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Abstract

Recent work has investigated whether extant
neural language models (LMs) have an inbuilt
inductive bias towards the acquisition of at-
tested typologically-frequent grammatical pat-
terns as opposed to infrequent, unattested, or
impossible patterns using artificial languages
(White and Cotterell, 2021; Kuribayashi et al.,
2024). The use of artificial languages facili-
tates isolation of specific grammatical proper-
ties from other factors such as lexical or real-
world knowledge, but also risks oversimplifica-
tion of the problem.

In this paper, we examine the use of Gener-
alized Categorial Grammars (GCGs) (Wood,
2014) as a general framework to create artificial
languages with a wider range of attested word
order patterns, including those where the sub-
ject intervenes between verb and object (VSO,
OSV) and unbounded dependencies in object
relative clauses. In our experiments, we ex-
emplify our approach by extending White and
Cotterell (2021) and report some significant
differences from existing results.

1 Introduction

Attested natural languages (NLs) often have dif-
ferent grammatical properties, such as different
word orders, so it is reasonable to ask whether neu-
ral language models (LMs) have inductive biases
towards specific properties, including different pat-
terns of word order. There are thousands of NLs
which differ along multiple semi-independent lex-
ical and grammatical dimensions, so it is difficult
to isolate specific properties to evaluate LMs’ in-
ductive biases using natural data (Mielke et al.,
2019). To remedy this, artificial languages (ALSs)
have been used in order to create more controlled
experiments. Researchers have designed ALs
of varying complexities, ranging from lexically-
simple but syntactically-complex formal languages,
such as the irreducibly context-free Dyck lan-

guages or irreducibly indexed (mildly context-
sensitive) languages such as cross-serial dependen-
cies (a™b"™(c™)) (Hewitt et al., 2020), to putatively
impossible languages based on permutations of En-
glish examples. Kallini et al. (2024).

White and Cotterell (2021) prioritise control of
word order in their research. They generate ALs us-
ing a Probabilistic Context Free Grammar (PCFG),
and use 6 parameters to reorder words and phrases
to create 64 ALs with the same lexicon, with the
aim of determining whether LMs exhibit an induc-
tive bias towards specific orders. The same dataset
of ALs is used by Kuribayashi et al. (2024) to ex-
plore a wider range of neural LMs. However, the
use of a PCFG precludes the handling of (mildly)
context-sensitive NL constructions and does not
support a fully general account of unbounded filler-
gap dependencies (Steedman, 1996). Furthermore,
the use of a VP constituent in the base PCFG means
Verb-Subject-Object (VSO) and OSV base orders
cannot be represented in the languages created by
White and Cotterell (2021).

We create a larger set of ALs that can be used
to further test LMs for word order inductive biases
covering a wider range of word orders. Specifically,
we cover VSO and OSV orders, which represent
approximately 8% of attested NLs according to
typologists (Dryer and Haspelmath, 2013). Fur-
thermore, we develop an extensible approach to
defining ALs that supports the inclusion of mildly
context-sensitive (indexed language) constructions,
such as cross-serial dependencies, and a general ap-
proach to unbounded filler-gap dependencies. We
introduce object relative clauses as one exemplar
of an unbounded dependency into our extended
dataset of ALs. We empirically test LMs on our
artificial languages and find significant differences
in results compared to existing studies (White and
Cotterell, 2021; Kuribayashi et al., 2024), for exam-
ple, a preference for head-initial word orders. This
suggests that using more complex, but arguably nat-



uralistic ALs leads to rather different conclusions
about the inductive bias of neural LMs

2 Background

2.1 Artificial languages

One line of research has used ALs to evaluate
LMs capacity to learn ALs at different levels of
the Chomsky hierarchy. Someya et al. (2024) use
ALs to determine whether LMs can learn the prop-
erties of regular, context-free, and context-sensitive
languages, such as nested and long-distance de-
pendencies, and cross-serial dependencies. They
find that LSTMs (Hochreiter and Schmidhuber,
1997), Stack-RNNs (Joulin and Mikolov, 2015),
and Transformers (Vaswani et al., 2017) struggle to
learn nested, long-distance, and cross-serial depen-
dencies, but successfully learn regular languages.
Other context-free languages, such as Dyck lan-
guages, and mildly context-sensitive languages,
like a™b™c", have been used to test recurrent LM
learning and generalization to longer sequences
(Suzgun et al., 2019; Weiss et al., 2018; El-Naggar
et al., 2022) as well as establishing a correspon-
dence between the different LM models and the
levels of the Chomsky hierarchy (Delétang et al.,
2022). One limitation of this research is that the
ALs used diverge from NLs by using minimal vo-
cabulary, many levels of nested dependencies, and
so forth.

