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Abstract

We propose a general framework for optimizing noise schedules in diffusion models, appli-
cable to both training and sampling. Our method enforces a constant rate of change in the
probability distribution of diffused data throughout the diffusion process, where the rate
of change is quantified using a user-defined discrepancy measure. We introduce three such
measures, which can be flexibly selected or combined depending on the domain and model
architecture. While our framework is inspired by theoretical insights, we do not aim to pro-
vide a complete theoretical justification of how distributional change affects sample quality.
Instead, we focus on establishing a general-purpose scheduling framework and validating its
empirical effectiveness. Through extensive experiments, we demonstrate that our approach
consistently improves the performance of both pixel-space and latent-space diffusion models,
across various datasets, samplers, and a wide range of number of function evaluations from
5 to 250. In particular, when applied to both training and sampling schedules, our method
achieves a state-of-the-art FID score of 2.03 on LSUN Horse 256×256, without compromising
mode coverage.

1 Introduction

Diffusion models are a class of probabilistic generative models that have attracted significant attention due
to their ability to generate high-quality samples across a variety of domains, including image generation
(Saharia et al., 2022b; Nichol et al., 2022b; Podell et al., 2024a), image super-resolution (Saharia et al., 2023;
Doi et al., 2024), video synthesis (Ho et al., 2022b;a), and audio generation (Kong et al., 2021; Popov et al.,
2021).

Diffusion models were originally introduced in Sohl-Dickstein et al. (2015), and denoising diffusion proba-
bilistic models (DDPMs) (Ho et al., 2020) demonstrated that diffusion models can achieve state-of-the-art
performance in image generation. A typical diffusion model consists of two Markovian processes: a forward
process and a reverse process. The forward process gradually adds Gaussian noise to the input data, trans-
forming its distribution toward a Gaussian. The reverse process aims to reconstruct data from Gaussian
noise by tracing the forward process in the reverse direction.

The noise levels applied at each step of these processes are treated as hyperparameters and are collectively
referred to as the noise schedule. The noise schedule has a critical impact on both the quality and efficiency
of training and sampling (Chen, 2023). Importantly, the schedules used during training and sampling do not
have to be identical, and recent studies have shown that using different schedules for training and sampling
can improve performance (Karras et al., 2022; Kingma & Gao, 2023; Hang et al., 2025). However, designing
effective noise schedules remains a non-trivial and largely empirical process.

In this work, we propose a general framework for optimizing both training and sampling schedules by
enforcing a constant rate of change in the probability distribution of diffused data throughout the diffusion
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Figure 1: Toy example of diffused data distributions with three data points in one-dimensional data space.
Probability distributions barely change when α ≲ 0.6, and we can rapidly change noise level. Three modes
corresponding to data points emerge when 0.6 ≲ α ≲ 0.97, and noise level should be changed slowly for mode
coverage. Three modes become distinct when α ≳ 0.97, requiring careful control of noise level for sample
fidelity.

process. We refer to this framework as constant rate scheduling (CRS). Since the reverse process is expected
to accurately trace the forward process, the key motivation is to determine noise schedules that can enhance
the traceability of the forward process .

Figure 1 presents a toy example of diffused data distributions with three data points in one-dimensional data
space (see Appendix A for details). Here, α represents the decay rate of data at each step of the diffusion
process. In this example, the diffusion process can be divided into three regions: 1) where distributions
barely change and noise can be decreased rapidly (α ≲ 0.6), 2) where modes corresponding to each data
point emerge and require fine control of noise to avoid mode dropping (0.6 ≲ α ≲ 0.97), and 3) where
mode peaks become sharp and noise must be reduced gradually for better fidelity (α ≳ 0.97). This example
illustrates that the distributional dynamics of the diffusion process are highly non-uniform. We hypothesize
that the probability-distributional change represents the traceability of the diffusion process, and controlling
the rate of distributional change can improve the quality and stability of the generative process.

Recent advances in generative modeling have also emphasized the importance of well-behaved distributional
evolution. For example, flow matching (Lipman et al., 2023) and rectified flow transformers (Esser et al.,
2024) formulate generation as a deterministic flow between data and noise distributions, highlighting that
stable distributional trajectories can lead to improved sample quality. Although these approaches differ from
diffusion models in their formulation, they share the high-level motivation of designing generative processes
with controlled and stable distributional dynamics.

CRS offers a unified and flexible framework for designing noise schedules, with the following key properties:
1) it supports both training and sampling schedules, 2) it allows the use of arbitrary discrepancy measures to
quantify distributional change, enabling domain-specific tailoring and independent schedules for training and
sampling, and 3) many existing schedules can be viewed as special cases of CRS under different discrepancy
measures.

Our contributions are summarized as follows:

1. We propose a general framework for optimizing noise schedules in diffusion models by enforcing a
constant rate of distributional change throughout the diffusion process. Our framework supports
both training and sampling schedules and allows the use of any user-specified discrepancy measure.
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2. We introduce three practical discrepancy measures for quantifying distributional change, each cap-
turing different aspects of the diffusion process. These measures can be flexibly selected or combined,
depending on the domain or model type (e.g., pixel-space or latent-space diffusion models).

3. While theoretically motivated, this work does not aim to provide a full formal analysis of the link
between distributional change and sample quality. Instead, we focus on empirically validating the
effectiveness of CRS across diverse experimental settings. Through extensive experiments, we demon-
strate that CRS consistently improves the performance of both pixel-space and latent-space diffusion
models across various datasets, samplers, and numbers of function evaluations (NFEs), ranging from
5 to 250.

The remainder of this paper is organized as follows: Sec. 2 reviews related work. Sec. 3 briefly introduces
DDPMs. Sec. 4 presents our proposed framework. Sec. 5 provides the experimental results. Sec. 6 discusses
limitations, and Sec. 7 concludes the paper.

2 Related work

The performance of generative models is typically evaluated along three axes: sampling speed, fidelity, and
mode coverage. Diffusion models are known to excel in terms of fidelity and mode coverage, but suffer from
slow sampling speed due to the iterative nature of the reverse process (Xiao et al., 2022). To address this
limitation, a wide range of acceleration strategies have been proposed. These approaches can be broadly
categorized into five groups:

Conditional generation: This strategy improves sampling speed by reducing sample diversity through
conditioning (e.g., class labels or text prompts) (Dhariwal & Nichol, 2021; Ho & Salimans, 2021; Rombach
et al., 2022; Saharia et al., 2022a; Nichol et al., 2022a; Podell et al., 2024b), which guides the model to
generate specific outputs and avoid unnecessary exploration.

Dimensionality reduction: Latent diffusion models (LDMs) (Rombach et al., 2022) employ pre-trained au-
toencoders to compress data representations, allowing the diffusion process to operate in a lower-dimensional
latent space. This improves both training and sampling efficiency.

Samplers: These methods improve the update rule of diffused data for the reverse process. Denoising diffu-
sion implicit models (DDIMs) (Song et al., 2021a) introduce a non-Markovian process to generalize DDPMs
and propose a deterministic sampler. In continuous-time diffusion models, the forward and reverse processes
are formulated as stochastic differential equations (SDEs) and ordinary differential equations (ODEs) (Song
et al., 2021b). Numerous studies have developed efficient solvers tailored to these formulations (Jolicoeur-
Martineau et al., 2021; Liu et al., 2022; Lu et al., 2022a;b; Zhang & Chen, 2023; Zhao et al., 2023; Zheng
et al., 2023b; Zhou et al., 2024).

Noise schedules: The choice of noise schedule significantly affects training and sampling efficiency. Early
schedules, such as linear (Ho et al., 2020) and cosine (Nichol & Dhariwal, 2021), were chosen heuristically.
More recently, principled approaches for optimizing sampling schedules have been proposed (Chen et al.,
2024; Sabour et al., 2024; Williams et al., 2024; Park et al., 2025; Tong et al., 2025). Among them, Align Your
Steps (AYS) (Sabour et al., 2024) determines a noise schedule to minimize the discretization errors measured
using Kullback-Leibler divergence. One of the discrepancy measures in our approach can be interpreted as
a simplified variant of Kullback-Leibler divergence upper bound (KLUB) introduced in AYS, and thus CRS
generalizes AYS and related methods as special cases.

In contrast, elucidating diffusion models (EDMs) (Karras et al., 2022) and variational diffusion models++
(VDM++) (Kingma & Gao, 2023) have proposed optimization of the training schedule. These works also
highlight that using different schedules for training and sampling can improve performance. However, most
prior work has focused predominantly on sampling schedules, and optimization of training schedules remains
relatively underexplored. CRS is designed to optimize both schedules within a unified framework, supporting
the use of arbitrary and even composite discrepancy measures. This flexibility allows practitioners to adapt
scheduling strategies based on empirical behavior and task-specific requirements.
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Distillation: Distillation-based approaches are another major direction for fast sampling (Luhman & Luh-
man, 2021; Salimans & Ho, 2022; Song et al., 2023; Yin et al., 2024b;a; Frankel et al., 2025). These methods
compress multi-step diffusion into fewer steps. CRS is orthogonal to this line of work and can provide better
teacher models for distillation, as it can improve training schedules.

3 Background

We briefly introduce DDPMs (Ho et al., 2020).

In the forward process, Gaussian noise is gradually added to the data through a sequence of timesteps,
transforming the data distribution into an isotropic Gaussian. This process is typically modeled as a Markov
chain that starts from a data sample x0 ∼ q(x0):

q(x0:T ) =
(

T∏
t=1

q(xt|xt−1)
)

q(x0), where q(xt|xt−1) = N (xt; βtxt−1, δ2
t I). (1)

Here, T denotes the number of timesteps, βt is a decay factor controlling the signal strength, δt represents
the added noise level, and q(x0) is the data distribution.

It is straightforward to show that q(xt|x0) takes the following form:

q(xt|x0) = N (xt; αtx0, σ2
t I) (2)

where the coefficients satisfy the recursive relations: αt = βtαt−1 and σ2
t = δ2

t + β2
t σ2

t−1. This formulation
allows sampling of xt from x0 in a single step. In this work, we parameterize the forward process using
(αt, σt) instead of (βt, δt), and adopt a variance-preserving formulation in which both α2

t + σ2
t = 1 and

β2
t + δ2

t = 1 hold. The sequence {αt}T
t=0 defines the noise schedule, which controls how rapidly the signal

component of the data decays during diffusion. Our goal is to optimize this noise schedule to enable more
effective and efficient training and sampling in diffusion models.

In the reverse process, data samples are generated from Gaussian noise by tracing the forward process in
the reverse direction. This process is also modeled as a Markov chain and is defined as:

pθ(x0:T ) =
(

T∏
t=1

pθ(xt−1|xt)
)

p(xT ), where p(xT ) = N (xT ; 0, I). (3)

Here, θ denotes the learnable parameters of the diffusion model. In the limit of T → ∞, the reverse
transitions can be well approximated by the Gaussian distributions (Feller, 1949):

pθ(xt−1|xt) = N
(
xt−1; µθ(xt, t), ν2

t I
)
. (4)

DDPMs employ a noise prediction model εθ(xt, t), which predicts the noise added at timestep t. The
predicted mean µθ(x, t) is given by:

µθ(x, t) = 1
βt

(
xt −

δ2
t

σt
εθ(x, t)

)
. (5)

The noise prediction model is trained by maximizing a simplified version of the variational lower bound,
which yields a practical and stable learning objective.

4 General Approach for Optimizing Noise Schedule

We explain our motivation and present CRS.

4



Published in Transactions on Machine Learning Research (01/2026)

4.1 Motivation

As stated in Sec. 3, when T is sufficiently large, it is a good approximation to assume that the reverse
transitions pθ(xt−1|xt) follow a Gaussian distribution, as expressed in Eq. (4). This implies that the distri-
butional change between adjacent timesteps must be small enough to be well approximated by a Gaussian
distribution. In diffusion models, sample quality depends on how faithfully the reverse process can trace
the forward process. Large distributional changes can lead to poor approximation, resulting in artifacts or
mode dropping. This observation motivates us to minimize the maximum distributional change during the
diffusion process, in order to maintain the validity of Eq. (4) throughout the trajectory.

The importance of controlling distributional change can also be understood from the perspective of noise
conditional score networks (NCSNs) (Song & Ermon, 2019; 2020; Song et al., 2021b), which are the conceptual
predecessors of diffusion models. According to the manifold hypothesis, natural data typically lie on a
low-dimensional manifold embedded in high-dimensional space. This leads to two main challenges when
generating samples using only the score function ∇x log q(x) from a randomly initialized point xrnd (Song
& Ermon, 2019): first, xrnd is likely to fall in regions where q(xrnd) ≪ 1, making it difficult to estimate
accurate gradients; second, even if the score is correctly estimated, it tends to be small in such regions,
leading to slow mixing.

To address these challenges, NCSNs interpolate between the data distribution and a Gaussian distribution,
whose support spans the entire space. If the distributional change between adjacent steps is kept small
during this interpolation, each reverse step is likely to remain within regions of high probability density.
This improves the reliability of local updates and enhances overall sample quality.

These theoretical motivations form the basis for our proposed framework: to design noise schedules that
ensure a constant rate of change in the distribution of the diffused data across timesteps.

4.2 Constant Rate Scheduling

As described above, our goal is to optimize noise schedules by minimizing the maximum distributional change
between adjacent timesteps in the diffusion process. Let D(t, t + ∆t) denote a discrepancy measure between
the distributions of diffused data q(xt) and q(xt+∆t). Our criterion can be formulated as:

argmin
α(t)

(
max

t
D(t, t + ∆t)

)
. (6)

The optimal schedule α(t) must satisfy the following condition:

D(t, t + ∆t) = D(t, t + ∆t)−D(t, t)
∆t

∆t ≃ ∂D(t, t′)
∂t′

∣∣∣∣
t′=t

∆t = const., (7)

where we used D(t, t) = 0.

To explicitly reflect the dependence on the noise schedule, we rewrite D(t, t′) as D̃(α(t), α(t′)) ≡ D̃(α, α′),
where α(t) is the noise schedule to be optimized. This leads to:

D(t, t + ∆t) ≃ ∂D(t, t′)
∂t′

∣∣∣∣
t′=t

∆t = v(α)dα(t)
dt

∆t = const., (8)

where v(α) represents the rate of change in the probability distribution of the diffused data.

