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Abstract

Recent work has investigated whether extant001
neural language models (LMs) have an inbuilt002
inductive bias towards the acquisition of at-003
tested typologically-frequent grammatical pat-004
terns as opposed to infrequent, unattested, or005
impossible patterns using artificial languages006
(White and Cotterell, 2021; Kuribayashi et al.,007
2024). The use of artificial languages facili-008
tates isolation of specific grammatical proper-009
ties from other factors such as lexical or real-010
world knowledge, but also risks oversimplifica-011
tion of the problem.012

In this paper, we examine the use of Gener-013
alized Categorial Grammars (GCGs) (Wood,014
2014) as a general framework to create artificial015
languages with a wider range of attested word016
order patterns, including those where the sub-017
ject intervenes between verb and object (VSO,018
OSV) and unbounded dependencies in object019
relative clauses. In our experiments, we ex-020
emplify our approach by extending White and021
Cotterell (2021) and report some significant022
differences from existing results.023

1 Introduction024

Attested natural languages (NLs) often have dif-025

ferent grammatical properties, such as different026

word orders, so it is reasonable to ask whether neu-027

ral language models (LMs) have inductive biases028

towards specific properties, including different pat-029

terns of word order. There are thousands of NLs030

which differ along multiple semi-independent lex-031

ical and grammatical dimensions, so it is difficult032

to isolate specific properties to evaluate LMs’ in-033

ductive biases using natural data (Mielke et al.,034

2019). To remedy this, artificial languages (ALs)035

have been used in order to create more controlled036

experiments. Researchers have designed ALs037

of varying complexities, ranging from lexically-038

simple but syntactically-complex formal languages,039

such as the irreducibly context-free Dyck lan-040

guages or irreducibly indexed (mildly context- 041

sensitive) languages such as cross-serial dependen- 042

cies (anbn(cn)) (Hewitt et al., 2020), to putatively 043

impossible languages based on permutations of En- 044

glish examples. Kallini et al. (2024). 045

White and Cotterell (2021) prioritise control of 046

word order in their research. They generate ALs us- 047

ing a Probabilistic Context Free Grammar (PCFG), 048

and use 6 parameters to reorder words and phrases 049

to create 64 ALs with the same lexicon, with the 050

aim of determining whether LMs exhibit an induc- 051

tive bias towards specific orders. The same dataset 052

of ALs is used by Kuribayashi et al. (2024) to ex- 053

plore a wider range of neural LMs. However, the 054

use of a PCFG precludes the handling of (mildly) 055

context-sensitive NL constructions and does not 056

support a fully general account of unbounded filler- 057

gap dependencies (Steedman, 1996). Furthermore, 058

the use of a VP constituent in the base PCFG means 059

Verb-Subject-Object (VSO) and OSV base orders 060

cannot be represented in the languages created by 061

White and Cotterell (2021). 062

We create a larger set of ALs that can be used 063

to further test LMs for word order inductive biases 064

covering a wider range of word orders. Specifically, 065

we cover VSO and OSV orders, which represent 066

approximately 8% of attested NLs according to 067

typologists (Dryer and Haspelmath, 2013). Fur- 068

thermore, we develop an extensible approach to 069

defining ALs that supports the inclusion of mildly 070

context-sensitive (indexed language) constructions, 071

such as cross-serial dependencies, and a general ap- 072

proach to unbounded filler-gap dependencies. We 073

introduce object relative clauses as one exemplar 074

of an unbounded dependency into our extended 075

dataset of ALs. We empirically test LMs on our 076

artificial languages and find significant differences 077

in results compared to existing studies (White and 078

Cotterell, 2021; Kuribayashi et al., 2024), for exam- 079

ple, a preference for head-initial word orders. This 080

suggests that using more complex, but arguably nat- 081
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uralistic ALs leads to rather different conclusions082