In another line of research, Chomsky et al.
(2023) argued that neural LMs can learn both possi-
ble and impossible human languages, so cannot dis-
tinguish between them. Kallini et al. (2024) empir-
ically address this claim, by developing putatively
impossible AL variants by permutation and modi-
fication of an English dataset, following Ravfogel
et al. (2019). They find that GPT-2 models struggle
to learn the impossible languages, contradicting
Chomsky’s claim. However, it is difficult to de-
termine precisely what makes the impossible ALs
harder to learn because of the multi-dimensional
nature of the altered English input.

White and Cotterell (2021) take inspiration from
Ravfogel et al. (2019) but use ALs generated by
a PCFG to examine the inductive biases of LMs
towards different word orders. They use six param-
eters (‘switches’) which invert the order of daughter
categories within distinct CF productions to deter-
mine the structure of their sentences, and evaluate
LSTM and Transformer models on the ALs gen-
erated by the PCFGs defined by each distinct set-

ting of these parameters. Extending this research,
Kuribayashi et al. (2024) evaluate the performance
of further cognitively-motivated LMs on the same
ALs. However, as a consequence of the use of
PCFGs containing a VP constituent, the ALs used
by White and Cotterell (2021) and Kuribayashi
et al. (2024) do not generate Verb-Subject-Object
(VSO) or Object-Subject-Verb (OSV) word orders.
In this paper, we generate a wider set of ALs using
GCGs and replicate the experiments of Kuribayashi
et al. (2024) on this new dataset. Our approach to
controlled AL generation is, in principle, expres-
sive enough to generate all attested NL construc-
tions documented by linguists to date, so provides
a general framework to support further AL-based
investigation of neural LMs. In this paper, we ex-
emplify this by also extending White and Cotterell
(2021) dataset to include object relative clauses.

2.2 Categorial Grammar

Classic Categorial Grammar (CG) is a formalism
which aims to represent NL syntax isomorphically
with compositional semantics (Ajdukiewicz, 1935;
Bar-Hillel, 1953). We focus on the syntactic gen-
erative properties of extensions to classical CG in
this paper. The components of a CG are a lexicon
pairing words with basic or functor categories, and
a small set of rules defining how functor categories
combine with basic categories syntactically and se-
mantically. The "slash" notation is often used to in-
dicate the direction of the arguments relative to the
resulting category. For example, X /Y is a functor
category looking for an argument basic category Y
to the right to create result category X. In classical
CG, there are just two rules forward functional ap-
plication (a) or backward functional application
(b), shown below.

@ X/YY =X
b)Y X\Y = X

In English, a transitive verb like "met" is a functor
category (S\NP)/N P. The derivation shown be-
low for "Kim met Sandy" shows both forward and
backward application.

Kim met Sandy
NP (S\NP)NP NP
S\NP
——<

Most if not all of the variation between languages is
captured by variation in the set of lexical categories
assigned to words.



CG is equivalent to a binary-branching context-free
grammar. There are extensions and generalizations
of CG, such as Combinatory Categorial Grammar
(CCQ), (Steedman, 1996), which we refer to gener-
ically as Generalized Categorial Grammars (GCGs)
(Wood, 2014). In CCG and GCGs, additional oper-
ations can be used to combine categories.

One such operation is coordination, where 2
constituents of the same category separated by con-
junction can be combined into a single constituent
of the same type,

XCONJ X = X

Coordination (®) is shown in the derivation below.

Kim and Sandy met Felix
NP CONJ NP (S\NP)NP NP
w7

S\NP

S
Forward composition and backward composi-
tion operations are utilized in CCG, where adjacent
functions are composed. We show the rules of for-
ward (a) and backward (a) composition below.

@) X/YY/Z=X/Z
b) Y\Z X\Y = X\Z

Composition (B) is shown in the derivation below.

the elf on the shelf laughed
NP  (NP\NP)/NP NP S\NP
NP\NP
S\NP y
S

Permutation is included in our GCG as a more
computationally tractable alternative to type raising
in CCG. We use the version from Briscoe (1997,
2000), which allows for a cyclic permutation of
the functor arguments without changing their di-
rectionality. The definition of permutation is as
follows:

(X|V3)...|Y, = (XY %3

Permutation (P) is shown in the derivation below.

