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Abstract

Undersampled MR image recovery has been widely studied with Deep Learning methods as
a post-processing step for accelerating MR acquisition. In this paper, we aim to optimize
multi-sequence MR image recovery from undersampled k-space data under an overall time
constraint. We first formulate it as a constrained optimization problem and show that
finding the optimal sampling strategy for all sequences and the optimal recovery model for
such sampling strategy is combinatorial and hence computationally prohibitive. To solve
this problem, we propose a blind recovery model that simultaneously recovers multiple
sequences, and an efficient approach to find proper combination of sampling strategy and
recovery model. Our experiments demonstrate that the proposed method outperforms
sequence-wise recovery, and sheds light on how to decide the undersampling strategy for
sequences within an overall time budget.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique. It holds
several distinct advantages over other imaging modalities such as computed tomography
(CT) and ultrasound. Not ony does MRI resolve tissues at a high quality, it can also be
customized with different pulse sequences to produce a variety of desired contrasts that
reveal different kinds of tissues, such as blood vessels and tumor regions. Furthermore,
compared to CT, MRI does not expose patients to ionizing radiation. On the other hand,
MRI is limited by its long acquisition time, as the data is acquired by traversing through
k-space, where the speed of traversal is limited by the underlying MR physics and machine
quality. In practice, patients often take multiple MR sequences, each of which uses different
parameters to target specific tissues and lesions, resulting in even longer overall acquisition
time. This leads to various practical problems, ranging from image blurriness due to patient
movement to limiting accessibility of the machines.

There is a long history of research on how to undersample MR k-space data while main-
taining image quality. Lustig et al. (Lustig et al., 2007) first proposed to use Compressed
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Sensing in MRI (CSMRI), assuming that the undersampled MR images have a sparse rep-
resentation in some transform domain, where noise can be discarded through minimizing
the L0 norm of such representation. This method was shown to yield much better results
than zero-filling the missing k-space samples (ZF); Extending on CSMRI, Ravishankar et
al. (Ravishankar and Bresler, 2011) applied more adaptive sparse modelling through Dictio-
nary Learning, where the transformation is optimized through specific sets of data, resulting
in better sparsity encoding. To further explore redundancy within the MR data, new meth-
ods have been proposed in recent years (Huang et al., 2012; Hirabayashi et al., 2015; Senel
et al., 2019; Gozcu et al., 2018; Gong et al., 2015), focusing on extrapolating information in
adjacent slices, in multi-acquisition scenarios, and in scenarios where additional sequence
is available. In the domain of Deep Learning, Schlemper et al. (Schlemper et al., 2018)
proposed a cascade of CNNs that incorporates data consistency layers to de-noise MRI in
image domain while maintaining consistency in the k-space, and showed that the results
significantly outperformed DLMRI (Ravishankar and Bresler, 2011). Yang et al. (Yang
et al., 2018) proposed DAGAN, which recovers undersampled MR images through a U-Net
structure with perceptual and adversarial loss in addition to L1 loss in image space and
frequency space. Quan et al. (Quan et al., 2018) proposed RefineGAN, which performs
reconstruction and refinement through two different networks, and enforces a cyclic loss in
the image and frequency spaces.

Although the mentioned CNN-based methods have obtained impressive results, they
focus on single sequence reconstruction. Few studies have explored the effectiveness of
CNN-based methods under multi-sequence scenarios, which are common in practice and
shown to contribute in non-learning-based methods (Gong et al., 2015; Bilgic et al., 2018).
Xiang et al. (Xiang et al., 2018) showed that a highly undersampled T2 sequence, given a
fully sampled T1 sequence, can be well recovered through a Dense U-Net. In this paper,
we attempt to find the best strategy at undersampling k-space acquisition over multiple
sequences, such that we can best recover the sequences post-acquisition. Wang et al.(Wang
et al., 2017) also explored the feasibility of multi-constrast MR imaging through CNN
models.

The contributions of our paper can be summarized as follows: (i) we formulate a combi-
natorial constrained optimization problem, where given a limited acquisition time, we seek
to find the best strategy to undersample the k-spaces of multiple sequences to achieve the
best overall recovery; (ii) we propose a novel CNN-based blind recovery model that extrap-
olates the shared information across different sequences and simultaneously recover them,
as well as an efficient approach to finding a proper combination of sampling strategy and
recovery model; (iii) we perform extensive evaluation on real and simulated k-space data,
which shows that the proposed model outperforms the method of independently recovering
each sequence, and that our method finds the undersampling strategy adaptive to the given
sequences.

