
Published in Transactions on Machine Learning Research (/)

Learning State Reachability as a Graph in Translation Invari-
ant Goal-based Reinforcement Learning Tasks

Hedwin Bonnavaud hedwin.bonnavaud@isae-supaero.fr
ISAE-SUPAERO & ONERA/DTIS, Université de Toulouse, France

Alexandre Albore alexandre.albore@onera.fr
ONERA/DTIS, Université de Toulouse, France

Emmanuel Rachelson emmanuel.rachelson@isae-supaero.fr
ISAE-SUPAERO, Université de Toulouse, France

Reviewed on OpenReview:

Abstract

Deep Reinforcement Learning proved efficient at learning universal control policies when
the goal state is close enough to the starting state, or when the value function features few
discontinuities. But reaching goals that require long action sequences in complex environ-
ments remains difficult. Drawing inspiration from the cognitive process which reuses learned
atomic skills in a global planning procedure, we propose an algorithm which encodes reach-
ability between abstract goals as a graph, and produces plans in this goal space. Transitions
between goals rely on the exploitation of a learned policy which enjoys a property we call
translation invariant local optimality, which encodes the intuition that goal-reaching skills
can be reused throughout the state space. Overall, our contribution permits solving large
and difficult navigation tasks, outperforming related methods from the literature.

1 Introduction

Model-free Reinforcement Learning (RL) has demonstrated an outstanding ability to learn complex optimal
policies from raw interaction data, for well-defined atomic tasks involving relatively short time and state space
outreach, such as balancing a pendulum (Barto et al., 1983), learning to walk for a quadruped (Kimura et al.,
2002), or learning to balance a bicycle (Randløv & Alstrøm, 1998).

But when it comes to solving more structured, long-term tasks, such as navigating through a building or a
maze, baking a cake, or assembling furniture, hierarchical methods that separate global planning and local
learned controllers may appear more appropriate (Eysenbach et al., 2019; Levy et al., 2019; Ichter et al.,
2020). It is notable that often (although not always), atomic tasks enjoy a property which we call translational
invariance, ie. learned policies can be re-used in unexplored states, without further computation, to reach
local goals. Balancing a bicycle, for instance, implies in practice an optimal policy that recommends the
same sequences of actions regardless of the geographical position, mostly because gravity does not change
too much across the globe and that we ride bicycles on surfaces that have close enough friction properties.
Similarly, when navigating in a reasonably homogeneous environment, reaching position B from position A,
can be achieved by applying the same policy than reaching position B + ∆ from position A + ∆, provided
there are no obstacles in the way. The optimal policies might somehow differ, but are close enough in many
practical cases. In this paper, we consider environments which enjoy this translational invariance property
for local, atomic goal-reaching tasks. In such tasks, this invariance property enables pre-training action
primitives under the form of local goal-reaching policies, and then transferring and composing them to solve

Code: https://github.com/SuReLI/TopologyLearning

1

https://github.com/SuReLI/TopologyLearning


Published in Transactions on Machine Learning Research (/)

complex tasks. The typical example of such environments is navigation tasks, upon which we focus in this
work. Nonetheless, the framework we propose is more abstract and is designed to generalize to all cases of
translational invariance. We exploit this property to efficiently learn an abstract model that is used by the
agent to plan its course of action. Our contribution is threefold.

• We propose a generic framework linking goal spaces and state spaces for goal-reaching policy opti-
mization.

• We formalize the notion of re-usability of a goal-reaching policy throughout the state space as one
of translation invariance.

• We propose a complete graph-based model learning method, which relies on planning in the goal
space, and chains local application of translation invariant goal-reaching policies. By combining
planning and RL, this method permits solving tasks over long horizons, a common pitfall for classical
RL methods.