Therefore, the noise schedule must satisfy dα(t)
dt ∝ v(α)−1. The proportionality constant is computed from

the boundary conditions α(0) = αmax and α(1) = αmin, yielding:

−dα(t)
dt

= Cv(α)−ξ, where C =
∫ αmax

αmin

v(α)ξdα. (9)

Here, we introduce a hyperparameter ξ > 0 to control the dependence of α(t) on v(α). Larger values of ξ
allocate more timesteps to regions where v(α) is large, i.e., where the distribution changes rapidly.

The noise schedule optimization using CRS consists of the following steps:

5



Published in Transactions on Machine Learning Research (01/2026)

1. Choose a discrepancy measure to quantify distributional change.

2. Compute v(α) using the selected discrepancy measure.

3. Solve Eq. (9) to obtain α(t).

4. Apply the resulting schedule as follows:

• For training, use α(t) directly.
• For sampling, discretize the schedule uniformly in time: {α(t/T )|t = 0, 1, ..., T} where T is the

number of sampling steps.

We propose three discrepancy measures for computing v(α), which are detailed in Section 4.3.

The derivation of Eqs. (7) and (8) relies on a first-order Taylor expansion with respect to ∆t, which is
accurate when the NFE is sufficiently large. However, when optimizing the sampling schedule at small
NFEs, ∆t becomes large and the approximation error may no longer be negligible. Empirically, we observe
that CRS with ξ = 1 remains effective for moderate NFEs, while the importance of tuning ξ increases as
the NFE decreases (see Table 27 in Appendix F.2). We attribute this increased sensitivity to the growing
discretization error of the first-order expansion.

For small NFEs, the optimal value of ξ tends to be greater than 1, resulting in more timesteps being allocated
to regions where v(α) is large. Since discretization error is expected to be more pronounced in regions with
larger v(α), it is intuitively reasonable that values of ξ > 1 become optimal when the NFE is small.

Although introducing ξ partially compensates for the discretization error, it does not fully resolve the mis-
match between the continuous-time formulation and the discrete-time implementation. A fully principled
solution would require directly optimizing the sampling schedule in the discrete-time domain, without relying
on the continuous-time assumption underlying Eq. (7). We consider this an important direction for future
work.

Similar to NCSNs inspired by simulated annealing (Kirkpatrick et al., 1983), our formulation draws additional
motivation from the adiabatic theorem (Morita & Nishimori, 2008) in quantum annealing (Kadowaki &
Nishimori, 1998). Quantum annealing solves combinatorial optimization problems by interpolating between
a target cost function and an initial one that has a trivial optimum. The optimization starts from the known
optimum of the initial function and aims to trace the instantaneous optimums along the interpolation path.
It is crucial to accurately trace the optimum of the instantaneous cost function, and the adiabatic theorem
provides the traceability of the optimum at each step. Let α(t) be the weight of the target cost function
and 1 − α(t) be the weight of the initial cost function. In this setting, the inverse traceability is expressed
in the form of dα(t)

dt v(α), which takes the same form as Eq. (8). Prior work has shown that minimizing
the maximum value of this inverse traceability yields the optimal α(t) (Roland & Cerf, 2002), that ensures
consistent traceability throughout the interpolation. In CRS, we regard the rate of probability-distributional
change as the inverse traceability and minimize its maximum value to derive an optimal noise schedule.

4.3 Discrepancy Measures

Any discrepancy measure is applicable to CRS. We introduce three discrepancy measures.

4.3.1 Discrepancy measure based on FID

FID is a widely used metric for evaluating sample fidelity in the field of image generation. It computes the
Fréchet distance (Heusel et al., 2017) between the feature distributions of real and generated images under
a Gaussian assumption, where the features are extracted using the Inception-V3 network (Szegedy et al.,
2016) trained on ImageNet classification.

When used as a discrepancy measure in our framework, v(α) tends to take large values in the region where
sample fidelity significantly degrades (i.e., α ≃ 1). As a result, CRS allocates more timesteps to this region,
thereby improving sample fidelity.
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However, a limitation of the FID-based measure is that it fails to accurately capture distributional changes
in high-noise regions (α ≃ 0), since the feature extractor is not trained on heavily diffused images and may
not provide meaningful representations in that regime. Therefore, while the FID-based measure is effective
for capturing fidelity-related changes in low-noise regions, it may benefit from being complemented by other
discrepancy measures that can better capture high-noise dynamics.

Once the forward process is defined, v(α) can be computed by simulating the forward diffusion using the
training dataset (see Algorithm 1 in Appendix C.1). Since this procedure is independent of model parameters,
it only needs to be executed once prior to training the diffusion model.

The computation time of v(α) is proportional to the number of training images, which may be prohibitively
expensive for large-scale training datasets. To address the scalability issue for large-scale datasets, we
introduce a practical alternative in Sec. 5.7.

We refer to v(α) computed using FID as vFID(α).

4.3.2 Discrepancy measure based on data prediction

We introduce a discrepancy measure that leverages a trained diffusion model as follows:

vx(α) =

√√√√ ∂D2
x(α, α′)
∂α′

∣∣∣∣∣
α′=α

, where D2
x(α, α′) = Exα,xα′ ∼q(xα,xα′ )

[
∥xθ(xα, α)− xθ(xα′ , α′)∥2

2

]
. (10)

Here, q(xα, xα′) is the joint distribution of diffused data at different noise levels, and xθ(x, α) denotes the
data prediction, which is related to the noise prediction εθ(x, α) via x = αxθ(x, α) + σεθ(x, α).

This measure is designed to allocate more computational resources to regions where the data prediction
changes rapidly with respect to α. As shown in Appendix B, vx(α) can be interpreted as a simplified variant
of KLUB, introduced in AYS. Importantly, vx(α) can be used not only to determine the sampling schedule
after training, but also to adaptively optimize the training schedule during learning.

We further interpret vx(α) as measuring the probability-distributional change of the diffused data. According
to prior work (Ambrogioni, 2024), the data prediction xθ(x, α) can be viewed as a weighted average over
training data points x0, where the weighting depends on the noise level α. When α = 0, the weights
are approximately uniform across the dataset. As α → 1, only a few data points contribute significantly,
indicating sharper and more specific representations. The change in these implicit weights reflects how
sample trajectories diverge as noise decreases, and thus vx(α) provides a proxy for the rate of distributional
change.

The pseudocode for optimizing training and sampling schedules is provided in Appendix C.2. For sampling
schedule optimization, the computation time of vx(α) is negligible compared to the overall training time. In
contrast, training schedule optimization requires updating D2

x(α, α′) during training as the model parameters
evolve, which increases the total training time by approximately 20–30%. However, our experiments show
that the schedule typically stabilizes early in training. Therefore, fixing the schedule after a few epochs
or reducing the update frequency of D2

x(α, α′) may mitigate the computational cost without compromising
performance. Developing a more efficient implementation remains an important direction for future work.

4.3.3 Discrepancy measure based on noise prediction

In the experiments presented in Sec. 5, we trained the noise prediction model. In this setting, it is also
effective to use the noise predictions themselves to quantify distributional change, leading to the following
definition:

vε(α) =

√√√√ ∂D2
ε(α, α′)
∂α′

∣∣∣∣∣
α′=α

, where D2
ε(α, α′) = Exα,xα′ ∼q(xα,xα′ )

[
∥εθ(xα, α)− εθ(xα′ , α′)∥2

2

]
. (11)

We refer to CRS using vFID(α), vx(α), and vε(α) as CRS-vFID, CRS-vx, and CRS-vε, respectively, depending
on the choice of discrepancy measure used to compute v(α).
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4.4 Combining Multiple Discrepancy Measures

Each discrepancy measure has its own strengths and weaknesses. For example, CRS-vFID effectively captures
distributional changes relevant to sample fidelity, but fails to represent changes accurately in high-noise
regions (α ≃ 0), as the feature extractor is not trained on diffused images. On the other hand, CRS-vx

captures distributional change even in high-noise regions, but it is not necessarily optimal for improving
sample fidelity. Therefore, it is considered effective to complementarily combining multiple discrepancy
measures for optimizing noise schedules.

We introduce the following strategy for combining multiple discrepancy measures:

v(α) =
M∑

m=1
wmṽm(α), where ṽm(α) = 1

Cm
vm(α)ξm and Cm =

∫ αmax

αmin

vm(α)ξm . (12)

where M is the number of discrepancy measures, vm(α) is the rate of change computed using the m-th
measure, wm is its corresponding weight (satisfying

∑M
m=1 wm = 1), and ξm controls the emphasis on vm(α).

Since the value ranges of different discrepancy measures can vary significantly, we normalize each vm(α) as
in Eq. (12) before combining them.

This formulation also enables conventional noise schedules to be interpreted and incorporated within the
CRS framework. By converting a given noise schedule α(t) into its corresponding form of v(α), we can treat
it as an implicit discrepancy measure. For example, if α(t) = cos

(
πt
2
)
, then:

v(α) ∝ −
(

dα(t)
dt

)−1
∝ sin−1

(
πt

2

)
= 1√

1− α2
. (13)

This observation implies that any noise schedule can be viewed as the optimization result of CRS with an
associated (possibly implicit) discrepancy measure, thus providing a unified perspective on the design of
noise schedules.

While combining multiple discrepancy measures increases the flexibility of CRS, it also introduces additional
hyperparameters. In our experiments, we found that tuning these hyperparameters is required only when
optimizing sampling schedules in pixel-space diffusion models. In all other cases—training schedules for both
pixel-space and latent-space models, and sampling schedules for latent-space models—CRS-vx with ξ = 1
consistently performed well and can serve as a default setting.

In the next section, we show that CRS-vx + vFID, which combines vx(α) and vFID(α), is effective for op-
timizing the sampling schedule of pixel-space diffusion models. CRS-vx + vFID has four hyperparameters:
wx, wFID, ξx, and ξFID. The procedure for tuning these hyperparameters is described in Appendix D, and
the hyperparameter settings used in all experiments are summarized in Table 12. For configurations with
NFE ≤ 50, Table 12 shows that wx = wFID = 0.5 is optimal in most cases. These observations suggest that,
in practical use, it is generally sufficient to tune only ξx and ξFID.

5 Experiments

We experimentally demonstrate that CRS broadly improves the performance of diffusion models.

5.1 Experimental Settings

Below, we provide a brief overview of the components and settings used in our experiments.

Dataset: We use six image datasets: LSUN (Church, Bedroom, Horse) (Yu et al., 2016), ImageNet (Deng
et al., 2009), FFHQ (Karras et al., 2019), and CIFAR10 (Krizhevsky, 2009). LSUN, FFHQ, and CIFAR10
are used for unconditional image generation, while ImageNet is used for class-conditional image generation.

Noise Prediction Model: We adopt the U-Net architecture introduced in the ablated diffusion model
(ADM) (Dhariwal & Nichol, 2021) as the noise prediction model. Hyperparameter settings are listed in
Table 13 (Appendix E).
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Training Schedule: We compare four training noise schedules: linear (Ho et al., 2020), shifted cosine
(Hoogeboom et al., 2023), the adaptive schedule proposed in VDM++ (Kingma & Gao, 2023), and our
proposed CRS. The CRS hyperparameter ξ is fixed to 1 in all experiments.

Loss Function: Except for the adaptive schedule in VDM++, we use the simplified loss function from
DDPMs:

L = 1
2Ex0∼D,t∼U(0,1),ε∼N (0,I)

[
∥εθ(x, α(t))− ε∥2

2

]
, (14)

where x = α(t)x0 +
√

1− α(t)2ε, D denotes the training dataset, and α(t) is the training schedule.

When using the adaptive schedule from VDM++, the following loss function is used:

L = 1
2Ex0∼D,λ∼p(λ),ε∼N (0,I)

[
ω(λ)
p(λ)

∥∥∥εθ

(
x,
√

sigmoid(λ)
)
− ε
∥∥∥2

2

]
, (15)

where λ = log
(

α2

σ2

)
is the log signal-to-noise ratio (log-SNR), ω(λ) is the weighting function, and p(λ) = −dλ

dt

denotes the noise schedule. We adopt the EDM monotonic function as ω(λ), and update p(λ) at each iteration
to approximately satisfy:

p(λ) ∝ Ex0∼D,ε∼N (0,I)

[
ω(λ)

∥∥∥εθ

(
x,
√

sigmoid(λ)
)
− ε
∥∥∥2

2

]
. (16)

Sampling Schedule: We evaluate four sampling schedules: linear, shifted cosine, EDM (Karras et al.,
2022), and CRS. For pixel-space diffusion models, we additionally evaluate CRS-vx + vFID, which combines
vx(α) and vFID(α) to leverage their complementary strengths, as discussed in Sec. 5.5. Unless otherwise
stated, the hyperparameter ξ for CRS-vx, CRS-vε, and CRS-vFID is fixed to ξ = 1. For the hyperparameter
tuning procedure of CRS–vx + vFID and the exact values used in our experiments, please refer to Appendix
D. Following prior work (Karras et al., 2022; Kingma & Gao, 2023), we allow training and sampling schedules
to differ. We thus evaluate all combinations of training and sampling schedules. Details of the conventional
schedules are summarized in Table 16 (Appendix E).

Sampling Methods: To assess the generality across samplers, we employ two stochastic samplers and
three deterministic samplers. The stochastic samplers include Stochastic DDIM (η = 1) (Song et al., 2021a)
and SDE-DPM-Solver++(2M) (Lu et al., 2022b). The deterministic samplers include DDIM (Song et al.,
2021a), DPM-Solver++(2M) (Lu et al., 2022b), and pseudo numerical methods (PNDM) (Liu et al., 2022).
At low NFE regimes, we also evaluate improved PNDM (iPNDM) (Zhang & Chen, 2023) and the unified
predictor-corrector framework (UniPC) (Zhao et al., 2023).

Evaluation Metrics: We use four evaluation metrics: FID (Heusel et al., 2017), spatial FID (sFID) (Nash
et al., 2021), and improved precision and recall (Sajjadi et al., 2018; Kynkäänniemi et al., 2019). FID, sFID,
and precision measure sample fidelity, while recall quantifies mode coverage.

5.2 Results on Pixel-Space Diffusion Models

We trained continuous-time diffusion models on LSUN Horse 256×256 and LSUN Bedroom 256×256 for
unconditional image generation. Detailed experimental results are provided in Appendix F.1.

