
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COOL: EFFICIENT AND RELIABLE
CHAIN-ORIENTED OBJECTIVE LOGIC
WITH NEURAL NETWORKS FEEDBACK CONTROL
FOR PROGRAM SYNTHESIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Program synthesis methods, whether formal or neural-based, lack fine-grained
control and flexible modularity, which limits their adaptation to complex soft-
ware development. These limitations stem from rigid Domain-Specific Language
(DSL) frameworks and neural network incorrect predictions. To this end, we pro-
pose the Chain of Logic (CoL), which organizes synthesis stages into a chain and
provides precise heuristic control to guide the synthesis process. Furthermore,
by integrating neural networks with libraries and introducing a Neural Network
Feedback Control (NNFC) mechanism, our approach modularizes synthesis and
mitigates the impact of neural network mispredictions. Experiments on relational
and symbolic synthesis tasks show that CoL significantly enhances the efficiency
and reliability of DSL program synthesis across multiple metrics. Specifically,
CoL improves accuracy by 70% while reducing tree operations by 91% and time
by 95%. Additionally, NNFC further boosts accuracy by 6%, with a 64% reduc-
tion in tree operations under challenging conditions such as insufficient training
data, increased difficulty, and multidomain synthesis. These improvements con-
firm COOL as a highly efficient and reliable program synthesis framework.

DSL  Framework CoL DSL + NNFC Framework (ours)

Failure

Input
(Charles) is (Lena)s son & (Wesley) is

(Charles)s father & (Francisco) is

(Wesley)s brother 

& (Francisco) is (Lena)s (?);

  Neural Network and Filter

DSL
son(x, y) -> parent(y, x), male(x)

parent(x, y):= child(y, x)

child(x,y) := parent(y, z), sibling(z,
x)

brother(x,y) := sibling(x, y), male(x)

result := remove_irrelevant(relations,
result)

···

Input
(Charles) is (Lena)s son & (Wesley) is (Charles)s father & (Francisco) is

(Wesley)s brother & (Francisco) is (Lena)s (?);

NNFC

Output
(Francisco) is (Lena)s (brother);

2 Reason Inverse Relations
(Heuristic) parent(x, y):= child(y, x)
···

3 Reason Indirect Relations
(Heuristic) child(x, y) := parent(y, z),
sibling(z, x)
···

1 Separate Relations and Genders
(Heuristic) son(x, y) -> child(x, y), male(x)
···

4 Recombine Relations and Genders, Eliminate
Irrelevant Relations
(Heuristic) brother(x, y) := sibling(x, y),
male(x)
(Heuristic) result := 
remove_irrelevant(relations, result)
···

CoL DSL

Detailed Rule

expr:@(0,7,3){(y) is (x)s
child}{
  if(this expr.exist
subexpr{(x) is (y)s parent}
== false){
    return: (y) is (x)s
child & (x) is (y)s parent;
  }
    abort;
}

Figure 1: Chain-of-Logic (highlighted part) organizes the rule application into a structured sequence,
enhancing the Domain-Specific Language (DSL) framework’s ability to handle complex tasks. The
Neural Network Feedback Control mechanism (red path) utilizes data during synthesis to improve
the performance of the synthesis process dynamically.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1 INTRODUCTION

non-CoL CoL
0

50

100

Accuracy↑(%)

29.8

100.0

non-CoL CoL
0

100

200

300

400

500

Avg. Tree
Operation↓
437.6

40.2

non-CoL CoL
0

2

4

6

Avg. Time
Spent↓(s)
6.4

0.3

non-NNFC
(w/CoL)

NNFC
(w/CoL)

0

50

100 93.1
99.5

non-NNFC
(w/CoL)

NNFC
(w/CoL)

0

50

100

141.3

50.4

non-NNFC
(w/CoL)

NNFC
(w/CoL)

0

1

2

3

Dy
na

m
ic

Pe
rfo

rm
an

ce
St

at
ic

Pe
rfo

rm
an

ce

Reliability Efficiency

1.2

2.3

1
Figure 2: Performance Enhancements with CoL
and NNFC. The CoL DSL surpasses non-CoL
DSL in all metrics. While NNFC increases com-
putation time due to neural network calls, it signif-
icantly boosts accuracy in dynamic experiments,
enhancing reliability.

Program synthesis is becoming increasingly
important in computer science for enhancing
development efficiency Gulwani et al. (2017);
Jin et al. (2024). Despite the effectiveness
of current state-of-the-art methods in dealing
with simple tasks, the complexity of modern
software demands more advanced and sophis-
ticated approaches Sobania et al. (2022).

To address these challenges, an effective solu-
tion must offer programmers fine-grained con-
trol and flexible modularity in the synthesis pro-
cess Groner et al. (2014); Sullivan et al. (2001).
First, fine-grained control tailors the synthesis
path to specific tasks, ensuring the interpretabil-
ity of the synthesis process. Secondly, flexible
modularity enhances reusability and guarantees
the quality of the entire program by ensuring
the correctness of the modules Le et al. (2023).

However, these principles are often overlooked
in current state-of-the-art program synthesis
methods. For example, symbolic approaches
such as SyGus Alur et al. (2013), Escher Al-
barghouthi et al. (2013), and FlashFill++ Cam-
bronero et al. (2023) struggle to scale to
complex tasks because their traversal-based
Domain-Specific Language (DSL) framework
lacks fine-grained control. A compensatory
strategy involves using neural networks for
guidance or search space pruning, as seen in projects such as Neo Feng et al. (2018), Lambd-
aBeam Shi et al. (2023a), Bustle Odena et al. (2020), DreamCoder Ellis et al. (2023), and
Algo Zhang et al. (2023), but the control logic remains disconnected from the programmer. On
the other hand, LLM-based projects like CodeGen Nijkamp et al. (2022), CodeX Finnie-Ansley
et al. (2022), and Code Llama Roziere et al. (2023) allow programmers to control synthesis through
prompt interactions. However, they lack modularity, as all tasks rely on the same LLM, making the
logic vulnerable to biases in training data and leading to subtle errors that require manual verifica-
tion. In summary, there is an urgent need for fine-grained control and flexible modularity to ensure
the efficiency and reliability of these methods when tackling complex synthesis tasks.

In this paper, following the principles of fine-grained control and flexible modularity, we present
COOL (Chain-Oriented Objective Logic), a neural-symbolic framework for complex program
synthesis. At the core of our approach, we introduce the Chain-of-Logic (CoL), which integrates
the functions of the activity diagram to enable fine-grained control Gomaa (2011). As illustrated in
Figure 1, programmers can precisely organize rules into multiple stages and manage control flow
using heuristics and keywords. Additionally, we leverage neural networks on top of CoL to dynam-
ically fine-tune the synthesis process. For this purpose, we introduce Neural Network Feedback
Control (NNFC) Turan & Jäschke (2024), which enhances future synthesis by learning from data
generated during synthesis and suppresses neural network incorrect predictions through filtering. To
ensure modularity, each neural network is bound with a specific CoL DSL, stored in separate library
files for clear isolation and easy reuse. Thus, through the combination of CoL and NNFC, COOL
achieves high efficiency and reliability when tackling complex synthesis tasks.

We conduct static experiments (constant domain and difficulty tasks, using pre-trained neural net-
works without further training) and dynamic experiments (mutative domain and difficulty tasks,
where neural networks are created and continuously trained during the experiment) to evaluate the
impact of CoL and NNFC on program synthesis. Figure 2 illustrates the significant improvements
achieved by CoL and NNFC: In static experiments, CoL improves accuracy by 70%, while reducing

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Activity 1 

Reason Inverse Relations

Activity 2

Reason Indirect Relations

Activity 3
Recombine Relations and

Genders, Eliminate Irrelevant
Relations

Activity 0 
Separate Relations

and Genders

 

Start End

Start

Synthesis Process Decomposed by Heuristic Vectors
and Guided by Heuristic Values

Synthesis Process without Heuristic Vector Participation

Figure 3: Heuristic Vectors and Heuristic Values in Chain-of-Logic. Heuristic vectors h decompose
the DSL G into multiple sub-DSLs (G0, G1, G2, G3) based on whether the value of the component
at the corresponding position is non-zero. These sub-DSLs correspond to the activities depicted
in Figure 1 and operate on partial programs p using rules r. The synthesis process for each activ-
ity is guided by rule application policies πr, which are generated by a heuristic algorithm f that
uses heuristic values h[n] as input. In the experiments conducted in this paper, we adopt the A*
algorithm and treat the heuristic value hi[n] as a reward for applying the rule ri during activity n.
Consequently, a higher heuristic value positively influences the rule’s application.

tree operations by 91% and time by 95%. In dynamic experiments, NNFC further increases the
accuracy by 6%, with a 64% reduction in tree operations. The results underscore that achieving
fine-grained control and flexible modularity can greatly improve efficiency and reliability in DSL
program synthesis.

The contributions of our work are as follows:

1. We propose the Chain-of-Logic (CoL), which enables fine-grained control in complex
program synthesis by structuring rule applications into distinct and manageable stages.

2. We further introduce Neural Network Feedback Control (NNFC), a dynamic correction
mechanism for CoL that continuously learns from the synthesis process, ensuring modu-
larity by pairing neural networks with specific CoL DSLs.

3. We present COOL, an efficient and reliable neural-symbolic framework for complex pro-
gram synthesis, combining the strengths of CoL and NNFC to achieve fine-grained control
and flexible modularity in DSL-based synthesis.