2. Problem Formulation

We first note that the most popular MR k-space sampling method is through Cartesian
trajectory, where a series of acquisitions is performed along equally-spaced parallel lines,
which are conventionally called phase encoding lines. This leads to a natural implementation
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for MR undersampling, where the technicians can drop certain phase encoding lines from
the sampling grid (Lustig et al., 2007). In this paper, we focus on undersampling with 1D
masks along the phase encoding direction1.

Consider multiple MR sequences with full k-space spectrums {Fs}Ss=1, where S denotes
the total number of sequences, with each spectrum sampled by N phase encoding lines. For
each Fs, the unit time for sampling a phase encoding line is denoted by ts. We define 1D
sampling masks Ms ∈ {0, 1}N which selects a subset of encoding lines Ms � Fs for faster
acquisition. By applying the inverse Fourier transform F−1, an undersampled MR image
for sequence s is reconstructed as

IMs = F−1(Ms � Fs). (1)

When fully sampled, the MR image is reconstructed by Is = F−1(Fs). If we denote the
number of selected encoding lines by |Ms|, the total time needed to acquire all the sequences
is T =

∑S
s=1 ts × |Ms|.

Undersampled MR leads to faster acquisition and degraded quality compared to fully
sampled MR. To allow fast acquisition while retaining image quality, we apply a deep neural
network as the post-processing step to improve the degraded image quality. Therefore, we
consider the problem of searching for an optimal sampling strategy {Ms}Ss=1 and a CNN
fθ that best recovers fully sampled {Is}Ss=1 from {IMs} with a time constraint T ≤ Tmax.
This constrained optimization problem can be formulated as follows:

min
θ,{Ms}

S∑
s=1

EIs∼p(Is)
[∥∥fθ(IMs)− Is

∥∥
1

]
s.t.

S∑
s=1

ts|Ms| ≤ Tmax. (2)

We use the L1 loss in (2); however, other loss functions can be used too.
The problem defined in (2) is combinatorial in nature, as has been realized by Reeves

et al. (Reeves and Heck, 1995). First, the set {Ms}Ss=1 has a total of 2NS possible com-
binations. Secondly, the best recovery model depends on the choice of sampling strategy.
As a result, the optimal solution to (2) is in general difficult to find. As a preliminary
attempt, we assume a fixed candidate set C ∈ {m1, . . . ,mC} for each Ms. The number of
possible sampling strategies becomes CS instead. However, even with the simplification, a
straightforward approach to (2), which is

min
M1:S∈CS

(
min
θ

S∑
s=1

EIs∼p(Is)
[∥∥fθ(IMs)− Is

∥∥
1

])
s.t.

S∑
s=1

ts|Ms| ≤ Tmax, (3)

still requires training CS models and then choosing the one with minimum loss. This is
necessary since each model is trained to best eliminate noise introduced by the specificMs,
and becomes sub-optimal when the noise level/pattern is changed.

In this work, we propose an efficient approach that finds a (θ, {Ms}Ss=1) while circum-
venting the computational cost in training an excessive number of models. Conceptually, we
propose to first train a blind recovery model (BRM), which takes randomly undersampled

1. We have found that undersampling with 2D masks generally leads to better recovery quality; however,
such a setting is less time efficient in practice.
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MR sequences as inputs, and recovers them to fully sampled MR sequences. The trained
BRM can then be used as an MR sequence quality estimator to search for the optimal sam-
pling strategy {M∗s}Ss=1. Finally, with {M∗s}Ss=1, we can proceed to solve (3) by fine-tuning
on the existing BRM. In total, the proposed method only requires training one CNN, which
significantly reduces the computational cost.

2.1. Blind recovery model

A blind recovery model (BRM) is a CNN fθ which recovers Is by fusing information from
different undersampled MR sequences {IMs}Ss=1, Ms ∈ C. We adopt a data augmenta-
tion approach, which randomly selects sampling masks from C, and consider the following
unconstrained optimization problem:

θ∗ = arg min
θ

S∑
s=1

EIs∼p(Is),Ms∼p(C)
[∥∥fθ(IMs)− Is

∥∥
1

]
. (4)

As we will show, the model trained under this scheme sacrifices its ability to fit on a
specific sampling profile, and in exchange performs generally well across all sampling profiles.
Therefore, it can serve as a good estimator for discovering the best sampling strategy.