LSUN Horse 256×256: The evaluation results are summarized in Table 1. Rows shaded in gray represent
results obtained under different training schedules. Although sample fidelity and mode coverage are generally
considered to be in a trade-off relationship, CRS-vx achieved the highest scores across all evaluation metrics.
This indicates that CRS-vx does not merely balance fidelity and diversity but leads to an overall improvement
in sample quality.

The unshaded rows represent the dependence on sampling schedules. CRS-vx + vFID outperformed all
baselines across all metrics, indicating a fundamental improvement in generation quality. Notably, our model
achieved an FID score of 2.03, surpassing the previous state-of-the-art score of 2.11 reported in Kumari et al.
(2022).
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Table 1: Performance of pixel-space diffusion models on LSUN Horse 256×256 with NFE = 250, using
SDE-DPM-Solver++(2M) as the sampler. Gray-shaded rows indicate variations in the training schedule,
while unshaded rows correspond to different sampling schedules. Bold values highlight the best performance
for each metric under varying training or sampling schedules.

Training Sampling Metrics
schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Linear Linear 2.90 6.82 0.66 0.56
Shifted cosine 2.95 6.43 0.67 0.56
VDM++ 3.82 7.40 0.66 0.54
CRS-vε 2.91 6.56 0.66 0.56
CRS-vx 2.73 6.40 0.67 0.56
CRS-vx Linear 2.73 6.40 0.67 0.56

Shifted cosine 3.13 7.09 0.67 0.54
EDM 2.09 6.16 0.69 0.56
CRS-vε 2.87 6.71 0.66 0.56
CRS-vx 5.46 8.34 0.62 0.52
CRS-vx + vFID 2.03 6.06 0.69 0.56

Table 2: FID scores for LSUN Bedroom 256×256 in pixel-space diffusion models under low NFE conditions.
Our results are compared with prior work from Chen et al. (2024). Bold entries indicate the best FID achieved
at each NFE setting.

Model Sampler Sampling schedule NFE = 5 NFE = 10
EDM UniPC (Zhao et al., 2023) EDM 23.34 5.75

AMED-Solver (Zhou et al., 2024) – 5.38
iPNDM (Zhang & Chen, 2023) GITS (Chen et al., 2024) 15.85 5.28

Ours DPM-Solver++(2M) EDM 23.72 4.73
CRS-vx + vFID 14.02 4.88

UniPC EDM 82.52 4.94
CRS-vx + vFID 21.42 3.30

LSUN Bedroom 256×256: We further validated the effectiveness of CRS in low-NFE regimes by com-
paring it with strong baselines reported in GITS (Chen et al., 2024). We trained continuous-time diffusion
models with CRS-vx used for optimizing the training schedule. Table 2 lists the results. At NFE = 5 and
NFE = 10, the best FID scores were achieved by using CRS-vx and CRS-vx + vFID for optimizing training
and sampling schedules, respectively.

As shown in Table 20 in Appendix F.1, we also tuned the ρ parameter in the EDM sampling schedule. Even
with the optimal ρ setting, CRS-vx + vFID consistently outperformed EDM.

5.3 Results on Latent-Space Diffusion Models

We trained latent-space diffusion models using the pre-trained autoencoder from LDMs (Rombach et al.,
2022). In our experiments, we adopted the VQ-regularized variant for all datasets, which is the configura-
tion primarily used in the publicly available pretrained models on GitHub (https://github.com/CompVis/
latent-diffusion). Although a downsampling factor of f = 8 is also commonly used, we set f = 4 (VQ-f4),
as it is expected to yield better FID scores according to Table 10 in the LDMs paper. LSUN Church and
LSUN Bedroom were used for unconditional image generation, and ImageNet was used for class-conditional
image generation. All images were resized to 256×256 and encoded into 64×64 latent representations. Here,
we present the evaluation results on LSUN Church 256×256. Detailed results are provided in Appendix F.2.

LSUN Church 256×256: Table 3 summarizes the results. Rows shaded in gray show the effect of different
training schedules, where CRS-vx achieved the best performance on all metrics except sFID. Unshaded rows
show the dependence on the sampling schedule, and again, CRS-vx achieved the best performance on all
metrics except precision.

10

https://github.com/CompVis/latent-diffusion
https://github.com/CompVis/latent-diffusion


Published in Transactions on Machine Learning Research (01/2026)

Table 3: Performance of latent-space diffusion models on LSUN Church 256×256 with NFE = 30, using
DPM-Solver++(2M) as the sampler. Gray-shaded rows indicate variations in the training schedule, while
unshaded rows correspond to different sampling schedules. Bold values highlight the best performance for
each metric under varying training or sampling schedules.

Training Sampling Metrics
schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Linear Linear 3.82 10.28 0.60 0.58
VDM++ 4.00 10.07 0.58 0.59
CRS-vFID 3.78 10.51 0.60 0.58
CRS-vε 3.87 10.30 0.60 0.59
CRS-vx 3.69 10.23 0.60 0.59
CRS-vx Linear 3.69 10.23 0.60 0.59

EDM 4.31 11.31 0.60 0.56
CRS-vFID 3.98 9.61 0.58 0.60
CRS-vε 3.63 9.91 0.59 0.60
CRS-vx 3.59 9.51 0.59 0.60

Table 4: FID scores on CIFAR10 32×32 and FFHQ 64×64 evaluated using the pretrained model provided
by EDM (Karras et al., 2022). Bold numbers indicate the best sampling schedule for each combination of
dataset, sampler, and NFE. For reference, the FID scores of AYS (Sabour et al., 2024) and LD3 (Tong et al.,
2025) are taken directly from their original papers.

Sampling CIFAR10 32×32 FFHQ 64×64
Sampler schedule NFE = 10 NFE = 20 NFE = 10 NFE = 20
DPM-Solver++(2M) AYS 2.98 2.10 5.43 3.29

GITS 4.03 2.32 5.51 3.81
LD3 3.38 2.36 3.98 2.89
CRS-vx + vFID 3.92 2.27 5.35 3.10

UniPC(3M) GITS 3.50 1.99 4.52 2.71
LD3 2.84 – 3.27 –
CRS-vx + vFID 2.52 1.99 5.23 2.64

iPNDM(3M) GITS 2.73 2.08 3.96 3.09
LD3 2.38 – 3.25 –
CRS-vx + vFID 2.87 2.11 4.07 2.75

iPNDM(4M) GITS 2.49 2.02 3.62 3.00
CRS-vx + vFID 2.46 2.02 3.45 2.53

These results indicate that CRS is also effective in latent-space diffusion models. Although CRS-vx performs
best in most settings, we observe that depending on the sampler and NFEs, CRS-vε can be preferable for
sampling.

5.4 Comparison with Recent Sampling Schedules

Using the pretrained models released with EDM (Karras et al., 2022), we compare the performance of CRS
as a sampling schedule against AYS (Sabour et al., 2024), GITS (Chen et al., 2024), and learning to discretize
denoising diffusion ODEs (LD3) (Tong et al., 2025). All evaluations in this subsection are conducted using
the official repository provided in the GITS paper, ensuring full consistency with their experimental protocol.

It is important to note that EDM adopts a variance-exploding formulation, whereas all of our previous
experiments have been conducted under the variance-preserving setting. However, CRS can still be applied
to variance-exploding processes by converting between α and the EDM noise level σEDM via the log-SNR,
as shown below:

log SNR = log
(

α2

1− α2

)
= log

(
1

σ2
EDM

)
⇒ α = 1√

1 + σ2
EDM

. (17)
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We also note that, whereas all earlier experiments in this paper used the noise-prediction parameterization,
EDM adopts the data-prediction parameterization with preconditioning.

The evaluation results are presented in Table 4. The optimal sampling schedule varies across datasets, sam-
plers, and NFE configurations. On average, LD3 achieves the highest performance, while CRS consistently
outperforms GITS and can therefore be regarded as the second-best sampling schedule overall. Although
CRS underperforms LD3 as a sampling schedule, a key advantage of CRS is that it also provides a uni-
fied framework for optimizing the training schedule, which LD3 does not address. Further improving the
performance of CRS will likely require identifying more effective discrepancy measures, and exploring such
alternatives is an important direction for future work.

For completeness and fairness, we note that CRS-vx + vFID requires both the computation of vFID(α) and
hyperparameter tuning, and the time needed to optimize the sampling schedule is substantially larger than
that of GITS or LD3. However, sampling-schedule optimization is performed only once after training the
diffusion model. Therefore, as long as the tuning cost remains small relative to the total training time, we
believe that performance under the best hyperparameter configuration is the most meaningful criterion for
comparison.

5.5 Comparison of Noise Schedules

Figure 2 shows examples of CRS-based noise schedules in pixel-space diffusion models, computed using
different discrepancy measures. For CRS-vx + vFID, the hyperparameters were set to wx = wFID = 0.5 and
ξx = ξFID = 1.0.

Since vFID(α) tends to be large in regions where sample fidelity degrades (i.e., near α ≃ 1), CRS-vFID
allocates more timesteps to these regions. In contrast, CRS-vx allocates more timesteps to regions with
smaller α. This is due to the formulation of the data prediction xθ(x, α) = x−σεθ(x,α)

α , where α appears
in the denominator, making the data prediction more sensitive to small changes in α when α is small.
Thus, CRS-vFID and CRS-vx exhibit complementary behaviors, and combining both yields an effective and
balanced sampling schedule.

Furthermore, we observed that the noise schedule derived from CRS-vε can be approximately reproduced
by appropriately tuning the hyperparameters of CRS-vx + vFID. Therefore, in practice, vx(α) and vFID(α)
serve as the two principal components for constructing robust sampling schedules.

Figure 3 illustrates CRS-based noise schedules for latent-space diffusion models. The optimized schedules
differ notably between pixel-space and latent-space models. In latent-space diffusion, fewer timesteps are
allocated to the region where α ≃ 1. This difference can be attributed to the nature of latent-space diffusion
models: perceptual expression is largely reconstructed by the autoencoder, and the autoencoder is robust to
minor deviations in the generated latent variables. Consequently, precise control near α ≃ 1 is less critical.
In contrast, pixel-space models directly generate the final image, so the schedule must allocate sufficient
timesteps near α ≃ 1 to preserve high-fidelity details.

Because all discrepancy measures result in similar noise schedules for latent-space models, we did not evaluate
combinations of multiple discrepancy measures.

5.6 Computational Overhead of CRS

CRS requires computing v(α). Below, we report the computational overhead in scenarios where the cost is
expected to be most significant.

Cost of computing vFID(α): Although vFID(α) needs to be computed only once before training the diffusion
model, its computation requires processing the entire training set to compute feature statistics, and therefore
the cost scales linearly with the number of images.

Table 5 reports both the cost relative to a single training epoch and the cost relative to the total training
time. Because the computation of vFID(α) and the duration of one training epoch both scale proportionally
with dataset size, the cost relative to one training epoch remains nearly constant across datasets for both
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Figure 2: Noise schedules computed using dif-
ferent discrepancy measures on LSUN Horse
256×256 in the pixel-space diffusion model.

Figure 3: Noise schedules computed using dif-
ferent discrepancy measures on LSUN Church
256×256 in the latent-space diffusion model.

Table 5: Wall-clock computational cost of computing vFID(α). We report both the cost relative to one
training epoch and the cost relative to the total training time for each diffusion setting.

Computational cost
Diffusion type Dataset Relative to one training epoch Relative to total training time
Pixel space LSUN Horse ∼5 epochs ∼10%

LSUN Bedroom ∼5 epochs ∼10%
Latent space LSUN Church ∼14 epochs ∼1.4%

LSUN Bedroom ∼14 epochs ∼14%
ImageNet ∼14 epochs ∼2.8%

Table 6: Comparison of wall-clock training time when using linear and CRS-vx as the training schedule.
CRS-vx requires evaluating D2

x(α, α′) during training, resulting in a 20—30% increase in overall training
time.

Diffusion type Dataset Linear CRS-vx Increase
Pixel space LSUN Horse 170 hours 215 hours +26.5%
Latent space LSUN Church 85 hours 105 hours +23.5%

LSUN Bedroom 190 hours 245 hours +28.9%
ImageNet 430 hours 525 hours +22.1%

pixel-space and latent-space diffusion models. The relative cost appears larger for latent-space diffusion
models simply because one latent-space epoch is much faster than one pixel-space epoch. When compared
to the total training time, the overhead of computing vFID(α) remains below 15% even in the worst case.

Overhead of computing vx(α) during training: Table 6 compares the training time when using the
linear versus CRS-vx as the training schedule. Because CRS-vx requires evaluating D2

x(α, α′) during training,
the overall training time increases by approximately 20–30%. Nevertheless, CRS-vx typically accelerates the
convergence of FID scores during training (see Figs. 12 and 13 in Appendix F for details), which can largely
compensate for the per-epoch overhead.

5.7 A Practical Alternative to FID-Based Scheduling

In pixel-space diffusion models, CRS-vx + vFID consistently achieves the best performance as a sampling
schedule. However, for large-scale training datasets, computing vFID(α) becomes prohibitively expensive.

As shown in the subsection 5.5, CRS-vFID allocates a large number of timesteps to regions near α ≃ 1,
resulting in a schedule shape similar to that of the cosine schedule. Motivated by this observation, we
evaluate a lightweight alternative: CRS-vx + vcos, which combines CRS-vx with the cosine schedule (see Eq.
13 for v(α) of the cosine schedule).
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Table 7: Evaluation of CRS-vx + vcos as a practical alternative to CRS-vx + vFID for sampling in pixel-
space diffusion models on LSUN Bedroom 256×256. Despite not requiring the computation of vFID(α),
CRS-vx + vcos achieves similar FID scores.

Sampler Sampling Schedule NFE = 5 NFE = 10
DPM-Solver++(2M) CRS-vx + vFID 14.02 4.88

CRS-vx + vcos 14.10 4.46
UniPC CRS-vx + vFID 21.42 3.30

CRS-vx + vcos 20.77 3.30

Table 7 compares the FID scores of CRS-vx + vFID and CRS-vx + vcos on LSUN Bedroom 256×256. In all
settings, CRS-vx +vcos achieves FID scores comparable to CRS-vx +vFID, demonstrating that CRS-vx +vcos
is a practical and effective alternative when vFID(α) is costly to compute.