2 METHOD

In this section, we detail the implementation of CoL and NNFC, outlining the principles that ensure
high efficiency and reliability for complex program synthesis tasks.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Stage
1

Separate Relations and 
Genders

Stage
2 Reason Inverse Relations

Stage
3 Reason Indirect Relations

Stage
4

Recombine Relations and 
Genders, Eliminate Irrelevant 
Relations

To avoid wasting resources on partial programs with errors, such as incorrect

relationships or cyclic rule applications, we can actively terminate the exploration

using the keyword abort:

(0,0,0,6) sibling(x,x)->abort
(0,0,0,6) child(x,y),child(x,y),...->abort

When an indirect relationship is inferred at stage 3, we can use keyword 

 logicjump(2) to return to stage 2. This allows the DSL to infer new relationships based

on the previously inferred one, recursively synthesizing the complete relationship graph: 

(0,0,5,0) logicjump(2):child(x, y) := parent(y, z), sibling(z, x)
(0,0,5,0) logicjump(2):sibling(x, y) := child(y, z), child(x, z)

End (Francisco) is (Lena)s (brother);

Return is the basic keyword to advance the synthesis process stage-by-stage,   

following the Chain-of-Logic: 

(3,0,0,0) son(x,y)->return:child(x, y), male(x)
(3,0,0,0) father(x,y)->return:parent(x, y), male(x)

Managed by return Managed by logicjump(n) Managed by abort

Start (Charles) is (Lena)s son & (Wesley) is (Charles)s father & (Francisco) is (Wesley)s brother & (Francisco) is (Lena)s (?);

Figure 4: Keywords in Chain-of-Logic. In this illustrative CoL DSL, each node represents a stage
or activity where a set of rules can be applied to generate partial programs. The flow between
stages is managed by keywords return, logicjump(n), and abort, allowing for the implementation
of complex control flow in program synthesis.

2.1 CHAIN-OF-LOGIC (COL)

Activity diagrams, widely used in software engineering, effectively describe how an initial state
transitions to a final state through multiple activities. This feature aligns with the DSL-based pro-
gram synthesis process. A DSL, defined as a context-free grammar, converts partial programs with
nonterminal symbols into complete programs by applying given rules. However, as the rule set
grows, DSL becomes inefficient in exploring partial programs. To enhance the efficiency of DSL,
the Chain-of-Logic, drawing inspiration from activity diagrams, organizes the synthesis process into
a sequence of manageable activities.

CoL improves the synthesis workflow of the DSL with two key features: heuristic vectors and
keywords. As shown in Figure 3, heuristic vectors decompose DSL into multiple sub-DSLs that are
consistent with the activity flow by dividing the rule applications scope. Within each activity, the
DSL solver uses heuristic values to perform efficient program synthesis. For example, in Figure 1,
a rule with the heuristic vector (0,7,3) belongs to sub-DSLs in activities 2 and 3 with heuristic
values of 7 and 3, respectively. By dynamically pruning the search space and providing search
guidance, heuristic vectors promote program synthesis efficiency.

Second, as illustrated in Figure 4, CoL introduces three keywords—return, logicjump(n),
and abort—to dynamically manage state transition within or between activities during synthesis:

1. return: Ends the current rule, staying within current activity or advancing to following
activities.

2. logicjump(n): Jumps directly to the activity n, enabling branching and loops within activ-
ity flow.

3. abort: Terminates the current synthesis branch, pruning the search space.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Input
 partial program
from CoL DSL 

THD SSPH SGH

Series Neural Network

Series Neural Network

DSNN

Series Neural Network

Filter

CoL heuristic
value

DSNN

FilterClipperpartner
 CoL DSL&DSNNs

Feedback Loop

Forward Flow

Neural Network Feedback Control

CoL DSL

Detailed Structure of the Feedback Loop

&

&

Figure 5: Neural Network Feedback Control. The left side illustrates the complete control loop of
NNFC. In the forward flow (green path), heuristic values u guide the synthesis process as control
signals. In the feedback loop (red path), the DSNN (Domain-Specific Neural Network, the neural
network paired with a DSL) generates initial error signals e0 from partial programs y. These
singals are then filtered to produce high-quality error signals e1, which adjust the initial heuristic
values u0. In multidomain synthesis, the CoL DSL and DSNN from the self-domain use partner
domain information (dashed path) to clarify tasks and avoid competition, ensuring modularity. The
right side details the feedback loop: The DSNN comprises multiple neural networks coupled in
series via noise signals, with each network generating its own error signal e0, then these signals with
large discrepancies are filtered, retaining the final high-quality error signals e1.

Based on the principle of activity diagrams, CoL provides fine-grained control through heuristic
vectors and keywords. This systematic approach enhances the efficiency of DSL synthesis.

2.2 NEURAL NETWORK FEEDBACK CONTROL (NNFC)

While CoL enables programmers to fine-tune the synthesis process, the control flow may lack detail
or vary by task. To this end, Neural Network Feedback Control (NNFC) dynamically refines con-
trol flow through feedback from neural networks, improving precision and adaptability. However,
neural networks present the risk of generating incorrect predictions, threatening reliability.

Therefore, a robust control flow in NNFC is crucial to ensuring overall performance. As illustrated
in Figure 5, NNFC enhances the CoL DSL in the following ways: In the forward flow, the Clipper
prioritizes control signals aligned with DSNN guidance by capping any inconsistent signals, while
the CoL DSL applies rules based on the adjusted heuristic values. Meanwhile, in the feedback loop,
the DSNN generates error signals from partial programs across domains. To suppress the impact of
mispredictions, the Filter refines these signals before they influence the forward flow.

The quality of the signals generated in the feedback loop directly determines the effectiveness of
NNFC. If the error signals are of poor quality, NNFC may not only fail to provide additional im-
provements but also degrade CoL DSL performance. We ensure the error signal quality through an
inner coupling structure within DSNN. As shown in Figure 5 (right), during synthesis tasks, DSNN
processes partial programs using a series of sequentially connected neural networks. Each neural
network takes both the partial programs and intermediate results from the preceding neural network
as input, generating its own predictions. When errors occur in earlier networks, they propagate
downstream as noise signals, amplifying at each stage. The difference in the outputs between these
neural networks is positively correlated with the accumulated error. To mitigate this, we set a thresh-
old to filter out signals with a significant difference in outputs. Finally, DSNN uses passed signals
to generate multi-head outputs to fine-tune the forward flow:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

1. Task Detection Head (TDH): Improves modularity by determining whether the partial
program contains components that the CoL DSL can process.

2. Search Space Prune Head (SSPH): (Active when TDH is true) Evaluate the feasibility of
synthesizing the final complete program from the current partial program, and CoL DSL
will avoid exploring infeasible spaces.

3. Search Guidance Head (SGH): (Active when both TDH and SSPH are true) Guides the
CoL DSL in applying the most promising rules to the partial program.

By adopting filtering and multi-head outputs, the feedback loop delivers high-quality error signals
to the forward path, ensuring that NNFC enhances the synthesis process on top of CoL.

3 EXPERIMENTS

We conduct the experiments in two stages to evaluate the improvements introduced by CoL to DSL
and to assess how NNFC further enhances performance. First, we carry out static experiments
under fixed conditions, including task domain, difficulty level, and neural network. These controlled
conditions allow us to accurately measure CoL’s impact on performance. Next, we proceed with
dynamic experiments, where conditions vary throughout. This dynamic setup evaluates NNFC’s
ability to improve reliability under changing situations.

3.1 EXPERIMENTAL SETUP

Improvements of DSL by CoL and NNFC is evaluated across benchmarks using various metrics.

Benchmarks. We evaluate CoL and NNFC using relational and symbolic tasks with varying
difficulty levels, as detailed in Table 1. Specifically, the relational tasks are drawn from the
CLUTRR Sinha et al. (2019) dataset, where the goal is to synthesize programs that capture spe-
cific target relationships based on human common-sense reasoning. In contrast, the symbolic tasks
are generated by GPT Achiam et al. (2023). They involve synthesizing standard quadratic equation
programs from non-standard quadratic forms by performing manual calculation steps. Although
these tasks are simple for humans, they serve as a straightforward demonstration of how fine-grained
control, derived from programmer expertise, can significantly improve program synthesis efficiency.

Metrics. Besides accuracy, we also focus on the following points: (1) CPU Overhead is assessed
by the number of tree operations required for synthesis. (2) Memory overhead is assessed by the
number of transformation pairs (a partial program paired with the rule to be applied)1. (3) GPU
Overhead is measured by the number of neural network invocations. (4) Time overhead is refer-
enced by the actual time spent on program synthesis tasks. (5) Filtering Performance is evaluated
by the attenuation ratio of invalid to passed neural network predictions.

Chain-of-Logic. We utilize the CoL approach to enhance DSL by making the synthesis process
more in line with human problem-solving strategies. For relational tasks, by mirroring the way hu-
mans typically reason about family relationships, CoL organizes the synthesis process into stages
illustrated in Figure 4. For symbolic tasks, CoL structures the DSL to follow the manual quadratic
equation simplification strategy, with stages such as expanding terms, extracting coefficients, per-
muting terms, and converting equations to standard form. The specific CoL DSL configurations are
shown in Table 2, where the significant differences in DSLs highlights the generality of CoL.

1Each partial program must be completed with at most 1000 transformation pairs, though this may exceed
1000 if additional tasks are generated during synthesis.

Table 1: Benchmark configurations. Relational benchmarks are divided into easy and difficult
groups based on the number of relationship edges, while symbolic benchmarks are based on the
number of nodes in the tree.

Benchmark Type Difficulty Level A Difficulty Level B
relational 300 tasks with 3 edges 200 tasks with 4 edges
symbolic 300 tasks with around 5 nodes 200 tasks with around 9 nodes

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: CoL DSL configurations. The DSL for relational benchmarks has a limited search space and
shorter CoL, facing challenges from numerous production rules leading to larger trees. Conversely,
the DSL for symbolic benchmarks offers an unlimited search space with a longer CoL, but the many
permutation rules increase the risk of cyclic rule applications.

Benchmark Rules Length of CoL
Total Production

Rules
Reduction

Rules
Recursive

Rules
Permutation

Rules
relational 40 36 2 16 0 4
symbolic 55 17 26 3 11 7

Groups. We use multiple groups to comprehensively evaluate CoL and NNFC (as shown in Ta-
ble 3). First, in static experiments, we evaluate CoL by comparing DSL groups with and without CoL
enhancements. Second, to isolate the impact of heuristic vectors—both as guides and as structuring
tools for rule application—we create groups enhanced only by heuristic values. Third, we introduce
groups enhanced by neural networks to assess whether combining CoL with neural networks yields
better results and to explore the filtering effect of the inner coupling structure. In dynamic experi-

Table 3: Group configurations. Groups marked with ★ are the main experiments, those with ✩ are
for ablation and extended experiments, and the unmarked group is the baseline.

