Under review as a conference paper at ICLR 2025

COOL: EFFICIENT AND RELIABLE
CHAIN-ORIENTED OBJECTIVE LOGIC

WITH NEURAL NETWORKS FEEDBACK CONTROL
FOR PROGRAM SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Program synthesis methods, whether formal or neural-based, lack fine-grained
control and flexible modularity, which limits their adaptation to complex soft-
ware development. These limitations stem from rigid Domain-Specific Language
(DSL) frameworks and neural network incorrect predictions. To this end, we pro-
pose the Chain of Logic (CoL), which organizes synthesis stages into a chain and
provides precise heuristic control to guide the synthesis process. Furthermore,
by integrating neural networks with libraries and introducing a Neural Network
Feedback Control (NNFC) mechanism, our approach modularizes synthesis and
mitigates the impact of neural network mispredictions. Experiments on relational
and symbolic synthesis tasks show that CoL significantly enhances the efficiency
and reliability of DSL program synthesis across multiple metrics. Specifically,
CoL improves accuracy by 70% while reducing tree operations by 91% and time
by 95%. Additionally, NNFC further boosts accuracy by 6%, with a 64% reduc-
tion in tree operations under challenging conditions such as insufficient training
data, increased difficulty, and multidomain synthesis. These improvements con-
firm COOL as a highly efficient and reliable program synthesis framework.

.- (_DSL Framework)-- - _ _-----{_CoL DSL + NNFC Framework (ours))- - - - - .

’ AY ’ s
! Input v Input \

(charles) is (Lena)s son & (wesley) is ,I (Charles) is (Lena)s son & (Wesley) is (Charles)s father & (Francisco) is

1 1
1 (Charles)s father & (Francisco) is [(wesTley)s brother & (Francisco) is (Lena)s (?); ‘I
: (wesley)s brother : 1 '

& (Francisco) is (Lena)s (?); ! !
1 1
! ' CoL DSL NNEC .
1 ‘ I 1 1 Separate Relations and Genders :
1 1 = i
' X : son(x, y) -> child(x, y), male(x) Detailed Rule .
, DSL . : _ i
. . — expr: QEORZEBY{(y) is (s ||
. son(x, y) -> parent(y, x), male(x) . I 2 Reason Inverse Relations child}{ 1

| TR s : o . :
. parent(x, y):= child(y, x) i | {f(this expr.exist 1
1 0= 1
. parent(x, y):= child(y, x) . : subexpr{(x) is (y)s parent} |1
I child(x, 1= parent(y, z), sibling(z, ' 1 \l = Gl : !
1| x &) 5 G, 2 9¢ I, 3Reason Indirect Relations __return: (y) is (X)s !
' 1, Heur child(x, y) := parent(y, z), child & (x) is (y)s parent; |1
I brother(x,y) := sibling(x, y), male(x) ' 1 sibling(z, x) o !
' [= ¥ abort; !
! result := remove_irrelevant(relations, ! | 4 Recombine Relations and Genders, Eliminate !
1 result) ' 1 Irrelevant Relations !
1 LI brother(x, y) := sibling(x, y), :
: : : male(x) result := — é Neural Network and Filter — |
1 1, remove_irrelevant(relations, result) 1
1 ol 1
1 * LY \4 !
1 . 1]
| Failure , ‘\ Output ’
\ ’ N (Francisco) is (Lena)s (brother); L
N ’ ~

Figure 1: Chain-of-Logic (highlighted part) organizes the rule application into a structured sequence,
enhancing the Domain-Specific Language (DSL) framework’s ability to handle complex tasks. The
Neural Network Feedback Control mechanism (red path) utilizes data during synthesis to improve
the performance of the synthesis process dynamically.

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

Program synthesis is becoming increasingly Reliability Efficiency
important in computer science for enhancing . Avg. Tree Avg. Time
development efficiency [Gulwani et al.| (2017); _Accuracﬂ(%), Operation Spent (s)
Jin et al| (2024). Despite the effectiveness
of current state-of-the-art methods in dealing
with simple tasks, the complexity of modern
software demands more advanced and sophis-
ticated approaches [Sobania et al.| (2022).

,_.
1=
5]

437.6 6
400 +

300 4 44

50
200 +

Static Performance

100 A
40.2

To address these challenges, an effective solu- ComCoL coL om oL coL o oL -i',Li
tion must offer programmers fine-grained con-
trol and flexible modularity in the synthesis pro-
cess|Groner et al.| (2014); |Sullivan et al.|(2001).
First, fine-grained control tailors the synthesis
path to specific tasks, ensuring the interpretabil- 50 4 .
ity of the synthesis process. Secondly, flexible

modularity enhances reusability and guarantees ol ol ol
the quality of the entire program by ensuring) (et) T) e)
the correctness of the modules [Le et al.| (2023)).

00 1413 37

=

100 2

50 4

Dynamic Performance

However, these principles are often overlooked

in current state-of-the-art program synthesis Figure 2: Performance Enhancements with CoL
methods. For example, symbolic approaches and NNFC. The CoL DSL surpasses non-CoL
such as SyGus |Alur et al.| (2013), Escher |Al- DSL in all metrics. While NNFC increases com-
barghouthi et al.|(2013), and FlashFill++Cam-| putation time due to neural network calls, it signif-

bronero et al| (2023) struggle to scale to jcantly boosts accuracy in dynamic experiments,
complex tasks because their traversal-based enhancing reliability.

Domain-Specific Language (DSL) framework

lacks fine-grained control. A compensatory

strategy involves using neural networks for

guidance or search space pruning, as seen in projects such as Neo [Feng et al| (2018), Lambd-
aBeam Shi et al. (2023a), Bustle |Odena et al.| (2020), DreamCoder [Ellis et al. (2023), and
Algo [Zhang et al.| (2023), but the control logic remains disconnected from the programmer. On
the other hand, LLM-based projects like CodeGen [Nijkamp et al.| (2022)), CodeX [Finnie-Ansley
et al.| (2022), and Code Llama Roziere et al.|(2023) allow programmers to control synthesis through
prompt interactions. However, they lack modularity, as all tasks rely on the same LLM, making the
logic vulnerable to biases in training data and leading to subtle errors that require manual verifica-
tion. In summary, there is an urgent need for fine-grained control and flexible modularity to ensure
the efficiency and reliability of these methods when tackling complex synthesis tasks.

In this paper, following the principles of fine-grained control and flexible modularity, we present
COOL (Chain-Oriented Objective Logic), a neural-symbolic framework for complex program
synthesis. At the core of our approach, we introduce the Chain-of-Logic (CoL), which integrates
the functions of the activity diagram to enable fine-grained control (Gomaa (2011). As illustrated in
Figure [T} programmers can precisely organize rules into multiple stages and manage control flow
using heuristics and keywords. Additionally, we leverage neural networks on top of CoL to dynam-
ically fine-tune the synthesis process. For this purpose, we introduce Neural Network Feedback
Control (NNFC) [Turan & Jaschke|(2024), which enhances future synthesis by learning from data
generated during synthesis and suppresses neural network incorrect predictions through filtering. To
ensure modularity, each neural network is bound with a specific CoL DSL, stored in separate library
files for clear isolation and easy reuse. Thus, through the combination of CoL. and NNFC, COOL
achieves high efficiency and reliability when tackling complex synthesis tasks.

We conduct static experiments (constant domain and difficulty tasks, using pre-trained neural net-
works without further training) and dynamic experiments (mutative domain and difficulty tasks,
where neural networks are created and continuously trained during the experiment) to evaluate the
impact of CoL and NNFC on program synthesis. Figure [2]illustrates the significant improvements
achieved by CoL and NNFC: In static experiments, CoL improves accuracy by 70%, while reducing

Under review as a conference paper at ICLR 2025

Synthesis Process Decomposed by Heuristic Vectors
and Guided by Heuristic Values

Activity 0 P Activity 1 P Activity 2 P Activity 3

¥ ;.
1 n
1 Separate Relations | i | Recombine Relations and ;1
- and Genders | Reason Inverse Relations : Reason Indirect Relations . Genders, Eliminate Irrelevant | !
: :] i : ! Relations :
1 E [: n
¥ sub-DSL Gy P sub-DSL G4 sub-DSL G, : sub-DSL G o
1 - ! : :-
Va0 0,0 L (] £ 0,) R Y UL N I
VEOmf0] £ 0,— =) (b1 £0,—, —)rs U (= b2 £ 0,)y O WEIE (UL
. P ; : }
[1 | | "
1 f Voo f 1 f : f N
[) | | : "
n : | [i "
» = f(ho[0],70, 1 [0],71. .. 1 1 "
Start :7(FBa[0],ro, B [0], 7y) ! e ! Tr T n
e ‘ : v End
N N : :)
@ (& 1)) @) ®3,79))i @) e) = (0.0r) =D (0.0m))= (@)
Po ! ; N ——— ‘ N —— g L iy Peomplete
\ .

Synthesis Process without Heuristic Vector Participation

DSL G

T0yT1,T2; 73,755 Tky T..

Start

0@ @)@ 2@+ @@ @@+

[
’

Figure 3: Heuristic Vectors and Heuristic Values in Chain-of-Logic. Heuristic vectors h decompose
the DSL G into multiple sub-DSLs (Gg, G1, G2, G3) based on whether the value of the component
at the corresponding position is non-zero. These sub-DSLs correspond to the activities depicted
in Figure [I] and operate on partial programs p using rules 7. The synthesis process for each activ-
ity is guided by rule application policies 7,., which are generated by a heuristic algorithm f that
uses heuristic values h[n| as input. In the experiments conducted in this paper, we adopt the A*
algorithm and treat the heuristic value h;[n] as a reward for applying the rule r; during activity n.
Consequently, a higher heuristic value positively influences the rule’s application.

tree operations by 91% and time by 95%. In dynamic experiments, NNFC further increases the
accuracy by 6%, with a 64% reduction in tree operations. The results underscore that achieving
fine-grained control and flexible modularity can greatly improve efficiency and reliability in DSL
program synthesis.

The contributions of our work are as follows:

1. We propose the Chain-of-Logic (CoL), which enables fine-grained control in complex
program synthesis by structuring rule applications into distinct and manageable stages.

2. We further introduce Neural Network Feedback Control (NNFC), a dynamic correction
mechanism for CoL that continuously learns from the synthesis process, ensuring modu-
larity by pairing neural networks with specific CoL DSLs.

3. We present COOL, an efficient and reliable neural-symbolic framework for complex pro-
gram synthesis, combining the strengths of CoL and NNFC to achieve fine-grained control
and flexible modularity in DSL-based synthesis.

