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Abstract

AI-generated images have reached a quality level at which humans are incapable1

of reliably distinguishing them from real images. To counteract the inherent risk2

of fraud and disinformation, the detection of AI-generated images is a pressing3

challenge and an active research topic. While many of the presented methods claim4

to achieve high detection accuracy, they are usually evaluated under idealized con-5

ditions. In particular, the adversarial robustness is often neglected, potentially due6

to a lack of awareness or the substantial effort required to conduct a comprehensive7

robustness analysis. In this work, we tackle this problem by providing a simpler8

means to assess the robustness of AI-generated image detectors. We present RAID9

(Robust evaluation of AI-generated image Detectors), a dataset of 72k diverse and10

highly transferable adversarial examples. The dataset is created by running attacks11

against an ensemble of seven state-of-the-art detectors and images generated by four12

different text-to-image models. Extensive experiments show that our methodology13

generates adversarial images that transfer with a high success rate to unseen detec-14

tors, which can be used to quickly provide an approximate yet still reliable estimate15

of a detector’s adversarial robustness. Our findings indicate that current state-of-the-16

art AI-generated image detectors can be easily deceived by adversarial examples,17

highlighting the critical need for the development of more robust methods. We18

release our dataset at https://huggingface.co/datasets/aimagelab/RAID19

and evaluation code at https://github.com/pralab/RAID.20

1 Introduction21

Over the last years, generative artificial intelligence (GenAI) has evolved from a mere research topic to22

a vast collection of commonly available tools. While the inception of large language models (LLMs),23

most notably ChatGPT, has been most transformative for our everyday life, the evolution of generative24

image modeling has drastically shifted our understanding of visual media. This development was25

initiated by the discovery of diffusion models [71], which utilize an iterative noising and denoising26

process [34] to learn the distribution of natural images. Later work [66] improved this process27

by performing the generation process in the compressed latent space of a pre-trained variational28

autoencoder [42] that essentially reduces computational overhead and preserves semantic information29

while discarding high-frequency noise, in addition to introducing flexible conditional generation with30

the use of cross-attention layers. This rapid development, while improving computer vision tasks31
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Figure 1: Adversarial attack on the commercially available detector provided by sightengine. Suc-
cessful evasion is shown by adding adversarial noise computed on the Corvi et al. [16] detector.

such as image upsampling [78] and dataset augmentation [3], poses a considerable risk of nefarious32

misuse leading to the spread of misinformation, privacy violation, and identity theft [63, 82]. This33

underscores the urgent need for detection methods that generalize and keep up with the ever-evolving34

image generation technology while maintaining robustness to adversarial attempts to evade detection.35

To mitigate the harmful consequences of AI-generated images, a variety of detection approaches36

have been proposed in the literature [4, 12, 32, 50, 57, 75, 76]. Based on the reported results,37

according to which many detectors can distinguish real from generated images with almost perfect38

accuracy, one could get the impression that the problem of detecting synthetic images is already39

solved. However, evaluations are typically conducted within an idealized lab setting that does not40

consider real-world risks. One major factor is the effect of common processing operations, such as41

resizing or compression, which have already been shown to have drastic effects on the performance42

of AI-generated image detectors [15, 31, 80].43

An important factor, which the majority of existing work has neglected, is the adversarial robustness44

of detectors. Take, for instance Figure 1, a synthetic image generated and spread across social media45

outlets [58] that despite the relatively quick intervention to debunk it as a fake image, still had an46

impact on the stock market; we can detect such an image as being AI-generated with an off-the-shelf47

detector, but when we modify the image using carefully designed adversarial perturbations, it can48

evade the detection of said detector and others, with the effectiveness increasing for those that share49

similar architecture [52]. The adversarial robustness is often not investigated in works proposing50

synthetic image detectors, partially due to the significant effort required to generate adversarial51

examples. Due to many different attacks and hyperparameters and the required technical knowledge,52

conducting a comprehensive robustness analysis is not straightforward.53

Existing work [52] unveils this failure to show robustness in white-box scenarios where the malicious54

actor has access to the architecture and training parameters of the detector, and also in black-box55

scenarios where the attacker’s knowledge is limited. However, we note that the attacks used for the56

evaluation remain restricted in using techniques that increase their success and transferability. In57

this work, we extend this concept to bridge this evaluation gap by providing a standard and effective58

means to assess the adversarial robustness of AI-generated image detectors. In particular, we propose59