Group Experiment Pretrained
DSNN NNFC

Inner
Coupling
Structure

DSL static
✩DSL (Heuristic) static

★CoL DSL static, dynamic
✩DSL+NN static ✓

✩DSL (Heuristic)+NN static ✓
✩ CoL DSL+NN static ✓

✩CoL DSL+NNFC dynamic ✓
✩DSL+NN (Cp) static ✓ ✓

✩DSL(Heuristic)+NN (Cp) static ✓ ✓
✩CoL DSL+NN (Cp) static ✓ ✓
✩CoL DSL+NN (Cp) static ✓ ✓

★CoL DSL+NNFC (Cp) dynamic ✓ ✓

ments, we design control groups with and without NNFC to evaluate its impact. Additionally, we
include a group without the inner coupling structure to confirm its necessity.

Environment. Experiments are carried out on a computer equipped with an Intel i7-14700 proces-
sor, a GTX 4070 GPU, and 48GB RAM.

3.2 STATIC EXPERIMENTS

We start with static experiments. With the task domain, difficulty level, and neural network condi-
tions unchanged in each group, a series of controlled experiments confirm that CoL has remarkably
boosted DSL program synthesis in all metrics.

The results in Table 4 clearly demonstrate that CoL significantly improves accuracy while min-
imizing overhead. Most notably, CoL improves the accuracy of the DSL from less than 50% to
100% across both relational and symbolic benchmarks. Additionally, CoL achieves remarkable re-
ductions in relational tasks, cutting tree operations by 90%, transformation pairs by 88%, and time
by 95%. Similarly, in symbolic tasks, CoL reduces tree operations by 92%, transformation pairs
by 96%, and time by 97%. These findings showcase CoL’s substantial impact on improving perfor-
mance across all key metrics.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Static performance of DSL and CoL DSL for relational and symbolic tasks. CoL DSL
significantly outperforms DSL in all metrics.

Benchmark Group Accuracy
(%)

Avg. Tree
Operation

Avg. Trans-
formation

Pair

Avg. Time
Spent (s)

relational DSL 11.3 463.9 1432.2 9.43
CoL DSL 100.0 46.6 177.8 0.48

symbolic DSL 48.3 411.2 2285.3 3.31
CoL DSL 100.0 33.8 92.7 0.11

Further ablation and extension experiments clarify the sources of CoL’s enhancement, confirm CoL’s
effective integration with neural networks, and explore when filtering via inner coupling structures
is most beneficial. Our findings are as follows:

First, CoL’s enhancement stems from both heuristics and structured rule application stages.
As illustrated in Figure 6, the DSL (Heuristic) group outperforms the DSL group in most metrics,
and the CoL DSL group significantly surpasses DSL (Heuristic) in all metrics. Such results indicate
that CoL positively impacts synthesis by guiding and structuring rule application. Moreover, on top
of guidance, the structured rule application stages achieve greater improvement.

Second, integrating CoL with neural networks further improves the search efficiency. As
shown in Figure 6, despite additional GPU and time overhead, the top-performing CoL DSL + NN
group reduces tree operations by 43% and transformation pairs by 19% in relational tasks compared
to the CoL DSL group. In symbolic tasks, the CoL DSL + NN (Cp) group reduces tree operations by
64% and transformation pairs by 46%. The results showcase that neural networks can further narrow
the search space for program synthesis beyond CoL. Importantly, the group with the inner coupling
structure outperforms non-neural groups in both tasks. In contrast, the group without it presents an
accuracy decline in symbolic tasks, validating the structure’s role in improving reliability.

Third, the inner coupling structure is more effective when error tolerance is low. As indicated
in Figure 6, for symbolic tasks, CoL DSL-based groups with the inner coupling structure signifi-
cantly outperform those without it. However, for relational tasks and DSL-based groups (without
CoL or heuristic), those without such structure perform better. This difference indicates that the
filtering effect of the inner coupling structure comes at a cost: it filters out both incorrect and correct
predictions. So, its effectiveness depends on the positive impact of eliminating incorrect predic-
tions outweighing the loss of correct ones. Therefore, for relational tasks with a limited search
space and DSL-based groups with higher error tolerance, the cost of filtering outweighs the benefit.
However, in symbolic tasks, where avoiding errors is more critical, CoL DSL-based groups benefit
significantly from the inner coupling structure.

3.3 DYNAMIC EXPERIMENTS

Static experiments confirm CoL’s improvements on DSL and its enhancement with neural networks.
However, real-world program synthesis involves varying task domains and difficulty, facing the risk
of neural network mispredictions due to underperformance. Therefore, we introduce these factors
in dynamic experiments to evaluate how NNFC further improves the performance of CoL DSL.

The results in Table 5 confirm that NNFC significantly enhances the reliability of CoL DSL in
challenging conditions. As task difficulty increases and multidomain scenarios emerge, the accu-
racy of the CoL DSL group declines compared to its performance in static experiments. However,
the NNFC-enhanced group maintains an accuracy of at least 99%, demonstrating its strong reliabil-
ity in challenging situations. Additionally, compared with the original CoL DSL group, it reduces
tree operations by 22% and transformation pairs by 14%. For symbolic tasks, despite the added time
for neural network invocations, the NNFC-enhanced group still shortens the time spent by 21%.

Further ablation experiments confirm that reliability provided by NNFC primarily stems from
the filtering effect of the inner coupling structure. As shown in Figures 7 and 9, the inner cou-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

A B C D E F G H I
0

20

40

60

80

100

11.3

47.3

100.0 100.0 100.0 100.0 100.0 100.0 100.0
Accuracy↑(%)

A B C D E F G H I
0

200

400

600

463.9

588.6

46.6 58.8 36.5 26.9
67.4 39.7 36.5

Avg. Tree Operation↓

A B C D E F G H I
0

500

1000

1500
1432.2

1008.3

177.8 223.7 185.1 144.6
238.1

172.4 185.1

Avg. Transformation Pair↓

A B C D E F G H I
0

5

10

15

20

25

0.0 0.0 0.0

26.2

23.2
20.6

26.5

22.4 23.2

Avg. Neural Network Invocation↓

A B C D E F G H I
0.0

2.5

5.0

7.5

10.0

12.5

9.4

10.5

0.5
1.4 1.1 1.0

2.6
1.9

1.1

Avg. Time Spent↓(s)

A B C D E F G H I
0

20

40

60

80

100

48.3 49.0

100.0

61.0 58.0

96.7

56.0 58.0

100.0
Accuracy↑(%)

A B C D E F G H I
0

1000

2000

3000

Avg. Transformation Pair↓

2285.3

802.1

92.7

2612.0

641.7

187.2

2485.2

631.2

50.1

A B C D E F G H I
0

100

200

300

Avg. Neural Network Invocation↓

0.0 0.0 0.0

357.1

102.3

23.5

340.9

100.4

9.2

A B C D E F G H I
0.0

2.5

5.0

7.5

10.0

12.5

Avg. Time Spent↓(s)

3.3

1.3
0.1

7.8

2.0

3.5

12.5

3.4

0.3

Sy
m

bo
lic

Ta
sk

s
Re

lat
ion

al
Ta

sk
s

A: DSL
B: DSL (Heuristic)
C: CoL DSL
D: DSL + NN
E: DSL (Heuristic) + NN
F: CoL DSL + NN
G: DSL + NN (Cp)
H: DSL (Heuristic) + NN (Cp)
I: CoL DSL + NN (Cp)

A B C D E F G H I
0

100

200

300

400

500

Avg. Tree Operation↓
411.2

312.7

33.8

433.6

171.9

40.6

421.5

170.5

12.3

1

Figure 6: Static performance on relational and symbolic tasks at difficulty level A. CoL DSL-based
groups outperform DSL (Heuristic) and DSL groups. Performance varies for DSNN-enhanced
groups with the inner coupling structure. Error bars show 95% confidence intervals across 6 batches.

Table 5: Dynamic performance of CoL DSL and CoL DSL+NNFC(Cp). NNFC significantly im-
proves the dynamic performance of CoL DSL in accuracy, tree operations, and transformation pairs.

Bench-
mark Group Accuracy

(%)
Avg. Tree

Operation

Avg. Trans-
formation

Pair

Avg. Neural
Network

Invocation

Avg. Time
Spent (s)

relational CoL DSL 100.0 70.0 259.8 0 1.05
CoL DSL+NNFC (Cp) 100.0 54.6 224.5 21.7 2.08

symbolic CoL DSL 82.6 233.5 977.1 0 1.42
CoL DSL+NNFC (Cp) 99.4 50.3 222.2 21.6 1.12

multi-
domain

CoL DSL 97.5 115.2 367.6 0 0.99
CoL DSL+NNFC (Cp) 99.0 45.6 250.5 72.84 3.91

pling structure reduces the occurrence of accuracy declines due to DSNN mispredictions by 94%.
Additionally, the dynamic performance reveals how the inner coupling structure enhances NNFC:

In the scenarios where a DSNN underperforms due to issues such as insufficient training
data Mikołajczyk & Grochowski (2018) (as seen in Figure 7, tasks 51-100), inadequate general-
ization to more challenging tasks Yosinski et al. (2014); Wei et al. (2019) (Figure 7, tasks 301-350),
and catastrophic forgetting when tasks from a new domain are learned Kirkpatrick et al. (2017);

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

50 100 200 300 400 500

-30

-20

-10

0
Accuracy Differential↑(%)

0 0 0 0 0 0

-38

-10
-6

-16

0 0 0 0 0 0 0 0 0 0

50 100 200 300 400 500
-10

0

10

100

Tree Operation Differential↓(%)

0

30

-53

-36 -23 -28

342

38 24

23

0

-24 -47

-45 -54 -56

-4

-14
-6

-18

50 100 200 300 400 500

-10

0

10

100

0

13

-20

-12
-10

-13

167
37 21 37

0

-14 -18

-19 -21 -22

-10 -13
-9

-14

Transformation Pair Differential↓(%)

50 100 200 300 400 500
0

20

40

60

0.0

24.8

20.7

21.1 21.421.3

58.4

37.8
34.2

38.9

0.0

20.8

20.8

20.5 20.4 20.6
28.5 28.3 28.7 28.5

Neural Network Invocation↓

50 100 200 300 400 500
0

10

100

0

206
79

142 108 107
526

78
143

140

19

307

73
117

47
56

64

50

175

118

Time Spent Differential↓(%)

50 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00

0.54
0.43 0.44 0.380.39

1.02

0.68 0.67 0.71

Attenuation Ratio

50 300 500
-25

0

25

50

75

Accuracy Differential↑(%)