2 METHOD

In this section, we detail the implementation of CoL and NNFC, outlining the principles that ensure
high efficiency and reliability for complex program synthesis tasks.

Under review as a conference paper at ICLR 2025

(Charles) is (Lena)s son & (Wesley) is (Charles)s father & (Francisco) is (Wesley)s brother & (Francisco) is (Lena)s (?);>

/" Return is the basic keyword to advance the synthesis process stage-by-stage,

. following the Chain-of-Logic:

tage, Separate Relations and
1_/Genders

ng Reason Inverse Relations

@g Reason Indirect Relations

© (3,0,0,0) son(x,y)->return:child(x, y), male(x)
. (3,0,0,0) father(x,y)->return:parent(x, y), male(x)

When an indirect relationship is inferred at stage 3, we can use keyword

logicjump(2) to return to stage 2. This allows the DSL to infer new relationships based

on the previously inferred one, recursively synthesizing the complete relationship graph:

(0,0,5,0) logicjump(2):child(x, y) := parent(y, z), sibling(z, x)
(0,0,5,0) logicjump(2):sibling(x, y) := child(y, z), child(x, z)

fag Recombine Relations and i To avoid wasting resources on partial programs with errors, such as incorrect
@ Genders, Eliminate Irrelevant

Relations relationships or cyclic rule applications, we can actively terminate the exploration

Y‘\ | WJ

using the keyword abort:

(0,0,0,6) sibling(x,x)->abort

End)(Francisco) is (Lena)s (brother); i (0,0,0,6) child(x,y),child(x,y),...->abort
Managed by return Managed by logicjump(n) Managed by abort
= ilined S

Figure 4: Keywords in Chain-of-Logic. In this illustrative CoL DSL, each node represents a stage
or activity where a set of rules can be applied to generate partial programs. The flow between
stages is managed by keywords return, logicjump(n), and abort, allowing for the implementation
of complex control flow in program synthesis.

2.1 CHAIN-OF-LoGiIc (CoL)

Activity diagrams, widely used in software engineering, effectively describe how an initial state
transitions to a final state through multiple activities. This feature aligns with the DSL-based pro-
gram synthesis process. A DSL, defined as a context-free grammar, converts partial programs with
nonterminal symbols into complete programs by applying given rules. However, as the rule set
grows, DSL becomes inefficient in exploring partial programs. To enhance the efficiency of DSL,
the Chain-of-Logic, drawing inspiration from activity diagrams, organizes the synthesis process into
a sequence of manageable activities.

CoL improves the synthesis workflow of the DSL with two key features: heuristic vectors and
keywords. As shown in Figure[3] heuristic vectors decompose DSL into multiple sub-DSLs that are
consistent with the activity flow by dividing the rule applications scope. Within each activity, the
DSL solver uses heuristic values to perform efficient program synthesis. For example, in Figure I}
a rule with the heuristic vector (0, 7, 3) belongs to sub-DSLs in activities 2 and 3 with heuristic
values of 7 and 3, respectively. By dynamically pruning the search space and providing search
guidance, heuristic vectors promote program synthesis efficiency.

Second, as illustrated in Figure [Z_f], CoL introduces three keywords—return, logicjump (n),
and abort—to dynamically manage state transition within or between activities during synthesis:

1. return: Ends the current rule, staying within current activity or advancing to following
activities.

2. logicjump(n): Jumps directly to the activity n, enabling branching and loops within activ-
ity flow.

3. abort: Terminates the current synthesis branch, pruning the search space.

Under review as a conference paper at ICLR 2025

Neural Network Feedback Control Detailed Structure of the Feedback Loop ‘:

' npuf

Forward Flow i partial program
' from CoL DSL

Col heuristic

value % DSNN

Yo, Y1

— = = = N

U
! | Feedback Loop

|
|
|
|
| €1
|
uy l
|
|
|
|
|
|
|

|
I
|
I | ;
c R4
partner |-=r» 7 Clipper [! e
Col DSL&DSNNs 2 : B Fiter | |2 \
: -
. [|
| | :
:
|
)

> Series Neural Network
noise

—» Series Neural Network
noise €o

Series Neural Network €

B Fiter Yeo

%)

:

S coLpsL —#—> &5 Dpsnn

Figure 5: Neural Network Feedback Control. The left side illustrates the complete control loop of
NNFC. In the forward flow (green path), heuristic values v guide the synthesis process as control
signals. In the feedback loop (red path), the DSNN (Domain-Specific Neural Network, the neural
network paired with a DSL) generates initial error signals eg from partial programs y. These
singals are then filtered to produce high-quality error signals e;, which adjust the initial heuristic
values ug. In multidomain synthesis, the CoL. DSL and DSNN from the self-domain use partner
domain information (dashed path) to clarify tasks and avoid competition, ensuring modularity. The
right side details the feedback loop: The DSNN comprises multiple neural networks coupled in
series via noise signals, with each network generating its own error signal e, then these signals with
large discrepancies are filtered, retaining the final high-quality error signals e; .

Based on the principle of activity diagrams, CoL provides fine-grained control through heuristic
vectors and keywords. This systematic approach enhances the efficiency of DSL synthesis.

2.2 NEURAL NETWORK FEEDBACK CONTROL (NNFC)

While CoL enables programmers to fine-tune the synthesis process, the control flow may lack detail
or vary by task. To this end, Neural Network Feedback Control (NNFC) dynamically refines con-
trol flow through feedback from neural networks, improving precision and adaptability. However,
neural networks present the risk of generating incorrect predictions, threatening reliability.

Therefore, a robust control flow in NNFC is crucial to ensuring overall performance. As illustrated
in Figure[5] NNFC enhances the CoL DSL in the following ways: In the forward flow, the Clipper
prioritizes control signals aligned with DSNN guidance by capping any inconsistent signals, while
the CoL DSL applies rules based on the adjusted heuristic values. Meanwhile, in the feedback loop,
the DSNN generates error signals from partial programs across domains. To suppress the impact of
mispredictions, the Filter refines these signals before they influence the forward flow.

The quality of the signals generated in the feedback loop directly determines the effectiveness of
NNFC. If the error signals are of poor quality, NNFC may not only fail to provide additional im-
provements but also degrade CoL. DSL performance. We ensure the error signal quality through an
inner coupling structure within DSNN. As shown in Figure 5] (right), during synthesis tasks, DSNN
processes partial programs using a series of sequentially connected neural networks. Each neural
network takes both the partial programs and intermediate results from the preceding neural network
as input, generating its own predictions. When errors occur in earlier networks, they propagate
downstream as noise signals, amplifying at each stage. The difference in the outputs between these
neural networks is positively correlated with the accumulated error. To mitigate this, we set a thresh-
old to filter out signals with a significant difference in outputs. Finally, DSNN uses passed signals
to generate multi-head outputs to fine-tune the forward flow:

Under review as a conference paper at ICLR 2025

1. Task Detection Head (TDH): Improves modularity by determining whether the partial
program contains components that the CoLL DSL can process.

2. Search Space Prune Head (SSPH): (Active when TDH is true) Evaluate the feasibility of
synthesizing the final complete program from the current partial program, and CoL DSL
will avoid exploring infeasible spaces.

3. Search Guidance Head (SGH): (Active when both TDH and SSPH are true) Guides the
CoL DSL in applying the most promising rules to the partial program.

By adopting filtering and multi-head outputs, the feedback loop delivers high-quality error signals
to the forward path, ensuring that NNFC enhances the synthesis process on top of CoL.

3 EXPERIMENTS

We conduct the experiments in two stages to evaluate the improvements introduced by CoL to DSL
and to assess how NNFC further enhances performance. First, we carry out static experiments
under fixed conditions, including task domain, difficulty level, and neural network. These controlled
conditions allow us to accurately measure CoL’s impact on performance. Next, we proceed with
dynamic experiments, where conditions vary throughout. This dynamic setup evaluates NNFC’s
ability to improve reliability under changing situations.

3.1 EXPERIMENTAL SETUP

Improvements of DSL by CoL and NNFC is evaluated across benchmarks using various metrics.

Benchmarks. We evaluate CoL and NNFC using relational and symbolic tasks with varying
difficulty levels, as detailed in Table [I] Specifically, the relational tasks are drawn from the
CLUTRR [Sinha et al.| (2019) dataset, where the goal is to synthesize programs that capture spe-
cific target relationships based on human common-sense reasoning. In contrast, the symbolic tasks
are generated by GPT |Achiam et al.|(2023). They involve synthesizing standard quadratic equation
programs from non-standard quadratic forms by performing manual calculation steps. Although
these tasks are simple for humans, they serve as a straightforward demonstration of how fine-grained
control, derived from programmer expertise, can significantly improve program synthesis efficiency.

Metrics. Besides accuracy, we also focus on the following points: (1) CPU Overhead is assessed
by the number of tree operations required for synthesis. (2) Memory overhead is assessed by the
number of transformation pairs (a partial program paired with the rule to be appliedﬂ 3) GPU
Overhead is measured by the number of neural network invocations. (4) Time overhead is refer-
enced by the actual time spent on program synthesis tasks. (5) Filtering Performance is evaluated
by the attenuation ratio of invalid to passed neural network predictions.

Chain-of-Logic. We utilize the CoL approach to enhance DSL by making the synthesis process
more in line with human problem-solving strategies. For relational tasks, by mirroring the way hu-
mans typically reason about family relationships, CoL organizes the synthesis process into stages
illustrated in Figure[d] For symbolic tasks, CoL structures the DSL to follow the manual quadratic
equation simplification strategy, with stages such as expanding terms, extracting coefficients, per-
muting terms, and converting equations to standard form. The specific CoL DSL configurations are
shown in Table 2] where the significant differences in DSLs highlights the generality of CoL.

"Each partial program must be completed with at most 1000 transformation pairs, though this may exceed
1000 if additional tasks are generated during synthesis.

Table 1: Benchmark configurations. Relational benchmarks are divided into easy and difficult
groups based on the number of relationship edges, while symbolic benchmarks are based on the
number of nodes in the tree.

Benchmark Type Difficulty Level A Difficulty Level B
relational 300 tasks with 3 edges 200 tasks with 4 edges
symbolic 300 tasks with around 5 nodes 200 tasks with around 9 nodes

Under review as a conference paper at ICLR 2025

Table 2: CoL DSL configurations. The DSL for relational benchmarks has a limited search space and
shorter CoL, facing challenges from numerous production rules leading to larger trees. Conversely,
the DSL for symbolic benchmarks offers an unlimited search space with a longer CoL, but the many
permutation rules increase the risk of cyclic rule applications.

