enlarged in Fig. 8.
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Figure 8. Additional qualitative comparison of image intensity reconstruction. Enlarged regions indicated by red boxes in Fig. 7.

of objects), while it leverages the total variation regulariza- Figure 7 confirms that our model produces competitive
tion to partially fill in the regions that lack texture and rarely results compared to baseline methods. Our reconstructed
trigger events. images are overall sharper, and are more precise in HDR
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conditions. To highlight this, we select two HDR regions
(i.e., the stairs of the building and the bench on the rooftop)
and present their zoomed-in versions in Fig. 8. It can
be clearly seen that: E2VID and SPADE-E2VID report
poor HDR performance; FireNet produces intensity images
with low contrast, where strong artifacts (like spider webs)
caused by the rectification of event data using the camera’s
intrinsic parameters are clearly observed; BTEB’s intensity
images are blurred; ET-Net oversmooths the fine textures
on the building wall, and shows strange wrong textures on
the bench (especially the stone part in the bottom right). In
contrast, our reconstructed intensity reveals sharp edges and
fine details in HDR illumination, where frame-based cam-
eras suffer from under/over exposure problems.
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