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Abstract

Recent progress in chemical-based machine learn-
ing utilizes a two-step process – pre-training on
unlabeled corpora and fine-tuning on specific
tasks – to enhance model capacity. Emphasizing
the growing need for training efficiency, Mixture-
of-Experts (MoE) efficiently scales model ca-
pacity, particularly vital for large-scale models.
In the MoE architecture, sub-networks of mul-
tiple experts are selectively tailored through a
gating network, optimizing overall model perfor-
mance. Extending this, a Multi-View Mixture-
of-Experts enhances model robustness and accu-
racy by fusing embeddings from different natures.
Here, we introduce Mol-MVMoE, a novel ap-
proach for small molecules by fusing latent spaces
from diverse chemical-based models. Utilizing
a gating network to define and assign weights
to different perspectives, Mol-MVMoE emerges
as a robust framework for small molecule analy-
sis. We assessed Mol-MVMoE using 11 bench-
mark datasets from MoleculeNet, where it outper-
formed competitors in 9 of them. We also provide
a deep analysis of the results obtained with the
QM9 dataset, where Mol-MVMoE consistently
performed better than its state-of-the-art competi-
tors. Our study highlights the potential of latent
space fusion and different perspectives integration
for advancing molecular property prediction. This
not only signifies current advancement but also
promises future refinements with the inclusion
large-scale models.
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1. Introduction
Chemical-based machine learning has gained widespread
adoption for predicting molecular properties due to its effi-
ciency in representing crucial structural aspects (Fang et al.,
2022; Wieder et al., 2020; Shen & Nicolaou, 2019). Recent
advancements leverage a two-step process, pre-training on
unlabeled corpora and fine-tuning on specific tasks (Takeda
et al., 2023; Soares et al., 2023; Horawalavithana et al.,
2022), demonstrating success in scaling model capacity and
enhancing performance.

While these strides in model development have significantly
improved performance, there is a growing need to prioritize
training efficiency (Pióro et al., 2024). Defined as the total
computation required to surpass the quality of state-of-the-
art systems (Shazeer et al., 2017), training efficiency gains
importance in light of the increasing emphasis on green AI
initiatives (Zhou et al., 2022). Mixture-of-Experts (MoE)
emerges as a compelling solution for scaling model capacity
within a fixed computational cost, playing a crucial role in
enhancing the training efficiency of large-scale language
models (Pióro et al., 2024; Jiang et al., 2024).

In the Mixture-of-Experts architecture, multiple experts op-
erate as sub-networks, and their activation is selectively
tailored, engaging only one or a few experts for each input
(Zhou et al., 2022). The pivotal role of a gating network in
this process is to efficiently route each input to the most suit-
able expert(s), optimizing the overall model performance
(Pióro et al., 2024). Expanding on this concept, a Multi-
View Mixture of Experts capitalizes on diverse perspectives
from different sources or modalities, enhancing model ro-
bustness and accuracy. Through the selective activation
of expert views based on input characteristics, Multi-View
MoE models proficiently capture complex relationships in
data, thereby fostering improved generalization across vari-
ous tasks and domains.

In this paper, we introduce a Multi-View Mixture-of-Experts
for small molecules (Mol-MVMoE) approach that leverages
on the fusion of latent spaces from different natures gen-
erated by two state-of-the-art chemical-based models, a
large language model based on the Transformer architec-
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ture (Ross et al., 2022), and a graph-based approach for
SMILES (Kishimoto et al., 2023). To achieve an optimized
latent space tailored for specific tasks, a gating network
is employed. This network serves to define and assign
weights to the various views comprising the latent space.
Through this intricate fusion of diverse perspectives, Mol-
MVMoE emerges as a robust framework for enhancing the
understanding and analysis of small molecules in chemical
contexts.

Our findings demonstrate that our proposed Mol-MVMoE
surpasses existing state-of-the-art algorithms, when it comes
to tackling intricate tasks of small molecules. These chal-
lenging tasks are part of the MoleculeNet benchmark dataset
(Wu et al., 2018). Furthermore, our approach exhibits su-
perior performance in 9 out of 11 datasets studied during
our experiments for both classification and regression tasks,
including the QM9 dataset which is related to the quantum
properties of the molecules. For this particular dataset we
provide a deeper investigation over the 12 properties which
are related to it. In this case, the best version of our pro-
posed Mol-MVMoE was able to perform better in 7 out of
the 12 properties within the QM9 dataset when compared
with other recent state-of-the-art approaches.