Rules

Benchmark Total ProductionReduction Recursive Permutation Length of CoL.
Rules Rules Rules Rules
relational 40 36 2 16 0 4
symbolic 55 17 26 3 11 7

Groups. We use multiple groups to comprehensively evaluate CoL and NNFC (as shown in Ta-
ble[3). First, in static experiments, we evaluate CoL by comparing DSL groups with and without CoL
enhancements. Second, to isolate the impact of heuristic vectors—both as guides and as structuring
tools for rule application—we create groups enhanced only by heuristic values. Third, we introduce
groups enhanced by neural networks to assess whether combining CoL with neural networks yields
better results and to explore the filtering effect of the inner coupling structure. In dynamic experi-

Table 3: Group configurations. Groups marked with % are the main experiments, those with v« are
for ablation and extended experiments, and the unmarked group is the baseline.

. Pretrained Inne.r
Group Experiment DSNN NNFC Coupling
Structure
DSL static
wDSL (Heuristic) static
*CoL DSL static, dynamic
wDSL+NN static v
wDSL (Heuristic)+NN static v
w CoL DSL+NN static v
wCoL DSL+NNFC dynamic v
vDSL+NN (Cp) static v v
wDSL(Heuristic)+NN (Cp) static v v
wCoL DSL+NN (Cp) static v v
v¢CoL DSL+NN (Cp) static v v
% CoL DSL+NNFC (Cp) dynamic v v

ments, we design control groups with and without NNFC to evaluate its impact. Additionally, we
include a group without the inner coupling structure to confirm its necessity.

Environment. Experiments are carried out on a computer equipped with an Intel i7-14700 proces-
sor, a GTX 4070 GPU, and 48GB RAM.

3.2 STATIC EXPERIMENTS

We start with static experiments. With the task domain, difficulty level, and neural network condi-
tions unchanged in each group, a series of controlled experiments confirm that CoL has remarkably
boosted DSL program synthesis in all metrics.

The results in Table 4| clearly demonstrate that CoL significantly improves accuracy while min-
imizing overhead. Most notably, CoL improves the accuracy of the DSL from less than 50% to
100% across both relational and symbolic benchmarks. Additionally, CoL achieves remarkable re-
ductions in relational tasks, cutting tree operations by 90%, transformation pairs by 88%, and time
by 95%. Similarly, in symbolic tasks, CoL reduces tree operations by 92%, transformation pairs
by 96%, and time by 97%. These findings showcase CoL’s substantial impact on improving perfor-
mance across all key metrics.

Under review as a conference paper at ICLR 2025

Table 4: Static performance of DSL and CoL DSL for relational and symbolic tasks. CoL DSL
significantly outperforms DSL in all metrics.

Avg. Trans- .
Benchmark| Group Acc(lg?cyﬁ (I)S‘I:,egl.'arg(fﬁ formation é;gen'f"(];;
° Pair
relational DSL 11.3 463.9 1432.2 9.43
! CoL DSL 100.0 46.6 177.8 0.48
svmbolic DSL 48.3 411.2 2285.3 3.31
ymboi CoL DSL 100.0 33.8 92.7 0.11

Further ablation and extension experiments clarify the sources of CoL’s enhancement, confirm CoL’s
effective integration with neural networks, and explore when filtering via inner coupling structures
is most beneficial. Our findings are as follows:

First, CoL’s enhancement stems from both heuristics and structured rule application stages.
As illustrated in Figure [6] the DSL (Heuristic) group outperforms the DSL group in most metrics,
and the CoL DSL group significantly surpasses DSL (Heuristic) in all metrics. Such results indicate
that CoL positively impacts synthesis by guiding and structuring rule application. Moreover, on top
of guidance, the structured rule application stages achieve greater improvement.

Second, integrating CoL. with neural networks further improves the search efficiency. As
shown in Figure[6] despite additional GPU and time overhead, the top-performing CoL DSL + NN
group reduces tree operations by 43% and transformation pairs by 19% in relational tasks compared
to the CoL DSL group. In symbolic tasks, the CoL DSL + NN (Cp) group reduces tree operations by
64% and transformation pairs by 46%. The results showcase that neural networks can further narrow
the search space for program synthesis beyond CoL. Importantly, the group with the inner coupling
structure outperforms non-neural groups in both tasks. In contrast, the group without it presents an
accuracy decline in symbolic tasks, validating the structure’s role in improving reliability.

Third, the inner coupling structure is more effective when error tolerance is low. As indicated
in Figure [6] for symbolic tasks, CoL DSL-based groups with the inner coupling structure signifi-
cantly outperform those without it. However, for relational tasks and DSL-based groups (without
CoL or heuristic), those without such structure perform better. This difference indicates that the
filtering effect of the inner coupling structure comes at a cost: it filters out both incorrect and correct
predictions. So, its effectiveness depends on the positive impact of eliminating incorrect predic-
tions outweighing the loss of correct ones. Therefore, for relational tasks with a limited search
space and DSL-based groups with higher error tolerance, the cost of filtering outweighs the benefit.
However, in symbolic tasks, where avoiding errors is more critical, CoL DSL-based groups benefit
significantly from the inner coupling structure.

3.3 DYNAMIC EXPERIMENTS

Static experiments confirm CoL’s improvements on DSL and its enhancement with neural networks.
However, real-world program synthesis involves varying task domains and difficulty, facing the risk
of neural network mispredictions due to underperformance. Therefore, we introduce these factors
in dynamic experiments to evaluate how NNFC further improves the performance of CoL DSL.

The results in Table [5] confirm that NNFC significantly enhances the reliability of CoL DSL in
challenging conditions. As task difficulty increases and multidomain scenarios emerge, the accu-
racy of the CoLL DSL group declines compared to its performance in static experiments. However,
the NNFC-enhanced group maintains an accuracy of at least 99%, demonstrating its strong reliabil-
ity in challenging situations. Additionally, compared with the original CoL DSL group, it reduces
tree operations by 22% and transformation pairs by 14%. For symbolic tasks, despite the added time
for neural network invocations, the NNFC-enhanced group still shortens the time spent by 21%.

Further ablation experiments confirm that reliability provided by NNFC primarily stems from
the filtering effect of the inner coupling structure. As shown in Figures[7]and[9] the inner cou-

Under review as a conference paper at ICLR 2025

Accuracy (%) Avg. Tree Operation| Avg. Transformation Pair|
5886 1 1 1500 4 14322 1 1
1 1 : 1 1
600 - 1 1 1 1
w630 : : s | !
| | 1000 | |
400 H H H H
1 1 1 1
1 1 3 1 1
P a1 | e b
] lsgs [177812237 1851 1, ¢! 172.4 1851
W N 1 365 2691 0.7 36. , 1 7 | i
= A B C D E F G H I A B C D E F G H I A B C D E F G H I
s Avg. Neural Network Invocation| Avg. Time Spent/(s)
B 126.2 126.5 125 10.5 1 1
= | 23.2 :i g 232 - 04 i i
o 1 * 2061 } = B 00 1 1
20 1 1 1 1
I ' i I ’ ’ o : :
- H H 7.
1 1 1 4 4 1 1
1 1 5.0 4 1 1
10 4 1 1 } } 50 1 1
1 1 1 126
1 1 51 L 1
0l 00 00 00 ‘ A 4 Aa |/
A B C D E F G H I A B C D E F Hood
Accuracy (%) Avg. Tree Operation| Avg. Transformation Pair|
100 100.0, 6.7 1 1000 500 | | 3000 1
‘ 4112 433.6 ‘4215 2612.0 4852
1 . 1 E
80 } 400 - 1 i 1
‘ 56.0 58.0 4 o : 4 2000 :
604 483 490 i 300 ! !
1 1
10 4 < 200 1 < 1
} } ! } I 1000 1
v 20 ’ ’ 100 4 : ‘ i
% %
wn ..
}’_" 0- 0- 0
o A B C D E F G H I A B C D E F G H I A B C D E F G H |
= Avg. Neurg;l}letwork Ir:vocation‘ Avgl. Time SpentI 1(255) mm A DSL
‘g 1 1340:9 125 1 1 B: DSL (Heuristic)
1 1 1 1
G 300 1 1 ﬁ 1004 1 1 = C: Col DSL
i :4 |z I< vams D:DSL + NN
200 - ! ! h 751 ! 21 h E: DSL (Heuristic) + NN
W 1023 :} 1004 so | ! :} e vam F: Col DSL + NN
100 1 :' I :4 I us :' o :{ i vam G:DSL + NN (Cp)
235] 13 T . icti
| 60 00 oo 1 1 ; 1 >| 92 ool C 1 } 03 H: DSL (Heuristic) + NN (Cp)
G B G

vam |: Col DSL + NN (Cp)

Figure 6: Static performance on relational and symbolic tasks at difficulty level A. CoL DSL-based
groups outperform DSL (Heuristic) and DSL groups. Performance varies for DSNN-enhanced
groups with the inner coupling structure. Error bars show 95% confidence intervals across 6 batches.

Table 5: Dynamic performance of CoL. DSL and CoL DSL+NNFC(Cp). NNFC significantly im-
proves the dynamic performance of CoL. DSL in accuracy, tree operations, and transformation pairs.

i Avg. Trans- Avg. Neural .

BIEEEE Group Acc(l‘gz)lcyf g[‘)lfl.':t‘f(f& formation = Network Ig‘l;genfjl(tslf

Pairr Invocation ¥

relational CoL DSL 100.0 70.0 259.8 0 1.05
CoL DSL+NNFC (Cp)| 100.0 54.6 224.5 21.7 2.08
symbolic CoL DSL 82.6 233.5 977.1 0 1.42
y CoL DSL+NNFC (Cp)| 99.4 50.3 222.2 21.6 1.12
multi- CoL DSL 97.5 115.2 367.6 0 0.99
domain |CoL DSL+NNFC (Cp)| 99.0 45.6 250.5 72.84 3.91

pling structure reduces the occurrence of accuracy declines due to DSNN mispredictions by 94%.