about the inductive bias of neural LMs083

2 Background084

2.1 Artificial languages085

One line of research has used ALs to evaluate086

LMs capacity to learn ALs at different levels of087

the Chomsky hierarchy. Someya et al. (2024) use088

ALs to determine whether LMs can learn the prop-089

erties of regular, context-free, and context-sensitive090

languages, such as nested and long-distance de-091

pendencies, and cross-serial dependencies. They092

find that LSTMs (Hochreiter and Schmidhuber,093

1997), Stack-RNNs (Joulin and Mikolov, 2015),094

and Transformers (Vaswani et al., 2017) struggle to095

learn nested, long-distance, and cross-serial depen-096

dencies, but successfully learn regular languages.097

Other context-free languages, such as Dyck lan-098

guages, and mildly context-sensitive languages,099

like anbncn, have been used to test recurrent LM100

learning and generalization to longer sequences101

(Suzgun et al., 2019; Weiss et al., 2018; El-Naggar102

et al., 2022) as well as establishing a correspon-103

dence between the different LM models and the104

levels of the Chomsky hierarchy (Delétang et al.,105

2022). One limitation of this research is that the106

ALs used diverge from NLs by using minimal vo-107

cabulary, many levels of nested dependencies, and108

so forth.109

In another line of research, Chomsky et al.110

(2023) argued that neural LMs can learn both possi-111

ble and impossible human languages, so cannot dis-112

tinguish between them. Kallini et al. (2024) empir-113

ically address this claim, by developing putatively114

impossible AL variants by permutation and modi-115

fication of an English dataset, following Ravfogel116

et al. (2019). They find that GPT-2 models struggle117

to learn the impossible languages, contradicting118

Chomsky’s claim. However, it is difficult to de-119

termine precisely what makes the impossible ALs120

harder to learn because of the multi-dimensional121

nature of the altered English input.122

White and Cotterell (2021) take inspiration from123

Ravfogel et al. (2019) but use ALs generated by124

a PCFG to examine the inductive biases of LMs125

towards different word orders. They use six param-126

eters (‘switches’) which invert the order of daughter127

categories within distinct CF productions to deter-128

mine the structure of their sentences, and evaluate129

LSTM and Transformer models on the ALs gen-130

erated by the PCFGs defined by each distinct set-131

ting of these parameters. Extending this research, 132

Kuribayashi et al. (2024) evaluate the performance 133

of further cognitively-motivated LMs on the same 134

ALs. However, as a consequence of the use of 135

PCFGs containing a VP constituent, the ALs used 136

by White and Cotterell (2021) and Kuribayashi 137

et al. (2024) do not generate Verb-Subject-Object 138

(VSO) or Object-Subject-Verb (OSV) word orders. 139

In this paper, we generate a wider set of ALs using 140

GCGs and replicate the experiments of Kuribayashi 141

et al. (2024) on this new dataset. Our approach to 142

controlled AL generation is, in principle, expres- 143

sive enough to generate all attested NL construc- 144

tions documented by linguists to date, so provides 145

a general framework to support further AL-based 146

investigation of neural LMs. In this paper, we ex- 147

emplify this by also extending White and Cotterell 148

(2021) dataset to include object relative clauses. 149

2.2 Categorial Grammar 150

Classic Categorial Grammar (CG) is a formalism 151

which aims to represent NL syntax isomorphically 152

with compositional semantics (Ajdukiewicz, 1935; 153

Bar-Hillel, 1953). We focus on the syntactic gen- 154

erative properties of extensions to classical CG in 155

this paper. The components of a CG are a lexicon 156

pairing words with basic or functor categories, and 157

a small set of rules defining how functor categories 158

combine with basic categories syntactically and se- 159

mantically. The "slash" notation is often used to in- 160

dicate the direction of the arguments relative to the 161

resulting category. For example, X/Y is a functor 162

category looking for an argument basic category Y 163

to the right to create result category X . In classical 164

CG, there are just two rules forward functional ap- 165

plication (a) or backward functional application 166

(b), shown below. 167

(a) X/Y Y ) X 168

(b) Y X\Y ) X 169

In English, a transitive verb like "met" is a functor 170

category (S\NP )/NP . The derivation shown be- 171

low for "Kim met Sandy" shows both forward and 172

backward application. 173

Kim met Sandy

NP (S\NP)/NP NP
>

S\NP
<

S

174

Most if not all of the variation between languages is 175

captured by variation in the set of lexical categories 176

assigned to words. 177
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CG is equivalent to a binary-branching context-free178