It is crucial to underscore that the Mol-MVMoE approach
involves the fusion of latent spaces from smaller models,
consistently outperforming state-of-the-art larger models
like MoLFormer-XL, trained on 1.1 billion molecules. This
demonstration not only showcases a substantial improve-
ment in performance with the potential to advance the field
but also unveils opportunities for further refinement, partic-
ularly as our approach incorporates even large-scale models
in the future.

2. Methodology
In this section, we explain the methodological framework
outlined in this paper. In Figure 1, we illustrate the schema
for latent space fusion using the proposed Mol-MVMoE
approach. Our methodology relies on three key components:
embeddings derived from molecular structures represented
as graphs, embeddings rooted in chemical language, and
a gating network that defines and assigns weights to the
diverse perspectives constituting the latent space. Through
this intricate fusion, Mol-MVMoE enhances the compre-
hension and analysis of small molecules within chemical
contexts, capturing intricate relationships in data based on
varying perspectives.

The molecular multi-view mixture-of-experts employs a
network to weigh and fuse embeddings from different view-
points. The graph-based architecture of MHG-GNN excels
in accurately capturing molecular substructures compared
to the language model-based MoLFormer. Conversely, the

self-attention mechanism of MoLFormer offers an advan-
tage in accounting for relationships between atoms, even
when their distances exceed the radius covered by the graph
approach. Details of the proposed method are given in the
next subsection.

2.1. Multi-View Mixture-of-Expert Layer

As illustrated in Figure 1, the Multi-View Mixture-of-
Experts layer comprises a set of n distinct ”expert networks”
labeled as E1, E2, . . . , En. Each expert is meticulously
crafted to capture unique perspectives on the underlying
data, spanning domains such as graphs, language, and more.
Augmenting these experts is a gating network denoted as
G, tasked with generating a sparse n-dimensional embed-
ding space crucial for task evaluation within the proposed
method.

Before applying the gating network, the feature extraction
module maps the raw input SMILES into an embedding to
be fed into the gating network. In this work, we map each
SMILES into tokens and then convert the input tokens to
fixed vectors of dimension 768. Finally, a mean pooling
method is applied to all token embeddings in order to ex-
tract a single meaningful embedding of the molecule. We
highlight that any feature extraction method can be applied
as well to improve the representation of the molecules into
the gating network.

Furthermore, the proposed architecture is enhanced with
a router module responsible for determining the n experts
that will be activated and receive inputs, which are based on
SMILES, further refining the adaptability and specialization
of the system.

Let G(x) and Ei(x̂) denote the output of the gating network
and the output of the i-th expert network, respectively, for
a given input x̂ of SMILES and x, which is the embed-
dings derived from the feature extractor, following a similar
notation as proposed in (Shazeer et al., 2017). The result-
ing output y of the Multi-View Mixture-of-Experts (MoE)
approach is an embedding space of size 2048, defined as
follows:

y =

n∑
i=1

G(x)iEi(x̂) (1)

The resulting embedding space y is utilized to train a task-
specific feed-forward network, where the loss function is
chosen according to the specific task. The optimization
process refines the parameters of G(x) based on the incurred
loss, enhancing the effectiveness of the gating network for
the given task.

Still the output dimension size of the experts may diverge to
be fed into the feed-forward network. To tackle this issue,
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Figure 1. Architecture of the proposed Molecular Multi-view MoE (Mol-MVMoE) approach.

we first set the resulting size output y of the Multi-View
Mixture-of-Experts (MoE) to be the largest experts output
size, which in our case it was 2048. Thus, all the remaining
spaces will be filled with a .0 value if the expert’s output is
less than the desired embedding space y size.

In our experiments, we selected experts to represent diverse
perspectives of the data, including language and graphs.
However, if needed, a larger number of experts from var-
ious sources could be incorporated. To manage computa-
tional complexity when dealing with a considerable number
of experts, our strategy can employ a two-level hierarchi-
cal Mixture-of-Experts (MoE), similar to the approach pre-
sented in (Shazeer et al., 2017).