RAID (Robust evaluation of AI-generated image Detectors), a large-scale dataset of diverse and60

transferable adversarial examples created using an ensemble of state-of-the-art detectors that employ61

different architectures. As we experimentally demonstrate, testing the detection performance on62

RAID provides a solid estimate of the adversarial robustness of a detector. Our benchmark on seven63

recently proposed detectors shows that the current landscape of AI-generated image detection is64

not yet expansive nor reliable for widespread adoption in the real world, without properly ensuring65

adversarial robustness to evasion attacks.66

Contributions. In summary, we make the following contributions:67

• We create RAID, the first dataset of transferable adversarial synthetic images, constructed68

using highly transferable attacks, to standardize testing the adversarial robustness of SoTA69

synthetic image detectors.70
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Figure 2: A diagram of the three experimental pipelines used in the paper for generating the RAID
dataset. Left: We keep the top three performing detectors intact while we re-train the rest. Middle:
We generate adversarial examples from adversarial attacks on an ensemble of detectors. Right: We
evaluate the baseline detectors on the RAID dataset.

• We conduct a large-scale study showing that adversarial perturbations transfer across several71

SoTA synthetic image detectors.72

• We show that the transferability of adversarial perturbations to AI-generated detectors73

increases when we use an ensemble adversarial attack with comparable results to a white-74

box attack.75

2 The RAID Dataset76

This section describes how we constructed our dataset of transferable adversarial examples. An77

overview of how we created RAID is given in Figure 2.78

2.1 Source Dataset79

RAID is built upon the D3 dataset [4]. In total, D3 consists of 11.5M images. It is constructed80

from 2.3M real images taken from the LAION-400M [70] dataset. Using the corresponding caption81

as prompts, synthetic images are generated from four open-source text-to-image models: Stable82

Diffusion v1.4 [66], Stable Diffusion v2.1 [66], Stable Diffusion XL [59], and DeepFloyd IF [2]. For83

details on data selection and prompt engineering, we refer to the original publication [4]. It should84

be noted that each generated image is post-processed such that the image format and compression85

strength match that of the real distribution present in the corresponding real image. This not only86

reduces the risk of unwanted biases between real and generated images but also makes the dataset87

significantly more challenging for the detection task.88

We built our dataset using D3 in two phases. First, to re-train the detectors used to compute the adver-89

sarial examples, we take the training subset of D3 comprising 2,311,429 real and 9,245,716 generated90

images. As we show in Section 3.2, re-raining helps to ensure a sufficient detection performance on91

the original images and, subsequently, the generation of effective adversarial examples. Second, we92

use the same procedure as in [4] to construct the actual RAID dataset to generate synthetic images93

based on 4,800 new real images. For each of the resulting 24,000 images (i.e., the real images94

and the synthetic images from four generators), we create matching adversarial examples using the95

attack presented in Section 2.2 for each ϵ attack parameter. Thus, our proposed dataset consists of96

72,000 adversarial examples — 24,000 adversarial examples for each attack parameter ϵ, of which97

we consider 8
255 , 16

255 and 32
255 — in addition to original images, for a total of 96,000 images.98

2.2 Crafting Adversarial Perturbations99

Adversarial Examples Optimization Given an input sample x ∈ [0, 1]d and a victim model with100

parameters θ, adversarial examples [5, 72] can be crafted with evasion attacks, which aim to solve101

the following optimization problem to compute the adversarial perturbation δ ∈ Rd:102

arg min
δ:∥δ∥∞≤ϵ

L(x+ δ,θ) , (1)

where ϵ is the applied bound on the perturbation size, and L is a loss function encoding the attacker’s103

objective (i.e., a misclassification).104
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The above optimization problem is commonly solved with gradient-based techniques, which require105

access to the model’s parameters and gradients. Despite this approach working well in this white-106

box setting, it is often not possible to get full access to the model’s internals. Nevertheless, it107

has been shown that the adversarial examples produced against a model can still be effective on108

different models, although this phenomenon, called transferability, is weaker across different model109

architectures. To increase transferability, previous works proposed to simultaneously attack an110

ensemble of models [23, 46]. We thus leverage an ensemble attack by extending Eq. 1 to a set of M111

models:112

arg min
δ:∥δ∥∞≤ϵ

L(x+ δ,θ1,θ2, . . . ,θM ) . (2)