0
-2 -4 -4

-12
-2

-28
-18

-8

10
0 0 0 0 0 0

62
79

92

67

50 100 200 300 400 500

-100

-10

0

10

100

Tree Operation Differential↓(%)

0

-14

73 129 111

-25 -34
-47 -59 -58

0

-41
-65

-30
-66

-73 -44
-91 -97 -95

50 100 200 300 400 500

-100

-10

0

10

100

0

13

117 229 296

45

-34 -38 -54 -57

0

-24 -42
-11

-52 -46
-47 -86 -94 -93

Transformation Pair Differential↓(%)

50 200 300 400 500
0

50

100

150

0.0

17.9 21.0 23.8

52.2

12.5

164.0
134.1

118.4
97.7

0.0
12.3 3.8

6.6 7.9

5.1

123.9

28.3
13.7 14.0

Neural Network Invocation↓

50 100 200 300 400 500

-100

-10

0

10

100

1000

10000

32

1835 3546 8487 9081 3929

221 503
47 92

29

278 186 386 126 177
72

-41 -77 -78

Time Spent Differential↓(%)

50 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

1.25

0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.000.00

0.78

0.55

0.81

0.69

0.51

1.32

0.59

0.20
0.42

Re
lat

ion
al

Ta
sk

s
Sy

m
bo

lic
Ta

sk
s

Attenuation Ratio

CoL DSL (y = 0) CoL DSL + NNFC CoL DSL + NNFC (Cp) Difficulty Level A Difficulty Level B

1

Figure 7: Dynamic performance differential to CoL DSL in singledomain tasks. The NNFC group
without the inner coupling structure shows 12 accuracy declines across 20 batches, while the group
with the structure shows none. Each batch consists of 50 tasks, and NNFC continuously trains
DSNNs using generated data after each batch, starting from scratch.

Van de Ven & Tolias (2019) (Figure 9, tasks 1-100), incorrect predictions lead the actual synthesis
path to deviate from the CoL, which in turn causes inefficiency and reduced accuracy. During these
phases, for NNFC with the inner coupling structure, the attenuation ratio spikes, indicating that a
large percentage of neural network predictions are filtered out. Consequently, the inner coupling
structure ensures that the synthesis process adheres to the CoL, effectively mitigating the negative
impact of DSNN mispredictions and enhancing reliability.

As the DSNN improves and reaches a relatively stable state (as seen in Figure 7, tasks 101-300,
351-500, and Figure 9, tasks 101-400), the attenuation ratio shows a decreasing trend accordingly.
This adaptive adjustment demonstrates how the inner coupling structure dynamically regulates the
DSNN’s impact, leveraging neural network contributions while mitigating risks to ensure both effi-
ciency and reliability in program synthesis.

4 CONCLUSION

We explored fine-grained control and flexible modularity for complex program synthesis through the
Chain-Oriented Objective Logic (COOL) framework. Inspired by activity charts and control theory,
we developed Chain-of-Logic (CoL) and Neural Network Feedback Control (NNFC) to achieve
these goals. Static and dynamic experiments across relational, symbolic, and multidomain tasks
demonstrated that COOL offers strong efficiency and reliability. We believe that continued research
and refinement of CoL and NNFC will inspire advancements not only in program synthesis but also
in broader areas of neural network reasoning.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In Com-
puter Aided Verification: 25th International Conference, CAV 2013, Saint Petersburg, Russia,
July 13-19, 2013. Proceedings 25, pp. 934–950. Springer, 2013.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013.

Lorenzo Bettini. Implementing domain-specific languages with Xtext and Xtend. Packt Publishing
Ltd, 2016.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Lever-
aging grammar and reinforcement learning for neural program synthesis. arXiv preprint
arXiv:1805.04276, 2018.

José Cambronero, Sumit Gulwani, Vu Le, Daniel Perelman, Arjun Radhakrishna, Clint Simon, and
Ashish Tiwari. Flashfill++: Scaling programming by example by cutting to the chase. Proceed-
ings of the ACM on Programming Languages, 7(POPL):952–981, 2023.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong
Yue, et al. Neurosymbolic programming. Foundations and Trends® in Programming Languages,
7(3):158–243, 2021.

Xinyun Chen, Dawn Song, and Yuandong Tian. Latent execution for neural program synthesis
beyond domain-specific languages. Advances in Neural Information Processing Systems, 34:
22196–22208, 2021.

Xiuying Chen, Mingzhe Li, Xin Gao, and Xiangliang Zhang. Towards improving faithfulness in ab-
stractive summarization. Advances in Neural Information Processing Systems, 35:24516–24528,
2022.

Y Chen, C Wang, O Bastani, I Dillig, and Y Feng. Program synthesis using deduction-guided re-
inforcement learning. In Computer Aided Verification32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part II, volume 12225, pp. 587–610, 2020.

Guofeng Cui and He Zhu. Differentiable synthesis of program architectures. Advances in Neural
Information Processing Systems, 34:11123–11135, 2021.

Iddo Drori, Sarah Zhang, Reece Shuttleworth, Leonard Tang, Albert Lu, Elizabeth Ke, Kevin Liu,
Linda Chen, Sunny Tran, Newman Cheng, et al. A neural network solves, explains, and generates
university math problems by program synthesis and few-shot learning at human level. Proceed-
ings of the National Academy of Sciences, 119(32):e2123433119, 2022.

Manuel Eberhardinger, Johannes Maucher, and Setareh Maghsudi. Towards explainable decision
making with neural program synthesis and library learning. In NeSy, pp. 348–368, 2023.

Kevin Ellis, Lionel Wong, Maxwell Nye, Mathias Sable-Meyer, Luc Cary, Lore Anaya Pozo, Luke
Hewitt, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: growing generalizable,
interpretable knowledge with wake–sleep bayesian program learning. Philosophical Transactions
of the Royal Society A, 381(2251):20220050, 2023.

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven
learning. ACM SIGPLAN Notices, 53(4):420–435, 2018.

James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and James Prather. The
robots are coming: Exploring the implications of openai codex on introductory programming. In
Proceedings of the 24th Australasian Computing Education Conference, pp. 10–19, 2022.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hassan Gomaa. Software modeling and design: UML, use cases, patterns, and software architec-
tures. Cambridge University Press, 2011.

Rudolf Groner, Marina Groner, and Walter F Bischof. Methods of heuristics. Routledge, 2014.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

Oleksii Hrinchuk, Valentin Khrulkov, Leyla Mirvakhabova, Elena Orlova, and Ivan Oseledets. Ten-
sorized embedding layers for efficient model compression. arXiv preprint arXiv:1901.10787,
2019.

Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

Sagar Imambi, Kolla Bhanu Prakash, and GR Kanagachidambaresan. Pytorch. Programming with
TensorFlow: solution for edge computing applications, pp. 87–104, 2021.

Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable nlp systems: How should we
define and evaluate faithfulness? arXiv preprint arXiv:2004.03685, 2020.

Haolin Jin, Linghan Huang, Haipeng Cai, Jun Yan, Bo Li, and Huaming Chen. From llms to llm-
based agents for software engineering: A survey of current, challenges and future. arXiv preprint
arXiv:2408.02479, 2024.

Stephen C Johnson et al. Yacc: Yet another compiler-compiler, volume 32. Bell Laboratories Murray
Hill, NJ, 1975.

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov, Dhruv Batra, Prateek Jain, and Sumit Gul-
wani. Neural-guided deductive search for real-time program synthesis from examples. arXiv
preprint arXiv:1804.01186, 2018.

Paul King. A history of the groovy programming language. Proceedings of the ACM on Program-
ming Languages, 4(HOPL):1–53, 2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul, Doyen Sahoo, and Shafiq Joty. Codechain: To-
wards modular code generation through chain of self-revisions with representative sub-modules.
arXiv preprint arXiv:2310.08992, 2023.

Michael E Lesk and Eric Schmidt. Lex: A lexical analyzer generator, volume 39. Bell Laboratories
Murray Hill, NJ, 1975.

Wei Li, Wenhao Wu, Moye Chen, Jiachen Liu, Xinyan Xiao, and Hua Wu. Faithfulness in natural
language generation: A systematic survey of analysis, evaluation and optimization methods. arXiv
preprint arXiv:2203.05227, 2022.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with
large language models. In International Conference on Computer Aided Verification, pp. 280–
301. Springer, 2024.

Chen Liang, Mohammad Norouzi, Jonathan Berant, Quoc V Le, and Ni Lao. Memory augmented
policy optimization for program synthesis and semantic parsing. Advances in Neural Information
Processing Systems, 31, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Max Liu, Chan-Hung Yu, Wei-Hsu Lee, Cheng-Wei Hung, Yen-Chun Chen, and Shao-Hua Sun.
Synthesizing programmatic reinforcement learning policies with large language model guided
search. arXiv preprint arXiv:2405.16450, 2024.

Agnieszka Mikołajczyk and Michał Grochowski. Data augmentation for improving deep learning in
image classification problem. In 2018 international interdisciplinary PhD workshop (IIPhDW),
pp. 117–122. IEEE, 2018.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. arXiv preprint arXiv:2203.13474, 2022.

Maxwell Nye, Armando Solar-Lezama, Josh Tenenbaum, and Brenden M Lake. Learning compo-
sitional rules via neural program synthesis. Advances in Neural Information Processing Systems,
33:10832–10842, 2020.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai.
Bustle: Bottom-up program synthesis through learning-guided exploration. arXiv preprint
arXiv:2007.14381, 2020.

Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthe-
sis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 107–126, 2015.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, and Charles Sutton. Lambdabeam: Neural
program search with higher-order functions and lambdas. Advances in Neural Information Pro-
cessing Systems, 36:51327–51346, 2023a.

Kensen Shi, Joey Hong, Yinlin Deng, Pengcheng Yin, Manzil Zaheer, and Charles Sutton. Exedec:
Execution decomposition for compositional generalization in neural program synthesis. arXiv
preprint arXiv:2307.13883, 2023b.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L Hamilton. Clutrr: A
diagnostic benchmark for inductive reasoning from text. arXiv preprint arXiv:1908.06177, 2019.

Dominik Sobania, Martin Briesch, and Franz Rothlauf. Choose your programming copilot: a com-
parison of the program synthesis performance of github copilot and genetic programming. In
Proceedings of the genetic and evolutionary computation conference, pp. 1019–1027, 2022.