The sparse gating function utilized in the MoE is formulated
by the multiplication of the input by a trainable weight ma-
trix Wg , followed by the application of the Softmax function,
as described by Equation (2):

Gσ = Softmax(x ·Wg) (2)

This formulation ensures that the gating mechanism appro-
priately distributes attention across the diverse set of experts,
facilitating effective information integration from multiple
sources.

Before applying the Softmax function, we introduce a router
layer which is composed by tunable Gaussian noise and sub-
sequently retain only the top k values, setting the remaining
values to −∞ (which effectively assigns corresponding gate
values as 0). This sparsity-inducing step serves to optimize
computational efficiency, as discussed previously. The mag-
nitude of noise for each component is regulated by a second
trainable weight matrix Wnoise.

The formulation is expressed as follows:

G(x) = Softmax(KeepTopK(H(x), k)) (3)

H(x)i = (x ·Wg)i+StdNormal() ·Softplus((x ·Wnoise)i)
(4)

KeepTopK(v, k)i =

{
vi if vi is in the top k of v
−∞ otherwise (5)

This noise injection and sparsity-inducing mechanism con-
tribute to the adaptability of the gating function, enabling it
to effectively focus on relevant expert networks while con-
trolling computational overhead. When opting for a value
of k greater than 1, the gate values for the top k experts
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exhibit non-zero derivatives concerning the weights of the
gating network. Furthermore, gradients propagate backward
through the gating network to its inputs. The feed-forward
network is employed for the adaptation of the Mol-MVMoE
to specific tasks, further refining the model’s capabilities
for diverse and task-specific objectives. The experts that
composes Mol-MVMoE are detailed in the next subsections.

2.2. Graph-based model for small molecules

As a graph approach for small molecules we employ MHG-
GNN (Kishimoto et al., 2023), which is an autoencoder
that combines GNN with Molecular Hypergraph Grammar
(MHG) introduced for MHG-VAE (Kajino, 2019).

Unlike existing autoencoders that receive their input and
output in the same format, MHG-GNN receives them in a
different format. MHG-GNN receives a molecular struc-
ture represented as a graph. The encoder constructed as
Graph Isomorphism Network (GIN) (Xu et al., 2019) that
additionally considers edges encodes that graph to its cor-
responding latent vector (Hu et al., 2020). In the MHG-
GNN framework, individual atoms forming a molecule are
encoded using specific chemical characteristics, including
attributes such as atomic number, formal charge, and aro-
maticity. Consequently, each atom feature is transformed
into a vector of equal dimensions, aligning with the corre-
sponding node in the GIN (Graph Isomorphism Network).
The collective embedded representations of the atom fea-
tures are then aggregated to create an initial vector, denoted
as h0

i , corresponding to the GIN node i. Similarly, the edges
within the molecular structure, such as bond types, are also
transformed into embedding vectors, designated as e0i,j , as-
sociated with the undirected edge in the GIN linking nodes
j and i. Throughout the k-th iteration, the encoder executes
what is termed as “message passing” for each node i, a
process that can be defined as follows:

hk+1
i = MLP

(1 + ϵ)hk
i +

∑
j∈N(i)

ReLU(hk
j + ej,i)


(6)

where N(i) is a set of direct neighbors of i, and ϵ is a
trainable parameter, MLP is a neural network module, and
ReLU is a Rectified Linear Unit. The entire representation
hG of graph G is defined by Eq. 7:

hG = CONCAT

({∑
i∈VG

hk
i |k = 0, 1, . . . , r

})
(7)

CONCAT is used to concatenate vectors, VG is a set of
nodes in G, and r is the maximum iteration size. The entire

representation hG can be used as a latent vector for different
downstream tasks.

The decoder is constructed as GRU and with several neural
network models decodes that latent vector to the original
molecular structure represented as a sequence of production
rules on molecular hypergraphs. The production rules are
generated from the dataset for pre-training.