6 Limitations

This paper focuses on developing CRS and empirically validating its effectiveness under fundamental ex-
perimental settings. While the results are promising, there are several directions for future work to further
enhance the generality, applicability, and performance of CRS. Below, we summarize six key limitations and
avenues for future work.

(1) Theoretical analysis. The goal of this work is to provide a theoretically motivated and empirically
effective framework capable of incorporating a wide range of discrepancy measures. However, we do not
provide a theoretical guarantee that minimizing the maximum discrepancy necessarily leads to improved
sample quality. Establishing a formal connection between distributional change and sample quality remains
an important direction for future research.

(2) Evaluation on more complex tasks. Our experiments focus on fundamental settings—unconditional
and class-conditional image generation. We did not evaluate CRS in more complex practical scenarios such
as text-conditional generation or classifier-free guidance (CFG). CFG is known to improve FID at the cost
of reduced recall, and an adaptive noise schedule may help mitigate this trade-off. Evaluating CRS together
with CFG or other conditioning mechanisms could further reveal the benefits of schedule optimization.

(3) Applicability beyond image generation. Although our experiments are limited to image genera-
tion, CRS is derived from general diffusion-model principles and is therefore expected to generalize to other
domains. In this work, vFID(α) proved effective as a sampling discrepancy measure for pixel-space diffusion
models; however, it is specific to image generation. Applying CRS to non-image modalities will require
identifying discrepancy measures that reflect the characteristics of each target domain.

(4) Improving discrepancy measures. As a sampling schedule optimizer, CRS currently performs
slightly worse than LD3, suggesting that further improvements may be achieved by designing better dis-
crepancy measures. A promising direction is to build on advances in schedule-optimization theory such as
AYS. As shown in Appendix B, CRS-vx can be interpreted as employing a simplified variant of the KLUB
introduced in AYS. Thus, future theoretical progress in schedule optimization may naturally lead to new
discrepancy measures compatible with CRS.

With respect to image-specific metrics, although our experiments primarily relied on FID, many feature-
based perceptual metrics have been proposed for image generation. For example, LPIPS (Zhang et al., 2018)
is a strong candidate for capturing visually meaningful differences. Since FID and LPIPS depend on feature
extractors, a key challenge is designing robust feature representations for noised data, which are essential
for accurately assessing distributional change. Self-supervised learning on noised samples is a promising
direction, as it requires no labels and can be made noise-level aware (e.g., by predicting or conditioning on
α). Such learned embeddings may lead to more expressive and domain-adaptive discrepancy measures.
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(5) Generality across prediction parameterizations and architectures. Our experiments primar-
ily evaluate CRS under the noise-prediction parameterization. However, the data- and velocity-prediction
formulations are also widely used in recent diffusion models, and the generality of CRS under these param-
eterizations has not been thoroughly assessed.

Furthermore, modern diffusion architectures such as Diffusion Transformers (Peebles & Xie, 2023) were
not evaluated. Because CRS is grounded in the dynamics of distributional evolution rather than in model
architecture, we expect architectural dependence to be limited, but empirical validation remains an important
direction for future work.

(6) Scalability to dataset size and image resolution. Although CRS-vx + vFID is effective for opti-
mizing sampling schedules in pixel-space diffusion models, it requires both the computation of vFID(α) and
hyperparameter tuning. In particular, the computation of vFID(α) scales linearly with the number of training
images, making this variant impractical for large-scale datasets. Although Section 5.7 demonstrates that
CRS-vx+vcos can serve as a practical alternative, fundamentally improving scalability will require developing
new discrepancy measures that are both computationally efficient and robust to noise-level variation.

Furthermore, all of our experiments were conducted at a resolution of 256×256. Validating whether CRS re-
mains effective for higher-resolution image generation, and analyzing how the optimal noise schedule depends
on image size, are compelling directions for future research.

7 Conclusion

We proposed a general framework called CRS for optimizing noise schedules in diffusion models. CRS
enforces a constant rate of distributional change throughout the diffusion process and provides a unified
perspective for designing both training and sampling schedules. Our framework supports arbitrary user-
specified discrepancy measures, and we introduced three practical options that capture different aspects of
the distributional dynamics.

Through extensive experiments, we demonstrated that CRS consistently improves the performance of both
pixel-space and latent-space diffusion models across various datasets, samplers, and NFEs ranging from 5 to
250. In particular, for sampling in pixel-space diffusion models, CRS-vx + vFID with tuned hyperparameters
achieved the best results. In all other settings, CRS-vx with ξ = 1 performed consistently well and is
recommended as a default configuration due to its simplicity and robustness.

Although this study has limitations, as discussed in Sec. 6—including the lack of a complete theoretical
analysis and the need for further validation in other domains—we believe that CRS provides a solid and
extensible foundation for future research on schedule optimization in diffusion models. We hope that this
work encourages broader exploration of discrepancy-based scheduling, and that future research will further
generalize CRS and extend its applicability beyond image generation.
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A Probability Distribution of Diffused Data

We derive the probability distribution of the diffused data used in the toy example (Fig. 1).

The distribution of the diffused data is given by:

q(xα) =
∫

q(xα|x0)q(x0)dx0, (18)

q(xα|x0) = N (xα; αx0, σ2I), (19)

where q(x0) is the probability distribution of the target dataset.

We approximate q(x0) by the empirical distribution:

q(x0) = 1
N

N∑
n=1

δ(x0 − xn
0 ), (20)

where N is the number of data samples, xn
0 is the n-th sample, and δ denotes the Dirac delta function.

Substituting Eq. (20) into Eq. (18) yields:

q(xα) = 1
N

N∑
n=1
N (xα; αxn

0 , σ2I). (21)

This derivation uses the following formula of Dirac’s delta function:∫
f(x)δ(x− y)dx = f(y). (22)

The resulting probability distribution is a Gaussian mixture distribution. We used Eq. (21) in the toy
example.

B Derivation of Discrepancy Measure Based on Data Prediction from KLUB

We show that vx(α) can be derived as a simplified variant of the KLUB introduced in AYS.
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B.1 KLUB in Variance-Preserving Process

The forward SDE in continuous-time diffusion models (Song et al., 2021b) is defined as:

dx = f(t)xdt + g(t)dω, (23)

where f(t)x is the drift coefficient, g(t) is the diffusion coefficient, and ω is the standard Wiener process.
The corresponding reverse SDE is given by:

dx =
[
f(t)x− g(t)2∇x log pt(x)

]
dt + g(t)dω. (24)

To approximate the score ∇x log pt(x), we train a noise prediction model εθ(x, α):

εθ(x, α) ≃ −σ∇x log pt(x). (25)

The data prediction xθ(x, α) is related to the noise prediction via:

x = αxθ(x, α) + σεθ(x, α). (26)

By substituting Eq. (25) into Eq. (24) and using Eq. (26), the reverse SDE can be rewritten as

dx = f(x, t)dt + g(t)dω, (27)

f(x, t) =
(

f(t) + 1
σ(t)2 g(t)2

)
x− α(t)

σ(t)2 g(t)2xθ(x, α(t)). (28)

Stochastic DDIM numerically solves this reverse SDE. It exactly integrates the linear term and approximates
the remaining term, introducing discretization error (Lu et al., 2022a;b). According to Sabour et al. (2024),
in the interval [ti−1, ti], Stochastic DDIM solves the discretized SDE:

dx = f ′(x, t)dt + g(t)dω, (29)

f ′(x, t) =
(

f(t) + 1
σ(t)2 g(t)2

)
x− α(t)

σ(t)2 g(t)2xθ(xti
, α(ti)). (30)

Furthermore, the KLUB between probability distributions of xti−1 obtained by solving the true reverse SDE
and the descretized one is introduced as

KLUB(ti−1, tt) = 1
2

∫ ti

ti−1

E x0∼q(x0)
xt∼q(xt|x0)

xti
∼q(xti

|xt)

[
∥f(xt, t)− f ′(xt, t)∥2

2
g(t)2

]
dt, (31)

= 1
2

∫ ti

ti−1

E x0∼q(x0)
xt∼q(xt|x0)

xti
∼q(xti

|xt)

[
α(t)2

σ(t)4 g(t)2 ∥xθ(xt, α(t))− xθ(xti
, α(ti))∥2

2

]
dt. (32)

In the variance-preserving setting, the diffusion coefficient satisfies:

1
2g(t)2 = − α̇

α
. (33)

Substituting Eq. (33) into Eq. (32) gives:

KLUB(ti−1, ti) = −
∫ ti

ti−1

dtα̇(t) α(t)
σ(t)4E x0∼q(x0)

xt∼q(xt|x0)
xti

∼q(xti
|xt)

[
∥xθ(xt, α(t))− xθ(xti

, α(ti))∥2
2

]
. (34)
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B.2 KLUB as Discrepancy Measure of CRS

To apply KLUB within the CRS framework, we reinterpret it as a discrepancy measure over adjacent steps
in the diffusion process. Because the KLUB is introduced to evaluate the discretization error when solving
the reverse SDE, it is reasonable to regard the KLUB as the traceability measure of the diffusion process.

We approximate the integral in the KLUB using Simpson’s rule as follows:

KLUB(t, t + ∆t) =
˙α(t)α(t)

2σ(t)4 D
2
x(t, t + ∆t)∆t, (35)

D2
x(t, t′) = E x0∼q(x0)

xt∼q(xt|x0)
xt′ ∼q(xt′ |xt)

[
∥xθ(xt, α(t))− x(xt′ , α(t′))∥2

2

]
. (36)

Then, to treat D2
x(t, t′) as a function of α rather than t, we introduce D2

x(α(t), α(t′)) = D2
x(t, t′):

D2
x(α, α′) = Exα,xα′ ∼q(xα,xα′ )

[
∥xθ(xα, α)− xθ(xα′ , α′)∥2

2

]
, (37)

Here, q(xα, xα′) is given by

q(xα, xα′) =
∫

q(xα′ |xα)q(xα|x0)q(x0)dx0, (38)

q(xα|x0) = N (xα; αx0, σ2I), (39)
q(xα′ |xα) = N (xα′ ; βxα, δ2I), (40)

where β = α′

α , σ =
√

1− α2, and δ =
√

1− β2. Using D2
x(α, α′), we can rewrite KLUB(t, t + ∆t) as

KLUB(t, t + ∆t) = α̇α

2σ4 D2
x(α, α + ∆α)∆t, (41)

= α̇α

2σ4
D2

x(α, α + ∆α)−D2
x(α, α)

∆α

∆α

∆t
(∆t)2, (42)

≃

dα

dt
·
√

α√
2σ2

√√√√ ∂D2
x(α, α′)
∂α′

∣∣∣∣∣
α′=α

∆t


2

. (43)

We use D2
x(α, α) = 0 in the second equality. Finally, by adopting

√
KLUB(t, t′) as the discrepancy measure

D(t, t′) in CRS, we obtain the following equation:

D(t, t + ∆t) =
√

KLUB(t, t + ∆t) = −dα

dt
·
√

α√
2σ2

√√√√ ∂D2
x(α, α′)
∂α′

∣∣∣∣∣
α′=α︸ ︷︷ ︸

vKLUB(α)

∆t. (44)

which corresponds to the general form of CRS in Eq. (8). We can interpret vx(α) as a simplified variant of
vKLUB(α), in which the multiplicative weighting term

√
α√

2σ2 is omitted.

Although it is possible to optimize the noise schedule using vKLUB(α) directly, this can lead to undesirable
behavior, as the weighting term

√
α√

2σ2 grows very large when α ≃ 1 (i.e., σ ≃ 0), which can overwhelm the
influence of D2

x(α, α′). Since D2
x(α, α′) can be interpreted as capturing the distributional change between

diffused data distributions (as discussed in Section 4.3), the simplified variant vx(α) is more aligned with
the objective of CRS.

C Implementation of CRS

We describe how to compute v(α) using each discrepancy measure.
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Table 8: Hyperparameters for computing vFID(α).
Parameter Description Used Value

T
Number of timesteps
for simulating the forward process 103

{αt}t=0,...,T
Grid of α-values
for evaluating v(α)

αt = 1−
(

t
T

)p
,

where p =
{

2, pixel space
1, latent space

ϕ
Feature extractor
for computing FID

Pixel space: Inception-V3 model used
in the EDM repository for FID evaluation
Latent space: ResNet-50 trained by us
on ImageNet classification in the latent space

C.1 Discrepancy Measure Based on FID

Algorithm 1 presents the pseudocode for computing vFID(α), and hyperparameters are summarized in Tabel
8. Once the forward process is defined, v(α) can be computed by simulating the forward diffusion using the
training dataset. Since this procedure is independent of model parameters, it only needs to be executed once
prior to training the diffusion model.

It is important to note that, in latent-space diffusion models, the probability-distributional change must
be measured in the latent space embedded by the autoencoder, as the Gaussian approximation in Eq. (4)
applies to the diffusion process defined in the latent space. Therefore, for latent-space models, we trained a
ResNet-50 (He et al., 2016) classifier on ImageNet in the autoencoder’s latent space and use it as the feature
extractor ϕ.

To compute v(α), we discretize the range of α using a one-dimensional grid {αt}t=0,...,T and approximate the
continuous function via linear interpolation. In our experiments, we define the discretized grid of α values
as:

αt = 1−
(

t

T

)p

, (45)

where T = 1000. For pixel-space diffusion models, where v(α) exhibits sharp variation near α ≃ 1, we
set p = 2 to allocate more evaluation points in that region. For latent-space models, where v(α) is more
uniformly distributed, we use p = 1.

The computational cost of v(α) is proportional to the number of training images. For the pixel-space diffusion
process on LSUN Horse 256×256 with 2M images, the computation takes approximately 35 hours using eight
A100 GPUs. For the latent-space process on ImageNet 256×256 with 1.28M images, it takes about 12 hours
using eight A100 GPUs. To address the scalability issue for large-scale datasets, we introduce a practical
alternative in Sec. 5.7.

C.2 Discrepancy Measure Based on Data Prediction

Algorithm 2 presents the pseudocode for computing vx(α) using a trained diffusion model. As in the case
of vFID(α), this involves simulating the forward process on the training data and measuring changes in the
predicted data across adjacent timesteps. Hyperparameters are summarized in Table 9. We use the same
configuration for all our experiments, regardless of the diffusion type or dataset.