Additionally, the dynamic performance reveals how the inn

In the scenarios where a DSNN underperforms due t

er coupling structure enhances NNFC:

o issues such as insufficient training

data Mikofajczyk & Grochowskil (2018) (as seen in Figure [7] tasks 51-100), inadequate general-
ization to more challenging tasks|Yosinski et al.| (2014); [Wei et al.| (2019) (Figure[7] tasks 301-350),

and catastrophic forgetting when tasks from a new domain are learned |Kirkpatrick et al.| (2017);

Under review as a conference paper at ICLR 2025

Accuracy Differentialf(%) Tree Operation Differential | (%) Transformation Pair Differential | (%)
08—4 -l 340 100 4 167
50 100 200 300 400 500 100 i <4 Z o &
3 23 :
10 4 8
6 | . 104
10 0 3824
-20
B e Y I Y S
v 50, 100 200 300 A 400 500 508 100 200 300 400 500
=< 30 wd B 4\',’7\ N 0 g
@ - o 104 14 1o 13 10 -13 e g
i 7 h 10 LU B PR T el
= 38 53 -45 54 -56 20 -19 -21 -22
Ke] Neural Network Invocation Time Spent Differential | (%) Attenuation Ratio
- 1.02
w604 58.4 104 .
c 58 307, 526
3} 2N 142 108 107, 75 140
o 77N\ 79 e 0.8 4
278 38.0 100 1] N 64 g
40 1 T 7206 @778 e m = 118
. - A 06 054
21y A——em— ! a7 2 P~ .43 0.44 0.3
208 2L1 204° 3 27 28 0 0.4 / *—— 038
20 4 e S 285 283 2 1 . 5 .
72 7205 204 20.6
K
0t o+ - 1
50 100 200 300 400 500 50 100 200 300 400 500 50 100 200 300 400 500
Accuracy Differentialf(%) Tree Operation Differential | (%) Transformation Pair Differential | (%)
Q - 2 . 2 296
e 100 4] 3 100 17
75 A 62 P \Q’ 10 13 L
50 - / 104
/
&
/ o1+ —T— T
25 o+
/)
. A 10 50\\\103 200 300 400 500 508, 100 ﬁ) N 400 500
o+ .10 15 e 34 104
X~ 5 30 25 4 10 Noog
4 2 P vige
@ v 002 4 W0 ', s00 gt &
= - < 18 -100 4 -41 B3 4 bt -100 4
N e s
L
E Neural Network Invocation Time Spent Differential | (%) Attenuation Ratio
164.0 10000 1. 3546 ST 8L 2009 .
; 150 1341 1885 -~ 1.25 1 zll‘
A - 1000 4 386 1 5% \
pe 118.4 & 126 177 o 2 1.00 4 e Sy
"\ 977 100 33 == X ! 0.78 0.81 1\
100 9 HR 0l % . 0.75 4 A e o \
) ~ ~ 59
52.2 I g 0.50 I S LS 042
II “ OftT— T 71T T ‘\ LS — . I’ 055 0.51 Sl
0 233 § 283 50 100 200 300 400 50 954 / 2
xR RO I Y 101 M o M
o e 2P - 4L 7 8 00 061 00 000 0:00 060 060 00 (
..'—" r ‘l,;ll - = = 100 4 “"’——50 0.00 040 000 001 0:00 080 000 000 OfX 80 000
200 300 400 500 50 100 200 300 400 500
=== Col DSL (y = 0) CoL DSL + NNFC ~ mmm Col DSL + NNFC (Cp) Difficulty Level A Difficulty Level B

Figure 7: Dynamic performance differential to CoL DSL in singledomain tasks. The NNFC group
without the inner coupling structure shows 12 accuracy declines across 20 batches, while the group
with the structure shows none. Each batch consists of 50 tasks, and NNFC continuously trains
DSNNs using generated data after each batch, starting from scratch.

Van de Ven & Tolias| (2019) (Figure EL tasks 1-100), incorrect predictions lead the actual synthesis
path to deviate from the CoL, which in turn causes inefficiency and reduced accuracy. During these
phases, for NNFC with the inner coupling structure, the attenuation ratio spikes, indicating that a
large percentage of neural network predictions are filtered out. Consequently, the inner coupling
structure ensures that the synthesis process adheres to the CoL, effectively mitigating the negative
impact of DSNN mispredictions and enhancing reliability.

As the DSNN improves and reaches a relatively stable state (as seen in Figure [/| tasks 101-300,
351-500, and Figure [9] tasks 101-400), the attenuation ratio shows a decreasing trend accordingly.
This adaptive adjustment demonstrates how the inner coupling structure dynamically regulates the
DSNN’s impact, leveraging neural network contributions while mitigating risks to ensure both effi-
ciency and reliability in program synthesis.

4 CONCLUSION

We explored fine-grained control and flexible modularity for complex program synthesis through the
Chain-Oriented Objective Logic (COOL) framework. Inspired by activity charts and control theory,
we developed Chain-of-Logic (CoL) and Neural Network Feedback Control (NNFC) to achieve
these goals. Static and dynamic experiments across relational, symbolic, and multidomain tasks
demonstrated that COOL offers strong efficiency and reliability. We believe that continued research
and refinement of CoL and NNFC will inspire advancements not only in program synthesis but also
in broader areas of neural network reasoning.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In Com-
puter Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings 25, pp. 934-950. Springer, 2013.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013.

Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt Publishing
Ltd, 2016.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun Radhakrishna, Clint Simon, and
Ashish Tiwari. Flashfill++: Scaling programming by example by cutting to the chase. Proceed-
ings of the ACM on Programming Languages, 7(POPL):952-981, 2023.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming Languages,
7(3):158-243, 2021.

Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program synthesis
beyond domain-specific languages. Advances in Neural Information Processing Systems, 34:
22196-22208, 2021.

Xiuying Chen, Mingzhe Li, Xin Gao, and Xiangliang Zhang. Towards improving faithfulness in ab-
stractive summarization. Advances in Neural Information Processing Systems, 35:24516-24528,
2022.

Y Chen, C Wang, O Bastani, I Dillig, and Y Feng. Program synthesis using deduction-guided re-
inforcement learning. In Computer Aided Verification32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume 12225, pp. 587-610, 2020.

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. Advances in Neural
Information Processing Systems, 34:11123—-11135, 2021.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu,
Linda Chen, Sunny Tran, Newman Cheng, et al. A neural network solves, explains, and generates
university math problems by program synthesis and few-shot learning at human level. Proceed-
ings of the National Academy of Sciences, 119(32):¢2123433119, 2022.

Manuel Eberhardinger, Johannes Maucher, and Setareh Maghsudi. Towards explainable decision
making with neural program synthesis and library learning. In NeSy, pp. 348-368, 2023.

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable,
interpretable knowledge with wake—sleep bayesian program learning. Philosophical Transactions
of the Royal Society A, 381(2251):20220050, 2023.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven
learning. ACM SIGPLAN Notices, 53(4):420-435, 2018.

James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and James Prather. The

robots are coming: Exploring the implications of openai codex on introductory programming. In
Proceedings of the 24th Australasian Computing Education Conference, pp. 10-19, 2022.

11

Under review as a conference paper at ICLR 2025

Hassan Gomaa. Software modeling and design: UML, use cases, patterns, and software architec-
tures. Cambridge University Press, 2011.

Rudolf Groner, Marina Groner, and Walter F Bischof. Methods of heuristics. Routledge, 2014.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1-119, 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100-107,
1968.

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and Ivan Oseledets. Ten-
sorized embedding layers for efficient model compression. arXiv preprint arXiv:1901.10787,
2019.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional Istm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan. Pytorch. Programming with
TensorFlow: solution for edge computing applications, pp. 87-104, 2021.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we
define and evaluate faithfulness? arXiv preprint arXiv:2004.03685, 2020.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to llm-
based agents for software engineering: A survey of current, challenges and future. arXiv preprint
arXiv:2408.02479, 2024.

Stephen C Johnson et al. Yacc: Yet another compiler-compiler, volume 32. Bell Laboratories Murray
Hill, NJ, 1975.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gul-
wani. Neural-guided deductive search for real-time program synthesis from examples. arXiv
preprint arXiv:1804.01186, 2018.

Paul King. A history of the groovy programming language. Proceedings of the ACM on Program-
ming Languages, 4(HOPL):1-53, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,

114(13):3521-3526, 2017.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain: To-
wards modular code generation through chain of self-revisions with representative sub-modules.
arXiv preprint arXiv:2310.08992, 2023.

Michael E Lesk and Eric Schmidt. Lex: A lexical analyzer generator, volume 39. Bell Laboratories
Murray Hill, NJ, 1975.

Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan Xiao, and Hua Wu. Faithfulness in natural
language generation: A systematic survey of analysis, evaluation and optimization methods. arXiv
preprint arXiv:2203.05227, 2022.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with
large language models. In International Conference on Computer Aided Verification, pp. 280—
301. Springer, 2024.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V Le, and Ni Lao. Memory augmented

policy optimization for program synthesis and semantic parsing. Advances in Neural Information
Processing Systems, 31, 2018.

12

Under review as a conference paper at ICLR 2025

Max Liu, Chan-Hung Yu, Wei-Hsu Lee, Cheng-Wei Hung, Yen-Chun Chen, and Shao-Hua Sun.
Synthesizing programmatic reinforcement learning policies with large language model guided
search. arXiv preprint arXiv:2405.16450, 2024.

Agnieszka Mikotajczyk and Michat Grochowski. Data augmentation for improving deep learning in
image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW),
pp. 117-122. IEEE, 2018.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake. Learning compo-

sitional rules via neural program synthesis. Advances in Neural Information Processing Systems,
33:10832-10842, 2020.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai.
Bustle: Bottom-up program synthesis through learning-guided exploration. arXiv preprint
arXiv:2007.14381, 2020.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthe-
sis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 107-126, 2015.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, and Charles Sutton. Lambdabeam: Neural
program search with higher-order functions and lambdas. Advances in Neural Information Pro-
cessing Systems, 36:51327-51346, 2023a.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton. Exedec:
Execution decomposition for compositional generalization in neural program synthesis. arXiv
preprint arXiv:2307.13883, 2023b.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. Clutrr: A
diagnostic benchmark for inductive reasoning from text. arXiv preprint arXiv:1908.06177, 2019.

Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose your programming copilot: a com-
parison of the program synthesis performance of github copilot and genetic programming. In
Proceedings of the genetic and evolutionary computation conference, pp. 1019-1027, 2022.

Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Oder-
sky, and Kunle Olukotun. Delite: A compiler architecture for performance-oriented embedded
domain-specific languages. ACM Transactions on Embedded Computing Systems (TECS), 13(4s):
1-25, 2014.

Kevin J Sullivan, William G Griswold, Yuanfang Cai, and Ben Hallen. The structure and value of
modularity in software design. ACM SIGSOFT Software Engineering Notes, 26(5):99-108, 2001.