MHG-GNN can inherit advantage of MHG-VAE that can al-
ways generate structurally valid molecular structures when
decoding latent vectors. Additionally, MHG-GNN can al-
ways embed graph structures to their latent vectors, whereas
the encoder of MHG-VAE cannot always; it cannot accept
a molecule that cannot be represented by a set of produc-
tion rules generated from the dataset for pre-training. Fi-
nally, thanks to GNN, MHG-GNN has more direct under-
standing to the structural information than language-based
models, which may capture different characteristics than
MoLFormer.

We used the model trained in the same steps described in
(Kishimoto et al., 2023) and with a radius, r, of 7 (i.e., the
iteration size for message passing step in GNN). With these
configurations, MHG-GNN generates 2048 dimensional
embeddings. MHG-GNN was pre-trained on 1,381,747
molecules extracted from the PubChem database in its train-
ing part. This process generates 16,362 production rules
that represent these molecules.

2.3. Chemical language-based model

For chemical language-based model we employ MoLFormer
(Ross et al., 2022), which is a large-scale masked chemi-
cal language model that processes inputs through a series
of blocks that alternate between self-attention and feed-
forward connections. MoLFormer was trained in a self-
supervision manner with 1.1 billion molecules from Pub-
Chem and ZINC datasets and uses tokenization process, as
detailed in (Schwaller et al., 2019).

MoLFormer is equipped with a self-attention mechanism
that allows the network to construct complex representa-
tions that incorporate context from across the sequence
of SMILES. By transforming the sequence features into
queries (q), keys (k), and value (v) representations, atten-
tion mechanisms can weigh the importance of different ele-
ments within the sequence. MoLFormer optimizes relative
encoding by using a modified version of the RoFormer (Su
et al., 2021) attention mechanism. This involves position-
dependent rotations (Rm) of the query and keys at posi-
tion m. These rotations can be efficiently implemented as
pointwise multiplications, ensuring that the computational
complexity remains manageable (as shown in Eq (8)).
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Table 1. MoleculeNet Benchmark datasets for classification task

Dataset Description # compounds # tasks Metric Type
BBBP Blood brain barrier penetration dataset 2039 1 ROC-AUC Classification
Tox21 Toxicity measurements on 12 different targets 7831 12 ROC-AUC Classification
Clintox Clinical trial toxicity of drugs 1478 2 ROC-AUC Classification

HIV Ability of small molecules to inhibit HIV replication 41127 1 ROC-AUC Classification
BACE Binding results for a set of inhibitors for β – secretase 1 1513 1 ROC-AUC Classification
SIDER Drug side effect on different organ classes 1427 27 ROC-AUC Classification
QM9 12 quantum mechanical calculations 133885 12 Average MAE Regression
QM8 12 excited state properties of small molecules 21786 12 Average MAE Regression
ESOL Water solubility dataset 1128 1 RMSE Regression

FreeSolv Hydration free energy of small molecules in water 642 1 RMSE Regression
Lipophilicity Octanol/water distribution coefficient of molecules 4200 1 RMSE Regression

Attentionm(Q,K, V ) =

∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩ vn∑N
n=1 ⟨φ(Rmqm), φ(Rnkn)⟩

(8)

In Eq (8), Attentionm(Q,K, V ) denotes the attention oper-
ation with queries (Q), keys (K), and values (V ) at position
m. The operation computes weighted sums of the value
representations (vn) based on the similarity of the trans-
formed query (φ(Rmqm)) and key (φ(Rnkn)) representa-
tions. The relative position embeddings introduced through
the rotations (Rm) allow the model to effectively capture
positional information, leading to improved performance in
molecular property predictions. In this work, we used the
base version of the MoLFormer that was trained on a small
portion of molecules compared to the MoLFormer-XL ver-
sion. The MoLFormer-base version it is publicly available
at https://github.com/IBM/molformer. Table
2 elucidates the hyper-parameters used to generate the spe-
cialized models for each regression task.

Table 2. MoLFormer Hyper-parameters for fine-tuning
Hyper-parameter Values

Batch size 128
Learning Rate 3e− 5

Number of embeddings 768
Dropout 0.1

Number of layers 12
Number of heads 12

Number of epochs (max) 500

3. Downstream Tasks Datasets
To evaluate the effectiveness of our proposed methodology,
we conducted experiments using a comprehensive set of
11 distinct benchmark datasets sourced from MoleculeNet
(Wu et al., 2018), as illustrated in Table 1. Specifically, we
evaluated 6 datasets for the classification task and 5 datasets
for regression tasks. To ensure a robust and unbiased as-

sessment, we maintained consistency with the MoleculeNet
benchmark by adopting identical train/validation/test splits
for all tasks (Wu et al., 2018).