Kim met Sandy
NP (S\NP)NP NP
—<P>
(S/NP)\NP
SINP

S >

We develop our ALs from a GCG utilizing these
rules of application, coordination, composition,
and permutation.

3 Dataset

As a first case study employing our GCG to create
ALs, we mostly reproduce the dataset of White
and Cotterell (2021) using GCG but also add some
novel word order constructions. Specifically, we
adapt the parameters defined by White and Cot-
terell (2021) to create a GCG for each of the 64
AL configurations they define. We then created
lexicons for SOV and VOS languages to create an
additional 32 ALs for VSO and OSV languages.
We also extend each Al with object relative clauses
as an exemplar of a potentially unbounded depen-
dency (‘filler-gap’) construction.

3.1 The Lexicon

We define lexical syntactic categories, e.g., NP, first,
as listed in Table 1, and then define a set of lexicons.
We use a set of mostly English words that is of the
same size and has the same categories as White
and Cotterell (2021), including singular and plural
nouns, and past and present tense verbs, but we
ignore subject-verb number agreement, in our ini-
tial, simple setting. In addition, following White
and Cotterell (2021), we avoid lexical ambiguity,
and thus each word in the lexicon is assigned to ex-
actly one category. Following White and Cotterell
(2021), we use subject and object markers in all the
artificial languages.

3.2 Dataset Generation

Dataset generation involves several steps:

1. Determining the GCG categories: We
set a GCG lexical syntactic category (e.g.,
SCOMP\S) for each of word types (e.g., COMP),
as shown in Table 1. These GCG categories
are parameterized by seven word order param-
eters shown in Table 2. For example, if the S
parameter in Table 2 is set to 0 (head-final),
the GCG syntactic type of VI (walked) should
be S\NP_SUBJ as follows:

Kim ga walked
NP NP_SUBJ\NP S\NP_SUBIJ
NP_SUBJ




Category GCG syntactic type Example

NP (Noun Phrase) NP Kim ga kissed Sandy o
SUBJ (Subject Marker) NP_SUBJ\NP Kim ga kissed Sandy o
OBJ (Object Marker) NP_SUBJ\NP Kim ga kissed Sandy o
ADJ (Adjective) NPINP red car ga ran

VT (Transitive Verb) (SINP_SUBJ)INP_OBJ Kim ga kissed Sandy o
VI (Intransitive Verb) SINP_SUBIJ red car ga ran

VCOMP (Complementary Verb) (SINP_SUBJ)ISCOMP Kim ga believed that Sandy ga lied

COMP (Verb Complement) SCOMPIS Kim ga believed that Sandy ga lied
CONIJ (Conjunction) var\var/var Kim and Sandy ga ate

PREP (Preposition) (NPINP)INP elf on shelf ga laughed

REL (Relativiser) (NP_SUBIJINP_SUBJ)I(SINP_OBJ) man ga whom I ga met laughed

“lss

Table 1: Lexical syntactic categories used in our artificial grammar. The bars “I” in the GCG lexical categories
indicate either forward- or back-slash, which is controlled by word order parameters in Table 2. The examples in the
English grammar are also shown, where the word(s) belonging to the category being described are shown in bold.

Param. Description 0 (head-final)

1 (head-initial)

VI — S\NP_SUBJ

S Order of subject and verb VT — (S\NP_SUBJ)INP_OBJ
VCOMP — (S\NP_SUBJ)ISCOMP

VI — S/NP_SUBJ
VT — (S/NP_SUBIJ)INP_OBJ
VCOMP — (S/NP_SUBJ)ISCOMP

VP Order of object and verb

VT — (SINP_SUBJ)\NP_OBJ
VCOMP — (SINP_SUBJ)\SCOMP

VT — (SINP_SUBJ)/NP_OBJ
VCOMP — (SINP_SUBIJ)/SCOMP

(0] Order of subject and object Restriction to make an S precede with O as  Restriction to make an O precede with S as

canonical word order

canonical word order

COMP  Position of complementiser COMP — SCOMP\S

COMP — SCOMP/S

PP Postposition or preposition PREP — (NP\NP)/NP PREP — (NP/NP)\NP
ADJ Order of adjective and noun ~ ADJ — NP/NP ADJ — NP\NP
REL Position of relativiser REL — (NP_SUBJ/NP_SUBIJ)\(S\NP_OBJ) REL — (NP_SUBJ\NP_SUBJ)/(S/NP_OBJ)

Different ALs are generated by different com-
binations of the seven word-order parameters,
which control the directionalities in the lexical
categories, resulting in different word orders
(Table 2).