Evren Mert Turan and Johannes Jischke. Closed-loop optimisation of neural networks for the design
of feedback policies under uncertainty. Journal of Process Control, 133:103144, 2024.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10-48550, 2017.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

13

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: foundation,
frontiers and applications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4840-4841, 2022.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with generated oracle verifiers. Advances in Neural Information Processing
Systems, 36:54769-54784, 2023.

Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In International
Conference on Machine Learning, pp. 42403—42419. PMLR, 2023.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

14

Under review as a conference paper at ICLR 2025

A DSL PROGRAM SYNTHESIS IN COOL

COOL adopts a top-down synthesis strategy that converts input partial programs with nonterminals
into complete programs by applying a sequence of well-defined transformation rules.

A.1 INPUT PROGRAM

In the relational reasoning tasks, the input is COOL code such as Code [A.T}
Code A.1: Relational Reasoning Task Input Program

(Wesley) is (James)s son & (Martha) is (Wesley)s daughter &
(Hugh) is (Martha)s uncle & (Hugh) is (James)s (Srelation);

where $ specifies the nonterminal, indicating that the DSL solver needs to synthesize a complete pro-
gram that calculates the correct value for relation (the relationship between Hugh and James)
in order to satisfy the given specification.

The symbolic task input is The input for symbolic tasks is as follows (Code[A.2):
Code A.2: Symbolic Reasoning Task Input Program
$Sx°2 + 4xSx == 3;
Similarly, the DSL solver needs to generate a complete program that calculates the value of x.

A.2 OUTPUT PROGRAM

As shown in Code for family relationship reasoning tasks, the synthesized program is:

Code A.3: Relational Reasoning Task Output Program

relation = "son";

For symbolic reasoning tasks, the generated output program is shown in Code :
Code A.4: Symbolic Reasoning Task Output Program

Invoke Quadratic Solution Formula(a=1, b=4, c=-3, x); // a,
b, ¢ are coefficients in "1*x"2 + 4xx + (-3) o"

In reality, the program synthesis takes place at the intermediate representation level (see Ap-
pendix [Q), and Codes[A.3][A.4]are provided for explanatory purposes.

A.3 TRADITIONAL DSL

A DSL, defined as a context-free grammar:
G: {V7E7 R? S}7 (1)

where V' is the set of non-terminal symbols, 3 is the set of terminal symbols, R is the set of rules,
and S is the starting symbol (in this context, it is a partial program). The DSL’s derivation pro-
cess converts partial programs with nonterminal symbols into complete programs by applying given
rules.

The synthesis process for traditional DSLs involves iteratively transforming partial programs into
complete programs by applying a series of rules. Each partial program (p) and the corresponding
rule () to be applied to it form a transformation pair (p,r). When a rule is applied, it modifies

15

Under review as a conference paper at ICLR 2025

the syntax tree of the partial program through what we refer to as a tree operation. The synthesis
process consists of a series of transformation pairs connected by tree operations, which is known as
a synthesis path or trajectory. These paths are classified into three kinds:

* Feasible Path: Leads to a complete program.
* Infeasible Path: Proven to be unable to synthesize a complete program.

 Unfinished Path: Still in progress.

To clarify key concepts involved in the synthesis process, we provide the following definitions of
terms:

* Tree Operation/Manipulation: Refers to the modification of the syntax tree of a partial
program during the synthesis process. It is essential for transforming partial programs into
complete programs and has an associated CPU cost.

* Transformation Pair (p, r): A combination of a partial program and a rule to be applied. It
records the explored space and possible exploration directions, requiring memory storage.

* Synthesis Path/Trajectory: A sequence of transformation pairs, {(po, 7o), (P1,71),--- }»
representing the process of transforming a partial program into a complete one. Its func-
tion is to track the entire synthesis process, whether it leads to a feasible, infeasible, or
unfinished path.

A.4 CoL DSL

Compared with traditional DSLs that apply rules to input programs without a clear destination to
synthesize output programs, the Chain-of-Logic (CoL) allows the programmer to outline the flow
of activities to synthesize the complete program from an initial partial program. For example, in
Figure[3] the activity flow is:

Start — 1 Separate Relations and Genders — 2 Reason Inverse Relations — 3 Reason Indirect
Relations — 4 Recombine Relations and Genders, Eliminate Irrelevant Relations — End.

Each activity in the synthesis process has a corresponding sub-DSL decomposed from the original
DSL for transforming the program from one state to another.

Therefore, a CoLL DSL with n activities can be defined as multiple sub-DSLs in series:

COLG:{Gl,GQ,...,Gn} (2)

A sub-DSL for activity ¢ is defined as:
Gi ={V.Z,{(r,h,k) | h[n] # O and r € R}, S, f} 3)

where h = (hq, ha, ...) in (7, h, k) represents the heuristic vector bound with r, and the components
are termed as heuristic values. h[n] represents the n-th component of h, which is the effective
heuristic value of rule r in activity n. h[n] is a parameter of the sub-DSL’s program synthesis
algorithm f. It guides the direction of program synthesis by affecting the application decisions of
the rules bound to it, thereby improving synthesis efficiency and accuracy. The specific role of the
heuristic value is determined by the search algorithm f used by the DSL program synthesis. To
conduct controlled variable experiments, we regard the heuristic value as a reward (negative cost)
and use the A* algorithm as the search algorithm for all DSLs, which means that in activity n, under
the same circumstances, the rule with a larger h[n] will be applied first, and the derived program
will also be considered promising and will be explored further with priority.

k represents keyword(s) in a rule’s specific logic, which controls the program state transition within
an activity or between activities.

The Chain-of-Logic provides a comprehensive methodology for achieving fine-grained control over
DSL program synthesis. This approach allows programmers to explicitly break down the synthesis
process into distinct phases or activities, with each activity corresponding to a specific sub-DSL.

16

Under review as a conference paper at ICLR 2025

A.5 CoL DSL SYNTHESIS PROCESS

The synthesis process in CoL. DSLs is conducted through multiple stages, each corresponding to
a defined activity. These stages operate sequentially, gradually refining the program through well-
defined transformations. The key difference from traditional DSL synthesis is that, except for the
sub-DSL of the final activity, intermediate sub-DSLs are allowed to generate partial programs, which
are passed on to subsequent activities for further processing.

Each stage in the CoL. DSL synthesis process focuses on a specific aspect of synthesis to transform
the program incrementally. For instance, in Figure [4}

* In the first activity, relations and genders are separated, breaking down the initial partial
program into simpler components for easier processing.

* The second activity reasons about inverse relationships, further structuring the intermediate
program by identifying and processing inverse connections.

* The third activity deals with indirect relationships, providing additional context to relation-
ships identified in earlier stages.

* The final activity recombines relations and genders while eliminating irrelevant relations to
produce a fully synthesized and optimized program.

During each activity, the synthesis process leverages heuristic values to prioritize rule application,
focusing on areas that are more likely to lead to successful outcomes. Additionally, in intermediate
activities, since we cannot judge whether the synthesis process is correct based on whether com-
plete programs are generated, guidance based on heuristic values and synthesis flow control using
keywords are pivotal.

B NEURAL NETWORKS IN COOL

COOL has an integrated machine learning system that automatically collects generated data and
conducts training and prediction tasks for neural networks in the Domain-Specific Neural Network
(DSNN).

B.1 DATA COLLECTION AND COMBINATION FOR TRAINING

The neural networks leverage the transformation pairs (p,r) in the synthesis paths to train various
heads.

To train the neural networks in DSNN bound with a DSL for program synthesis tasks of type 7T,
COOL builds the dataset as follows:

Task Detection Head (TDH): This head distinguishes whether the input partial program belongs
to type T'. This is a binary classification task. The partial programs from type 7' program synthe-
sis paths are collected as positive examples (proportion: 67%), while partial programs from other
synthesis paths and built-in function calls are collected as negative examples (proportion: 33%).

Search Space Prune Head (SSPH): After determining that the program is of type 7, this head
identifies whether the input partial program is feasible to synthesize into a complete program. This
is also a binary classification task. Programs from feasible synthesis paths are collected as posi-
tive examples (proportion: 67%), while programs from infeasible synthesis paths are collected as
negative examples (proportion: 33%).

Search Guidance Head (SGH): After determining that the input is a feasible type 7" partial pro-
gram, this head generates rule features to guide the DSL solver in applying rules to the partial
program. This includes a series of classification and regression tasks.

B.2 NEURAL NETWORK INPUT

As shown in Figure E} there are three neural networks in a DSNN. Each network (labeled A, B,
and C in their sequential order) takes a partial program as input. The input partial program is

17

Under review as a conference paper at ICLR 2025

Table 6: Input features of neural networks in DSNN. Each entry specifies the feature, its size, and the
neural networks it pertains to, along with a description of its role. These features contribute to the
neural network’s understanding of the syntax tree’s structure and semantics, aiding in the accurate
synthesis of programs.

Feature Feature Neural Signification
Size Network
grounded 2 A,B,C The node is in a fully specified expression.
domain 1 A, B, C Domain of the subtask represented by the subtree

where the node is located.

root 2 A,B,C The tree representing the subtask is rooted at this node.
non-terminal 2 A, B, C The node is a non-terminal.
type 1 A,B,C Type of the node.
identifier 1 A, B, C Identifier of the node.
string 1 A,B,C The node contains a string as the immediate value.
number 1 A,B,C The node contains a number as the immediate value.
operator 1 A, B, C The node is an operator.
current stage 1 A,B,C Current CoL stage (valid when this node is grounded).
operand 3 A,B,C Placement of nodes in a binary operation tree (left
position operand node, right operand node, operation node).
applied 1 B,C A rule is applied to the subtree rooted at this node (de-
(SGH) rived from the output feature “jumps” of the previous
neural network).
next stage 1 C The CoL stage to advance to after applying the rule
(SGH) (derived from the output feature “next stage” of the

previous neural network).

represented at the intermediate representation (IR) level in the form of Three-Address Code (TAC)
(see Appendix [Q)), allowing program synthesis to be conducted without the constraints of specific
DSL syntax or the machine code format of the execution platform |Sujeeth et al.|(2014)). The TAC is
then transformed into a graph representation for input to neural networks.

In the serial coupling structure of DSNN, network B is the downstream neural network of A and
uses the output of the SGH head from A as part of its input. Similarly, network C is the downstream
neural network of B and uses the output of the SGH head from B as part of its input. This serial cou-
pling enables each downstream network to accumulate the error produced by the upstream network,
making incorrect predictions more obvious.