3.1. Classification Tasks

For the classification task, we selected six distinctive clas-
sification tasks sourced from the MoleculeNet benchmark
dataset. These specific tasks, namely BBBP, ClinTox, HIV,
BACE, SIDER, and Tox21, were selected to represent a di-
verse array of chemical properties and biological activities,
with their key characteristics thoughtfully summarized in
Table 1. To ensure a consistent assessment, we employed
the AUC-ROC metric to evaluate the performance of our
models. Additionally, we leveraged scaffold splits as a reli-
able and established technique for the systematic evaluation
of model performance.

3.2. Regression Tasks

For the regression task we choose five different regression
tasks from the MoleculeNet. Specifically, the QM9 and
QM8 subsets entail the prediction of various quantum chem-
ical metrics, a challenging feat in the absence of exclusive
3D geometric information. Further details on the charac-
teristics of these regression datasets can be found in Table
1. To evaluate the QM9 and QM8 datasets we report the
average MAE, while RSME is reported for the remaining
tasks.

4. Results
In this section, we present the analysis of the results ob-
tained for the classification and regression tasks considered
in this experiment, shedding light on the nuanced intricacies
and outcomes derived from the experimentation process.
Through this evaluation, we aim to provide a deeper un-
derstanding of the impact and potential of our proposed
Multi-view methodology.
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4.1. Ablation Studies

In this section, we compare our proposed methodology
against the single models, MoLFormer and MHG-GNN,
that we use to compose our proposed molecular Multi-view
MoE, Mol-MVMoE, approach.

Table 3 highlights the enduring superiority of our fusion-
based approach across all conducted experiments compared
to the single MHG-GNN and MoLFormer (base and XL
versions) methods. These results affirm our assertion that
integrating diverse perspectives of the data yields a more
comprehensive understanding of its intricacies, surpassing
the performance of singular, large-scale models.

Furthermore, it is worth emphasizing that the Mol-MVMoE
approach is built upon the foundation of MoLFomer-Base.
While MoLFomer-Base initially achieved the worst results
for the Tox21 dataset, the integration of multiple features
views through our Mol-MVMoE approach led to a signifi-
cant performance boost, elevating the model’s performance
from 43.2 to 85.6 (best performance).

4.2. Benchmark Tests with SOTA Methods

4.2.1. RESULTS FOR CLASSIFICATION TASKS

Table 4 offers a comprehensive overview of the compara-
tive performance between our proposed Multi-view MoE
approach and state-of-the-art algorithms on various bench-
mark datasets for the classification task. A keen analysis of
the table reveals that the Mol-MVMoE, which leverages the
fusion of embeddings from different perspectives, outper-
forms its counterparts in all tested datasets, underscoring its
potential to excel in diverse domains.

An important aspect to note is the complex nature of the
classification tasks, as they encompass multi-task datasets
such as Tox21, which comprises 12 tasks, Clintox with 2
tasks, and SIDER with a comprehensive 27-task dataset.
This intricate and diverse task composition underscores the
challenge posed by these classification tasks, making the
consistent performance of our proposed approach across
these datasets a testament to its reliability and robustness in
handling complex and varied data.

Our proposed fusion-based Mol-MVMoE harnesses the
power of latent spaces from transformers-based language
approach and embeddings from graph-based, capitalizing
on their complementary strengths to excel in a variety of
challenging tasks. k = 1 means that we are selecting one or
other expert, in counterparts, k = 2 means that we are mix-
ing the experts in order to get the best of both perspectives.
Results demonstrates that Mol-MVMoE performs better
than state-of-the-art approaches as ChemBerta, Chemberta2,
Galatica 30 and 120B, in all the experiments conducted.
Mol-MVMoE also present better results in all the tested

datasets when compared to the Multi-view approach pro-
posed by (Yao et al., 2023), which is just based on graphs.