Among several possible choices, we define the loss function as:113

L(x+ δ,θ1,θ2, . . . ,θM ) =
1

M

M∑
m=1

CE(lθm
(x), yt) , (3)

where CE is the Cross-Entropy loss, and lθm is the output logit of the m-th model and yt is the target114

class, i.e., the output label desired by the attacker.115

Detection Ensemble. The key requirement for our dataset is that the adversarial examples are116

transferable, i.e., they are effective against unseen detectors. To achieve high transferability, we use117

an ensemble of a diverse set of seven different detectors:118

Wang et al. [75] In this seminal work, the authors show that a ResNet-50 [33] trained on real and119

generated images from a single generator (ProGAN [38]) is sufficient to successfully detect120

images from a variety of other GANs. During training, extensive data augmentation is used121

to account for different image processing and increase generalization.122

Corvi et al. [16] This architecture is adapted from [31] and is a modification of the detector proposed123

by Wang et al. [75]. It uses the same backbone, but avoids down-sampling in the first layer124

to preserve high-frequency features and uses stronger augmentation.125

Ojha et al. [57] Unlike previous work, this detector uses a pre-trained vision foundation model126

(CLIP [60]) as a feature extractor to avoid overfitting on a particular class of generated127

images and, thus, improve generalization. To obtain a final classification, a single linear128

layer is added and trained on top of the 768-dimensional feature vector.129

Koutlis and Papadopoulos [43] The approach of RINE is similar to that presented by Ojha et al.130

[57], but additionally uses intermediate encoder-blocks of CLIP [60]. The resulting features131

are weighted using a learnable projection network, followed by a classification head.132

Cavia et al. [8] Instead of classifying the entire image at once, LaDeDa operates on 9× 9 patches.133

The architecture is based on ResNet-50 [33] but uses 1×1 convolutions to limit the receptive134

field. The scores of all patches are combined using average pooling to obtain a final score.135

Chen et al. [12] DRCT is a training paradigm that can increase the generalizability of AI-generated136

image detectors. It uses the reconstruction capabilities of DMs to generate images that are137

semantically similar to real ones, but contain the artifacts used for detection. The authors138

provide pre-trained detectors based on two backbones, ConvNeXt [47] and CLIP [60].139

As we show in Section 3.2, the published version of most detectors does not perform well on the140

original images in our dataset. We hypothesize that this may be attributed to the applied post-141

processing and the specific test images, which differ greatly from the training data of the various142

detectors. Since creating adversarial examples based on detectors that are already ineffective against143

clean samples reduces the impact of the work, we re-train detectors on the training subset described144

in Section 2.1, following the original authors’ training instructions.145

3 Experimental Analysis146

In this section, we evaluate how well RAID can be used to estimate the adversarial robustness of147

AI-generated image detectors. To this end, we initially test the performance on unperturbed images148

and conduct classical white-box attacks on each detector, demonstrating their susceptibility to evasion149

attacks. We subsequently analyze the transferability of white-box attacks and compare them to our150

ensemble attack, showing the effectiveness of RAID.151
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3.1 Experimental Setup152

Detectors. In addition to the seven detectors described in 2.2, we use four additional detectors whose153

architecture is a pre-trained visual backbone with a linear layer added on top. During training, a154

Binary Cross Entropy Loss is considered to discern between real and fake images. All model weights155

are frozen except for the linear layer trained using the D³ train set. In particular, we use two different156

versions of DINO [7, 19] to highlight the behavior of self-supervised models. At the same time, to157

explore the impact of model size, we also consider a ViT-Tiny. We follow the transformation pipeline158

introduced by Ojha et al. [57] for training and evaluation. This setup enables a consistent comparison159

across different architectures and training paradigms applied to deepfake detection. Finally, we adapt160

the CoDE model [4] for this analysis. Specifically, we used the feature extractor trained with a161

contrastive loss tailored for deepfake detection and trained a linear classification layer on top. In this162

case, we follow the transformation strategy described in the original CoDE implementation.163