2.2. Sampling strategy searching

Given a trained BRM fθ∗ , we propose to search for the optimal sampling strategy by finding
the one with a minimum loss:

M∗1:S = arg min
M1:S

S∑
s=1

EIs∼p(Is)
[∥∥fθ∗(IMs)− Is

∥∥
1

]
s.t.

S∑
s=1

ts|Ms| ≤ Tmax. (5)

The above exhaustive search requires CS forward passes, which is significantly less com-
putationally heavy than training CS CNNs. The solution θ∗ can be further improved by
learning a refined model specific to M∗s:

θ̂ = arg min
θ

S∑
s=1

EIs∼p(Is)
[∥∥fθ(IM∗

s
)− Is

∥∥
1

]
. (6)

2.3. Single sequence training vs multi-sequence training

One has the option of training (a) multiple SISO (single input single output) BRMs, one
per sequence, or (b) one monolithic MIMO (multiple input multiple output) BRM for all
sequences. The latter option holds several advantages over the former. First, option (a) does
not consider the complementary information across different sequences. As shown in (Xiang
et al., 2018; Huang et al., 2012), there exists a strong correlation between sequences of the
same patient, as they share the underlying anatomical structures. If a particular sequence
is severely undersampled, leading to the loss of some anatomical detail, such information
may be present in other less severely undersampled sequences. Secondly, option (b) only
requires training one model, while option (a) requires S models. As all the models attempt
to eliminate distortions due to undersampling, they should learn similar features. However,
multi-sequence training requires the sequences to be aligned amongst themselves, which
may require coordination with the patient or proper registration algorithms.

4



Towards multi-sequence MR image recovery from undersampled k-space data

Figure 1: Multi-sequence recovery (MIMO) pipeline with the masks Ms randomly selected.
SISO pipeline is implemented similarly with a single sequence and a single output.

2.4. Network architecture

Our multi-sequence simultaneous recovery approach is shown in Fig 1. The approach is
based on Residual Dense Block (RDB) (Zhang et al., 2018), which incorporates the idea
of residual learning and dense block (Huang et al., 2016), allowing all layers of features
to be seen directly by other layers. During learning, each raw k-space data Fs first gets
undersampled through a randomly generated mask Ms. The results are then transformed
from k-space to image space, and concatenated before sent to the recovery network, which
outputs IR1:S . The loss function is defined as the following: L = ‖IR1:S − I1:S‖1.

3. Experiments

3.1. Datasets

We employ two datasets. The first one is a privately collected, k-space raw data of three
sequences (T1, T2, FLAIR) from 20 patients, with each sequence containing 18 slices. The
sequences are co-registered and taken with an MRI machine with 8 channels; in order to
augment training, we treat each channel as an individual image to result in a total of 2,880
three-sequence images, which are divided into a ratio of 17:1:2 for training, validation, and
testing. We refer to this dataset as “real data”. In order to further validate our research,
we also employ the Brain Tumor Image Segmentation (BraTS) dataset (Menze et al., 2015;
Bakas et al., 2017), which contains T1, T2, and FLAIR. The sequence are co-registered to
the same anatomical template, skull-stripped, and interpolated to the same resolution. We
divide the selected 167 cases into a ratio of 140:10:17 for training, validation, and testing.
From every case, we select the middle 60 slices that contain most of the anatomical details.
Because BraTS does not provide raw k-space data, we follow common practices (Xiang et al.,
2018; Yang et al., 2018) to simulate k-space data. We refer to this dataset as “simulated
data”. We implement the proposed approach using PyTorch and train all the models with
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Figure 2: Quantitative recovery performance comparison. The Pearson correlation coeffi-
cient between Dedicated and MIMO vs between Dedicated and ZF is 0.85 vs -0.33
in the selected range

Adam. Below, our insights are first demonstrated with experiments on real data and are
further validated on simulated data. optimization, a momentum of 0.5 and a learning rate
of 0.0001, until they reach convergence.

3.2. Acquisition time and undersampling settings

In general, T2 and FLAIR have a longer repetition time (TR) than T1; however, the acqui-
sition time of each sequence also depends on the number of excitations. A larger number of
excitations helps better resolve sequences but take a longer time. Therefore, the acquisition
time of each sequence is rather machine-dependent. Here we consider three experimental
settings: tT1 :tT2 :tflair= (1) 1:1:1, (2) 1:4:6, and (3) 2:3:6.