The specific input features are shown in Table [f]

B.3 NEURAL NETWORK OUTPUT

The corresponding relationships between the output features and TDH, SSPH, GSH are shown in
Table[/] and all neural networks produce similar outputs to allow for comparison.

B.4 NEURAL NETWORK STRUCTURE

As TAC embodies both the graphical properties of a syntax tree and the sequential properties of
execution, the design of the neural network must be capable of capturing these dual characteristics.

The detailed layer architecture of neural networks in DSNN is illustrated in Figure[§] The processing
flow consists of the following steps:

1. Embedding Node Features: We start by employing embedding layers with learning ca-
pabilities. These layers convert categorical inputs into dense, continuous vectors, which
enhances the stability and efficiency of subsequent processing layers Hrinchuk et al.|(2019).

18

Under review as a conference paper at ICLR 2025

Table 7: Output features of neural networks in DSNN. These features provide comprehensive opti-
mizations for CoL. DSL during program synthesis, including task detection, search space pruning,
and search guidance.

Feature Feature Size ~ Neural Signification
Network
domain (TDH) 2 A, B, C Relevance of task domains to DSNN.
feasibility 2 A, B, C Feasibility of synthesizing the complete program.
(SSPH)

jumps (SGH) max_tree_depth*3A, B, C The path from the tree’s root to the subtree’s root
where the rule is applied (jump left, right, or stop
in each step).

next stage 1 A,B,C The CoL stage to advance to after applying the
(SGH) rule.
heuristic sign 2 A, B, C Sign of the rule’s heuristic value.
(SGH)
heuristic value 1 A, B, C Rule’s heuristic value.
(SGH)
expression 2 A, B,C Type of rule’s head (expression or terminal).
(SGH)

2. Graph Feature Extraction: Next, we use a Graph Neural Network (GNN) to extract graph
features from each line of TAC code Drori et al.| (2022); Wu et al.| (2022). To adaptively
extract intricate details such as node types, graph attention (GAT) layers are applied after
the embedding layers|Velickovic et al.[(2017)).

3. Sequential Feature Processing: We adopt Long Short-Term Memory (LSTM) networks to
capture the sequential features inherent in TAC [Chen et al.| (2021); Nye et al.|(2020). Rec-
ognizing the equal importance of each TAC line, bidirectional LSTM layers are employed
following the GAT layers to enrich the contextual understanding |Huang et al.| (2015).

4. Multi-Head Output: Finally, the processed data is channeled through multiple output
layers to prevent task interference and ensure clarity in results.

Figure[5](right) illustrates using three neural network units arranged in series to construct the internal
coupling structure of DSNN. Labeling these neural networks with A, B, and C in order of their
sequence, Table[6]details the specific input features for each network: Neural network B receives its
input feature "applied" from network A’s output feature "jumps,” while network C’s input features
"applied" and "next stage" are derived from the output features "jumps" and "next stage" of network
B. The output features of three neural network units are consistent and comparable, Table[7|presents
the output features of the neural networks.

B.5 PREDICTION FILTERING

By comparing the output differences of the heads, we can determine whether there are possible
prediction errors and filter out the prediction results. For classification tasks, we directly compare
whether the outputs are the same. For regression tasks, we set a tolerance threshold (10%) for the
difference.

B.6 ACTING ON THE SYNTHESIS PROCESS

B.6.1 SINGLE DSL PROGRAM SYNTHESIS

As shown in Figure 3] the heuristic value of a rule affects its application, and the prediction results
of the neural networks affect the synthesis process by correcting the heuristic value of the rules in
the sub-DSL based on the output of heads:

19

Under review as a conference paper at ICLR 2025

Embedding Layers

|
I
DomainEmbedding (embedding_size=50, dimension=1) TypeEmbedding (embedding_size=50, dimension=2)]

I

]

IdentifierEmbedding (embedding_size=1000, dimension=4) StringEmbedding (embedding_size=1000, dimension=4) |
|

I

I

OperatorEmbedding (embedding_size=40, dimension=2)

GAT Layers

GAT (in_channels=num_GAT _features, out_channels=num_GAT_features * 4, heads=4, dropout=0)

GAT (in_channels=num_GAT _features * 4, out_channels=128, heads=4, dropout=0.1)

LSTM Layers

LSTM (input_size=128, hidden_size=128, num_layers=2, bidirectional=True, dropout=0.1)

Full Connected Layer

Linear (input_size=256, output_size=64)

BatchNorm (num_features=64)

Output Layers (Linear)

TDH: Domain (input_size=64, output_size=2)

SSPH: Feasibility(input_size=64, output_size=2)

Jumps (input_size=64, output_size=max_tree_depth*3)
Stage (input_size=64, output_size=1)
SGH: HeuristicSign (input_size=64, output_size=2)
HeuristicValue (input_size=64, output_size=1)
Expression (input_size=64, output_size=2)

Figure 8: Layer architecture of neural networks in DSNN. Each neural network consists of embed-
ding layers for domains, types, identifiers, strings, and operators, followed by GAT layers for tree
feature extraction. LSTM layers provide sequential modeling for programs, with fully connected
layers combining the outputs. Various output layers handle domain identification for task detection,
feasibility judgment for search space pruning, tree jumps, stage prediction, heuristic constraint (sign
and value), and constraint on the type of rule’s head (expression or terminal) for search guidance.

Task Detection Head (TDH): If the output indicates that the partial program does not belong to the
synthesis task that the DSL can handle, any rule application on this partial program will receive an
additional negative bonus on the heuristic value. For example, h[i] = h[i] — |h[i]| — 10.

Search Space Prune Head (SSPH): If the TDH output indicates that the partial program falls
within the DSL and the SSPH output considers the partial program infeasible, any rule application
on this partial program will receive an additional negative bonus on the heuristic value. For example,
h[i] = h[i] — |h[¢]| — 10.

20

Under review as a conference paper at ICLR 2025

Search Guidance Head (SGH): If the TDH output indicates that the partial program falls within
the DSL and the SSPH output indicates that the partial program is promising for synthesis into a
complete program, then if the features of the output rule match certain rules (logical values must
be equal, and numerical values must fall within a +10% range), the heuristic value when applying
these rules will receive a positive bonus. For example, h[i] = h[i] + |h[i]|. Otherwise, it will receive
a negative bonus: h[i] = h[i] — |h[¢]| — 10.

B.6.2 MULTI-DSL SYNTHESIS

The situation when multiple DSLs cooperate is similar to that of a single DSL. The difference is that
for the same partial program, if at least one DSNN determines that the partial program belongs to
the domain of its DSL, the DSNN bound to other DSLs, which believes that the partial program does
not belong to its own domain, cannot interfere with the program synthesis at this step (as shown by
signal ¢ in Figure[5).

C EXPERIMENT

The purpose of the experiment is to explore whether CoOL+NNFC DSL has advantages over tradi-
tional DSL in terms of efficiency and reliability in program synthesis from the user’s perspective.

"User" refers to the user of DSL, while the developer of DSL who is proficient in specific tasks
is referred to as an "expert". The experiment does not study whether CoL. makes the development
process easier for DSL developers, as this requires a wide range of "experts" to use COOL to develop
and provide feedback. At this stage, we cannot conduct this experiment.

C.1 USER INPUT

The user input in the experiment is COOL code containing instructions for loading the DSL (pack-
aged as a library) and representing the task specification.

C.1.1 RELATIONAL TASKS
Used to test the performance of program synthesis of a single DSL:
Code C.1: Relational Task User Input Example

//load DSL for family relationship reasoning
#load (family)

//Relational reasoning questions like (50 per batch) :

(Wesley) is (James)s son & (Martha) is (Wesley)s daughter &
(Hugh) is (Martha)s uncle & (Hugh) is (James)s (Srelation);

C.1.2 SYMBOLIC TASKS

Used to test the performance of program synthesis of a single DSL:
Code C.2: Symbolic Task User Input Example
//load DSL for family relationship reasoning and symbolic
reasoning

#load (quadratic)

//Symbolic reasoning questions like (50 per batch):
Sx"2 + 4%x$x == 3;

21

Under review as a conference paper at ICLR 2025

Accuracy Differential (%) Tree Operation Differential | (%) Transformation Pair Differential | (%)
5 o 100
- 0+ T T T
2 - 100 200 300 400
P LTt tae 7
-7 10 9
0 -
T = T
100_ -7 200 300 400
[
10 0 T
100 200 300 400
5 \\\\
_____ . -10 \\\\
~————————— e L N B
10 -100
Neural Network Invocation Time Spent Differential | (%) Attenuation Ratio
140 4 185 1504 &
10001 | 787 N
120 =] . : 1.25 S
%9s5_____-W----——"—""~ [W=mES___ === N
100 4 S————————— -—- 0 |
T~ 100 {320 . - 1.00 N
80 4 Sseo 71.2 63 “
91.9 SS852 e em e 630 0 0.75
__________ \
60 s ® \
——
10 o504 N oa 06 aee-
40 4 - P
204 0.25
04— T T T 0T T T T 0.00 . Lo
100 200 300 400 100 200 300 400 100 200 300 400
mm Col DSL (x-axis) Col DSL + NNFC ~ mmm Col DSL + NNFC (Cp) Multidomain Tasks

Figure 9: Dynamic performance differential to CoL DSL in multidomain tasks. The NNFC group
without an inner coupling structure degrades across all 4 batches, while the group with the structure
experiences degradation only in the first batch. Each batch includes 50 relational and 50 symbolic
tasks, and DSNNG are continuously trained from those for tasks at difficulty level A in Figure[7]

C.1.3 MULTI-DOMAIN TASKS

Used to test the performance of program synthesis when multiple DSLs are loaded at the same time:

Code C.3: Multi-Domain Task User Input Example

//load DSLs for relational reasoning and symbolic reasoning
#load (family)
#load (quadratic)

//Symbolic reasoning questions like (50 per batch) :
$x"2 + 4%x$x == 3;

//Relational reasoning questions like (50 per batch) :

(Wesley) 1is (James)s son & (Martha) is (Wesley)s daughter
& (Hugh) is (Martha)s uncle & (Hugh) is (James)s (Srelation);

It should be noted that the execution of the code that does not contain the task specification is
represented as a control variable in the experiment and is deducted from the final experimental
results. (For example, the instructions for loading libraries)

C.2 EXPERIMENT RESULT
D RULEIN CoL DSL
In addition to the heuristic vector and keywords, COOL extends the flexibility of the synthesis

process by enhancing DSL rules. These enhancements are exemplified in Figure[T0] which clarifies
the rule introduced in Figure[T}

E STAGE PROGRESSION DRIVEN BY HEURISTIC VECTORS

Let s denote the CoL stage, h donate the heuristic value, and n donate the length of CoL. A rule’s
heuristic vector can be mathematically represented as:

H:{(507]7‘0)7(81’]7‘1)7'--;(Snahn)}7 n€N+ (4)

22

Under review as a conference paper at ICLR 2025

The body (premise) of a rule can contain either a
e N function name or any valid expression
The head (consequence) of ‘

a rule can either be an

expression, indicated by the N N
\ Rule in COOL

|

|

|

|

| . , .

| modifier expr,lz.)ra.termlnal ~ Lexpr:@(0,7,3){(y) is (x)s child}{
: when the modifier is not { if(this expr.exist subexpr{(x) is (y)s.
|

|

I

|

|

|
' COOL includes built-in
|
| operations for accessing
parent} == false){

return: (y) is (xX)s child & (x) is
(y)s parent;

}

abort;

present. Additional

attributes, such as type, can \ programs or specific

]
|
|
]

=7 information about partial |

b |

]

be specified using other ‘
]

program fragments.
modifiers.