It is important to highlight that we use the fusion of latent
spaces of two smaller models when compared to the state-
of-the-art, MoLFormer-base and MHG-GNN. The fusion
of these smalls models performed better than very large
models as MoLFormer-XL, which was trained in 1.1 billion
molecules, in all benchmarks datasets. This not only high-
lights our method’s effectiveness but also paves the way for
additional enhancements when our approach incorporates a
larger-scale models from different natures.

4.2.2. RESULTS FOR REGRESSION TASKS

Next, we applied the proposed Mol-MVMoE to the pre-
diction of chemical properties, tackling more intricate re-
gression tasks sourced from the MoleculeNet database.
The performance results across five challenging regression
benchmarks, namely QM9, QM8, ESOL, FreeSolv, and
Lipophilicity, are summarized in Table 5.

The regression tasks presented in the MoleculeNet bench-
mark datasets, especially the challenging QM9 and QM8
sets, pose a significant test for predictive models due to the
intricate nature of quantum chemical measures. Table 5
elucidates the that Mol-MVMoE approach has not only sur-
passed the previous state-of-the-art performance achieved
by MoLFormer-XL in both tasks (QM8 and QM9) but has
also demonstrated reliability in handling the complexities
embedded in these intricate quantum chemical datasets.

By harnessing the combined strengths of graph representa-
tions and the powerful linguistic insights embedded within
a tailored language model for chemistry, our Mol-MVMoE
approach has showcased significant advancements in per-
formance, particularly in the QM9 dataset. This fusion of
different perspectives over the same data has enabled our
model to unravel the intricate relationships between molec-
ular structures and the corresponding quantum chemical
properties with greater precision and depth.

Furthermore, the Mol-MVMoE approach has displayed a
clear competitive edge in predicting Lipophilicity when
compared to other established methods, thereby highlight-
ing its robustness and adaptability across diverse chemical
property prediction tasks. While the performance on the
ESOL and FreeSolv datasets aligns closely with that of the
baseline approaches, the consistent and promising results
obtained by our Mol-MVMoE strategy across various regres-
sion tasks underline its potential in the domain of chemical
property prediction.
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Table 3. Comparison between the proposed Mol-MVMoE approach and single models.

Method Dataset
BBBP ClinTox HIV BACE SIDER Tox21

MoLFormer-XL (Ross et al., 2022) 93.7 94.8 82.2 88.2 69.0 84.7
MoLFormer-Base (Ross et al., 2022) 90.9 77.7 82.8 64.8 61.3 43.2
MHG-GNN 93.5 90.0 83.4 87.3 67.6 77.5
Mol-MVMoE (k=1) 92.9 91.9 76.5 87.4 66.6 83.5
Mol-MVMoE (k=2) 93.8 95.9 84.2 89.1 69.1 85.6

Table 4. Methods and Performance for the classification tasks of MoleculeNet benchmark datasets
Method Dataset

BBBP ClinTox HIV BACE SIDER Tox21
RF (Ross et al., 2022) 71.4 71.3 78.1 86.7 68.4 76.9
SVM (Ross et al., 2022) 72.9 66.9 79.2 86.2 68.2 81.8
MGCN (Lu et al., 2019) 85.0 63.4 73.8 73.4 55.2 70.7
D-MPNN (Yang et al., 2019) 71.2 90.5 75.0 85.3 63.2 68.9
DimeNet (Gasteiger et al., 2020) - 76.0 - - 61.5 78.0
Hu, et al. (Hu et al., 2019) 70.8 78.9 80.2 85.9 65.2 78.7
N-Gram (Liu et al., 2019) 91.2 85.5 83.0 87.6 63.2 76.9
MolCLR (Wang et al., 2022) 73.6 93.2 80.6 89.0 68.0 79.8
GraphMVP (Liu et al., 2021) 72.4 77.5 77.0 81.2 63.9 74.4
GeomGCL (Liu et al., 2021) - 91.9 - - 64.8 85.0
GEM (Fang et al., 2022) 72.4 90.1 80.6 85.6 67.2 78.1
ChemBerta (Chithrananda et al., 2020) 64.3 90.6 62.2 - - -
ChemBerta2 (Ahmad et al., 2022) 71.94 90.7 - 85.1 - -
Galatica 30B (Taylor et al., 2022) 59.6 82.2 75.9 72.7 61.3 68.5
Galatica 120B (Taylor et al., 2022) 66.1 82.6 74.5 61.7 63.2 68.9
Uni-Mol (Zhou et al., 2023) 72.9 91.9 80.8 85.7 65.9 79.6
Mixture of Collaborative Experts (MoCE) (Yao et al., 2023) - 80.7 77.9 - - 80.8
MoLFormer-XL (Ross et al., 2022) 93.7 94.8 82.2 88.2 69.0 84.7
Mol-MVMoE (k=1) 92.9 91.9 76.5 87.4 66.6 83.5
Mol-MVMoE (k=2) 93.8 95.9 84.2 89.1 69.1 85.6