. Generating the grammars: We use the seven
binary parameters (Table 2) to generate our
96 grammars based on GCG. The parameters
except for O are the same as White and Cot-
terell (2021), and the O parameter biases the
S-O order (as a part of postprocessing). This
is needed because the permutation operation
for theVT will eliminate the bias regarding the
order of S and O, so to align the experimen-
tal settings with White and Cotterell (2021),
we add this parameter. The O parameter is
set to either O or 1 only when the subject and
object are positioned on the same side of a
(transitive) verb (SOV, OSV, VSO, VOS); oth-
erwise, the O parameter is automatically deter-

Table 2: Word order parameters and their associated GCG categories. “A—B” indicates % (A is expanded to B) in
the GCG derivation.

sible combinations of seven binary parameters
(27=128). Each language is associated with
a specific combination of parameter assign-
ments and denoted, for example, as 0001111
(S=0, VP=0, O=0, COMP=1, PP=1, ADJ=1,
REL=1).

3. Template Generation: To cover all possi-

ble valid syntactic structures in each of our 96
ALs, we first enumerate all possible sequences
of word categories (e.g., “NP ADJ VT CONJ
REL...”), up to length 10, in a brute-force
manner. We then parse these sequences with a
GCQG parser with the corresponding grammar
configuration.! Word category sequences, and
by extension, sentences created from them,
are considered grammatically valid if we ob-
tain at least one derivation resulting in S based
on the GCG parser. An example of a valid tem-
plate is shown in Figure 1. This template gen-

'We adapt the NLTK CCGChartParser ((Bird et al., 2009))

mined by the first two parameters of S and VP ¢ N 3 g )
removing type raising and adding the permutation operation

(SVO and OVS). This process res.ults in 96 as defined by Briscoe (1997, 2000), and use this to parse our
grammars — less than the mathematically pos-  templates.



ADJ NP SUBJ REL NP

SUBJ VT VI CONJ VI

NP/NP NP NP_SUBJ\NP  (NP_SUBJ\NP_SUBJ)/(S/NP_OBIJ) NP NP_SUBJ\NP  (S\NP_SUBJ)/NP_OBJ  S\NP_SUBJ X\X/X S\NP_SUBJ
>

NP

NP_SUBJ

NP_SUBJ

B>
S\NP_SUBJ

———————<P>
(S/NP_OBJ)\NP_SUBJ

S/NP_OBJ
>

NP_SUBJ\NP_SUBJ

S\NP_SUBJ

Figure 1: Example of a template and its derivation. The word categories shown in black (e.g., SUBJ) correspond to
a single lexical item (e.g., ga). The remaining categories in blue have several candidates of lexical items, and these

are uniformly sampled from the predefined dictionary.

Algorithm 1 Template Generation Algorithm

Algorithm 2 Generating Sentences from Templates

Require: Set of word categories C, 96 parsers [p1, - - -, Pos]
Initialize empty dictionary ValidT emplates
for length = 3 to 10 do
for each sequence of ¢ € C'*"9*" do
word category sequences
if ¢ matches heuristics then
skip > Exclude immediately invalid templates
end if
for each parser p; in 96 parsers do
if p; successfully parses c then
Add c to ValidT emplates]i]
grammatically valid templates
end if
end for
end for
end for
return ValidT emplates

> Generate all

> Select

eration is summarized in Algorithm 1. Note
that in order to make this process more effi-
cient, we apply some heuristics (detailed in
Appendix A.1) to eliminate templates that can-
not result in a valid sentence.

4. Sentence Generation: Once we have our tem-
plates for each of the 96 grammars, we gen-
erate 400 sentences for each template in each
grammar by random sampling of the lexicon.
We ensure that all of the generated sentences
are unique by removing duplicate sentences
when they occur. This is shown in Algorithm
2.