COOL enables dynamic generation of rule heads using detailed logic.

Figure 10: DSL rules in COOL. The framework allows for defining rule heads using expressions or
terminals, which are enhanced with modifiers for additional attributes. Rule bodies can incorporate
any valid expression or function name. Besides, COOL provides built-in operations for accessing
program fragment information and facilitates dynamic rule head generation.

Upon applying a rule with heuristic vector H, the subsequent stage, spex;, can only advance or remain
the same, and the next stage should be as close to the current stage as possible:

min Spexe such that 3(Snexta hnext) €H and Spext > Scurrent (5)

F SIGNAL CLIPPER

The Clipper, as illustrated in Figure[5| (left), caps signals that do not align with the DSNN guidance
to zero:

0 ifu; > 0 and current rule doesn’t align with
the guidance and there exists another rule in
the search space that aligns with the guidance

uyp otherwise

(6)

F.1 A* SEARCH IN PROGRAM SYNTHESIS

During the exploration phase of program synthesis, we leverage the A* algorithm to perform the
heuristic search. This algorithm is renowned for its efficacy in discrete optimization tasks, utiliz-
ing heuristic guidance to navigate the search space effectively [Hart et al.[(1968). Each action or
decision is associated with a specific cost in this context. By evaluating the cumulative cost of ac-
tions taken so far and the estimated costs of future actions, A* seeks to determine the path with
the least overall cost. In our approach, heuristic values promoting forward progression are consid-
ered rewards. Therefore, we treat them as negative costs in calculations. Algorithm|I]illustrates the
implementation details.

G IMPLEMENTATION TOOLCHAIN

To fully implement the CoL DSL and adapt it to NNFC, we choose to build COOL from the ground
up rather than extending existing DSL frameworks such as Xtext Bettini| (2016) or Groovy |King
(2020). We use C++ as the primary language to meet the execution efficiency requirements for

23

Under review as a conference paper at ICLR 2025

Algorithm 1 Search Algorithm for DSL Program Synthesis
1: procedure A* SEARCH(initial Partial Program, us)
openSet < priority queue containing only the initial partial program
gScore[startPartial Program] < 0 > cost from start
fScore[start Partial Program| < 0
while openSet # () do
current Program < openSet.pop() > The partial program in openSet with lowest
fScore value

AN AN

7: if currentProgram is complete program then
8: return Success
9: end if
10: for each neighbor of current Program do > Neighbor is a program directly obtained
by applying a rule to the current program
11: tentativegScore < gScore[current] — ug[neighbor]
12: if tentative,Score < gScore[neighbor] then
13: cameFrom[neighbor] < current
14: gScore[neighbor| < tentativegScore
15: fScore[neighbor] <— gScore[neighbor] — uz[neighbor
16: if neighbor ¢ openSet then
17: openSet.add(neighbor)
18: end if
19: end if
20: end for
21: end while
22: return Failure

23: end procedure

the numerous tree operations inherent in the DSL program synthesis process. For development ef-
ficiency, we utilize Lex [Lesk & Schmidt| (1975) and YACC Johnson et al.| (1975) for syntax and
semantic parsing, respectively. The neural network components are implemented in Python, lever-
aging the PyTorch library Imambi et al.| (2021) to support machine learning tasks effectively. Table[§]
shows the detailed code effort involved in developing the different components of COOL across var-
ious programming languages.

Table 8: Code Effort in COOL. Components of COOL are developed across different programming
languages.

Language Lines Components
C++ 60k framework and CoL DSL solver
Python 3k DSNN
Lex 1k syntax parser
YACC 2k semantic parsers

H OPTIMIZATION STRATEGY

In practice, we observe that as the CoL length increases, the frequency of skipping stages rises.
While skipping can lead to shorter synthesis paths and improved efficiency, it may cause task failures
by omitting necessary stages. To manage this, we propose two strategies:

1. Gradient-Based Regulation: We employ gradient-based regulation, a widely used strategy
in program synthesis (Cui & Zhu| (2021); Liang et al.| (2018)); |(Chaudhuri et al.|(2021). By
evaluating the slope or rate of change between consecutive stages, gradients help us make
dynamic adjustments to synthesis paths. In our approach we regulate skipping by applying
a gradient to the heuristic values at each stage in the CoL. We encourage skipping when
the heuristic gradient from one stage to the next is positive. Conversely, if the gradient is
negative, we suppress skipping.

24

Under review as a conference paper at ICLR 2025

2. NNFC Regulation: Once we establish a feasible synthesis path, we can treat partial pro-
grams derived through skipping as infeasible. Then, we will utilize the feedback loop to
suppress unwarranted skipping actions. However, since these partial programs might still
contain feasible solutions, we need further investigation to understand and fully leverage
the potential impact of this data.

In our experiments, we prioritize accuracy by suppressing skipping behavior, ensuring essential
stages are included in synthesis paths.

I FUTURE WORK

In future work, we aim to enhance the capability of the COOL framework by exploring the imple-
mentation of CoL and NNFC in more complex scenarios, such as managing dependencies among
DSL libraries and object-oriented development. We plan to facilitate community collaboration by
developing more DSL libraries to expand COOL’s applications. Additionally, we are interested in
integrating COOL with language models. As these models evolve, ensuring ethical and accurate rea-
soning becomes increasingly crucial Jacovi & Goldberg|(2020);/Chen et al.| (2022); |Li et al.| (2022).
The COOL framework, including CoL’s constraints on rule application and NNFC’s structured agent
interactions, helps to enhance reasoning faithfulness, preventing harmful reasoning logic. We hope
our work will serve as a reliable bridge for interaction and understanding between human cognitive
processes and language model reasoning.

J CoL DSL FOR RELATIONAL TASKS

We present only the specific code for the CoL DSL group, while the code for the DSL and DSL
(Heuristic) groups, referenced in Table [3] is not displayed. This omission is because their differ-
ences from the CoLL DSL group are confined to their heuristic vectors. In both the DSL and DSL
(Heuristic) groups, the heuristic vectors have a dimension of 1. However, the DSL group employs a
fixed heuristic value of -1, whereas the DSL (Heuristic) group utilizes variable values. The experi-
mental codes are presented concisely, showcasing only the framework. Please refer to the attached
supplementary materials for the complete content.

//1 Separate Relations and Genders

expr:Q@(9){(a) is (b)s grandson}{
return: (a) is male & (a) 1is (b)s grandchild & (b) 1is (a)s
— grandparent;

//2 Reason Inverse Relations
expr:@(0,7,3){(a) is (b)s grandchild}{
if (this expr.exist subexpr{(b) is (a)s grandparent} == false) {
return: (a) is (b)s grandchild & (b) is (a)s grandparent;
}

abort;

//3 Reason Indirect Relations
expr:@(0,0,5){(a) is (b)s sibling}{
placeholder:pl;
while (this expr.find subexpr{ (pl) is (a)s sibling}) {
if(this expr.exist subexpr{(pl) is (b)s sibling} == false
- && pl !'= b){
return: (a) 1is (b)s sibling & (pl) is (b)s sibling;
}
pl.reset ();

25

Under review as a conference paper at ICLR 2025

pl.reset ();
while (this expr.find subexpr{ (pl) is (a)s parent}) {

if(this expr.exist subexpr{(pl) is (b)s parent} == false) {

return: (a) is (b)s sibling & (pl) is (b)s parent;
}
pl.reset ();
}
pl.reset ();
while (this expr.find subexpr{ (pl) is (a)s pibling}) {
if (this expr.exist subexpr{ (pl) is (b)s pibling} ==
— false) {
return: (a) is (b)s sibling & (pl) is (b)s pibling;
}
pl.reset ();
}
pl.reset ();
while (this expr.find subexpr{ (pl) is (a)s grandparent}) {
if(this expr.exist subexpr{(pl) is (b)s grandparent} ==
— false) {
return: (a) is (b)s sibling & (pl) is (b)s grandparent;
}
pl.reset ();
}
pl.reset();
abort;

//4 Recombine Relations and Genders, Eliminate Irrelevant
— Relations
expr:Q@(0,0,0,8){(a) is (b)s (Srelation) }{
//immediate family
placeholder:pl;
while (this expr.find subexpr{(a) is (b)s grandchild}) {
if(this expr. exist subexpr{(a) is male}) {

return: S$relation == "grandson";

}

if(this expr.exist subexpr{(a) is female}) {
return:Srelation == "granddaughter";

}
pl.reset ();
}
pl.reset ();
while (this expr.find subexpr{(a) is (b)s child}) {
if(this expr. exist subexpr{(a) is male}) {
return: S$Srelation == "son";
}
if(this expr.exist subexpr{(a) is female}) {
return:Srelation == "daughter";
}
pl.reset ();
}

abort;

}
é%ér:@(0,0,0,lO){a & (Sb == c)}{
return:b == c;

26

Under review as a conference paper at ICLR 2025

K CoL DSL FOR SYMBOLIC TASKS

// Common Transformations

expr:Q@(2,2,2,2,2){0+#a}{
return:a;

}

expr:@ (21 2121212) {#a+0}{
return:a;

}

// 1 Expand Square Terms

expr:@(5,0,0,0) { (#7a + #?b) "2}
return:a”2+2+a*b+b"2;

}

expr:@(5,0,0,0) { (#7?a — #?b) "2}
return:a”2+ (-2) xraxb+b"2;

}

expr:Q@(6,0,0,0){ (#ax#b) "2} {
return:a”2+«b"2;