Dataset. As noted in 2.2, we use the images of the D³ test data set and the adversarial images164

generated by the adversarial attacks. We run the evaluations for our experiments on 1k clean images165

and 1k adversarial images. All images are center-cropped to ensure consistent input dimensions166

for efficient batch processing, before applying the detector-specific preprocessing and evaluation.167

Moreover, in the creation of the RAID dataset, following the approach used for the D³ dataset, only168

images labeled as safe in the LAION metadata were considered as real images. This ensured that the169

generated images also adhere to this safeguard. To this end, samples depicting NSFW images has170

been excluded.171

Experimental environment. During the re-training phase of the different detectors, 4x A100 GPUs172

are used in a distributed data parallel setup. Each experiment runs for a maximum of 18 hours until173

convergence is reached. In contrast, the ensemble attack is conducted using a single A100 GPU,174

which takes a total of 8 hours. The evaluation script is lightweight and takes less than 1 hour for each175

detector in a non-distributed setting.176

Attack setting. The attack optimization is performed with a PGD algorithm, with 10 iterations and a177

step size of 0.05. We select two perturbations for the attacks: ϵ = 16
255 and ϵ = 32

255 .178

Evaluation Metrics. To evaluate the performance of the detectors, we make use of the following179

metrics:180

• F1-score. The F1 score measures the harmonic mean of the precision and true positive rate181

(TPR), which provides a metric capable of reliably computing the model’s performance in182

the presence of unbalanced class distributions. It is defined as: F1 = 2× Precision×TPR
Precision+TPR .183

• Accuracy. Accuracy is the ratio of correctly predicted samples over the total number184

of samples. It can be misleading in unbalanced datasets as it does not consider class185

distributions. We take the classification threshold = 0.5, as was done for all the detectors186

considered.187

• AUROC. The Area Under the Receiver Operating Characteristic Curve metric summarizes188

the ROC curve, which plots the True Positive Rate against the False Positive Rate, by189

correctly measuring the model’s capability to identify samples across all classification190

thresholds. An AUROC of 1 corresponds to a perfect classifier with a 0 False Positive Rate191

across all thresholds, and an AUROC of 0.5 corresponds to a random chance classifier.192

3.2 Experimental Results193

Initial Evaluation. Prior to evaluating the adversarial robustness of the considered detectors, we first194

evaluate their performance on the D³ test set. The initial performance evaluation of the detectors with195

the provided weights in Table 1 shows mixed results, particularly regarding F1-score and Accuracy196

measures. For instance, Cavia et al. [8] and Wang et al. [75] show very low F1-score of 20 and 20.6,197

along with an AUROC of 44.6 and 45.8, respectively. Additionally, Ojha et al. [57] shares a similar198

trend with F1-score = 32.8, while other detectors show a decent performance. We hypothesize that199

the poor adaptability of the first three detectors is due to the data drift between the D³ test set and200

the datasets used in their respective papers, in addition to the post-processing applied to the images,201

especially the compression of images when using lossy formats.202
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Table 1: Evaluation of each model on a subset of the clean D³ test set (1000 samples). † refers to
detectors trained on the D³ training set.

F1 Accuracy AUROC

Cavia et al. [8] (Ca24) 0.2 0.07 0.45
Corvi et al. [16] (Co23) 0.75 0.81 0.91
Ojha et al. [57] (O23) 0.33 0.29 0.68
Wang et al. [75] (W20) 0.21 0.02 0.46

Cavia et al. [8]† (Ca24†) 0.55 0.63 0.84
Chen et al.(CLIP) [12] (Ch24C) 0.81 0.89 0.73
Chen et al.(ConvNext) [12] (Ch24CN) 0.86 0.91 0.94
Corvi et al. [16]† (Co23†) 0.98 0.99 0.99
Koutlis and Papadopoulos [43] (K24) 0.74 0.81 0.88
Ojha et al. [57]† (O23†) 0.92 0.95 0.95
Wang et al. [75]† (W20†) 0.99 0.99 0.99