4.2.3. A DEEPER ANALYSIS OVER THE QM9
BENCHMARK

In this subsection, we delve further into the exploration
of results for individual tasks within the QM9 benchmark
dataset, aiming to uncover nuanced insights and patterns in-
herent to each specific measure property. The twelve distinct
properties of QM9, each accompanied by their respective
units, are detailed in Table 6.

Within this paper, we compare the best version (k = 2) and
standard version (k = 1) of our Mol-MVMoE approach
against a selection of previously discussed baseline models,
as well as four additional baselines. Our comparative analy-
sis extends to benchmarking the MoE Multi-view approach
against state-of-the-art models derived from three distinct
categories: (i) Graph-based, (ii) Geometry-based, and (iii)
SMILES-based methodologies for prediction of molecular
properties. The included baselines models are: 123-gnn
(Morris et al., 2019), a multitask neural net encoding the
Coulomb Matrix (CM) (Rupp et al., 2012), and its GNN
variant as in the deep tensor neural net (DTNN) (Schütt et al.,
2017), we also considered the ChemBERTa (Chithrananda
et al., 2020) approach in this study.

Table 7 presents a comprehensive comparison of the per-
formance of various state-of-the-art models on the QM9
dataset, highlighting the effectiveness of different modeling
strategies. Our proposed Multi-view MoE approach outper-
forms the current models in 7 out of the 12 properties in its
best version, and presents the best and second best overall
results for all the tasks in general.

The performance variation across different properties sug-
gests that a one-size-fits-all approach might not be the
most effective solution, as seen in the case of the property
µ, where geometry-based models outperformed graph and
SMILES-based approaches. This underscores the impor-
tance of considering a multiple perspective approach when
dealing with such complex task.

These results highlights the potential benefits of leveraging
a heterogeneous embedding spaces for accurate prediction
of molecular properties. Furthermore, a notable observation
from the results is that the 123-gnn model outperforms
the MoLFormer-XL in a greater number of properties, but
this difference has had a detrimental impact on the average
mean absolute error (Avg MAE). Conversely, the fusion
of views Mol-MVMoE has exhibited robust and consistent
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Table 5. Methods and Performance for the regression tasks of MoleculeNet benchmark datasets.

Method Dataset
QM9 QM8 ESOL FreeSolv Lipophilicity

GC (Altae-Tran et al., 2017) 4.35 0.0148 0.97 1.40 0.65
A-FP (Xiong et al., 2019) 2.63 0.0282 0.50 0.74 0.58
GROV ERLarge (Rong et al., 2020) - - 0.89 2.27 0.82
Padel-DNN (Zhang & Zhang, 2022) - - 0.62 0.91 -
ChemRL-GEM (Fang et al., 2022) - - 0.80 1.88 0.66
ChemBERTa-2 (Ahmad et al., 2022) - - 0.89 - 0.80
SPMM (Chang & Ye, 2023) - - 0.82 1.90 0.69
Uni-Mol (Zhou et al., 2023) - 0.0156 0.79 1.48 0.60
MPNN (Gilmer et al., 2017) 3.18 0.0143 0.58 1.15 0.72
MoLFormer-XL (Ross et al., 2022) 1.59 0.0102 0.28 0.23 0.53
Multi-view GNN (Ma et al., 2020) – 0.0127 0.80 1.84 0.60
Multi-view GNN (cross)(Ma et al., 2020) – 0.0124 0.78 1.55 0.55
Mol-MVMoE (k=1) 1.51 0.0098 0.57 1.33 0.58
Mol-MVMoE (k=2) 1.49 0.0097 0.57 1.38 0.52

Table 6. Data description
Measure Unit

α Bohr3

Cv cal/(mol ∗ K)
G Hartree
gap Hartree
H Hartree

ϵhomo Hartree
ϵlumo Hartree

µ Debye
⟨R2⟩ Bohr2

U0 Hartree
U Hartree

ZPVE Hartree

Table 7. Comparing state-of-the-art models performance on QM9 test set. Blue and Orange indicates best and second-best performing
model, respectively.