grammar. There are extensions and generalizations179

of CG, such as Combinatory Categorial Grammar180

(CCG), (Steedman, 1996), which we refer to gener-181

ically as Generalized Categorial Grammars (GCGs)182

(Wood, 2014). In CCG and GCGs, additional oper-183

ations can be used to combine categories.184

One such operation is coordination, where 2
constituents of the same category separated by con-
junction can be combined into a single constituent
of the same type,

X CONJ X ) X

Coordination (�) is shown in the derivation below.185

Kim and Sandy met Felix

NP CONJ NP (S\NP)/NP NP
<�>

NP
>

S\NP
<

S

186

Forward composition and backward composi-187

tion operations are utilized in CCG, where adjacent188

functions are composed. We show the rules of for-189

ward (a) and backward (a) composition below.190

(a) X/Y Y/Z ) X/Z191

(b) Y \Z X\Y ) X\Z192

Composition (B) is shown in the derivation below.193

the elf on the shelf laughed

NP (NP\NP)/NP NP S\NP
>

NP\NP
<B

S\NP
<

S

194

Permutation is included in our GCG as a more
computationally tractable alternative to type raising
in CCG. We use the version from Briscoe (1997,
2000), which allows for a cyclic permutation of
the functor arguments without changing their di-
rectionality. The definition of permutation is as
follows:

(X|Y1)...|Yn ) (X|Yn)|Y1

Permutation (P) is shown in the derivation below.195

Kim met Sandy

NP (S\NP)/NP NP
<P>

(S/NP)\NP
<

S/NP
>

S

196

We develop our ALs from a GCG utilizing these 197

rules of application, coordination, composition, 198

and permutation. 199

3 Dataset 200

As a first case study employing our GCG to create 201

ALs, we mostly reproduce the dataset of White 202

and Cotterell (2021) using GCG but also add some 203

novel word order constructions. Specifically, we 204

adapt the parameters defined by White and Cot- 205

terell (2021) to create a GCG for each of the 64 206

AL configurations they define. We then created 207

lexicons for SOV and VOS languages to create an 208

additional 32 ALs for VSO and OSV languages. 209

We also extend each Al with object relative clauses 210

as an exemplar of a potentially unbounded depen- 211

dency (‘filler-gap’) construction. 212

3.1 The Lexicon 213

We define lexical syntactic categories, e.g., NP, first, 214

as listed in Table 1, and then define a set of lexicons. 215

We use a set of mostly English words that is of the 216

same size and has the same categories as White 217

and Cotterell (2021), including singular and plural 218

nouns, and past and present tense verbs, but we 219

ignore subject-verb number agreement, in our ini- 220

tial, simple setting. In addition, following White 221

and Cotterell (2021), we avoid lexical ambiguity, 222

and thus each word in the lexicon is assigned to ex- 223

actly one category. Following White and Cotterell 224

(2021), we use subject and object markers in all the 225

artificial languages. 226

3.2 Dataset Generation 227

Dataset generation involves several steps: 228

1. Determining the GCG categories: We 229

set a GCG lexical syntactic category (e.g., 230

SCOMP\S) for each of word types (e.g., COMP), 231

as shown in Table 1. These GCG categories 232

are parameterized by seven word order param- 233

eters shown in Table 2. For example, if the S 234

parameter in Table 2 is set to 0 (head-final), 235

the GCG syntactic type of VI (walked) should 236

be S\NP_SUBJ as follows: 237

Kim ga walked

NP NP_SUBJ\NP S\NP_SUBJ
<

NP_SUBJ
<

S

238
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Category GCG syntactic type Example