In our work, we focus on robustness to adversarial attacks, and as such, we re-train on the D³ training203

set the top four detectors that perform the worst: Cavia et al. [8], Corvi et al. [16], Ojha et al. [57], and204

Wang et al. [75]. We retain the same weights for the rest of the detectors (Koutlis and Papadopoulos205

[43], Chen et al. [12] (ConvNext) and Chen et al. [12] (CLIP)), both for the acceptable performance206

and to ensure the generalization of attacks without the induced risk of a dataset-bias if all detectors207

are trained on the D³ dataset. After re-training, we note an improvement across metrics for the four208

detectors; however, Cavia et al. [8]’s metrics do not improve similarly to the others.209

Table 2: White-box and Black-box Adversarial Robustness Evaluation (F1/AUROC) on PGD with 10
steps, step size = 0.05 and ϵ = 16/255 - Adversarial attacks are ran against the model in each row and
evaluated on models in each column. † refers to detectors trained on the D³ training set. Final row N -
model refers to ensemble attacks targeting all models, excluding the evaluated against model. bold
values corresponding to white-box evaluation in single detector attacks

Ca24† Ch24C Ch24CN Co23† K24 O23† W20†

Ca24† 0.0/0.5 0.9/0.63 0.9/0.85 0.92/0.91 0.85/0.65 0.78/0.8 0.8/0.83
Ch24C 0.6/0.56 0.0/0.5 0.28/0.58 0.87/0.87 0.07/0.51 0.23/0.56 0.76/0.81
Ch24CN 0.69/0.54 0.86/0.61 0.29/0.48 0.87/0.88 0.85/0.59 0.79/0.8 0.75/0.8
Co23† 0.74/0.48 0.86/0.64 0.48/0.64 0.0/0.5 0.78/0.6 0.67/0.73 0.05/0.51
K24 0.55/0.56 0.31/0.51 0.3/0.59 0.83/0.85 0.0/0.5 0.41/0.62 0.8/0.83
O23† 0.59/0.58 0.46/0.52 0.41/0.63 0.84/0.85 0.31/0.54 0.0/0.5 0.74/0.79
W20† 0.7/0.54 0.88/0.66 0.25/0.56 0.09/0.52 0.84/0.68 0.69/0.75 0.0/0.5
N - model 0.66/0.43 0.34/0.51 0.2/0.56 0.53/0.67 0.08/0.51 0.18/0.54 0.4/0.62

Adversarial Robustness Evaluation. We evaluate the adversarial robustness of the seven detectors,210

using the Projected Gradient Descent (PGD) adversarial attack [48], a well-established iterative211

approach to generate adversarial examples. We employ PGD with the following configuration: 10212

steps, step size = 0.05 and two perturbation budgets ϵ = 16
255 and ϵ = 32

255 . and we report the results213

in Tables 2 and 3.214

First, we assess the adversarial robustness of detectors in a white-box setting where each detector is215

attacked using adversarial perturbations crafted against it. This scenario represents the worst-case216

scenario in which the attacker has full knowledge of the target detector’s architecture and parameters.217

The results for both ϵ = 16
255 and ϵ = 32

255 reveal a general lack of adversarial robustness. In218

particular, looking at Table 2, the F1-score drops to 0 for all detectors except for Chen et al. [12]219

(ConvNext), which exhibits inherent robustness with F1-score = 28.9. This tendency is carried over220

to the results in Table 3, where we report the attack against the detectors with ϵ = 32
255 , as even221

under such large adversarial perturbations, the F1-score (25.2) does not drop to 0 similarly to the222

rest of the detectors. However, we underline that the drop in performance is still steep, from the223

initial F1 score = 86.5 on the clean examples 1. Additionally, an evaluation of the AUROC reveals224
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Table 3: White-box and Black-box Adversarial Robustness Evaluation (F1/AUROC) on PGD with 10
steps, step size = 0.05 and ϵ = 32/255 - Adversarial attacks are ran against the model in each row and
evaluated on models in each column. † refers to detectors trained on the D³ training set. Final row N -
model refers to ensemble attacks targeting all models, excluding the evaluated against model. bold
values corresponding to white-box evaluation in single detector attacks