Graph-based Geometry-based SMILES-based Mol-MVMoE
Measure A-FP 123-gnn GC CM DTNN MPNN MoLFormer-XL ChemBERTa k=1 k=2
α 0.49 0.27 1.37 0.85 0.95 0.89 0.33 0.85 0.26 0.26
Cv 0.25 0.09 0.65 0.39 0.27 0.42 0.14 0.42 0.11 0.11
G 0.89 0.05 3.41 2.27 2.43 2.02 0.34 4.13 0.084 0.084
gap 0.0052 0.0048 0.01126 0.0086 0.0112 0.0066 0.0038 0.0052 0.0037 0.0037
H 0.89 0.04 3.41 2.27 2.43 2.02 0.25 4.08 0.04 0.04
ϵhomo 0.0036 0.0034 0.0072 0.0051 0.0038 0.0054 0.0029 0.0045 0.0028 0.0028
ϵlumo 0.0041 0.0035 0.0092 0.0064 0.0051 0.0062 0.0027 0.0041 0.0027 0.0027
µ 0.451 0.476 0.583 0.519 0.244 0.358 0.3616 0.4659 0.369 0.369
⟨R2⟩ 26.84 22.90 35.97 46.00 17.00 28.5 17.06 86.15 17.1215 16.88
U0 0.898 0.0427 3.41 2.27 2.43 2.05 0.3211 3.9811 0.0435 0.0435
U 0.89 0.111 3.41 2.27 2.43 2.00 0.25 4.38 0.059 0.059
ZPVE 0.00207 0.00019 0.00299 0.00207 0.0017 0.00216 0.0003 0.0023 0.0003 0.0003
Avg MAE 2.6355 1.9995 4.3536 4.7384 2.3504 3.1898 1.5894 8.7067 1.5081 1.4879

performance across all tested properties, as evidenced by
the superior average performance metric.

This comprehensive evaluation not only emphasizes the
effectiveness of the Mol-MVMoE approach in capturing
the diverse aspects of molecular properties but also under-
scores the importance of a Multi-view Mixture-of-Experts
as method to learn based on different perspectives in or-
der to understand the intrinsically nuances of the data and
demonstrate better performance across different challenging
tasks.

In summary, the results presented for both classification
and regression tasks underscore the exceptional capabili-
ties of our proposed Mol-MVMoE approach, emphasizing
its capacity to leverage different perspectives of the data
for enhanced performance across a spectrum of complex
tasks. Future research endeavors will be directed towards
exploring different Mixture-of-Experts strategies and also
the inclusion of more and larger models for enhanced pre-
dictions.

5. Conclusion
This paper presents Mol-MVMoE, a Multi-view Mixture-of-
Experts framework that harnesses the synergies of distinct la-
tent spaces derived from perspectives over the data to predict
molecular properties. Evaluations on MoleculeNet bench-
mark datasets showcase the superiority of our proposed
method. The proposed Mol-MVMoE outperforms state-
of-the-art competitors on 9 out of 11 benchmark datasets
emphasizing the robustness and adaptability of our model
in addressing complex tasks within the molecular domain.

For the QM9 benchmark dataset, which encompasses quan-
tum properties of molecules, the best version of our Mol-
MVMoE approach surpass the current state-of-the-art mod-
els in 7 out of the 12 tested properties, suggesting that a
one-size-fits-all approach might not be the most effective
solution for such complex tasks.

By integrating embeddings from different natures, our
model effectively captures nuanced structural features and
intricate molecular interactions, leading to superior predic-
tive performance. Future research directions will focus on
exploring diverse fusion techniques for Mixture-of-Experts
and incorporating more large scale models.
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