We experiment on both low-pass sampling (Xiang et al., 2018) and random sampling
(Yang et al., 2018). We found that random sampling works better on real data but worse
on simulated data. As our approach is agnostic of sampling strategy, we choose the better
performing sampling strategy for each dataset. During BRM training, the masksM1:S are
generated based on a random λs ∈ [1, k], where k is the maximum undersampling factor
(we set k = 8). This means that BRM, after training, can handle a continuous set of
undersampling factors on every sequence.

3.3. Evaluation metrics

We utilize two metrics to gauge image quality: PSNR (peak signal-to-noise ratio) and
SSIM (structural similarity). Since we mainly focus on three sequences, calculation of these
metrics on three-sequence outputs is the same as on RGB images. This is easily extensible
with a larger number of sequences. Since MRI images do not have a fixed dynamic range,
PSNR values should be regarded for their relative improvements.

3.4. Main results

We evaluate the effectiveness of BRM to empirically prove that a properly trained network
fθ performs well regardless of the choices of M1:S , and serves as a good estimator of best
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sampling strategy. Furthermore, we show that MIMO BRM performs better than SISO
BRM.

Figure 3: Quantitative evaluations for the top performing λ1:S under different acquisition
time assumption. The performance numbers presented here are PSNR (dB) and
SSIM.

The study is done by training (i) a MIMO BRM, (ii) three SISO BRM, one for ev-
ery sequences, and (iii) many models that are dedicated for specific sampling ratios. All
the models follow the same structure shown in Fig. 1. The proposed training scheme for
continuous λs ∈ [1, k] allows us to efficiently investigate the performance of different under-
sampling strategies. For each acquisition time setting {ts}Ss=1, we search through possible
{λs}Ss=1 on the following simplex:

∑S
s=1

ts
λs

= Tmax, which maximally utilizes the budgeted

time Tmax. We select hundreds of {λs}Ss=1 under the 1:1:1 time setting, and set Tmax = T
4 ,

or 75% reduction in time. We run the trained models on the test set, and plot the recon-
struction performances in Fig. 2. The top-three performing sampling strategies for different
acquisition time setting are shown in Table 3.

Fig. 2 shows a clear performance gap between MIMO and SISO. Overall, the recon-
struction performance of ZF images is positively correlated with the performances of BRMs;
however, the correlation fluctuates often, and two sets of ZF that are similar in PSNR can
swing for more than 1dB after the images are processed through BRM. To limit the number
of dedicated models we need to train, we select a range of sampling factors of which ZF
performance does not correlate well with MIMO/SISO performance, and train 30 dedicated
models to see how well BRM predicts the performance of dedicated models. As we observe
from the right image in Fig. 2, our BRM, both from MIMO and SISO settings, predicts the
performance of dedicated models with a high correlation. We further choose the best three
{λs}Ss=1, and perform the last stage of fine-tuning accordingly to (6). A visual evaluation
on real data is shown in Fig. 4. For more visual results, please refer to the Supplemental
Material section.

Base on the best performing {λs}Ss=1, we perceive that among T1, T2, and FLAIR, the
results are best when T2 is sampled the most. We suggest that this makes intuitive sense
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Figure 4: Visual comparison of different methods, with PSNR (dB) and SSIM values listed
under the images. After recovery, the images are sharper with more visible details.
Please refer to Fig. ?? in Supplemental Material for the respective difference maps
against HR.

as T2 images provide the best contrast out of the three sequences, which can compensate
for the details lost in other images. The same observation can be made on the simulated
data, where both T2 and FLAIR show good contrast. When the time setting is changed
to non-uniformity, we can see that our search for the best sampling strategy reflects the
change. T1 is sampled more as a result of faster acquisition time, while T2 is still sufficiently
sampled.

4. Conclusion

In this work, we formulated multi-sequence MR recovery as a constrained optimization
problem, and explored possible methods to solve such a problem. We proposed a CNN-
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based approach and an optimization scheme that helps us find the proper combinations
of sampling strategy and recovery model without combinatorial complexity. We evaluated
our approach on both private raw data and public simulated data, demonstrating that
our method can quickly finds the sampling strategy that yields superior reconstruction
performance. We showed that our model outperforms single sequence recovery methods
in terms of recovery quality, time and space complexity. We believe that our method,
in combination with guidance from radiologists, can help reduce the acquisition time for
multi-sequence scenarios.
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