Arvind K Sujeeth, Kevin J Brown, Hyoukjoong Lee, Tiark Rompf, Hassan Chafi, Martin Oder-
sky, and Kunle Olukotun. Delite: A compiler architecture for performance-oriented embedded
domain-specific languages. ACM Transactions on Embedded Computing Systems (TECS), 13(4s):
1–25, 2014.

Kevin J Sullivan, William G Griswold, Yuanfang Cai, and Ben Hallen. The structure and value of
modularity in software design. ACM SIGSOFT Software Engineering Notes, 26(5):99–108, 2001.

Evren Mert Turan and Johannes Jäschke. Closed-loop optimisation of neural networks for the design
of feedback policies under uncertainty. Journal of Process Control, 133:103144, 2024.

Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. Advances in Neural Information Processing
Systems, 32, 2019.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Xiaojie Guo. Graph neural networks: foundation,
frontiers and applications. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4840–4841, 2022.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Goodman.
Quiet-star: Language models can teach themselves to think before speaking. arXiv preprint
arXiv:2403.09629, 2024.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthesizing
algorithmic programs with generated oracle verifiers. Advances in Neural Information Processing
Systems, 36:54769–54784, 2023.

Wenqing Zheng, SP Sharan, Ajay Kumar Jaiswal, Kevin Wang, Yihan Xi, Dejia Xu, and Zhangyang
Wang. Outline, then details: Syntactically guided coarse-to-fine code generation. In International
Conference on Machine Learning, pp. 42403–42419. PMLR, 2023.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A DSL PROGRAM SYNTHESIS IN COOL

COOL adopts a top-down synthesis strategy that converts input partial programs with nonterminals
into complete programs by applying a sequence of well-defined transformation rules.

A.1 INPUT PROGRAM

In the relational reasoning tasks, the input is COOL code such as Code A.1:

Code A.1: Relational Reasoning Task Input Program

(Wesley) is (James)s son & (Martha) is (Wesley)s daughter &
(Hugh) is (Martha)s uncle & (Hugh) is (James)s ($relation);

where $ specifies the nonterminal, indicating that the DSL solver needs to synthesize a complete pro-
gram that calculates the correct value for relation (the relationship between Hugh and James)
in order to satisfy the given specification.

The symbolic task input is The input for symbolic tasks is as follows (Code A.2):

Code A.2: Symbolic Reasoning Task Input Program

$xˆ2 + 4*$x == 3;

Similarly, the DSL solver needs to generate a complete program that calculates the value of x.

A.2 OUTPUT PROGRAM

As shown in Code A.3, for family relationship reasoning tasks, the synthesized program is:

Code A.3: Relational Reasoning Task Output Program

relation = "son";

For symbolic reasoning tasks, the generated output program is shown in Code :

Code A.4: Symbolic Reasoning Task Output Program

Invoke Quadratic Solution Formula( a=1, b=4, c=-3, x ); // a,
b, c are coefficients in "1*xˆ2 + 4*x + (-3) == 0"

In reality, the program synthesis takes place at the intermediate representation level (see Ap-
pendix Q), and Codes A.3 A.4 are provided for explanatory purposes.

A.3 TRADITIONAL DSL

A DSL, defined as a context-free grammar:

G = {V,Σ, R, S}, (1)

where V is the set of non-terminal symbols, Σ is the set of terminal symbols, R is the set of rules,
and S is the starting symbol (in this context, it is a partial program). The DSL’s derivation pro-
cess converts partial programs with nonterminal symbols into complete programs by applying given
rules.

The synthesis process for traditional DSLs involves iteratively transforming partial programs into
complete programs by applying a series of rules. Each partial program (p) and the corresponding
rule (r) to be applied to it form a transformation pair (p, r). When a rule is applied, it modifies

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the syntax tree of the partial program through what we refer to as a tree operation. The synthesis
process consists of a series of transformation pairs connected by tree operations, which is known as
a synthesis path or trajectory. These paths are classified into three kinds:

• Feasible Path: Leads to a complete program.

• Infeasible Path: Proven to be unable to synthesize a complete program.

• Unfinished Path: Still in progress.

To clarify key concepts involved in the synthesis process, we provide the following definitions of
terms:

• Tree Operation/Manipulation: Refers to the modification of the syntax tree of a partial
program during the synthesis process. It is essential for transforming partial programs into
complete programs and has an associated CPU cost.

• Transformation Pair (p, r): A combination of a partial program and a rule to be applied. It
records the explored space and possible exploration directions, requiring memory storage.

• Synthesis Path/Trajectory: A sequence of transformation pairs, {(p0, r0), (p1, r1), . . . },
representing the process of transforming a partial program into a complete one. Its func-
tion is to track the entire synthesis process, whether it leads to a feasible, infeasible, or
unfinished path.

A.4 COL DSL

Compared with traditional DSLs that apply rules to input programs without a clear destination to
synthesize output programs, the Chain-of-Logic (CoL) allows the programmer to outline the flow
of activities to synthesize the complete program from an initial partial program. For example, in
Figure 3, the activity flow is:

Start→ 1 Separate Relations and Genders→ 2 Reason Inverse Relations→ 3 Reason Indirect
Relations→ 4 Recombine Relations and Genders, Eliminate Irrelevant Relations→ End.

Each activity in the synthesis process has a corresponding sub-DSL decomposed from the original
DSL for transforming the program from one state to another.

Therefore, a CoL DSL with n activities can be defined as multiple sub-DSLs in series:

CoL G = {G1, G2, . . . , Gn} (2)

A sub-DSL for activity i is defined as:

Gi = {V,Σ, {(r, h, k) | h[n] ̸= 0 and r ∈ R}, S, f} (3)

where h = (h1, h2, . . . ) in (r, h, k) represents the heuristic vector bound with r, and the components
are termed as heuristic values. h[n] represents the n-th component of h, which is the effective
heuristic value of rule r in activity n. h[n] is a parameter of the sub-DSL’s program synthesis
algorithm f . It guides the direction of program synthesis by affecting the application decisions of
the rules bound to it, thereby improving synthesis efficiency and accuracy. The specific role of the
heuristic value is determined by the search algorithm f used by the DSL program synthesis. To
conduct controlled variable experiments, we regard the heuristic value as a reward (negative cost)
and use the A* algorithm as the search algorithm for all DSLs, which means that in activity n, under
the same circumstances, the rule with a larger h[n] will be applied first, and the derived program
will also be considered promising and will be explored further with priority.

k represents keyword(s) in a rule’s specific logic, which controls the program state transition within
an activity or between activities.

The Chain-of-Logic provides a comprehensive methodology for achieving fine-grained control over
DSL program synthesis. This approach allows programmers to explicitly break down the synthesis
process into distinct phases or activities, with each activity corresponding to a specific sub-DSL.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 COL DSL SYNTHESIS PROCESS

The synthesis process in CoL DSLs is conducted through multiple stages, each corresponding to
a defined activity. These stages operate sequentially, gradually refining the program through well-
defined transformations. The key difference from traditional DSL synthesis is that, except for the
sub-DSL of the final activity, intermediate sub-DSLs are allowed to generate partial programs, which
are passed on to subsequent activities for further processing.

Each stage in the CoL DSL synthesis process focuses on a specific aspect of synthesis to transform
the program incrementally. For instance, in Figure 4:

• In the first activity, relations and genders are separated, breaking down the initial partial
program into simpler components for easier processing.

• The second activity reasons about inverse relationships, further structuring the intermediate
program by identifying and processing inverse connections.

• The third activity deals with indirect relationships, providing additional context to relation-
ships identified in earlier stages.

• The final activity recombines relations and genders while eliminating irrelevant relations to
produce a fully synthesized and optimized program.

During each activity, the synthesis process leverages heuristic values to prioritize rule application,
focusing on areas that are more likely to lead to successful outcomes. Additionally, in intermediate
activities, since we cannot judge whether the synthesis process is correct based on whether com-
plete programs are generated, guidance based on heuristic values and synthesis flow control using
keywords are pivotal.

B NEURAL NETWORKS IN COOL

COOL has an integrated machine learning system that automatically collects generated data and
conducts training and prediction tasks for neural networks in the Domain-Specific Neural Network
(DSNN).

B.1 DATA COLLECTION AND COMBINATION FOR TRAINING

The neural networks leverage the transformation pairs (p, r) in the synthesis paths to train various
heads.

To train the neural networks in DSNN bound with a DSL for program synthesis tasks of type T ,
COOL builds the dataset as follows:

Task Detection Head (TDH): This head distinguishes whether the input partial program belongs
to type T . This is a binary classification task. The partial programs from type T program synthe-
sis paths are collected as positive examples (proportion: 67%), while partial programs from other
synthesis paths and built-in function calls are collected as negative examples (proportion: 33%).

Search Space Prune Head (SSPH): After determining that the program is of type T , this head
identifies whether the input partial program is feasible to synthesize into a complete program. This
is also a binary classification task. Programs from feasible synthesis paths are collected as posi-
tive examples (proportion: 67%), while programs from infeasible synthesis paths are collected as
negative examples (proportion: 33%).

Search Guidance Head (SGH): After determining that the input is a feasible type T partial pro-
gram, this head generates rule features to guide the DSL solver in applying rules to the partial
program. This includes a series of classification and regression tasks.

B.2 NEURAL NETWORK INPUT

As shown in Figure 5, there are three neural networks in a DSNN. Each network (labeled A, B,
and C in their sequential order) takes a partial program as input. The input partial program is

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 6: Input features of neural networks in DSNN. Each entry specifies the feature, its size, and the
neural networks it pertains to, along with a description of its role. These features contribute to the
neural network’s understanding of the syntax tree’s structure and semantics, aiding in the accurate
synthesis of programs.

Feature Feature
Size

Neural
Network

Signification

grounded 2 A, B, C The node is in a fully specified expression.
domain 1 A, B, C Domain of the subtask represented by the subtree

where the node is located.
root 2 A, B, C The tree representing the subtask is rooted at this node.

non-terminal 2 A, B, C The node is a non-terminal.
type 1 A, B, C Type of the node.

identifier 1 A, B, C Identifier of the node.
string 1 A, B, C The node contains a string as the immediate value.

number 1 A, B, C The node contains a number as the immediate value.
operator 1 A, B, C The node is an operator.

current stage 1 A, B, C Current CoL stage (valid when this node is grounded).
operand
position

3 A, B, C Placement of nodes in a binary operation tree (left
operand node, right operand node, operation node).

applied
(SGH)

1 B, C A rule is applied to the subtree rooted at this node (de-
rived from the output feature “jumps” of the previous
neural network).

next stage
(SGH)

1 C The CoL stage to advance to after applying the rule
(derived from the output feature “next stage” of the
previous neural network).

represented at the intermediate representation (IR) level in the form of Three-Address Code (TAC)
(see Appendix Q), allowing program synthesis to be conducted without the constraints of specific
DSL syntax or the machine code format of the execution platform Sujeeth et al. (2014). The TAC is
then transformed into a graph representation for input to neural networks.