}

// 2 Expand Bracketed Terms

expr:Q@(0,4,0,0,0) {#2a— (#2b+#2c) }{
return:a-b-c;

}

expr:0@(0,3.8,0,0,0) { (#?b+#2c) ~#2a}{
return:b*a+t+cxa;

}

// 3 Extract Coefficients
expr:Q@(0,0,5,0) {$x*xa}{
return:axx;
}
expr:@(0,0,4.8,0){ (immediate:a*S$x) x (immediate:b*5$x) } {
new:tmp = axb;
return:tmp*x"2;
}
expr:0@(0,0,4.6,0) {$x* (a*$x) }{
return:a*xx"2;

}

// 4 Re-Express Negative Coefficients
expr:@(0,0,0,3.5,0) {#a-$x}{
placeholder:pl;
placeholder:p2;
if(x.exist subexpr{plx*p2}) {
abort;
}
return:a+ (-1) *x;
}
expr:0@(0,0,0,3.7,0) {#a—immediate:b*$x}{

27

Under review as a conference paper at ICLR 2025

new:tmp = 0 - b;
return:a+tmp*xx;

//5 Arrange Terms in Descending Order, Combine Like Terms
expr:Q@(0,0,0,0,3) {immediate:a*$x+immediate:b*Sx} {
new:tmp = atb;
return:tmp#*x;
}
expr:@(0,0,0,0,2.8) {al*$x+a2+$x"2}{
return:a2+«x"2+al+*x;

}

//6 Convert to Standard Form
expr:@(0,0,0,0,0,2.5) {a*$x"2+bxx == #d}{
return: a*$x"2+b*x + 0 == d;

}
expr:@(0,0,0,0,0,2.5) {bx$x == sd}{

if (d.exist subexpr{x"2}) {
return: 0+«x"2 + bxx + 0 == d;
lelse {
abort;
}
}
expr:@(0,0,0,0,0,-4) {$a==Sb}{
return:b==3;

}

//7 Apply Solution Formula
@(0,0,0,0,0,0,0,10) {ax$x"2+b*x+c==0}{
if (b"2-4xaxc<0) {
x="null";

}

else {
new:x1l=(-b+ (b*"2-4xa*xc)"0.5)/ (2*a);
new:x2=(-b—- (b"2-4xaxc)~0.5)/ (2*a) ;

x={x1,x2};

}i

L RELATIONAL TASKS AT DIFFICULTY LEVEL A

#load (family) // Load the CoL DSL library for Relational Tasks
new:relation = "";

// [Francisco]'s brother, [Wesley], recently got elected as a

— senator. [Lena] was unhappy with her son, [Charles], and his
— grades. She enlisted a tutor to help him. [Wesley] decided to
— give his son [Charles], for his birthday, the latest version
— of Apple watch.

// Ans: (Francisco) is (Lena)s brother

new:Lena = "Lena'";

new:Charles = "Charles";

new:Wesley = "Wesley";

28

Under review as a conference paper at ICLR 2025

new:Francisco = "Francisco";

(Charles) is (Lena)s son & (Wesley) is (Charles)s father &

— (Francisco) is (Wesley)s brother & (Francisco) is (Lena)s
=, (Srelation);

relation—-—>"#FILE (SCREEN)";

// [Clarence] woke up and said hello to his wife, [Juanita].

— [Lynn] went shopping with her daughter [Felicia]. [Felicial's
— sister [Juanita] was too busy to Jjoin them.

// Ans: (Lynn) is (Clarence)s mother—-in-law

new:Clarence = "Clarence";

new:Juanita = "Juanita";

new:Felicia = "Felicia";

new:Lynn = "Lynn";

(Juanita) is (Clarence)s wife & (Felicia) is (Juanita)s sister &
o (Lynn) is (Felicia)s mother & (Lynn) is (Clarence)s

— (Srelation);

relation—-->"#FILE (SCREEN)";

M RELATIONAL TASKS AT DIFFICULTY LEVEL B

#load(family) // Load the CoL DSL library for Relational Tasks
new:relation = "";

// [Antonio] was happy that his son [Bernardo] was doing well in
— college. [Dorothy] is a woman with a sister named [Tracy].

o [Dorothy] and her son [Roberto] went to the zoo and then out
— to dinner yesterday. [Tracy] and her son [Bernardo] had lunch
— together at a local Chinese restaurant.

// Ans: (Roberto) is (Antonio)s nephew
new:Antonio = "Antonio";

new:Bernardo = "Bernardo";

new:Tracy = "Tracy";

new:Dorothy = "Dorothy";

new:Roberto = "Roberto";

(Bernardo) is (Antonio)s son & (Tracy) is (Bernardo)s mother &
— (Dorothy) 1is (Tracy)s sister & (Roberto) is (Dorothy)s son &
< (Roberto) is (Antonio)s (Srelation);

relation——>"#FILE (SCREEN)";

~

/ [Bernardo] and his brother [Bobby] were rough-housing. [Tracyl],
o [Bobby]'s mother, called from the other room and told them to
— play nice. [Aaron] took his brother [Bernardo] out to get

— drinks after a long work week. [Tracy] has a son called
<

o

[Bobby]. Each day they go to the park after school. ans:
(Bobby) is (RAaron)s brother

new:Aaron = "Aaron";

new:Bernardo = "Bernardo";

new:Bobby = "Bobby";

new:Tracy = "Tracy";

(Bernardo) is (Aaron)s brother & (Bobby) is (Bernardo)s brother &
— (Tracy) 1is (Bobby)s mother & (Bobby) is (Tracy)s son & (Bobby)
— 1s (Aaron)s (Srelation);
relation—-—>"#FILE (SCREEN)";

29

Under review as a conference paper at ICLR 2025

N SyMBOLIC TASKS AT DIFFICULTY LEVEL A

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
new:x = 1;

6x$x"2 == 3xx — 7;

x——>"#FILE (SCREEN) ";

(Sx — 6)*x(x + 3) == x;

Xx——>"#FILE (SCREEN) ";

O SYMBOLIC TASKS AT DIFFICULTY LEVEL B

#load (quadratic) // Load the CoL DSL library for Symbolic Tasks
new:x = 1;

Sxx (Sx + 11) == 16*(Sx + 22);
x——>"#FILE (SCREEN) ";
Sxx (36xSx + 50) — 11x(19 - 30%$x) == $x"2;

x——>"#FILE (SCREEN) ";

P MULTIDOMAIN TASKS

#load (quadratic) // Load the CoL DSL library for Symbolic Tasks
#load (family) // Load the CoL DSL library for Relational Tasks
new:x = 1;

$x"2 — 4x$x == 6;

X —=> "#FILE (SCREEN)";

new:relation = "";

// [Dolores] and her husband [Don] went on a trip to the

— Netherlands last year. [Joshua] has been a lovely father of
o [Don] and has a wife named [Lynn] who is always there for him.
// Ans: (Dolores) 1is (Lynn)s daughter-in-law

new:Lynn = "Lynn";

new:Joshua = "Joshua";

new:Don = "Don";

new:Dolores = "Dolores";

(Joshua) is (Lynn)s husband & (Don) is (Joshua)s son & (Dolores)
—~ 1s (Don)s wife & (Dolores) is (Lynn)s (Srelation);
relation-——>"#FILE (SCREEN)";

Q COOL INTERMEDIATE REPRESENTATION

The intermediate representation of COOL is Three-Address Code.

"codeTable": [
{

"boundt fdomain": "",

"grounded": false,

"operandl": {
"argName": "x",
"argType": "identifier",
"changeable": 1,
"className": "",
"isClass": O

by

30

Under review as a conference paper at ICLR 2025

"operand2": {

llargName": "2"’
"argType": "number",
"changeable": 0,
"className": "",
"isClass": O

b

"operator": {
"argName": "/\",
"argType": "other"

b

"result": {
"argName": "1418.4",
"argType": "identifier",
"changeable": 1,
"className": "",
"isClass": O

b

"root": false

R RELATED WORK

Neural Search Optimization: Neural networks are key for optimizing search in program synthesis.
Projects like Kalyan et al.[(2018));|Zhang et al.|(2023)) and|Li et al.|(2024) use neural networks to pro-
vide oracle-like guidance, while Neo [Feng et al.| (2018)), Flashmeta Polozov & Gulwani| (2015), and
Concord |Chen et al.[(2020) prune search spaces with infeasible partial programs. COOL employs
both strategies to enhance efficiency.

Multi-step Program Synthesis: Chain-of-Thought (CoT) Wei et al.| (2022) enhances LLMs by
breaking tasks into subtasks. Projects like |Zhou et al.| (2022); |Shi et al.| (2023b) and [Zheng et al.
(2023) use this in program synthesis. Compared to CoT, which directly decomposes tasks, CoL does
so indirectly by constraining rule applications.

Reinforcement Learning: Reinforcement learning improves neural agents in program synthesis
through feedback, as seen in [Eberhardinger et al.| (2023); [Liu et al.| (2024)); [Bunel et al.| (2018)),
Concord|Chen et al.|(2020), and Quiet-STaR [Zelikman et al.|(2024). NNFC similarly refines control
flow but serves an auxiliary role for programmer strategies in synthesis rather than dominating it.

31

	Introduction
	Method
	Chain-of-Logic (CoL)
	Neural Network Feedback Control (NNFC)

	Experiments
	Experimental Setup
	Static Experiments
	Dynamic Experiments

	Conclusion
	DSL Program Synthesis in COOL
	Input Program
	Output Program
	Traditional DSL
	CoL DSL
	CoL DSL Synthesis Process

	Neural Networks in COOL
	Data Collection and Combination for Training
	Neural Network Input
	Neural Network Output
	Neural Network Structure
	Prediction Filtering
	Acting on the Synthesis Process
	Single DSL Program Synthesis
	Multi-DSL Synthesis

	Experiment
	User Input
	Relational Tasks
	Symbolic Tasks
	Multi-Domain Tasks

	Experiment Result

	Rule in CoL DSL
	Stage Progression Driven by Heuristic Vectors
	Signal Clipper
	A* Search in Program Synthesis

	Implementation Toolchain
	Optimization strategy
	Future work
	CoL DSL for Relational Tasks
	CoL DSL for Symbolic Tasks
	Relational Tasks at Difficulty Level A
	Relational Tasks at Difficulty Level B
	Symbolic Tasks at Difficulty Level A
	Symbolic Tasks at Difficulty Level B
	Multidomain Tasks
	COOL Intermediate Representation
	Related Work