The computation time for obtaining vx(α) is negligible compared with the training time of the diffusion
model. It takes approximately 5.5 hours using eight H100 GPUs in pixel-space diffusion models. In latent-
space diffusion models, it takes approximately 1.5 hours using eight A100 GPUs.

Algorithm 3 shows how vx(α) can be used to adaptively optimize the training schedule. Since the data
prediction is expressed as xθ(x, α) = x−σεθ(x,α)

α , vx(α) can become numerically unstable as α → 0. To
prevent this, we restrict evaluation to the range αth ≤ α ≤ αmax and fix vx(α) = vx(αth) for α < αth.
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Algorithm 1 v(α) on basis of FID
Require: training dataset {x(n)}n=0,...,N−1, timesteps T , noise levels {αt}t=0,...,T , feature model ϕ
Ensure: LinearInterp1d({αt}t=0,...,T , {vt}t=0,...,T )

1: # Compute feature vectors of diffused data
2: for n = 0 to N − 1 do
3: x

(n)
0 ← x(n)

4: if is_latent_space then
5: x

(n)
0 ← autoencoder(x(n)

0 )
6: end if
7:
8: # Simulate the forward process
9: for t = 1 to T do

10: βt ← αt

αt−1

11: δt ←
√

1− β2
t

12: x
(n)
t ← βtx

(n)
t−1 + δtN (0, I)

13: end for
14: end for
15:
16: # Compute statistics of feature vectors
17: µt ← mean

({
ϕ
(

x
(n)
t

)}
n=0,...,N−1

)
, ∀t ∈ {0, . . . , T}

18: Σt ← cov
({

ϕ
(

x
(n)
t

)}
n=0,...,N−1

)
, ∀t ∈ {0, . . . , T}

19:
20: # Compute v(α) based on FID
21: for t = 0 to T − 1 do
22: vt ←

FID(µt, Σt, µt+1, Σt+1)
αt − αt+1

23: end for
24: vT ← vT −1

Table 9: Hyperparameters used to compute vx(α) for optimizing sampling schedule.
Parameter Description Used Value

T Number of timesteps for simulating the forward process 103

S Number of samples used to estimate D2
x(α, α′) 104

αs Maximum α used to evaluate v(α) 1.0
αe Minimum α used to evaluate v(α) 0.0

Similar to VDM++ (Kingma & Gao, 2023), we divide the range of α into B uniform bins and estimate D2
x

for each bin using an exponential moving average (EMA).

Hyperparameters are summarized in Table 10. We use the same configuration for all our experiments,
regardless of the diffusion type or dataset. Although not explicitly included in the pseudocode, the update
of D2

b starts after 1000 iterations, and the noise schedule α(t) is updated every 100 iterations.

While this adaptive scheme slightly increases training time (by 20–30% compared to fixed schedules; see
Table 15 in Appendix E), we find that the schedule stabilizes early: for example, on LSUN Horse 256×256,
vx(α) changes very little after 10 epochs. Thus, fixing the schedule after a few epochs or reducing the
frequency of D2

x updates may mitigate the cost without degrading performance. Developing a more efficient
implementation remains an important direction for future work.
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Algorithm 2 vx(α) for optimizing sampling schedule.
Require: training dataset {x(n)}n=0,...,N−1, trained diffusion model εθ(x, α), number of timesteps T , num-

ber of samples for mean S, range of α (αs, αe)
Ensure: LinearInterp1d

(
{αt}t=0,...,T , {vt}t=0,...,T

)
1: # Evaluate Exα,xα′

[
∥xθ(xα, α)− xθ(xα′ , α′)∥2

2

]
2: D2

t ← 0, ∀t ∈ {0, 1, . . . , T}
3: ∆α← 1

T
(αs − αe)

4: for n in randperm(N)[: S] do
5: x0 ← x(n)

6: if model operates in latent space then
7: x0 ← autoencoder(x0)
8: end if
9: y0 ← x0

10:
11: # Simulate the forward process
12: for t = 1 to T do
13: αt ← αs −∆α t, σt ←

√
1− α2

t

14: βt ←
αt

αt−1
, δt ←

√
1− β2

t

15: xt ← βtxt−1 + δtN (0, I)
16: yt ←

1
αt

(xt − σt εθ(xt, αt))

17: D2
t ← D2

t + 1
S
∥yt − yt−1∥2

2
18: end for
19: end for
20:
21: # Compute v(α) using D2

t

22: for t = 1 to T do
23: vt ←

√
1

∆α
D2

t

24: end for
25: v0 ← v1

Table 10: Hyperparameters used for optimizing the training schedule with CRS-vx.
Parameter Description Used Value

αmin Minimum value of α for the training schedule 0.0
αmax Maximum value of α for the training schedule 1.0
∆α Small step used for approximating the derivative 10−3

αth Threshold of α for clipping v(α) 0.01
ξ A parameter controlling the dependence of α(t) on v(α) 1
B Number of bins used to divide the range of α 100
e EMA decay rate for approximately evaluating D2

x(α, α′) 0.995
α(t) Initial noise schedule 1− t

D Hyperparameter Tuning for Combining Multiple Discrepancy Measures

CRS-vx + vFID achieves the best performance for sampling in pixel-space diffusion models. CRS-vx + vFID
involves four hyperparameters: wx, wFID, ξx, and ξFID. The effects of these hyperparameters on the resulting
noise schedules are illustrated in Figs. 4, 5, and 6. Increasing either wFID or ξFID amplifies the influence
of vFID(α), resulting in more timesteps being allocated to the region where α ≃ 1 (see Figs. 4 and 5).
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Algorithm 3 Adaptive optimization of training schedule using vx(α).
Require: training dataset {x(n)}n=0,...,N , initial noise schedule α(t), number of bins B, decay rate of EMA

e, range of α (αmax, αmin), derivative step ∆α, minimum value for evaluating v(α) αth, hyperparameter
of CRS ξ

Ensure: noise prediction model εθ(x, α)
1: αb ← αth + (αmax − αth) b

B
, ∀b ∈ {0, . . . , B}

2: D2
b ← 10−6, ∀b ∈ {0, . . . , B − 1}

3: for n in randperm(N) do
4: # Compute loss for training diffusion models
5: x0 ← x(n), t ∼ U(0, 1), ε ∼ N (0, I)
6: α← α(t), σ ←

√
1− α2

7: εα ← εθ(αx0 + σε, α)
8: loss← 1

2 ∥εα − ε∥2
2

9:
10: # Evaluate D2

b using EMA (without gradient)
11: if α ≥ αth then
12: α′ ← α−∆α, σ′ ←

√
1− α′2, β′ ← α′

α
, δ′ ←

√
1− β′2

13: xα′ ← β′xα + δ′N (0, I)
14: εα′ ← εθ(xα′ , α′)
15: yα ←

1
α

(xα − σεα) , yα′ ← 1
α′ (xα′ − σ′εα′)

16: b← min
(⌊

α− αth

αmax − αth
B

⌋
, B − 1

)
17: D2

b ← e D2
b + (1− e) ∥yα − yα′∥2

2

18: vb ←
√

1
∆α

D2
b

19: end if
20:
21: # Update training schedule α(t)
22: X ← {αmin, α0, α1, . . . , αB}
23: Y ← {v0, v0, v1, . . . , vB−1, vB−1}
24: v(α)← LinearInterp1d(X ,Y)
25: Update noise schedule α(t) by solving Eq. (9)
26:
27: # Update model parameters θ
28: loss.backward()
29: optimizer.step()
30: end for

Conversely, increasing either wx or ξx strengthens the contribution of vx(α), leading to more timesteps being
assigned to the region where α ≃ 0 (see Figs. 4 and 6).

We tuned these hyperparameters in two steps. First, we fixed ξx = ξFID = 1 and searched for appropriate
values of wx and wFID under the constraint wx + wFID = 1. Then, we fixed the weights and adjusted ξx and
ξFID. Although further iterations between tuning weights and exponents are possible, we found that just
one iteration per step was typically sufficient to outperform conventional noise schedules.

The detailed tuning results on LSUN Horse 256×256 are presented in Table 11. In the first step, adjusting
wx and wFID led to substantial changes in FID at both NFE = 250 and NFE = 50. In the second step, tuning
ξx and ξFID had little impact at NFE = 250, but resulted in a significant FID improvement at NFE = 50.
This suggests that hyperparameter sensitivity increases as the NFEs decrease.
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Table 11: Detailed results of hyperparameter tuning for CRS-vx + vFID on LSUN Horse 256×256 in pixel-
space diffusion model. DPM-Solver++(2M) was used as sampler. To reduce computational cost, FID scores
were calculated using 10K samples.

NFE Tuning step wFID xx ξFID ξx FID (10K)
250 1st 0.9 0.1 1.0 1.0 3.78

0.7 0.3 3.70
0.5 0.5 3.70
0.3 0.7 3.73
0.1 0.9 3.76

2nd 0.7 0.3 0.5 0.5 3.77
1.0 4.30
1.2 3.75
1.4 3.94

1.0 0.5 3.76
1.0 3.70
1.2 3.69
1.4 3.78

1.2 0.5 3.82
1.0 3.69
1.2 3.78
1.4 3.77

1.4 0.5 3.83
1.0 3.78
1.2 3.77
1.4 3.77

50 1st 0.9 0.1 1.0 1.0 6.13
0.7 0.3 4.42
0.5 0.5 4.38
0.3 0.7 4.78
0.1 0.9 7.03

2nd 0.5 0.5 0.5 0.5 7.42
1.0 7.44
1.2 7.48
1.4 7.79

1.0 0.5 4.85
1.0 4.38
1.2 4.32
1.4 4.27

1.2 0.5 4.57
1.0 4.09
1.2 3.96
1.4 3.93

1.4 0.5 4.51
1.0 3.95
1.2 3.85
1.4 3.82
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Figure 4: Effect of the weights wx and wFID on
the noise schedule generated by CRS-vx + vFID,
with fixed exponents ξx = ξFID = 1.

Figure 5: Effect of the exponent ξFID on the
noise schedule generated by CRS-vx + vFID, with
fixed weights wx = wFID = 0.5.

Figure 6: Effect of the exponent ξx on the noise
schedule generated by CRS-vx + vFID, with fixed
weights wx = wFID = 0.5.

The final hyperparameter settings used in our experiments are summarized in Table 12. The resulting noise
schedules α(t) for CRS-vx + vFID are visualized in Figs. 7, 8, 9, 10, and 11.

E Implementation Details

E.1 U-Net Architecture

The hyperparameters of the U-Net model are listed in Table 13. For latent-space diffusion models, we use
the same settings as those for ImageNet 64×64 in ADM (Dhariwal & Nichol, 2021). For pixel-space diffusion
models, we adopt the same settings as those for LSUN 256×256 in ADM.

E.2 Training Hyperparameters

The training hyperparameters are summarized in Table 14. We save ten checkpoints for each model. FID
scores are computed using 10K samples for all checkpoints, and we report the results from the checkpoint
with the best FID.

The training times for each model configuration are provided in Table 15. When using CRS to optimize
the training schedule, training time increases by 20–30% compared to conventional noise schedules, due to
the overhead of computing vx(α) during training. In practice, however, we observe that the noise schedule
stabilizes early; for example, on LSUN Horse 256×256, vx(α) shows minimal change beyond 10 epochs. This
suggests that freezing the schedule after a small number of epochs or reducing the frequency of D2

x updates
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Table 12: Hyperparameter settings used for CRS-vx + vFID in our experiments on LSUN Horse 256×256,
LSUN Bedroom 256×256, FFHQ 64×64, and CIFAR10 32×32.

Dataset Sampler NFE wFID wx ξFID ξx

LSUN Horse 256×256 SDE-DPM-Solver++(2M) 250 0.9 0.1 1.4 1.0
50 0.7 0.3 1.4 1.2

PNDM 250 0.9 0.1 1.0 0.5
50 0.5 0.5 1.2 0.5

DPM-Solver++(2M) 250 0.7 0.3 1.0 1.2
50 0.5 0.5 1.4 1.4

LSUN Bedroom 256×256 DPM-Solver++(2M) 10 0.5 0.5 1.0 1.0
5 0.5 0.5 1.0 1.2

UniPC 10 0.5 0.5 1.0 1.5
5 0.3 0.7 1.0 1.0

FFHQ 64×64 DPM-Solver++(2M) 20 0.5 0.5 1.7 1.4
10 0.5 0.5 1.6 1.4

UniPC(3M) 20 0.5 0.5 1.7 1.4
10 0.5 0.5 1.6 1.6

iPNDM(3M) 20 0.5 0.5 1.6 1.2
10 0.5 0.5 1.6 1.2

iPNDM(4M) 20 0.5 0.5 1.4 1.4
10 0.5 0.5 1.6 1.4

CIFAR10 32×32 DPM-Solver++(2M) 20 0.5 0.5 1.8 1.2
10 0.5 0.5 1.7 1.2

UniPC(3M) 20 0.5 0.5 2.3 1.0
10 0.5 0.5 1.9 1.5

iPNDM(3M) 20 0.5 0.5 1.7 1.4
10 0.5 0.5 1.7 1.4

iPNDM(4M) 20 0.5 0.5 1.6 1.6
10 0.5 0.5 1.6 1.6

Table 13: Hyperparameters of UNet model.
Latent-space diffusion models Pixel-space diffusion models

Resolution 64 × 64 256 × 256
Number of parameters 296M 552M
Channels 192 256
Depth 3 2
Channels multiple 1,2,3,4 1,1,2,2,4,4
Heads channels 64 64
Attention resolution 32,16,8 32,16,8
BigGAN up/downsample True True
Dropout 0.1 0.1

Table 14: Hyperparameters for training diffusion models. Same configuration was used for training latent-
space and pixel-space diffusion models.

Item Value
EMA decay 0.9999
Optimizer Adam
β1 0.9
β2 0.999
Learning rate 1e-4
Batch size 32 × 8

29



Published in Transactions on Machine Learning Research (01/2026)

Figure 7: Noise schedules generated by CRS-
vx + vFID for LSUN Horse 256×256, used with
SDE-DPM-Solver++(2M) during sampling.

Figure 8: Noise schedules generated by CRS-
vx + vFID for LSUN Horse 256×256, used with
PNDM during sampling.

Figure 9: Noise schedules generated by CRS-
vx + vFID for LSUN Horse 256×256, used with
DPM-Solver++(2M) during sampling.