5. Sampling from the Datasets: Similarly to
the dataset size per grammar as White and
Cotterell (2021), we randomly sample 50K
sentences from the datasets generated for each
grammar. We also ensure that all sampled
sentences are distinct. These datasets are the
ones that we use in our experiments.

Input: Valid templates 7', dictionary D mapping word
category ¢ € C to lexical items V. = D](]
Output: Set of grammatical sentences S
S0
for each template ¢t € T" do
for 0 to 400 do
s < dummy string of length |¢|
for each category ¢; int = [c1, -+, ] do
Randomly sample w; ~ D][c;] (uniform distri-
bution)
s[i] = w;
end for
if s ¢ S then
Add sto S
end if
end for
end for
return S

4 Experiments

We evaluate the same models as White and Cot-
terell (2021), which are the LSTM (Hochreiter and
Schmidhuber, 1997) and Transformer (Vaswani
et al., 2017) models. We evaluate perplexity (PPL)
over the sentences of the different word orders and
investigate the inductive biases that models may
have towards specific word order configurations.
For each of our 96 languages, similarly to Kurib-
ayashi et al. (2024), the 50K sentences are divided
across 5 runs. In each run, the 10K sequences are
divided into train/dev/test split with a ratio of 8:1:1.
Different random seeds are used in each run, and
we adopted two training scenarios: (i) training 10
epochs, following Kuribayashi et al. (2024); and (ii)
adopting early-stopping with patience of 5 epochs,
following White and Cotterell (2021), where the
training was consistently longer than 10 epochs.
We will basically follow the experimental settings
in White and Cotterell (2021) and Kuribayashi et al.
(2024) but also extend some analyses focusing on
learning dynamics across different training epochs.
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Figure 2: PPLs over 96 grammars. The blue and orange box plots correspond to Transformer and LSTM, respectively.
The bars in the graph show the percentage of world languages for each grammar (blue) and word order group, e.g.,

SOV (gray).

4.1 Results and Discussion

What kind of language is harder to learn? Fol-
lowing White and Cotterell (2021); Kuribayashi
et al. (2024), we show the PPL distribution across
96 grammars in Figure 2. At the earlier training
phase of 10 epochs, the PPL is lower in head-initial
languages (grammars with many 1s), which indi-
cates that these languages can be more efficiently
learned by LSTMs and Transformers, although this
trend is diminished through longer training with
early-stopping. Such head-initial preference con-
trasts with existing findings White and Cotterell
(2021); Kuribayashi et al. (2024); Hopkins (2022),
who both find that Transformers learn head-final
languages more easily. Another notable difference
with the existing study is that, while LSTM’s learn-
ing preference was somewhat flat in White and
Cotterell (2021), our results are more uneven and
thus more informative about which word order is
preferred even for LSTMs. The detailed statistics
will be reported in the latter paragraph (Figure 5).

Figure 3 shows the dynamic change of word
order preference of LMs during training. As
suggested in Figure 2, one can observe a slight
transition in their preference from head-initial to
head-final languages in both LSTM and Trans-

former LMs, which contrasts with the common
view that natural languages have evolved from
head-final (SOV) to more neutral (SVO) or head-
initial (VSO/VOS) ones (Gell-Mann and Ruhlen,
2011).

Typological (mis)alignment The percentage of
world languages for each grammar and word or-
der group is superimposed on Figure 2 (blue and
gray bars). To calculate these typological distri-
butions, we basically adopted the statistics used
in Kuribayashi et al. (2024) and enriched them by
integrating the S-O order statistics from Dryer and
Haspelmath (2013) and complementizer position
statistics from Skirgérd et al. (2023). The two dis-
tributions of PPLs and word order frequencies are
compared with the Pearson correlation coefficients,
following Kuribayashi et al. (2024). At the point
of 10 epochs, the correlation between PPLs and ty-
pological distributions was 0.49 (p<0.05) and 0.38
(p<0.05) for LSTM and Transformer, respectively.
The positive correlation indicates that the worse
the PPL is, the more frequent the word order is in
the world, contrasting with the common claim that
natural language is optimized toward better pre-
dictability (Gibson et al., 2019; Hahn et al., 2020).
Through the longer training in the early-stopping
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Figure 3: The PPL trajectories for different S-O-V word orders and models (measured on validation data in the
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Figure 4: Correlations between PPL and typological
distributions, which are measured in each epoch dur-
ing training (on validation data in the early-stopping
setting). The correlations from five runs are averaged.
To highlight that a negative correlation is expected, the
y-axis is inverted.

setting, the correlations became —0.20 (p<0.05)
and —0.36 (p<0.05) for LSTM and Transformer,
respectively. That is, at least in our setting, longer
training converges to better alignment with typo-
logical distributions. Such intriguing dynamics are
shown in Figure 4, where the correlation between
typological distributions and PPL distributions for
each training epoch is reported.