In the serial coupling structure of DSNN, network B is the downstream neural network of A and
uses the output of the SGH head from A as part of its input. Similarly, network C is the downstream
neural network of B and uses the output of the SGH head from B as part of its input. This serial cou-
pling enables each downstream network to accumulate the error produced by the upstream network,
making incorrect predictions more obvious.

The specific input features are shown in Table 6.

B.3 NEURAL NETWORK OUTPUT

The corresponding relationships between the output features and TDH, SSPH, GSH are shown in
Table 7, and all neural networks produce similar outputs to allow for comparison.

B.4 NEURAL NETWORK STRUCTURE

As TAC embodies both the graphical properties of a syntax tree and the sequential properties of
execution, the design of the neural network must be capable of capturing these dual characteristics.

The detailed layer architecture of neural networks in DSNN is illustrated in Figure 8. The processing
flow consists of the following steps:

1. Embedding Node Features: We start by employing embedding layers with learning ca-
pabilities. These layers convert categorical inputs into dense, continuous vectors, which
enhances the stability and efficiency of subsequent processing layers Hrinchuk et al. (2019).

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 7: Output features of neural networks in DSNN. These features provide comprehensive opti-
mizations for CoL DSL during program synthesis, including task detection, search space pruning,
and search guidance.

Feature Feature Size Neural
Network

Signification

domain (TDH) 2 A, B, C Relevance of task domains to DSNN.
feasibility
(SSPH)

2 A, B, C Feasibility of synthesizing the complete program.

jumps (SGH) max_tree_depth*3A, B, C The path from the tree’s root to the subtree’s root
where the rule is applied (jump left, right, or stop
in each step).

next stage
(SGH)

1 A, B, C The CoL stage to advance to after applying the
rule.

heuristic sign
(SGH)

2 A, B, C Sign of the rule’s heuristic value.

heuristic value
(SGH)

1 A, B, C Rule’s heuristic value.

expression
(SGH)

2 A, B, C Type of rule’s head (expression or terminal).

2. Graph Feature Extraction: Next, we use a Graph Neural Network (GNN) to extract graph
features from each line of TAC code Drori et al. (2022); Wu et al. (2022). To adaptively
extract intricate details such as node types, graph attention (GAT) layers are applied after
the embedding layers Velickovic et al. (2017).

3. Sequential Feature Processing: We adopt Long Short-Term Memory (LSTM) networks to
capture the sequential features inherent in TAC Chen et al. (2021); Nye et al. (2020). Rec-
ognizing the equal importance of each TAC line, bidirectional LSTM layers are employed
following the GAT layers to enrich the contextual understanding Huang et al. (2015).

4. Multi-Head Output: Finally, the processed data is channeled through multiple output
layers to prevent task interference and ensure clarity in results.

Figure 5 (right) illustrates using three neural network units arranged in series to construct the internal
coupling structure of DSNN. Labeling these neural networks with A, B, and C in order of their
sequence, Table 6 details the specific input features for each network: Neural network B receives its
input feature "applied" from network A’s output feature "jumps," while network C’s input features
"applied" and "next stage" are derived from the output features "jumps" and "next stage" of network
B. The output features of three neural network units are consistent and comparable, Table 7 presents
the output features of the neural networks.

B.5 PREDICTION FILTERING

By comparing the output differences of the heads, we can determine whether there are possible
prediction errors and filter out the prediction results. For classification tasks, we directly compare
whether the outputs are the same. For regression tasks, we set a tolerance threshold (10%) for the
difference.

B.6 ACTING ON THE SYNTHESIS PROCESS

B.6.1 SINGLE DSL PROGRAM SYNTHESIS

As shown in Figure 3, the heuristic value of a rule affects its application, and the prediction results
of the neural networks affect the synthesis process by correcting the heuristic value of the rules in
the sub-DSL based on the output of heads:

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

DomainEmbedding (embedding_size=50, dimension=1) TypeEmbedding (embedding_size=50, dimension=2)

IdentifierEmbedding (embedding_size=1000, dimension=4) StringEmbedding (embedding_size=1000, dimension=4)

OperatorEmbedding (embedding_size=40, dimension=2)

Embedding Layers

GAT (in_channels=num_GAT_features, out_channels=num_GAT_features * 4, heads=4, dropout=0)

GAT (in_channels=num_GAT_features * 4, out_channels=128, heads=4, dropout=0.1)

GAT Layers

LSTM (input_size=128, hidden_size=128, num_layers=2, bidirectional=True, dropout=0.1)

LSTM Layers

Linear (input_size=256, output_size=64)

Full Connected Layer

Domain (input_size=64, output_size=2)

Output Layers (Linear)

BatchNorm (num_features=64)

Feasibility(input_size=64, output_size=2)

Jumps (input_size=64, output_size=max_tree_depth*3)
Stage (input_size=64, output_size=1)

HeuristicSign (input_size=64, output_size=2)
HeuristicValue (input_size=64, output_size=1)

Expression (input_size=64, output_size=2)

TDH:

SSPH:

SGH:

Figure 8: Layer architecture of neural networks in DSNN. Each neural network consists of embed-
ding layers for domains, types, identifiers, strings, and operators, followed by GAT layers for tree
feature extraction. LSTM layers provide sequential modeling for programs, with fully connected
layers combining the outputs. Various output layers handle domain identification for task detection,
feasibility judgment for search space pruning, tree jumps, stage prediction, heuristic constraint (sign
and value), and constraint on the type of rule’s head (expression or terminal) for search guidance.

Task Detection Head (TDH): If the output indicates that the partial program does not belong to the
synthesis task that the DSL can handle, any rule application on this partial program will receive an
additional negative bonus on the heuristic value. For example, h[i] = h[i]− |h[i]| − 10.

Search Space Prune Head (SSPH): If the TDH output indicates that the partial program falls
within the DSL and the SSPH output considers the partial program infeasible, any rule application
on this partial program will receive an additional negative bonus on the heuristic value. For example,
h[i] = h[i]− |h[i]| − 10.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Search Guidance Head (SGH): If the TDH output indicates that the partial program falls within
the DSL and the SSPH output indicates that the partial program is promising for synthesis into a
complete program, then if the features of the output rule match certain rules (logical values must
be equal, and numerical values must fall within a ±10% range), the heuristic value when applying
these rules will receive a positive bonus. For example, h[i] = h[i] + |h[i]|. Otherwise, it will receive
a negative bonus: h[i] = h[i]− |h[i]| − 10.

B.6.2 MULTI-DSL SYNTHESIS

The situation when multiple DSLs cooperate is similar to that of a single DSL. The difference is that
for the same partial program, if at least one DSNN determines that the partial program belongs to
the domain of its DSL, the DSNN bound to other DSLs, which believes that the partial program does
not belong to its own domain, cannot interfere with the program synthesis at this step (as shown by
signal c in Figure 5).

C EXPERIMENT

The purpose of the experiment is to explore whether CoL+NNFC DSL has advantages over tradi-
tional DSL in terms of efficiency and reliability in program synthesis from the user’s perspective.

"User" refers to the user of DSL, while the developer of DSL who is proficient in specific tasks
is referred to as an "expert". The experiment does not study whether CoL makes the development
process easier for DSL developers, as this requires a wide range of "experts" to use COOL to develop
and provide feedback. At this stage, we cannot conduct this experiment.

C.1 USER INPUT

The user input in the experiment is COOL code containing instructions for loading the DSL (pack-
aged as a library) and representing the task specification.

C.1.1 RELATIONAL TASKS

Used to test the performance of program synthesis of a single DSL:

Code C.1: Relational Task User Input Example

//load DSL for family relationship reasoning
#load(family)

//Relational reasoning questions like (50 per batch):
(Wesley) is (James)s son & (Martha) is (Wesley)s daughter &
(Hugh) is (Martha)s uncle & (Hugh) is (James)s ($relation);
...

C.1.2 SYMBOLIC TASKS

Used to test the performance of program synthesis of a single DSL:

Code C.2: Symbolic Task User Input Example

//load DSL for family relationship reasoning and symbolic
reasoning
#load(quadratic)

//Symbolic reasoning questions like (50 per batch):
$xˆ2 + 4*$x == 3;
...

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

100 200 300 400

-5

-10

0

5
Accuracy Differential↑(%)

-2

-4

-6
-8

-2

2 2 4 100 200 300 400
0

-10

-100

Tree Operation Differential↓(%)

-19

-9
-11

0

-37

-63 -65 -73

100 200 300 400

-10

0

10

100

6
9

19
74

-4
-36 -40 -45

Transformation Pair Differential↓(%)

100 200 300 400
0

20

40

60

80

100

120

140

99.5 106.3
116.2

143.4

91.9 65.2 71.2
63.0

Neural Network Invocation↓

100 200 300 400
0

10

100

1000

329

413
757

1855

509

163 179
329

Time Spent Differential↓(%)

100 200 300 400
0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.00 0.00 0.00 0.00

1.52

0.42 0.46
0.55

Attenuation Ratio

CoL DSL (x-axis) CoL DSL + NNFC CoL DSL + NNFC (Cp) Multidomain Tasks

1
Figure 9: Dynamic performance differential to CoL DSL in multidomain tasks. The NNFC group
without an inner coupling structure degrades across all 4 batches, while the group with the structure
experiences degradation only in the first batch. Each batch includes 50 relational and 50 symbolic
tasks, and DSNNs are continuously trained from those for tasks at difficulty level A in Figure 7.

C.1.3 MULTI-DOMAIN TASKS

Used to test the performance of program synthesis when multiple DSLs are loaded at the same time:

Code C.3: Multi-Domain Task User Input Example

//load DSLs for relational reasoning and symbolic reasoning
#load(family)
#load(quadratic)

//Symbolic reasoning questions like (50 per batch):
$xˆ2 + 4*$x == 3;
...
//Relational reasoning questions like (50 per batch):
(Wesley) is (James)s son & (Martha) is (Wesley)s daughter
& (Hugh) is (Martha)s uncle & (Hugh) is (James)s ($relation);
...