Ca24† Ch24C Ch24CN Co23† K24 O23† W20†

Ca24† 0.0/0.5 0.87/0.61 0.82/0.81 0.93/0.89 0.84/0.69 0.80/0.80 0.69/0.76
Ch24C 0.12/0.49 0.0/0.5 0.03/0.51 0.86/0.87 0.0/0.5 0.06/0.51 0.61/0.72
Ch24CN 0.33/0.5 0.79/0.61 0.25/0.51 0.81/0.83 0.79/0.69 0.76/0.76 0.58/0.70
Co23† 0.67/0.48 0.76/0.59 0.17/0.53 0.0/0.5 0.65/0.6 0.69/0.73 0.03/0.51
K24 0.23/0.54 0.20/0.51 0.13/0.53 0.87/0.87 0.0/0.5 0.36/0.6 0.74/0.79
O23† 0.13/0.51 0.19/0.51 0.10/0.52 0.85/0.86 0.08/0.51 0.0/0.5 0.63/0.73
W20† 0.59/0.49 0.82/0.60 0.06/0.5 0.04/0.51 0.68/0.6 0.67/0.72 0.0/0.5
N - model 0.28/0.33 0.08/0.49 0.01/0.5 0.32/0.59 0.01/0.5 0.06/0.52 0.17/0.54

similar results. Furthermore, we investigate the transferability of adversarial examples, referring225

to whether adversarial perturbations designed to fool one detector can also fool the others. Many226

adversarial examples generated for one detector do indeed reduce the performance substantially227

among the other detectors. For example, when we look at adversarial examples generated for Koutlis228

and Papadopoulos [43] in Table 2, an AUROC performance drop can be seen across the following229

detectors: Cavia et al. [8] to 0.56 (from 0.84), Chen et al. [12] (CLIP) to 0.51 (from 0.73), Chen et al.230

[12] (ConvNext) to 0.59 (from 0.94), and Ojha et al. [57] to 0.5 (from 0.95). The other two detectors231

Corvi et al. [16] and Wang et al. [75] seem resilient, although this trend continues for perturbations232

generated for other detectors.233

Next, we evaluate the transferability of ensemble attacks, in a leave-one-out manner, in which the234

assessed detector is excluded from the attacked ensemble. This ensemble approach described in235

Section 2.2 significantly boosts transferability. It allows us to evaluate the detector’s performance in236

a transferable black-box scenario where access to the targeted detector’s architecture or parameters is237

unavailable. Therefore, the attack (in a white-box manner) is done against an ensemble of detectors238

to increase its effectiveness further. We find that the ensemble attacks can drop the performance239

of detectors to metrics similar to a white-box attack. For example, looking at Table 2 we note that240

even for the two detectors Corvi et al. [16] and Wang et al. [75] that showed a decent robustness to241

perturbations generated for other detectors, the AUROC metric drops to 0.67 and 0.62 respectively242

(from 0.99 and 0.99), and the F1-score metric drops to 0.53 and 0.4 (from 0.98 and 0.99). This drop243

in performance is further highlighted in Table 3, where we use a higher perturbation budget in which244

the AUROC metric drops to 0.59 and 0.54 for the two detectors, respectively.245

These results motivate the creation of our RAID dataset, which is composed of adversarial examples246

crafted using attacks on an ensemble of SoTA detectors. Our dataset enables a fast and standardized247

benchmark of new detectors against strong transferable perturbations, facilitating the assessment of248

their robustness to adversarial attacks.249

RAID — Tensors vs Images. We construct the RAID dataset as shown in Figure 2 by running250

the adversarial attack on the ensemble of detectors using the entire D³ dataset. We generate the251

dataset and save the adversarial examples as PNG images, avoiding the use of the lossy format (JPEG,252

JPG). The reason for this is that we only consider the worst-case adversarial scenario in which no253

post-processing operations are done, which could reduce the transferability of the attack. While254

the previous evaluation provides a good assessment of RAID, as only one detector is missing from255

the ensemble, we perform one additional evaluation on the full RAID dataset, to ensure that the256

effectiveness of the adversarial perturbations is not reduced with their quantization when we save257

them as images. We use four additional baseline detectors detailed in 3.1 tested against the adversarial258

examples saved as tensors with float values, and the adversarial images. We find no significant drop259

in effectiveness except for a few fluctuations as reported in Table 4. We release our full dataset with a260

total of 96,000 images: 24,000 adversarial examples for each attack parameter ϵ considering 8
255 , 16