NP (Noun Phrase) NP Kim ga kissed Sandy o
SUBJ (Subject Marker) NP_SUBJ\NP Kim ga kissed Sandy o
OBJ (Object Marker) NP_SUBJ\NP Kim ga kissed Sandy o
ADJ (Adjective) NP|NP red car ga ran
VT (Transitive Verb) (S|NP_SUBJ)|NP_OBJ Kim ga kissed Sandy o
VI (Intransitive Verb) S|NP_SUBJ red car ga ran
VCOMP (Complementary Verb) (S|NP_SUBJ)|SCOMP Kim ga believed that Sandy ga lied
COMP (Verb Complement) SCOMP|S Kim ga believed that Sandy ga lied
CONJ (Conjunction) var\var/var Kim and Sandy ga ate
PREP (Preposition) (NP|NP)|NP elf on shelf ga laughed
REL (Relativiser) (NP_SUBJ|NP_SUBJ)|(S|NP_OBJ) man ga whom I ga met laughed

Table 1: Lexical syntactic categories used in our artificial grammar. The bars “|” in the GCG lexical categories
indicate either forward- or back-slash, which is controlled by word order parameters in Table 2. The examples in the
English grammar are also shown, where the word(s) belonging to the category being described are shown in bold.

Param. Description 0 (head-final) 1 (head-initial)

S Order of subject and verb
VI ! S\NP_SUBJ
VT ! (S\NP_SUBJ)|NP_OBJ
VCOMP ! (S\NP_SUBJ)|SCOMP

VI ! S/NP_SUBJ
VT ! (S/NP_SUBJ)|NP_OBJ
VCOMP ! (S/NP_SUBJ)|SCOMP

VP Order of object and verb VT ! (S|NP_SUBJ)\NP_OBJ
VCOMP ! (S|NP_SUBJ)\SCOMP

VT ! (S|NP_SUBJ)/NP_OBJ
VCOMP ! (S|NP_SUBJ)/SCOMP

O Order of subject and object Restriction to make an S precede with O as
canonical word order

Restriction to make an O precede with S as
canonical word order

COMP Position of complementiser COMP ! SCOMP\S COMP ! SCOMP/S

PP Postposition or preposition PREP ! (NP\NP)/NP PREP ! (NP/NP)\NP

ADJ Order of adjective and noun ADJ ! NP/NP ADJ ! NP\NP

REL Position of relativiser REL ! (NP_SUBJ/NP_SUBJ)\(S\NP_OBJ) REL ! (NP_SUBJ\NP_SUBJ)/(S/NP_OBJ)

Table 2: Word order parameters and their associated GCG categories. “A!B” indicates A
B (A is expanded to B) in

the GCG derivation.