It should be noted that the execution of the code that does not contain the task specification is
represented as a control variable in the experiment and is deducted from the final experimental
results. (For example, the instructions for loading libraries)

C.2 EXPERIMENT RESULT

D RULE IN COL DSL

In addition to the heuristic vector and keywords, COOL extends the flexibility of the synthesis
process by enhancing DSL rules. These enhancements are exemplified in Figure 10, which clarifies
the rule introduced in Figure 1.

E STAGE PROGRESSION DRIVEN BY HEURISTIC VECTORS

Let s denote the CoL stage, h donate the heuristic value, and n donate the length of CoL. A rule’s
heuristic vector can be mathematically represented as:

H ={(s0, h0), (s1, h1), . . . , (sn, hn)}, n ∈ N+ (4)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The body (premise) of a rule can contain either a

function name or any valid expression

The head (consequence) of

a rule can either be an

expression, indicated by the

modifier 'expr,' or a terminal

when the modifier is not

present.  Additional

attributes, such as type, can

be specified using other

modifiers.

COOL includes built-in

operations for accessing

information about partial

programs or specific

program fragments. 

COOL enables dynamic generation of rule heads using detailed logic.

Rule in COOL
expr:@(0,7,3){(y) is (x)s child}{
  if(this expr.exist subexpr{(x) is (y)s
parent} == false){
    return: (y) is (x)s child & (x) is

(y)s parent;
  }
    abort;
}

Figure 10: DSL rules in COOL. The framework allows for defining rule heads using expressions or
terminals, which are enhanced with modifiers for additional attributes. Rule bodies can incorporate
any valid expression or function name. Besides, COOL provides built-in operations for accessing
program fragment information and facilitates dynamic rule head generation.

Upon applying a rule with heuristic vector H, the subsequent stage, snext, can only advance or remain
the same, and the next stage should be as close to the current stage as possible:

min snext such that ∃(snext, hnext) ∈ H and snext ≥ scurrent (5)

F SIGNAL CLIPPER

The Clipper, as illustrated in Figure 5 (left), caps signals that do not align with the DSNN guidance
to zero:

u2 =


0 if u1 > 0 and current rule doesn’t align with

the guidance and there exists another rule in
the search space that aligns with the guidance

u1 otherwise

(6)

F.1 A* SEARCH IN PROGRAM SYNTHESIS

During the exploration phase of program synthesis, we leverage the A* algorithm to perform the
heuristic search. This algorithm is renowned for its efficacy in discrete optimization tasks, utiliz-
ing heuristic guidance to navigate the search space effectively Hart et al. (1968). Each action or
decision is associated with a specific cost in this context. By evaluating the cumulative cost of ac-
tions taken so far and the estimated costs of future actions, A* seeks to determine the path with
the least overall cost. In our approach, heuristic values promoting forward progression are consid-
ered rewards. Therefore, we treat them as negative costs in calculations. Algorithm 1 illustrates the
implementation details.

G IMPLEMENTATION TOOLCHAIN

To fully implement the CoL DSL and adapt it to NNFC, we choose to build COOL from the ground
up rather than extending existing DSL frameworks such as Xtext Bettini (2016) or Groovy King
(2020). We use C++ as the primary language to meet the execution efficiency requirements for

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 1 Search Algorithm for DSL Program Synthesis
1: procedure A* SEARCH(initialPartialProgram, u2)
2: openSet← priority queue containing only the initial partial program
3: gScore[startPartialProgram]← 0 ▷ cost from start
4: fScore[startPartialProgram]← 0
5: while openSet ̸= ∅ do
6: currentProgram← openSet.pop() ▷ The partial program in openSet with lowest

fScore value
7: if currentProgram is complete program then
8: return Success
9: end if

10: for each neighbor of currentProgram do ▷ Neighbor is a program directly obtained
by applying a rule to the current program

11: tentativegScore← gScore[current]− u2[neighbor]
12: if tentativegScore < gScore[neighbor] then
13: cameFrom[neighbor]← current
14: gScore[neighbor]← tentativegScore
15: fScore[neighbor]← gScore[neighbor]− u2[neighbor]
16: if neighbor ̸∈ openSet then
17: openSet.add(neighbor)
18: end if
19: end if
20: end for
21: end while
22: return Failure
23: end procedure

the numerous tree operations inherent in the DSL program synthesis process. For development ef-
ficiency, we utilize Lex Lesk & Schmidt (1975) and YACC Johnson et al. (1975) for syntax and
semantic parsing, respectively. The neural network components are implemented in Python, lever-
aging the PyTorch library Imambi et al. (2021) to support machine learning tasks effectively. Table 8
shows the detailed code effort involved in developing the different components of COOL across var-
ious programming languages.

Table 8: Code Effort in COOL. Components of COOL are developed across different programming
languages.

Language Lines Components

C++ 60k framework and CoL DSL solver
Python 3k DSNN

Lex 1k syntax parser
YACC 2k semantic parsers

H OPTIMIZATION STRATEGY

In practice, we observe that as the CoL length increases, the frequency of skipping stages rises.
While skipping can lead to shorter synthesis paths and improved efficiency, it may cause task failures
by omitting necessary stages. To manage this, we propose two strategies:

1. Gradient-Based Regulation: We employ gradient-based regulation, a widely used strategy
in program synthesis Cui & Zhu (2021); Liang et al. (2018); Chaudhuri et al. (2021). By
evaluating the slope or rate of change between consecutive stages, gradients help us make
dynamic adjustments to synthesis paths. In our approach, we regulate skipping by applying
a gradient to the heuristic values at each stage in the CoL. We encourage skipping when
the heuristic gradient from one stage to the next is positive. Conversely, if the gradient is
negative, we suppress skipping.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

2. NNFC Regulation: Once we establish a feasible synthesis path, we can treat partial pro-
grams derived through skipping as infeasible. Then, we will utilize the feedback loop to
suppress unwarranted skipping actions. However, since these partial programs might still
contain feasible solutions, we need further investigation to understand and fully leverage
the potential impact of this data.

In our experiments, we prioritize accuracy by suppressing skipping behavior, ensuring essential
stages are included in synthesis paths.

I FUTURE WORK

In future work, we aim to enhance the capability of the COOL framework by exploring the imple-
mentation of CoL and NNFC in more complex scenarios, such as managing dependencies among
DSL libraries and object-oriented development. We plan to facilitate community collaboration by
developing more DSL libraries to expand COOL’s applications. Additionally, we are interested in
integrating COOL with language models. As these models evolve, ensuring ethical and accurate rea-
soning becomes increasingly crucial Jacovi & Goldberg (2020); Chen et al. (2022); Li et al. (2022).
The COOL framework, including CoL’s constraints on rule application and NNFC’s structured agent
interactions, helps to enhance reasoning faithfulness, preventing harmful reasoning logic. We hope
our work will serve as a reliable bridge for interaction and understanding between human cognitive
processes and language model reasoning.

J COL DSL FOR RELATIONAL TASKS

We present only the specific code for the CoL DSL group, while the code for the DSL and DSL
(Heuristic) groups, referenced in Table 3, is not displayed. This omission is because their differ-
ences from the CoL DSL group are confined to their heuristic vectors. In both the DSL and DSL
(Heuristic) groups, the heuristic vectors have a dimension of 1. However, the DSL group employs a
fixed heuristic value of -1, whereas the DSL (Heuristic) group utilizes variable values. The experi-
mental codes are presented concisely, showcasing only the framework. Please refer to the attached
supplementary materials for the complete content.

//1 Separate Relations and Genders
expr:@(9){(a) is (b)s grandson}{

return:(a) is male & (a) is (b)s grandchild & (b) is (a)s
grandparent;↪→

}
...

//2 Reason Inverse Relations
expr:@(0,7,3){(a) is (b)s grandchild}{

if(this expr.exist subexpr{(b) is (a)s grandparent} == false){
return: (a) is (b)s grandchild & (b) is (a)s grandparent;

}
abort;

}
...

//3 Reason Indirect Relations
expr:@(0,0,5){(a) is (b)s sibling}{

placeholder:p1;
while(this expr.find subexpr{(p1) is (a)s sibling}){

if(this expr.exist subexpr{(p1) is (b)s sibling} == false
&& p1 != b){↪→

return: (a) is (b)s sibling & (p1) is (b)s sibling;
}
p1.reset();

}

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

p1.reset();
while(this expr.find subexpr{(p1) is (a)s parent}){

if(this expr.exist subexpr{(p1) is (b)s parent} == false){
return: (a) is (b)s sibling & (p1) is (b)s parent;

}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(p1) is (a)s pibling}){

if(this expr.exist subexpr{(p1) is (b)s pibling} ==
false){↪→

return: (a) is (b)s sibling & (p1) is (b)s pibling;
}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(p1) is (a)s grandparent}){

if(this expr.exist subexpr{(p1) is (b)s grandparent} ==
false){↪→

return: (a) is (b)s sibling & (p1) is (b)s grandparent;
}
p1.reset();

}
p1.reset();
abort;

}
...

//4 Recombine Relations and Genders, Eliminate Irrelevant
Relations↪→

expr:@(0,0,0,8){(a) is (b)s ($relation)}{
//immediate family
placeholder:p1;
while(this expr.find subexpr{(a) is (b)s grandchild}){

if(this expr. exist subexpr{(a) is male}){
return: $relation == "grandson";

}
if(this expr.exist subexpr{(a) is female}){

return:$relation == "granddaughter";
}
p1.reset();

}
p1.reset();
while(this expr.find subexpr{(a) is (b)s child}){

if(this expr. exist subexpr{(a) is male}){
return: $relation == "son";

}
if(this expr.exist subexpr{(a) is female}){

return:$relation == "daughter";
}
p1.reset();

}
...
abort;

}
...
expr:@(0,0,0,10){a & ($b == c)}{

return:b == c;

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

}
...

K COL DSL FOR SYMBOLIC TASKS

// Common Transformations
expr:@(2,2,2,2,2){0+#a}{

return:a;
}
expr:@(2,2,2,2,2){#a+0}{

return:a;
}
...