255261

and 32
255 , in addition to the original images.262
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Table 4: Adversarial Robustness Evaluation of the 4 trained baseline classifiers. All detectors were
trained on the D³ training set. RAID refers to the dataset of the generated adversarial examples saved
as raw tensors, while RAID_IMG refers to the released dataset of adversarial images

Metric Dataset DINOv2 DINOv2-Reg ViT-T ViT-T CoDE[4]

D³ 83.1 81.5 83.7 91.9
RAID(ϵ=16/255) 54.6 55.4 68.2 75.6

Accuracy RAID(ϵ=32/255) 43.6 46.8 63.4 76.6
RAID_IMG(ϵ=16/255) 54.8 53.3 69.5 72.2
RAID_IMG(ϵ=32/255) 43.6 46.8 63.5 76.6

D³ 88.8 87.6 89.4 94.9
RAID(ϵ=16/255) 60.9 62 76.2 82.8

F1 RAID(ϵ=32/255) 46.0 50.7 71.3 84.1
RAID_IMG(ϵ=16/255) 61.4 59.4 77.7 80
RAID_IMG(ϵ=32/255) 46.1 50.7 71.4 84.1

D³ 81.2 81.6 79.9 87.5
RAID(ϵ=16/255) 69.9 70.3 75.1 78.9

AUROC RAID(ϵ=32/255) 63.8 65.6 73.2 75.4
RAID_IMG(ϵ=16/255) 69.9 69.2 74.2 76.3
RAID_IMG(ϵ=32/255) 63.8 65.6 73.2 75.7

4 Related Work263

Generative Image Modeling. Generating images requires learning the underlying data distribution,264

which is non-trivial for high-dimensional distributions such as natural images. Several approaches265

have been proposed, such as autoregressive models [73, 74], VAEs [42, 62], and GANs [30]. The266

latter architecture has been continuously improved [14, 38, 85] to improve quality. Especially267

StyleGAN [39] and its successors [40, 41] achieved unprecedented visual quality, making generated268

images impossible to distinguish from real ones [28, 56]. While it has been shown that DMs [21, 34,269

71] can surpass GANs with respect to quality, the costly iterative denoising process prevented the270

generation of high-resolution images. As a remedy, LDMs [66] perform the diffusion and denoising271

process in a smaller latent space instead of the high-dimensional pixel space, using a pre-trained272

VAE [42] as a translation layer across both domains. Moreover, the addition of cross-attention273

layers based on U-Net [67] allows controlling the generative process based on, for instance, a textual274

prompt, laying the foundation for powerful text-to-image models [55, 61, 69]. Recent models have275

significantly advanced the resolution of generated images (up to 4k) [13, 84], improved prompt276

following and human preference [26, 79].277

AIGI Detection Methods. Due to the continuously increasing capabilities of generative models,278

the detection of AI-generated images is an active area of research with a plethora of proposed279

methods. Early approaches, mostly targeting images generated by GANs, exploit visible flaws280

like differently colored irises [51] or irregular pupil shapes [32]. Since the occurrence of such281

imperfections is becoming less likely as generative models become more advanced, several methods282

rely on imperceptible artifacts. Such features include model-specific fingerprints [50, 83] or unnatural283

patterns in the frequency domain [24, 25, 27]. Instead of identifying generated images based on284

selected features, the majority of methods are data-driven. In their seminal work, Wang et al. [75]285

demonstrate that training a ResNet-50 [33] on real and generated images from ProGAN [38], paired286

with strong data augmentation, suffices to detect images generated by several other GANs. Subsequent287

works propose improved model architectures [31] or learning paradigms [12, 17, 49], with a particular288

focus on generalization [10, 44]. A promising direction is the use of foundation models as feature289

extractors to avoid overfitting on images generated by a single class of models [18, 43, 57]. While290

most works attempt to detect images from all kinds of generative models, several methods explore291

unique characteristics of DMs for detection, like frequency artifacts [16, 64] or features obtained by292

inverting the diffusion process [9, 65, 76].293

Datasets for Evaluating the Robustness of AIGI Detectors. To the best of our knowledge, we are294

the first to propose a dataset for evaluating the adversarial robustness of AIGI detectors. However,295

several datasets exist to test their generalizability and robustness to common image degradations.296
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GenImage [86] is a large-scale dataset comprising 1.35 million generated images based on the 1 000297

class labels of ImageNet [68]. Within their benchmark, they evaluate how well seven deepfake298

detectors generalize to images from unseen generators as well as their robustness to downsampling,299