Different ALs are generated by different com-239

binations of the seven word-order parameters,240

which control the directionalities in the lexical241

categories, resulting in different word orders242

(Table 2).243

2. Generating the grammars: We use the seven244

binary parameters (Table 2) to generate our245

96 grammars based on GCG. The parameters246

except for O are the same as White and Cot-247

terell (2021), and the O parameter biases the248

S-O order (as a part of postprocessing). This249

is needed because the permutation operation250

for theVT will eliminate the bias regarding the251

order of S and O, so to align the experimen-252

tal settings with White and Cotterell (2021),253

we add this parameter. The O parameter is254

set to either 0 or 1 only when the subject and255

object are positioned on the same side of a256

(transitive) verb (SOV, OSV, VSO, VOS); oth-257

erwise, the O parameter is automatically deter-258

mined by the first two parameters of S and VP259

(SVO and OVS). This process results in 96260

grammars – less than the mathematically pos-261

sible combinations of seven binary parameters 262

(27=128). Each language is associated with 263

a specific combination of parameter assign- 264

ments and denoted, for example, as 0001111 265

(S=0, VP=0, O=0, COMP=1, PP=1, ADJ=1, 266

REL=1). 267

3. Template Generation: To cover all possi- 268

ble valid syntactic structures in each of our 96 269

ALs, we first enumerate all possible sequences 270

of word categories (e.g., “NP ADJ VT CONJ 271

REL...”), up to length 10, in a brute-force 272

manner. We then parse these sequences with a 273

GCG parser with the corresponding grammar 274

configuration.1 Word category sequences, and 275

by extension, sentences created from them, 276

are considered grammatically valid if we ob- 277

tain at least one derivation resulting in S based 278

on the GCG parser. An example of a valid tem- 279

plate is shown in Figure 1. This template gen- 280

1We adapt the NLTK CCGChartParser ((Bird et al., 2009))
removing type raising and adding the permutation operation
as defined by Briscoe (1997, 2000), and use this to parse our
templates.
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ADJ NP SUBJ REL NP SUBJ VT VI CONJ VI
NP/NP NP NP_SUBJ\NP (NP_SUBJ\NP_SUBJ)/(S/NP_OBJ) NP NP_SUBJ\NP (S\NP_SUBJ)/NP_OBJ S\NP_SUBJ X\X/X S\NP_SUBJ

>
NP

< < <�>
NP_SUBJ NP_SUBJ S\NP_SUBJ

<P>
(S/NP_OBJ)\NP_SUBJ

<
S/NP_OBJ

>
NP_SUBJ\NP_SUBJ

<B
S\NP_SUBJ

<
S

Figure 1: Example of a template and its derivation. The word categories shown in black (e.g., SUBJ) correspond to
a single lexical item (e.g., ga). The remaining categories in blue have several candidates of lexical items, and these
are uniformly sampled from the predefined dictionary.

Algorithm 1 Template Generation Algorithm
Require: Set of word categories C, 96 parsers [p1, · · · , p96]

Initialize empty dictionary V alidTemplates
for length = 3 to 10 do

for each sequence of c 2 Clength do . Generate all
word category sequences

if c matches heuristics then
skip . Exclude immediately invalid templates

end if
for each parser pi in 96 parsers do

if pi successfully parses c then
Add c to V alidTemplates[i] . Select

grammatically valid templates
end if

end for
end for

end for
return V alidTemplates

eration is summarized in Algorithm 1. Note281

that in order to make this process more effi-282

cient, we apply some heuristics (detailed in283

Appendix A.1) to eliminate templates that can-284

not result in a valid sentence.285

4. Sentence Generation: Once we have our tem-286

plates for each of the 96 grammars, we gen-287

erate 400 sentences for each template in each288

grammar by random sampling of the lexicon.289

We ensure that all of the generated sentences290

are unique by removing duplicate sentences291

when they occur. This is shown in Algorithm292

2.293

5. Sampling from the Datasets: Similarly to294

the dataset size per grammar as White and295

Cotterell (2021), we randomly sample 50K296

sentences from the datasets generated for each297

grammar. We also ensure that all sampled298

sentences are distinct. These datasets are the299

ones that we use in our experiments.300

Algorithm 2 Generating Sentences from Templates
Input: Valid templates T , dictionary D mapping word
category c 2 C to lexical items Vc = D[c]
Output: Set of grammatical sentences S
S  ;
for each template t 2 T do

for 0 to 400 do
s dummy string of length |t|
for each category ci in t = [c1, · · · , cn] do

Randomly sample wi ⇠ D[ci] (uniform distri-
bution)

s[i] = wi

end for
if s /2 S then

Add s to S
end if

end for
end for
return S

4 Experiments 301

We evaluate the same models as White and Cot- 302

terell (2021), which are the LSTM (Hochreiter and 303

Schmidhuber, 1997) and Transformer (Vaswani 304

et al., 2017) models. We evaluate perplexity (PPL) 305

over the sentences of the different word orders and 306

investigate the inductive biases that models may 307

have towards specific word order configurations. 308

For each of our 96 languages, similarly to Kurib- 309

ayashi et al. (2024), the 50K sentences are divided 310

across 5 runs. In each run, the 10K sequences are 311

divided into train/dev/test split with a ratio of 8:1:1. 312

Different random seeds are used in each run, and 313

we adopted two training scenarios: (i) training 10 314

epochs, following Kuribayashi et al. (2024); and (ii) 315

adopting early-stopping with patience of 5 epochs, 316

following White and Cotterell (2021), where the 317

training was consistently longer than 10 epochs. 318

We will basically follow the experimental settings 319

in White and Cotterell (2021) and Kuribayashi et al. 320

(2024) but also extend some analyses focusing on 321

learning dynamics across different training epochs. 322
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SOV OSV SVO OVS VSO VOS

(a) 10 epochs

SOV OSV SVO OVS VSO VOS

(b) Early-stop

Figure 2: PPLs over 96 grammars. The blue and orange box plots correspond to Transformer and LSTM, respectively.
The bars in the graph show the percentage of world languages for each grammar (blue) and word order group, e.g.,
SOV (gray).