Figure 10: Noise schedules generated by CRS-
vx+vFID for LSUN Bedroom 256×256, used with
DPM-Solver++(2M) during sampling.

Figure 11: Noise schedules generated by CRS-
vx+vFID for LSUN Bedroom 256×256, used with
UniPC during sampling.
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Table 15: Training time of diffusion models.
Diffusion type Dataset GPUs Epochs Training schedule Training time

Latent space LSUN Church A100 × 8 1000
Linear
VDM++
CRS-vFID

85 hours

CRS-vε

CRS-vx
105 hours

LSUN Bedroom A100 × 8 100 CRS-vFID 190 hours
CRS-vε

CRS-vx
245 hours

ImageNet A100 × 8 500
Linear
VDM++
CRS-vFID

430 hours

CRS-vε

CRS-vx
525 hours

Pixel space LSUN Horse H100 × 8 50
Linear
Shifted cosine
VDM++

170 hours

CRS-vε

CRS-vx
215 hours

LSUN Bedroom H100 × 8 50 CRS-vx 325 hours

can mitigate training overhead without degrading performance. Developing a more efficient implementation
remains an important direction for future work.

E.3 Noise Schedules for Training and Sampling

The conventional noise schedules used in this study are summarized in Table 16.

F Detailed Experimental Results

We provide detailed experimental results to confirm the effectiveness of CRS for optimizing both training
and sampling schedules.

F.1 Results on Pixel-Space Diffusion Models

LSUN Horse 256×256: The results showing the dependence on training and sampling schedules at NFE =
250 are presented in Table 17. To assess the generality across samplers, we evaluated three different ones:
SDE-DPM-Solver++(2M), PNDM, and DPM-Solver++(2M). As shown in the gray-shaded rows, using CRS-
vx for training consistently improved multiple evaluation metrics, including FID, regardless of the sampler
used.

Figure 12 shows the evolution of the FID score with 10k samples during training, evaluated using DPM-
Solver++ (2M) with NFE = 250. In this experiment, we compare CRS-vx with shifted cosine, which was the
strongest-performing baseline training schedule. The results demonstrate that using CRS-vx as the training
schedule not only improves the final FID score but also leads to faster convergence throughout training.

Table 18 presents the effect of different sampling schedules at NFE = 250 and NFE = 50. When using
SDE-DPM-Solver++(2M), CRS-vx + vFID improved all four metrics at NFE = 250, achieving a new state-
of-the-art FID score. With PNDM and DPM-Solver++(2M), differences among sampling schedules were
minor at NFE = 250; however, at NFE = 50, performance became more sensitive to the sampling schedule.
In this low-NFE regime, CRS-vx + vFID achieved the best FID score.
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Table 16: Conventional noise schedules evaluated in this study. Ts denotes number of timesteps for sampling.
Name Phase Noise schedule

Linear Training

αlinear(t) = LinearInterp1d
({

i
T

}
i=0,...,T

, {αi}i=0,...,T

)
,

α0 = 1,

α1≤i≤T =
√

1− β̃iαi−1,

β̃i = β̃min + β̃max−β̃min
T −1 (i− 1),

T = 1000, β̃min = 10−4, β̃max = 0.02.

Sampling
{

αlinear

(
t

Ts

) ∣∣∣t = 0, ..., Ts

}
Shifted cosine Training

αshifted(t) =
√

sigmoid(λ(t)),
λ(t) = −2 log tan

(
πt
2
)

+ 2 log
( 64

d

)
,

where d is resolution in diffusion process.

Sampling

{
α̃shifted

(
t

Ts

) ∣∣∣t = 0, ..., Ts

}
,

α̃shifted(t) = αmin + (αmax − αmin)αshifted(t),
αmin = 0.01, αmax = 1.0.

VDM++ Training

p(λ) ∝ Ex0∼D,ε∼N (0,I)

[
ω(λ) ∥εθ(x, α̃(λ))− ε∥2

2

]
,

ω(λ) =

max
λ

ω̃(λ), λ < argmax
λ

ω̃(λ)

ω̃(λ), λ ≥ argmax
λ

ω̃(λ),
,

ω̃(λ) = N (λ; λµ, λ2
σ)(e−λ + c2),

µλ = 2.4, σλ = 2.4, c = 0.5.
Sampling Only for training.

EDM Training Not evaluated in this study.

Sampling

α0 = 1, αt≥1 = αEDM

(
t

Ts

)
,

αEDM(t) =
√

sigmoid(λ(t)),
λ(t) = −2 log σ(t),

σ(t) =
{

σ
1
ρ
max +

(
σ

1
ρ

min − σ
1
ρ
max

)
(1− t)

}ρ

,

σmax = 80, σmin = 0.002, ρ = 7.
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Figure 12: Evolution of the FID score with 10k
samples during training on LSUN Horse 256×256
in the pixel-space diffusion model. Using CRS-vx

as the training schedule not only improves the fi-
nal FID score but also leads to faster convergence
compared to shifted cosine. Evaluation is per-
formed using DPM-Solver++(2M) with NFE =
250.

Figure 13: Evolution of the FID score with
10k samples during training on LSUN Church
256×256 in the latent-space diffusion model.
CRS-vx achieves a slightly better best FID
score and consistently lower FID scores before
reaching the best value compared to the linear
schedule. Evaluation is performed using DPM-
Solver++(2M) with NFE = 30.

LSUN Bedroom 256×256: Since only FID scores are reported in the main text (Table 2), we include
sFID, precision, and recall in Table 19 for reference.

Table 20 compares the FID scores of CRS-vx + vFID and EDM sampling under various values of the hyper-
parameter ρ. While the default setting for EDM uses ρ = 7, tuning ρ can further improve its performance.
However, even with the optimal ρ, EDM sampling did not outperform CRS-vx + vFID in terms of FID.

F.2 Results on Latent-Space Diffusion Models

LSUN Church 256×256: The results showing the dependence on training and sampling schedules at
NFE = 30, using stochastic and deterministic samplers, are summarized in Tables 21 and 22, respec-
tively. To evaluate generality across samplers, we tested five different ones: Stochastic DDIM, SDE-DPM-
Solver++(2M), DDIM, PNDM, and DPM-Solver++(2M). As shown in the gray-shaded rows, CRS-vx con-
sistently improved FID scores across all samplers except for SDE-DPM-Solver++(2M).

Figure 13 shows the evolution of the FID score with 10k samples during training, evaluated using DPM-
Solver++ (2M) with NFE = 30. In this experiment, we compare CRS-vx with linear, which was the
strongest-performing baseline training schedule. Both training schedules reach their best FID scores at
around 400 epochs, with CRS-vx achieving a slightly better best FID score. Furthermore, CRS-vx also
showed consistently lower FID scores before reaching the best value, indicating its effectiveness in terms of
convergence speed as well.

The effects of different sampling schedules are shown separately for stochastic and deterministic samplers
in Tables 23 and 24, respectively. CRS-vx or CRS-vε achieved the best FID scores in all cases except when
using SDE-DPM-Solver++(2M) at NFE = 20. In most cases, multiple evaluation metrics—including sFID,
precision, and recall—were simultaneously improved.

LSUN Bedroom 256×256: The results showing the dependence on sampling schedules using stochastic
and deterministic samplers are presented in Tables 25 and 26, respectively. The training schedule was fixed
to CRS-vx. CRS achieved the best FID scores in all cases, except when using SDE-DPM-Solver++(2M) at
NFE = 30 and NFE = 20. In most cases, multiple evaluation metrics were simultaneously improved.

FID scores evaluated at small NFE settings are listed in Table 27. Compared to the results reported in
DPM-Solver-v3 (Zheng et al., 2023a), better FID scores are consistently achieved by using CRS to optimize
both training and sampling schedules across all NFE values. As with other evaluations in this paper, we
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set ξ = 1 by default for CRS-vx and CRS-vε, except at NFE = 5, where ξ was manually tuned to further
improve performance. In this experiment, we observed that the importance of tuning ξ increases as the
NFE decreases. We attribute this behavior to the discretization error introduced by the continuous-time
approximation used in Eq. (7). A comprehensive set of evaluation metrics, including FID, sFID, precision,
and recall, is reported in Table 28. CRS-based noise schedules consistently outperform the linear schedule
across all metrics, except for recall at NFE = 20.

ImageNet 256×256: We demonstrated the effectiveness of CRS in class-conditional image generation on
ImageNet. It is important to note that our experiments do not use classifier-free guidance (CFG), and
therefore the FID scores are naturally higher than those obtained under CFG-enabled settings. However,
as shown in Table 29, our model achieves better FID score than the LDM-4 results reported in the original
LDM paper (Rombach et al., 2022). These observations indicate that our ImageNet results represent a
reasonable level of performance for class-conditional generation without CFG, and provide a meaningful
basis for evaluating the impact of CRS in this setting.

The results showing the dependence on training and sampling schedules at NFE = 30, using both stochastic
and deterministic samplers, are summarized in Tables 30 and 31, respectively. As shown in the gray-shaded
rows, CRS-vFID achieved the best performance for training schedule optimization, while CRS-vx, which
consistently performed well on other datasets, was the second-best. This result may be attributed to the
fact that the feature extractor used in FID computation is pre-trained on ImageNet, which may advantage
CRS-vFID in this specific setting.

The impact of different sampling schedules using stochastic and deterministic samplers is shown in Tables
32 and 33, respectively. Here, the training schedule was fixed to CRS-vx, which outperformed conventional
noise schedules by a significant margin on ImageNet and delivered strong results across a wide range of
datasets. CRS achieved the best FID scores in all cases, except when using PNDM at NFE = 20 and
DPM-Solver++(2M) at NFE = 30. In most settings, CRS-based schedules also led to improvements in other
evaluation metrics, including sFID, precision, and recall.

G Generated Samples

Generated samples are shown in the following figures:

• LSUN Horse 256×256 in the pixel-space diffusion model: Figs. 14 and 15.

• LSUN Bedroom 256×256 in the pixel-space diffusion model: Figs. 16 and 17.

• LSUN Church 256×256 in the latent-space diffusion model: Fig. 18.

• LSUN Bedroom 256×256 in the latent-space diffusion model: Fig. 19.

• ImageNet 256×256 in the latent-space diffusion model: Fig. 20.

All models are trained using CRS-vx for the training schedule optimization.
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Table 17: Performance of pixel-space diffusion models on LSUN Horse 256×256 at NFE = 250, evaluated
under various training and sampling schedules. To assess generality across samplers, we used three different
samplers: SDE-DPM-Solver++(2M), PNDM, and DPM-Solver++(2M). Gray-shaded rows indicate results
for different training schedules (with fixed sampling), while unshaded rows show results for different sampling
schedules (with fixed training). Bold values indicate the best performance for each metric. Note that "cosine"
refers to the shifted cosine schedule.

Training Sampling Metrics
Sampler schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
SDE-DPM- Linear Linear 2.90 6.82 0.66 0.56
Solver++(2M) Cosine 2.95 6.43 0.67 0.56

VDM++ 3.82 7.40 0.66 0.54
CRS-vε 2.91 6.56 0.66 0.56
CRS-vx 2.73 6.40 0.67 0.56
CRS-vx Linear 2.73 6.40 0.67 0.56

Cosine 3.13 7.09 0.67 0.54
EDM 2.09 6.16 0.69 0.56
CRS-vε 2.87 6.71 0.66 0.56
CRS-vx 5.46 8.34 0.62 0.52
CRS-vx + vFID 2.03 6.06 0.69 0.56

PNDM Linear Linear 4.06 6.23 0.57 0.61
Cosine 2.36 5.59 0.63 0.60
VDM++ 70.18 36.78 0.20 0.53
CRS-vFID 8.20 7.92 0.51 0.60
CRS-vx 2.09 5.43 0.65 0.58
CRS-vx Linear 2.09 5.43 0.65 0.58

Cosine 2.19 5.59 0.67 0.57
EDM 2.35 5.85 0.67 0.56
CRS-vε 2.11 5.58 0.66 0.58
CRS-vx 2.50 5.94 0.64 0.58
CRS-vx + vFID 2.12 5.50 0.67 0.57

DPM- Linear Linear 3.17 5.98 0.60 0.61
Solver++(2M) Cosine 2.31 5.63 0.63 0.60

VDM++ 47.63 29.77 0.26 0.56
CRS-vε 7.12 7.45 0.54 0.60
CRS-vx 2.08 5.47 0.65 0.59
CRS-vx Linear 2.08 5.47 0.65 0.59

Cosine 2.18 5.72 0.66 0.58
EDM 2.35 5.85 0.67 0.56
CRS-vx 2.12 5.65 0.66 0.58
CRS-vε 2.87 6.15 0.63 0.58
CRS-vx + vFID 2.19 5.56 0.67 0.57
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Table 18: Performance of pixel-space diffusion models on LSUN Horse 256×256 under different sampling
schedules. Training schedule was fixed to CRS-vx. Bold values indicate the best sampling schedule for each
evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
SDE-DPM- 250 Linear 2.73 6.40 0.67 0.56
Solver++(2M) Shifted cosine 3.13 7.09 0.67 0.54

EDM 2.09 6.16 0.69 0.56
CRS-vε 2.87 6.71 0.66 0.56
CRS-vx 5.46 8.34 0.62 0.52
CRS-vx + vFID 2.03 6.06 0.69 0.56

50 Linear 7.54 9.73 0.59 0.48
Shifted cosine 11.37 12.46 0.53 0.43
EDM 2.75 6.91 0.68 0.55
CRS-vε 6.08 8.75 0.61 0.50
CRS-vx 12.99 12.59 0.50 0.41
CRS-vx + vFID 3.84 8.16 0.67 0.52

PNDM 250 Linear 2.09 5.43 0.65 0.58
Shifted cosine 2.19 5.59 0.67 0.57
EDM 2.35 5.85 0.67 0.56
CRS-vε 2.11 5.58 0.66 0.58
CRS-vx 2.50 5.94 0.64 0.58
CRS-vx + vFID 2.12 5.50 0.67 0.57

50 Linear 2.50 5.76 0.62 0.59
Shifted cosine 3.92 6.77 0.60 0.57
EDM 2.36 5.87 0.67 0.56
CRS-vε 2.46 5.97 0.64 0.58
CRS-vx 6.03 7.32 0.57 0.56
CRS-vx + vFID 2.04 5.60 0.66 0.58

DPM- 250 Linear 2.08 5.47 0.65 0.59
Solver++(2M) Shifted Cosine 2.18 5.72 0.66 0.58

EDM 2.35 5.85 0.67 0.56
CRS-vε 2.12 5.65 0.66 0.58
CRS-vx 2.87 6.15 0.63 0.58
CRS-vx + vFID 2.19 5.56 0.67 0.57

50 Linear 3.17 5.98 0.60 0.59
Shifted cosine 5.27 7.12 0.57 0.56
EDM 2.43 5.87 0.67 0.56
CRS-vε 3.10 6.18 0.62 0.58
CRS-vx 7.44 7.83 0.55 0.55
CRS-vx + vFID 2.26 5.90 0.66 0.57
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Table 19: Evaluation results on LSUN Bedroom 256×256 in pixel-space diffusion model. CRS-vx was used
for optimizing training schedule.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
DPM-Solver++(2M) 10 EDM 4.73 7.75 0.53 0.51

CRS-vx + vFID 4.88 8.67 0.49 0.52
5 EDM 23.72 19.24 0.20 0.28

CRS-vx + vFID 14.02 17.49 0.28 0.41
UniPC 10 EDM 4.94 8.20 0.53 0.40

CRS-vx + vFID 3.30 6.60 0.55 0.53
5 EDM 82.52 33.35 0.06 0.08

CRS-vx + vFID 21.42 11.26 0.21 0.44

Table 20: Comparison of FID scores for CRS-vx + vFID and EDM sampling on LSUN Bedroom 256×256 in
the pixel-space diffusion model. Performance of EDM is reported under various values of the hyperparameter
ρ. Even with the optimal ρ, EDM does not outperform CRS-vx + vFID.