// 1 Expand Square Terms
expr:@(5,0,0,0){(#?a + #?b)^2}{

return:a^2+2*a*b+b^2;
}
expr:@(5,0,0,0){(#?a - #?b)^2}{

return:a^2+(-2)*a*b+b^2;
}
expr:@(6,0,0,0){(#a*#b)^2}{

return:a^2*b^2;
}
...

// 2 Expand Bracketed Terms
expr:@(0,4,0,0,0){#?a-(#?b+#?c)}{

return:a-b-c;
}
expr:@(0,3.8,0,0,0){(#?b+#?c)*#?a}{

return:b*a+c*a;
}
...

// 3 Extract Coefficients
expr:@(0,0,5,0){$x*a}{

return:a*x;
}
expr:@(0,0,4.8,0){(immediate:a*$x)*(immediate:b*$x)}{

new:tmp = a*b;
return:tmp*x^2;

}
expr:@(0,0,4.6,0){$x*(a*$x)}{

return:a*x^2;
}
...

// 4 Re-Express Negative Coefficients
expr:@(0,0,0,3.5,0){#a-$x}{

placeholder:p1;
placeholder:p2;
if(x.exist subexpr{p1*p2}){

abort;
}
return:a+(-1)*x;

}
expr:@(0,0,0,3.7,0){#a-immediate:b*$x}{

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

new:tmp = 0 - b;
return:a+tmp*x;

}
...

//5 Arrange Terms in Descending Order, Combine Like Terms
expr:@(0,0,0,0,3){immediate:a*$x+immediate:b*$x}{

new:tmp = a+b;
return:tmp*x;

}
expr:@(0,0,0,0,2.8){a1*$x+a2*$x^2}{

return:a2*x^2+a1*x;
}
...

//6 Convert to Standard Form
expr:@(0,0,0,0,0,2.5){a*$x^2+b*x == #d}{

return: a*$x^2+b*x + 0 == d;

}
expr:@(0,0,0,0,0,2.5){b*$x == $d}{

if(d.exist subexpr{x^2}){
return: 0*x^2 + b*x + 0 == d;

}else {
abort;

}
}
expr:@(0,0,0,0,0,-4){$a==$b}{

return:b==a;
}
...

//7 Apply Solution Formula
@(0,0,0,0,0,0,0,10){a*$x^2+b*x+c==0}{

if(b^2-4*a*c<0){
x="null";

}
else {

new:x1=(-b+(b^2-4*a*c)^0.5)/(2*a);
new:x2=(-b-(b^2-4*a*c)^0.5)/(2*a);
x={x1,x2};

}
};

L RELATIONAL TASKS AT DIFFICULTY LEVEL A

#load(family) // Load the CoL DSL library for Relational Tasks
new:relation = "";
// [Francisco]'s brother, [Wesley], recently got elected as a

senator. [Lena] was unhappy with her son, [Charles], and his
grades. She enlisted a tutor to help him. [Wesley] decided to
give his son [Charles], for his birthday, the latest version
of Apple watch.

↪→

↪→

↪→

↪→

// Ans: (Francisco) is (Lena)s brother
new:Lena = "Lena";
new:Charles = "Charles";
new:Wesley = "Wesley";

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

new:Francisco = "Francisco";
(Charles) is (Lena)s son & (Wesley) is (Charles)s father &

(Francisco) is (Wesley)s brother & (Francisco) is (Lena)s
($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";

// [Clarence] woke up and said hello to his wife, [Juanita].
[Lynn] went shopping with her daughter [Felicia]. [Felicia]'s
sister [Juanita] was too busy to join them.

↪→

↪→

// Ans: (Lynn) is (Clarence)s mother-in-law
new:Clarence = "Clarence";
new:Juanita = "Juanita";
new:Felicia = "Felicia";
new:Lynn = "Lynn";
(Juanita) is (Clarence)s wife & (Felicia) is (Juanita)s sister &

(Lynn) is (Felicia)s mother & (Lynn) is (Clarence)s
($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";
...

M RELATIONAL TASKS AT DIFFICULTY LEVEL B

#load(family) // Load the CoL DSL library for Relational Tasks
new:relation = "";
// [Antonio] was happy that his son [Bernardo] was doing well in

college. [Dorothy] is a woman with a sister named [Tracy].
[Dorothy] and her son [Roberto] went to the zoo and then out
to dinner yesterday. [Tracy] and her son [Bernardo] had lunch
together at a local Chinese restaurant.

↪→

↪→

↪→

↪→

// Ans: (Roberto) is (Antonio)s nephew
new:Antonio = "Antonio";
new:Bernardo = "Bernardo";
new:Tracy = "Tracy";
new:Dorothy = "Dorothy";
new:Roberto = "Roberto";
(Bernardo) is (Antonio)s son & (Tracy) is (Bernardo)s mother &

(Dorothy) is (Tracy)s sister & (Roberto) is (Dorothy)s son &
(Roberto) is (Antonio)s ($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";

// [Bernardo] and his brother [Bobby] were rough-housing. [Tracy],
[Bobby]'s mother, called from the other room and told them to
play nice. [Aaron] took his brother [Bernardo] out to get
drinks after a long work week. [Tracy] has a son called
[Bobby]. Each day they go to the park after school. ans:
(Bobby) is (Aaron)s brother

↪→

↪→

↪→

↪→

↪→

new:Aaron = "Aaron";
new:Bernardo = "Bernardo";
new:Bobby = "Bobby";
new:Tracy = "Tracy";
(Bernardo) is (Aaron)s brother & (Bobby) is (Bernardo)s brother &

(Tracy) is (Bobby)s mother & (Bobby) is (Tracy)s son & (Bobby)
is (Aaron)s ($relation);

↪→

↪→

relation-->"#FILE(SCREEN)";
...

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

N SYMBOLIC TASKS AT DIFFICULTY LEVEL A

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
new:x = 1;
6*$x^2 == 3*x - 7;
x-->"#FILE(SCREEN)";
($x - 6)*(x + 3) == x;
x-->"#FILE(SCREEN)";
...

O SYMBOLIC TASKS AT DIFFICULTY LEVEL B

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
new:x = 1;
$x*($x + 11) == 16*($x + 22);
x-->"#FILE(SCREEN)";
$x*(36*$x + 50) - 11*(19 - 30*$x) == $x^2;
x-->"#FILE(SCREEN)";
...

P MULTIDOMAIN TASKS

#load(quadratic) // Load the CoL DSL library for Symbolic Tasks
#load(family) // Load the CoL DSL library for Relational Tasks
new:x = 1;
$x^2 - 4*$x == 6;
x --> "#FILE(SCREEN)";
...
new:relation = "";
// [Dolores] and her husband [Don] went on a trip to the

Netherlands last year. [Joshua] has been a lovely father of
[Don] and has a wife named [Lynn] who is always there for him.

↪→

↪→

// Ans: (Dolores) is (Lynn)s daughter-in-law
new:Lynn = "Lynn";
new:Joshua = "Joshua";
new:Don = "Don";
new:Dolores = "Dolores";
(Joshua) is (Lynn)s husband & (Don) is (Joshua)s son & (Dolores)

is (Don)s wife & (Dolores) is (Lynn)s ($relation);↪→

relation-->"#FILE(SCREEN)";
...

Q COOL INTERMEDIATE REPRESENTATION

The intermediate representation of COOL is Three-Address Code.

"codeTable": [
{

"boundtfdomain": "",
"grounded": false,
"operand1": {

"argName": "x",
"argType": "identifier",
"changeable": 1,
"className": "",
"isClass": 0

},

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

"operand2": {
"argName": "2",
"argType": "number",
"changeable": 0,
"className": "",
"isClass": 0

},
"operator": {

"argName": "^",
"argType": "other"

},
"result": {

"argName": "1418.4",
"argType": "identifier",
"changeable": 1,
"className": "",
"isClass": 0

},
"root": false

},
...

]

R RELATED WORK

Neural Search Optimization: Neural networks are key for optimizing search in program synthesis.
Projects like Kalyan et al. (2018); Zhang et al. (2023) and Li et al. (2024) use neural networks to pro-
vide oracle-like guidance, while Neo Feng et al. (2018), Flashmeta Polozov & Gulwani (2015), and
Concord Chen et al. (2020) prune search spaces with infeasible partial programs. COOL employs
both strategies to enhance efficiency.

Multi-step Program Synthesis: Chain-of-Thought (CoT) Wei et al. (2022) enhances LLMs by
breaking tasks into subtasks. Projects like Zhou et al. (2022); Shi et al. (2023b) and Zheng et al.
(2023) use this in program synthesis. Compared to CoT, which directly decomposes tasks, CoL does
so indirectly by constraining rule applications.

Reinforcement Learning: Reinforcement learning improves neural agents in program synthesis
through feedback, as seen in Eberhardinger et al. (2023); Liu et al. (2024); Bunel et al. (2018),
Concord Chen et al. (2020), and Quiet-STaR Zelikman et al. (2024). NNFC similarly refines control
flow but serves an auxiliary role for programmer strategies in synthesis rather than dominating it.

31


	Introduction
	Method
	Chain-of-Logic (CoL)
	Neural Network Feedback Control (NNFC)

	Experiments
	Experimental Setup
	Static Experiments
	Dynamic Experiments

	Conclusion
	DSL Program Synthesis in COOL
	Input Program
	Output Program
	Traditional DSL
	CoL DSL
	CoL DSL Synthesis Process

	Neural Networks in COOL
	Data Collection and Combination for Training
	Neural Network Input
	Neural Network Output
	Neural Network Structure
	Prediction Filtering
	Acting on the Synthesis Process
	Single DSL Program Synthesis
	Multi-DSL Synthesis


	Experiment
	User Input
	Relational Tasks
	Symbolic Tasks
	Multi-Domain Tasks

	Experiment Result

	Rule in CoL DSL
	Stage Progression Driven by Heuristic Vectors
	Signal Clipper
	A* Search in Program Synthesis

	Implementation Toolchain
	Optimization strategy
	Future work
	CoL DSL for Relational Tasks
	CoL DSL for Symbolic Tasks
	Relational Tasks at Difficulty Level A
	Relational Tasks at Difficulty Level B
	Symbolic Tasks at Difficulty Level A
	Symbolic Tasks at Difficulty Level B
	Multidomain Tasks
	COOL Intermediate Representation
	Related Work