4.1 Results and Discussion323

What kind of language is harder to learn? Fol-324

lowing White and Cotterell (2021); Kuribayashi325

et al. (2024), we show the PPL distribution across326

96 grammars in Figure 2. At the earlier training327

phase of 10 epochs, the PPL is lower in head-initial328

languages (grammars with many 1s), which indi-329

cates that these languages can be more efficiently330

learned by LSTMs and Transformers, although this331

trend is diminished through longer training with332

early-stopping. Such head-initial preference con-333

trasts with existing findings White and Cotterell334

(2021); Kuribayashi et al. (2024); Hopkins (2022),335

who both find that Transformers learn head-final336

languages more easily. Another notable difference337

with the existing study is that, while LSTM’s learn-338

ing preference was somewhat flat in White and339

Cotterell (2021), our results are more uneven and340

thus more informative about which word order is341

preferred even for LSTMs. The detailed statistics342

will be reported in the latter paragraph (Figure 5).343

Figure 3 shows the dynamic change of word344

order preference of LMs during training. As345

suggested in Figure 2, one can observe a slight346

transition in their preference from head-initial to347

head-final languages in both LSTM and Trans-348

former LMs, which contrasts with the common 349

view that natural languages have evolved from 350

head-final (SOV) to more neutral (SVO) or head- 351

initial (VSO/VOS) ones (Gell-Mann and Ruhlen, 352

2011). 353

Typological (mis)alignment The percentage of 354

world languages for each grammar and word or- 355

der group is superimposed on Figure 2 (blue and 356

gray bars). To calculate these typological distri- 357

butions, we basically adopted the statistics used 358

in Kuribayashi et al. (2024) and enriched them by 359

integrating the S-O order statistics from Dryer and 360

Haspelmath (2013) and complementizer position 361

statistics from Skirgård et al. (2023). The two dis- 362

tributions of PPLs and word order frequencies are 363

compared with the Pearson correlation coefficients, 364

following Kuribayashi et al. (2024). At the point 365

of 10 epochs, the correlation between PPLs and ty- 366

pological distributions was 0.49 (p<0.05) and 0.38 367

(p<0.05) for LSTM and Transformer, respectively. 368

The positive correlation indicates that the worse 369

the PPL is, the more frequent the word order is in 370

the world, contrasting with the common claim that 371

natural language is optimized toward better pre- 372

dictability (Gibson et al., 2019; Hahn et al., 2020). 373

Through the longer training in the early-stopping 374
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(a) LSTM (b) Transformer

Figure 3: The PPL trajectories for different S-O-V word orders and models (measured on validation data in the
early-stopping setting). The y-axis is logarithmic.

Figure 4: Correlations between PPL and typological
distributions, which are measured in each epoch dur-
ing training (on validation data in the early-stopping
setting). The correlations from five runs are averaged.
To highlight that a negative correlation is expected, the
y-axis is inverted.

setting, the correlations became �0.20 (p<0.05)375

and �0.36 (p<0.05) for LSTM and Transformer,376

respectively. That is, at least in our setting, longer377

training converges to better alignment with typo-378

logical distributions. Such intriguing dynamics are379

shown in Figure 4, where the correlation between380

typological distributions and PPL distributions for381

each training epoch is reported.382

Regression analysis Figure 5 shows quantita-383

tive statistics on which word order parameters are384

associated with the PPL differences. Similarity385

to White and Cotterell (2021), we train a regression386

model to predict PPLs from word order parameters387

and their interaction terms.2 Positive coefficients388

2We used the statsmodels package (Seabold and Perktold,
2010). The formulation is PPL ⇠ SV*OV + SV*SO + SV*COMP