Sampler Sampling schedule NFE = 5 NFE = 10
DPM-Solver++(2M) EDM: ρ = 1 190.32 102.10

EDM: ρ = 3 30.24 13.12
EDM: ρ = 5 22.97 7.92
EDM: ρ = 7 23.72 4.73
CRS-vx + vFID 14.02 4.88

UniPC EDM: ρ = 1 178.24 90.30
EDM: ρ = 3 23.45 4.43
EDM: ρ = 5 55.06 3.96
EDM: ρ = 7 82.52 4.94
CRS-vx + vFID 21.42 3.30
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Table 21: Performance of latent-space diffusion models on LSUN Church 256×256 at NFE = 30, evaluated
under various training and sampling schedules using stochastic samplers. Two samplers were used: Stochastic
DDIM and SDE-DPM-Solver++(2M). Gray-shaded rows indicate variations in training schedules (with fixed
sampling), while unshaded rows show variations in sampling schedules (with fixed training). Bold values
indicate the best result for each evaluation metric.

Training Sampling Metrics
Sampler schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Stochastic DDIM Linear Linear 10.73 18.31 0.57 0.33

VDM++ 11.05 17.33 0.56 0.35
CRS-vFID 10.85 18.77 0.57 0.34
CRS-vε 10.43 17.81 0.57 0.34
CRS-vx 9.82 16.39 0.58 0.34
CRS-vx Linear 9.82 16.39 0.58 0.34

EDM 21.73 29.33 0.43 0.22
CRS-vFID 7.36 13.04 0.60 0.39
CRS-vε 7.53 13.73 0.61 0.38
CRS-vx 6.77 12.57 0.63 0.40

SDE-DPM- Linear Linear 3.49 10.19 0.63 0.57
Solver++(2M) VDM++ 3.33 9.79 0.63 0.57

CRS-vFID 3.50 10.69 0.63 0.57
CRS-vε 3.57 10.26 0.64 0.56
CRS-vx 3.38 10.09 0.64 0.55
CRS-vx Linear 3.38 10.09 0.64 0.55

EDM 4.20 11.69 0.63 0.54
CRS-vFID 3.61 9.51 0.61 0.57
CRS-vε 3.19 9.56 0.62 0.59
CRS-vx 3.20 9.14 0.62 0.58
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Table 22: Performance of latent-space diffusion models on LSUN Church 256×256 at NFE = 30, evaluated
under various training and sampling schedules using deterministic samplers. Three samplers were used:
DDIM, PNDM, and DPM-Solver++(2M). Gray-shaded rows indicate variations in training schedules (with
fixed sampling), while unshaded rows show variations in sampling schedules (with fixed training). Bold
values indicate the best result for each evaluation metric.

Training Sampling Metrics
Sampler schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM Linear Linear 6.18 13.16 0.59 0.51

VDM++ 6.50 12.67 0.56 0.54
CRS-vFID 6.06 13.69 0.59 0.51
CRS-vε 6.05 12.49 0.58 0.50
CRS-vx 5.67 12.33 0.59 0.51
CRS-vx Linear 5.67 12.33 0.59 0.51

EDM 9.15 16.86 0.56 0.44
CRS-vFID 5.35 10.70 0.57 0.53
CRS-vε 4.95 11.01 0.59 0.53
CRS-vx 4.81 10.79 0.59 0.55

PNDM Linear Linear 3.74 10.48 0.60 0.58
VDM++ 3.88 10.20 0.59 0.59
CRS-vFID 3.59 10.61 0.61 0.59
CRS-vε 3.71 10.36 0.60 0.59
CRS-vx 3.56 10.37 0.61 0.58
CRS-vx Linear 3.56 10.37 0.61 0.58

EDM 3.88 10.76 0.60 0.57
CRS-vFID 3.59 9.69 0.59 0.61
CRS-vε 3.48 9.79 0.59 0.59
CRS-vx 3.62 10.15 0.59 0.61

DPM- Linear Linear 3.82 10.28 0.60 0.58
Solver++(2M) VDM++ 4.00 10.07 0.58 0.59

CRS-vFID 3.78 10.51 0.60 0.58
CRS-vε 3.87 10.30 0.60 0.59
CRS-vx 3.69 10.23 0.60 0.59
CRS-vx Linear 3.69 10.23 0.60 0.59

EDM 4.31 11.31 0.60 0.56
CRS-vFID 3.98 9.61 0.58 0.60
CRS-vε 3.63 9.91 0.59 0.60
CRS-vx 3.59 9.51 0.59 0.60
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Table 23: Performance of latent-space diffusion models on LSUN Church 256×256 using stochastic samplers,
evaluated under different sampling schedules. The training schedule was fixed to CRS-vx. Bold values
indicate the best sampling schedule for each evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Stochastic DDIM 50 Linear 6.23 11.94 0.65 0.43

EDM 10.05 17.14 0.60 0.34
CRS-vFID 5.17 10.49 0.65 0.44
CRS-vε 5.26 10.94 0.65 0.44
CRS-vx 4.82 11.91 0.62 0.51

30 Linear 9.82 16.39 0.58 0.34
EDM 21.73 29.33 0.43 0.22
CRS-vFID 7.36 13.04 0.60 0.39
CRS-vε 7.53 13.73 0.61 0.38
CRS-vx 6.77 12.57 0.63 0.40

20 Linear 18.24 25.36 0.45 0.24
EDM 48.46 52.53 0.25 0.11
CRS-vFID 12.42 18.38 0.51 0.29
CRS-vε 12.53 19.27 0.52 0.29
CRS-vx 10.66 16.54 0.55 0.32

SDE-DPM- 50 Linear 3.42 10.58 0.63 0.57
Solver++(2M) EDM 3.57 10.93 0.64 0.57

CRS-vFID 3.32 9.19 0.62 0.58
CRS-vε 3.14 9.65 0.63 0.58
CRS-vx 3.09 9.34 0.63 0.59

30 Linear 3.38 10.09 0.64 0.55
EDM 4.20 11.69 0.63 0.54
CRS-vFID 3.61 9.51 0.61 0.57
CRS-vε 3.19 9.56 0.62 0.59
CRS-vx 3.20 9.14 0.62 0.58

20 Linear 3.55 10.37 0.63 0.56
EDM 5.92 13.79 0.62 0.52
CRS-vFID 4.39 9.33 0.63 0.48
CRS-vε 3.58 9.93 0.61 0.57
CRS-vx 3.57 9.55 0.62 0.56
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Table 24: Performance of latent-space diffusion models on LSUN Church 256×256 using deterministic
samplers, evaluated under different sampling schedules. The training schedule was fixed to CRS-vx. Bold
values indicate the best sampling schedule for each evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 50 Linear 4.52 11.03 0.60 0.54

EDM 5.95 13.37 0.59 0.50
CRS-vFID 4.28 10.07 0.59 0.56
CRS-vε 4.17 10.66 0.60 0.56
CRS-vx 4.01 10.10 0.60 0.57

30 Linear 5.67 12.33 0.59 0.51
EDM 9.15 16.86 0.56 0.44
CRS-vFID 5.35 10.70 0.57 0.53
CRS-vε 4.95 11.01 0.59 0.53
CRS-vx 4.81 10.79 0.59 0.55

20 Linear 7.85 14.66 0.56 0.47
EDM 15.74 22.86 0.48 0.34
CRS-vFID 7.47 12.74 0.54 0.48
CRS-vε 6.49 12.55 0.56 0.49
CRS-vx 6.09 11.72 0.57 0.50

PNDM 50 Linear 3.52 10.42 0.61 0.58
EDM 3.71 10.59 0.60 0.57
CRS-vFID 3.49 9.95 0.60 0.61
CRS-vε 3.48 10.18 0.60 0.59
CRS-vx 3.48 9.92 0.60 0.60

30 Linear 3.56 10.37 0.61 0.58
EDM 3.88 10.76 0.60 0.57
CRS-vFID 3.59 9.69 0.59 0.61
CRS-vε 3.48 9.79 0.59 0.59
CRS-vx 3.62 10.15 0.59 0.61

20 Linear 3.74 10.24 0.60 0.59
EDM 4.57 11.49 0.59 0.56
CRS-vFID 4.06 9.54 0.57 0.61
CRS-vε 3.64 9.98 0.59 0.61
CRS-vx 3.86 9.54 0.62 0.52

DPM- 50 Linear 3.62 10.44 0.61 0.58
Solver++(2M) EDM 3.90 10.85 0.60 0.56

CRS-vFID 3.59 9.68 0.59 0.60
CRS-vε 3.46 9.82 0.60 0.59
CRS-vx 3.43 9.45 0.60 0.59

30 Linear 3.69 10.23 0.60 0.59
EDM 4.31 11.31 0.60 0.56
CRS-vFID 3.98 9.61 0.58 0.60
CRS-vε 3.63 9.91 0.59 0.60
CRS-vx 3.59 9.51 0.59 0.60

20 Linear 3.92 10.03 0.59 0.59
EDM 5.25 12.19 0.59 0.55
CRS-vFID 4.95 9.92 0.56 0.58
CRS-vε 3.89 9.73 0.58 0.60
CRS-vx 4.00 9.44 0.58 0.59
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Table 25: Performance of latent-space diffusion models on LSUN Bedroom 256×256 using stochastic
samplers, evaluated under different sampling schedules. The training schedule was fixed to CRS-vx. Bold
values indicate the best sampling schedule for each evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Stochastic DDIM 50 Linear 3.95 8.98 0.56 0.48

EDM 7.43 16.05 0.54 0.38
CRS-vFID 3.09 7.17 0.57 0.50
CRS-vε 3.25 7.81 0.57 0.49
CRS-vx 3.08 7.20 0.58 0.50

30 Linear 7.28 15.70 0.53 0.38
EDM 17.03 33.60 0.40 0.26
CRS-vFID 5.17 10.62 0.57 0.43
CRS-vε 5.58 12.33 0.56 0.42
CRS-vx 4.78 9.85 0.55 0.45

20 Linear 14.53 29.25 0.42 0.28
EDM 38.01 68.62 0.21 0.13
CRS-vFID 9.18 16.67 0.50 0.35
CRS-vε 9.70 19.40 0.49 0.34
CRS-vx 8.11 15.96 0.51 0.36

SDE-DPM- 50 Linear 2.47 6.44 0.57 0.54
Solver++(2M) EDM 2.48 6.32 0.57 0.54

CRS-vFID 2.21 5.87 0.57 0.54
CRS-vε 2.22 5.76 0.57 0.55
CRS-vx 2.23 5.67 0.57 0.54

30 Linear 2.45 6.70 0.56 0.55
EDM 2.90 7.41 0.57 0.52
CRS-vFID 2.46 6.19 0.57 0.54
CRS-vε 2.50 5.93 0.57 0.53
CRS-vx 2.48 5.73 0.56 0.54

20 Linear 2.78 6.79 0.56 0.53
EDM 4.00 9.57 0.55 0.50
CRS-vFID 3.19 6.70 0.55 0.53
CRS-vε 2.87 6.22 0.57 0.53
CRS-vx 3.07 6.34 0.56 0.52
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Table 26: Performance of latent-space diffusion models on LSUN Bedroom 256×256 using deterministic
samplers, evaluated under different sampling schedules. The training schedule was fixed to CRS-vx. Bold
values indicate the best sampling schedule for each evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 50 Linear 3.02 6.59 0.53 0.54

EDM 4.17 7.64 0.52 0.51
CRS-vFID 2.66 6.03 0.54 0.55
CRS-vε 2.71 6.03 0.54 0.55
CRS-vx 2.62 5.86 0.54 0.55

30 Linear 3.76 7.50 0.53 0.51
EDM 6.81 9.98 0.47 0.46
CRS-vFID 3.23 6.61 0.53 0.53
CRS-vε 3.22 6.65 0.53 0.53
CRS-vx 3.10 6.43 0.54 0.53

20 Linear 5.38 9.27 0.49 0.48
EDM 12.57 14.55 0.38 0.40
CRS-vFID 4.39 7.86 0.51 0.49
CRS-vε 4.28 7.97 0.51 0.49
CRS-vx 4.10 7.54 0.51 0.51

PNDM 50 Linear 2.51 6.02 0.54 0.56
EDM 2.64 6.16 0.53 0.57
CRS-vFID 2.50 5.66 0.54 0.57
CRS-vε 2.44 5.73 0.54 0.57
CRS-vx 2.45 5.61 0.54 0.56

30 Linear 2.57 6.03 0.54 0.56
EDM 2.93 6.45 0.52 0.57
CRS-vFID 2.64 5.59 0.53 0.57
CRS-vε 2.48 5.58 0.54 0.56
CRS-vx 2.65 5.53 0.54 0.57

20 Linear 2.77 6.13 0.53 0.57
EDM 3.76 7.25 0.52 0.54
CRS-vFID 3.02 5.66 0.52 0.57
CRS-vε 2.71 5.53 0.54 0.56
CRS-vx 3.63 6.23 0.61 0.57

DPM- 50 Linear 2.59 6.15 0.54 0.56
Solver++(2M) EDM 2.86 6.44 0.52 0.57

CRS-vFID 2.46 5.63 0.54 0.56
CRS-vε 2.46 5.63 0.54 0.56
CRS-vx 2.37 5.42 0.54 0.56

30 Linear 2.68 6.18 0.54 0.56
EDM 3.40 7.09 0.51 0.56
CRS-vFID 2.60 5.63 0.54 0.56
CRS-vε 2.60 5.53 0.54 0.56
CRS-vx 2.63 5.45 0.54 0.55

20 Linear 2.89 6.24 0.53 0.56
EDM 4.14 8.07 0.52 0.53
CRS-vFID 3.03 5.81 0.52 0.56
CRS-vε 2.88 5.59 0.53 0.56
CRS-vx 3.00 5.63 0.54 0.55
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Table 27: FID scores on LSUN Bedroom 256×256 in latent-space diffusion models at small NFE settings.
Bold values indicate the best FID score at each NFE. Results for rows other than "Ours" are taken from
Zheng et al. (2023a). As with other evaluations in this paper, we set ξ = 1 by default for CRS-vx and CRS-vε,
except at NFE = 5, where ξ was manually tuned to further improve performance. In this experiment, we
observed that the importance of tuning ξ increases as the NFE decreases. We attribute this behavior to the
discretization error introduced by the continuous-time approximation used in Eq. (7).