JPEG compression, and blurring. WildFake [35] is a hierarchically-structured dataset featuring images300

generated by GANs, DMs, and other generative models, which are partly sourced from platforms301

such as Civitai to cover a broad range of content and styles. Yan et al. [81] also collect images302

from popular image-sharing websites. However, their Chameleon dataset features images that were303

misclassified by human annotators, allowing for the evaluation of deepfake detectors on particularly304

challenging images. Furthermore, Deepfake-Eval-2024 [11] contains deepfake videos, audio, and305

images that circulated on social media and deepfake detection platforms in 2024. Through their306

evaluation, the authors find that detectors trained on academic datasets fail to generalize to real-world307

deepfakes.308

Adversarial Robustness of AIGI Detectors. The vulnerability of deepfake detectors to adversarial309

examples was first explored by Carlini and Farid [6]. They demonstrate that by adding visually310

imperceptible perturbations to an image, the AUC of a forensic classifier can be reduced from 0.95311

down to 0.0005 in the white-box and 0.22 in the black-box setting. Subsequent work explores312

the applicability of attacks in practical scenarios [37, 52, 54] as well as possible defenses [29].313

De Rosa et al. [20] study the robustness of CLIP-based detectors, finding that adversarial examples314

computed for CNN-based classifiers are not easily transferable and vice versa. Besides the addition of315

adversarial noise, it has been shown that deepfake detectors can also be attacked by applying natural316

degradations (e.g., local brightness changes) [36] or by removing generator-specific artifacts [22, 77].317

Other attacks leverage image generators themselves to perform semantic adversarial attacks, which318

adversarially manipulate a particular attribute of an image [53] that can even be controlled through a319

text prompt [1, 45].320

5 Discussion321

Adversarial robustness should always be evaluated when proposing new AI-generated image detection322

methods, as in current SoTA detectors, it is vastly neglected in favor of an evaluation against naturally323

occurring post-processing operations, such as resizing, cropping, blurring, jpeg compression or noise.324

While the robustness to these operations is indeed important, introducing a malicious actor that325

utilizes carefully crafted adversarial noise can lead to the evasion of detection by most methods, as326

highlighted in our work. Nonetheless, the lack of a standard benchmark that serves as a comparability327

reference for detectors contributes further to this lack of evaluation against adversarial attacks in328

AI-generated image detection. As such, we introduce RAID to address this gap in the current329

literature and provide a more comprehensive solution for evaluating generative models. However, it330

is important to acknowledge that our method is not without its limitations. One key challenge is that331

RAID requires frequent updates to stay relevant as new generative models emerge, and these models332

would need to be incorporated into our proposed ensemble attacks for continued effectiveness. This333

dynamic nature of generative models demands a proactive approach to maintain the robustness of334

RAID over time. Additionally, our perturbations are not designed to be robust to post-processing335

operations, which should be considered in future work. Finally, due to the inherent restrictions of336

input sizes of the architecture of some detectors, when considering attacks on ensemble models, we337

are restricted to the center region of the image to be perturbed.338

6 Conclusions339

We introduce RAID, the first dataset of transferable adversarial examples for robustness evaluation of340

AI-generated image detection. We employ an ensemble attack that demonstrates strong transferability341

against seven diverse detectors and cover images generated from four text-to-image generative models.342

Our results further highlight the existing gap in current evaluations of SoTA detectors, as more often343

than not, they are tested on naturally occurring post-processing as images are disseminated and344

shared, but remain highly vulnerable to adversarial attacks. RAID addresses this gap by providing a345

simple and reliable benchmark for adversarial robustness evaluation, ensuring that detection models346

can be tested under more realistic and challenging adversarial conditions.347
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