Regression analysis Figure 5 shows quantita-
tive statistics on which word order parameters are
associated with the PPL differences. Similarity
to White and Cotterell (2021), we train a regression
model to predict PPLs from word order parameters
and their interaction terms.? Positive coefficients

We used the statsmodels package (Seabold and Perktold,
2010). The formulation is PPL ~ SVx0V + SVxSO + SV*COMP
+ SVxPP + SV*ADJ + SV*REL + OV*SO + OVxCOMP + OV*PP
+ OVXADJ + OVAREL + SO%COMP + SO%PP + SOxADJ +

SO*REL + COMP*PP + COMP*ADJ + COMP*REL + PP*ADJ +
PP*REL + ADJ*REL, where each parameter is a binary factor

for a single word-order parameter (diagonal ele-
ments of matrices in Figure 5) indicate that head-
initial assignment leads to lower PPLs. Positive
coefficients for interaction terms indicate that the
consistent head-directionality between the two pa-
rameters leads to worse PPLs, and these are ex-
pected to be negative if the common patterns of
consistent head-directionalities in natural language
are from learners’ biases. The coefficients for inter-
action terms are frequently positive; thus, at least
Transformers and LSTMs do not exhibit inductive
biases toward typologically plausible, consistent
head-directionality, which is consistent with the
results in White and Cotterell (2021).

The coefficient matrices also suggest that the
training setting difference (10 epochs or early-
stopping) brings more impact than the LMs’ ar-
chitectural differences, given that the patterns be-
tween Figures 5a and Sc (and Figures 5b and 5d)
are relatively similar. In addition, especially in
the 10-epoch results (Figures 5a and 5c¢), we saw
distinctively large coefficients for the interaction
term between SV and REL parameters, which was
not observed in the existing work (White and Cot-
terell, 2021) where object relative clause was not
introduced regarding REL-related constructions.

Discussion There are a few possible reasons that
could explain this contrast between our findings
and those of White and Cotterell (2021) and Kurib-
ayashi et al. (2024). One reason will be that the

with dummy coding (head-final as 0 and head-initial as 1),
and XxY represents to both main effects of X and Y and their
interaction effect of X:Y. In contrast to White and Cotterell
(2021), we did not include the sentence-level random effect
because our dataset does not hold strict alignment between
sentences across different grammars.
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Figure 5: Coefficients of word order parameters (and their interactions) estimated by the regression models to

predict PPL from word order parmeters

GCG-generated datasets are potentially more com-
plex than the PCFG-generated datasets used by
White and Cotterell (2021) and Kuribayashi et al.
(2024). Our datasets include some long-distance
dependencies, and in some cases, as a result of
permutation, more flexible word orders.

5 Conclusions and Future Work

In this paper, we extend the work of White and
Cotterell (2021) and create a broader set of ALs
to evaluate the inductive biases of LMs towards
different word orders. This includes the OSV and
VSO word orders that were not represented in previ-
ous works (White and Cotterell, 2021; Kuribayashi
et al., 2024) and permits the inclusion of construc-
tions, which can represent more complex or flexible
structures and orders, including longer distance de-
pendencies. We evaluate LSTM and Transformer
learning of our ALs and calculate perplexity. We
find that the models prefer head initial languages,
which contrasts with the findings obtained in pre-

vious work. This is intriguing and raises questions
and observations that we intend to address and ex-
plore further in future work.

We intend to investigate the effects of different
training settings and paradigms, on the learning
of different language configurations. We also in-
tend to investigate and explore how the models
generalize beyond the training data, e.g., to longer
sequences. We also intend to investigate and under-
stand model learning and behavior when exposed
to different types of long-distance dependencies,
such as nested dependencies and cross-serial depen-
dencies, as they occur in NLs. The lexicon we use
here disregards verb tenses and number agreement.
In future work, we plan to extend our lexicon to
contain more detail about the specific elements of
the lexicon and, in general, inject more realistic
properties into our ALs.
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