+ SV*PP + SV*ADJ + SV*REL + OV*SO + OV*COMP + OV*PP

+ OV*ADJ + OV*REL + SO*COMP + SO*PP + SO*ADJ +

SO*REL + COMP*PP + COMP*ADJ + COMP*REL + PP*ADJ +

PP*REL + ADJ*REL, where each parameter is a binary factor

for a single word-order parameter (diagonal ele- 389

ments of matrices in Figure 5) indicate that head- 390

initial assignment leads to lower PPLs. Positive 391

coefficients for interaction terms indicate that the 392

consistent head-directionality between the two pa- 393

rameters leads to worse PPLs, and these are ex- 394

pected to be negative if the common patterns of 395

consistent head-directionalities in natural language 396

are from learners’ biases. The coefficients for inter- 397

action terms are frequently positive; thus, at least 398

Transformers and LSTMs do not exhibit inductive 399

biases toward typologically plausible, consistent 400

head-directionality, which is consistent with the 401

results in White and Cotterell (2021). 402

The coefficient matrices also suggest that the 403

training setting difference (10 epochs or early- 404

stopping) brings more impact than the LMs’ ar- 405

chitectural differences, given that the patterns be- 406

tween Figures 5a and 5c (and Figures 5b and 5d) 407

are relatively similar. In addition, especially in 408

the 10-epoch results (Figures 5a and 5c), we saw 409

distinctively large coefficients for the interaction 410

term between SV and REL parameters, which was 411

not observed in the existing work (White and Cot- 412

terell, 2021) where object relative clause was not 413

introduced regarding REL-related constructions. 414

Discussion There are a few possible reasons that 415

could explain this contrast between our findings 416

and those of White and Cotterell (2021) and Kurib- 417

ayashi et al. (2024). One reason will be that the 418

with dummy coding (head-final as 0 and head-initial as 1),
and X*Y represents to both main effects of X and Y and their
interaction effect of X:Y. In contrast to White and Cotterell
(2021), we did not include the sentence-level random effect
because our dataset does not hold strict alignment between
sentences across different grammars.
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(a) LSTM (10 epochs) (b) LSTM (early-stop)

(c) Transfoermer (10 epochs) (d) Transformer (early-stop)

Figure 5: Coefficients of word order parameters (and their interactions) estimated by the regression models to
predict PPL from word order parmeters

GCG-generated datasets are potentially more com-419

plex than the PCFG-generated datasets used by420

White and Cotterell (2021) and Kuribayashi et al.421

(2024). Our datasets include some long-distance422

dependencies, and in some cases, as a result of423

permutation, more flexible word orders.424

5 Conclusions and Future Work425

In this paper, we extend the work of White and426

Cotterell (2021) and create a broader set of ALs427

to evaluate the inductive biases of LMs towards428

different word orders. This includes the OSV and429

VSO word orders that were not represented in previ-430

ous works (White and Cotterell, 2021; Kuribayashi431

et al., 2024) and permits the inclusion of construc-432

tions, which can represent more complex or flexible433

structures and orders, including longer distance de-434

pendencies. We evaluate LSTM and Transformer435

learning of our ALs and calculate perplexity. We436

find that the models prefer head initial languages,437

which contrasts with the findings obtained in pre-438

vious work. This is intriguing and raises questions 439

and observations that we intend to address and ex- 440

plore further in future work. 441

We intend to investigate the effects of different 442

training settings and paradigms, on the learning 443

of different language configurations. We also in- 444

tend to investigate and explore how the models 445

generalize beyond the training data, e.g., to longer 446

sequences. We also intend to investigate and under- 447

stand model learning and behavior when exposed 448

to different types of long-distance dependencies, 449

such as nested dependencies and cross-serial depen- 450

dencies, as they occur in NLs. The lexicon we use 451

here disregards verb tenses and number agreement. 452

In future work, we plan to extend our lexicon to 453

contain more detail about the specific elements of 454

the lexicon and, in general, inject more realistic 455

properties into our ALs. 456
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