Sampling FID ↓
Model Sampler schedule NFE = 5 NFE = 10 NFE = 20
LDM DPM-Solver++ Linear 18.59 3.63 3.16

UniPC 12.24 3.56 3.07
DPM-Solver-v3 Zheng et al. (2023a) 7.54 3.16 3.05

Ours iPNDM Linear 10.81 3.71 2.64
CRS-vε 7.88 3.12 2.48
CRS-vx 8.07 3.45 2.50
CRS-vε: ξ = 1.4 7.64 – –
CRS-vx: ξ = 2.2 6.96 – –

Table 28: Detailed evaluation results on LSUN Bedroom 256×256 in latent-space diffusion models at small
NFE settings. Bold values indicate the best sampling schedule for each metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
iPNDM 20 Linear 2.64 6.15 0.53 0.57

CRS-vε 2.48 5.48 0.54 0.56
CRS-vx 2.50 5.41 0.55 0.56

10 Linear 3.71 6.88 0.52 0.54
CRS-vε 3.12 5.69 0.52 0.56
CRS-vx 3.45 6.15 0.54 0.53

5 Linear 10.81 13.82 0.42 0.49
CRS-vε 7.88 9.84 0.45 0.50
CRS-vx 8.07 10.43 0.45 0.48
CRS-vε: ξ = 1.4 7.64 9.23 0.45 0.52
CRS-vx: ξ = 2.2 6.96 8.65 0.45 0.49

Table 29: Comparison between our trained model and LDM-4 (Rombach et al., 2022) on ImageNet under
class-conditional generation without CFG. Nparams denotes the number of parameters in the U-Net model.
Our model, trained with CRS-vx as the training schedule, achieves a better FID score than LDM-4 despite
having fewer U-Net parameters.

Model Training schedule Sampling schedule Sampler NFE FID(↓) Nparams
LDM-4 Linear Linear Stochastic DDIM 250 10.56 400M
Ours CRS-vx 9.67 296M
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Table 30: Performance of latent-space diffusion models on ImageNet 256×256 at NFE = 30, evaluated
under various training and sampling schedules using stochastic samplers. Two samplers were used: Stochastic
DDIM and SDE-DPM-Solver++(2M). Gray-shaded rows indicate variations in training schedules (with fixed
sampling), while unshaded rows show variations in sampling schedules (with fixed training). Bold values
indicate the best result for each evaluation metric.

Training Sampling Metrics
Sampler schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Stochastic DDIM Linear Linear 27.31 21.39 0.46 0.55

VDM++ 29.00 17.67 0.46 0.57
CRS-vFID 25.50 21.41 0.48 0.56
CRS-vε 26.97 20.71 0.47 0.56
CRS-vx 25.83 19.92 0.47 0.57
CRS-vx Linear 25.83 19.92 0.47 0.57

EDM 49.72 50.08 0.31 0.51
CRS-vFID 20.85 13.01 0.52 0.56
CRS-vε 20.43 13.14 0.53 0.58
CRS-vx 17.88 10.14 0.55 0.59

SDE-DPM- Linear Linear 11.12 5.68 0.62 0.62
Solver++(2M) VDM++ 29.00 17.67 0.46 0.57

CRS-vFID 10.22 5.81 0.62 0.64
CRS-vε 11.18 5.84 0.62 0.63
CRS-vx 10.25 5.64 0.62 0.64
CRS-vx Linear 10.25 5.64 0.62 0.64

EDM 11.52 6.13 0.60 0.64
CRS-vFID 10.49 5.39 0.63 0.63
CRS-vε 10.24 5.22 0.63 0.63
CRS-vx 10.56 5.32 0.63 0.63

45



Published in Transactions on Machine Learning Research (01/2026)

Table 31: Performance of latent-space diffusion models on ImageNet 256×256 at NFE = 30, evaluated under
various training and sampling schedules using deterministic samplers. Three samplers were used: DDIM,
PNDM, and DPM-Solver++(2M). Gray-shaded rows indicate variations in training schedules (with fixed
sampling), while unshaded rows show variations in sampling schedules (with fixed training). Bold values
indicate the best result for each evaluation metric.

Training Sampling Metrics
Sampler schedule schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM Linear Linear 17.33 6.79 0.55 0.62

VDM++ 19.53 5.97 0.54 0.64
CRS-vFID 15.52 6.95 0.56 0.63
CRS-vε 17.02 6.94 0.55 0.63
CRS-vx 16.28 6.27 0.56 0.64
CRS-vx Linear 16.28 6.27 0.56 0.64

EDM 22.17 9.22 0.49 0.62
CRS-vFID 15.51 6.72 0.56 0.63
CRS-vε 15.26 5.79 0.57 0.64
CRS-vx 15.28 5.67 0.57 0.64

PNDM Linear Linear 13.21 5.35 0.59 0.65
VDM++ 16.01 6.31 0.57 0.66
CRS-vFID 11.42 5.31 0.59 0.66
CRS-vε 12.69 5.45 0.59 0.65
CRS-vx 12.29 5.38 0.59 0.66
CRS-vx Linear 12.29 5.38 0.59 0.66

EDM 12.86 5.62 0.58 0.66
CRS-vFID 12.18 5.21 0.59 0.65
CRS-vε 12.57 5.24 0.59 0.66
CRS-vx 12.65 5.38 0.59 0.66

DPM- Linear Linear 13.87 5.41 0.59 0.64
Solver++(2M) VDM++ 16.97 6.45 0.56 0.66

CRS-vFID 12.09 5.40 0.59 0.65
CRS-vε 13.41 5.54 0.58 0.65
CRS-vx 12.92 5.46 0.59 0.66
CRS-vx Linear 12.92 5.46 0.59 0.66

EDM 13.67 5.79 0.58 0.66
CRS-vFID 13.02 5.19 0.59 0.65
CRS-vε 13.02 5.17 0.59 0.65
CRS-vx 13.33 5.13 0.59 0.65
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Table 32: Performance of latent-space diffusion models on ImageNet 256×256 using stochastic samplers,
evaluated under different sampling schedules. The training schedule was fixed to CRS-vx. Bold values
indicate the best sampling schedule for each evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
Stochastic DDIM 50 Linear 15.61 8.97 0.57 0.60

EDM 25.66 19.17 0.46 0.57
CRS-vFID 13.67 6.86 0.60 0.60
CRS-vε 13.44 7.56 0.59 0.61
CRS-vx 13.05 6.45 0.60 0.61

30 Linear 25.83 19.92 0.47 0.57
EDM 49.72 50.08 0.31 0.51
CRS-vFID 20.85 13.01 0.52 0.56
CRS-vε 20.43 13.14 0.53 0.58
CRS-vx 17.88 10.14 0.55 0.59

20 Linear 44.15 42.96 0.34 0.53
EDM 78.05 99.25 0.20 0.44
CRS-vFID 30.28 24.26 0.44 0.54
CRS-vε 31.86 26.34 0.43 0.55
CRS-vx 27.20 20.09 0.47 0.56

SDE-DPM- 50 Linear 9.96 5.62 0.63 0.64
DPM-Solver++(2M) EDM 9.72 5.35 0.63 0.64

CRS-vFID 10.26 5.43 0.63 0.63
CRS-vε 9.68 5.33 0.63 0.64
CRS-vx 10.11 5.32 0.63 0.64

30 Linear 10.25 5.64 0.62 0.64
EDM 11.52 6.13 0.60 0.64
CRS-vFID 10.49 5.39 0.63 0.63
CRS-vε 10.24 5.22 0.63 0.63
CRS-vx 10.56 5.32 0.63 0.63

20 Linear 11.47 5.81 0.61 0.63
EDM 16.26 9.38 0.55 0.63
CRS-vFID 11.10 5.50 0.63 0.62
CRS-vε 10.83 5.36 0.62 0.63
CRS-vx 11.64 5.26 0.63 0.62
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Table 33: Performance of latent-space diffusion models on ImageNet 256×256 using deterministic samplers,
evaluated under different sampling schedules. The training schedule was fixed to CRS-vx. Bold values
indicate the best sampling schedule for each evaluation metric.

Sampling Metrics
Sampler NFE schedule FID ↓ sFID ↓ Precision ↑ Recall ↑
DDIM 50 Linear 13.91 5.37 0.58 0.65

EDM 16.25 6.24 0.55 0.65
CRS-vFID 13.45 5.36 0.58 0.64
CRS-vε 13.64 5.20 0.58 0.65
CRS-vx 13.75 5.12 0.59 0.65

30 Linear 16.28 6.27 0.56 0.64
EDM 22.17 9.22 0.49 0.62
CRS-vFID 15.51 6.72 0.56 0.63
CRS-vε 15.26 5.79 0.57 0.64
CRS-vx 15.28 5.67 0.57 0.64

20 Linear 20.49 8.82 0.51 0.62
EDM 33.08 15.78 0.40 0.60
CRS-vFID 18.43 7.52 0.54 0.63
CRS-vε 18.30 7.57 0.54 0.63
CRS-vx 18.16 7.05 0.55 0.62

PNDM 50 Linear 12.10 5.32 0.59 0.66
EDM 12.53 5.49 0.59 0.66
CRS-vFID 11.86 5.20 0.59 0.65
CRS-vε 12.35 5.28 0.59 0.66
CRS-vx 12.44 5.28 0.59 0.66

30 Linear 12.29 5.38 0.59 0.66
EDM 12.86 5.62 0.58 0.66
CRS-vFID 12.18 5.21 0.59 0.65
CRS-vε 12.57 5.24 0.59 0.66
CRS-vx 12.65 5.38 0.59 0.66

20 Linear 12.83 5.52 0.59 0.66
EDM 13.99 5.99 0.58 0.66
CRS-vFID 12.97 5.38 0.58 0.66
CRS-vε 12.92 5.30 0.59 0.65
CRS-vx 13.63 6.10 0.57 0.66

DPM- 50 Linear 12.42 5.41 0.59 0.66
Solver++(2M) EDM 12.90 5.57 0.59 0.66

CRS-vFID 12.27 5.15 0.59 0.65
CRS-vε 12.64 5.23 0.59 0.66
CRS-vx 12.75 5.21 0.59 0.65

30 Linear 12.92 5.46 0.59 0.66
EDM 13.67 5.79 0.58 0.66
CRS-vFID 13.02 5.19 0.59 0.65
CRS-vε 13.02 5.17 0.59 0.65
CRS-vx 13.33 5.13 0.59 0.65

20 Linear 13.71 5.45 0.58 0.65
EDM 15.31 6.23 0.57 0.66
CRS-vFID 14.10 5.25 0.59 0.65
CRS-vε 13.70 5.13 0.59 0.65
CRS-vx 14.16 5.09 0.59 0.64
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Figure 14: Generated samples of LSUN Horse 256×256 using a pixel-space diffusion model at NFE = 250
(FID = 2.03). The training and sampling schedules were optimized using CRS-vx and CRS-vx + vFID,
respectively. SDE-DPM-Solver++(2M) was used as the sampler.
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Figure 15: Generated samples of LSUN Horse 256×256 using a pixel-space diffusion model at NFE = 50
(FID = 2.04). The training and sampling schedules were optimized using CRS-vx and CRS-vx + vFID,
respectively. PNDM was used as the sampler.
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Figure 16: Generated samples of LSUN Bedroom 256×256 using a pixel-space diffusion model at NFE = 10
(FID = 3.30). The training and sampling schedules were optimized using CRS-vx and CRS-vx + vFID,
respectively. UniPC was used as the sampler.
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Figure 17: Generated samples of LSUN Bedroom 256×256 using a pixel-space diffusion model at NFE = 5
(FID = 14.02). The training and sampling schedules were optimized using CRS-vx and CRS-vx + vFID,
respectively. DPM-Solver++(2M) was used as the sampler.
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Figure 18: Generated samples of LSUN Church 256×256 using a latent-space diffusion model at NFE = 20
(FID = 3.89). The training and sampling schedules were optimized using CRS-vx and CRS-vε, respectively.
DPM-Solver++(2M) was used as the sampler.
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Figure 19: Generated samples of LSUN Bedroom 256×256 using a latent-space diffusion model at NFE = 20
(FID = 2.71). The training and sampling schedules were optimized using CRS-vx and CRS-vε, respectively.
PNDM was used as the sampler.
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Figure 20: Generated samples of ImageNet 256×256 using a latent-space diffusion model at NFE = 20 with
class condition (FID = 10.83). Six classes were randomly selected, and each row corresponds to one class.
The training and sampling schedules were optimized using CRS-vx and CRS-vε, respectively. SDE-DPM-
Solver++(2M) was used as the sampler.
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