As such, the proposed algorithm owes to several different inspirations. First, it belongs to the family of
goal-based RL methods. Since it couples planning and RL, it also connects with hierarchical RL. It also
abstracts navigation problems into a more generic class of sequential decision problems. Finally, it presents
many similarities with the Search on the Replay Buffer (SoRB) algorithm (Eysenbach et al., 2019) and
subsequent works, with several key differences which can be seen as a generalization of SoRB and permit
better applicability. Section 2 sets the necessary background and puts our contribution in perspective of the
current related literature. Section 3 introduces key ingredients, namely a formal definition of goals as state
abstractions, a characterization of policy translation invariance, and finally the reachability graph learning
(RGL) procedure. Sections 4, 5, and 6 evaluate RGL empirically, assess the contributions of its different
components, discusses its properties and its ability to scale up to large and difficult domains. Finally, in
Section 7 we draw some conclusions and perspectives on the presented work.

2 Background and related work

Goals in Reinforcement Learning (RL). RL (Sutton & Barto, 2018) considers the problem of learning an
optimal decision making policy for an agent interacting over multiple time steps with a dynamic environment,
modeled as a Markov Decision Process (Puterman, 2014) of unknown transition and reward models. At each
time step, the agent and the environment are described through a state s ∈ S. When an action a ∈ A is
performed, the system transitions to a new state s′, while receiving a reward r(s, a). Stochastic Shortest
Path problems are a particular class of MDPs which aim at reaching a terminal goal state as quickly as
possible. Such problems can be encoded as MDPs featuring −1 rewards for all transitions but those to a
terminal goal state. One can quantify the efficiency of a policy π : S → A in every state s ∈ S via its value
function V π(s) =

∑∞
t=0 γtr (st, π(st)), with γ ∈ [0, 1) a discount factor on future rewards (which can also be

interpreted as a stepwise probability of non-termination).1 Training an RL agent consists of finding a policy
with the highest possible value function. A long-standing goal in RL is to design multi-purpose agents, able
to achieve various goals through a single goal-conditioned policy π(s, g) (Kaelbling, 1993), where the goal
g is either a single state in S or an abstraction for a set of states. The ability of deep neural networks to
approximate complex functions has triggered a renewal of interest in learning universal value function and
policy approximators (Schaul et al., 2015), V (s, g) and π(s, g) respectively. Among the many approaches
developed to learn goal-based policies and value functions, Hindsight Experience Replay (Andrychowicz
et al., 2017, HER) proposes a seminal method which defines goal-based reward functions by re-labelling
states collected in past trajectories as goals.

Hierarchical RL (HRL). Combining local goal-reaching sequences of actions in order to achieve a more
general goal is the core idea of HRL (Sutton et al., 1999; Precup, 2000; Konidaris & Barto, 2009). Notably,
among recent works, Kulkarni et al. (2016) define a bi-level hierarchical policy, using a DQN (Mnih et al.,

1SSPs are well-defined for γ = 1 but this is not the case for all MDPs so we keep this discount factor for the sake of genericity
in further developments.

2



Published in Transactions on Machine Learning Research (/)

2015) agent to select high-level goals, that define options which make use of a low-level goal-based DQN
agent. Nachum et al. (2018) specializes this idea to the case when the lower-level policy learns to achieve
goals that encode relative changes to the current state. Levy et al. (2019) couples HER with a three-level
hierarchy into an architecture called Hierarchical Actor-Critic (HAC).

Learning abstract representations for planning. An alternative to crafting a hierarchy of learned
policies is to rely on RL for producing “lower level” option policies, and on some model of how these options
affect the environment. The aim is then to optimize a sequence of options, or skills, which are an abstraction
of actions, in a global plan, defined for an abstraction of states (which can either be learned or can be defined
by the goal space). The key to such approaches hence relies on how the model is built. Silver et al. (2017)
train a “predictron” which, for a given task, predicts n-step returns and long term values from any state,
using a network that builds a consistent internal representation (the state abstraction) of the environment’s
dynamics and rewards. Similarly, several approaches (Ha & Schmidhuber, 2018; Schrittwieser et al., 2020;
Hafner et al., 2020; 2021) build models that emulate the dynamics and rewards related to a task, and permit
planning by simulating this surrogate model, but without a hierarchy of options and for a single task. In
contrast, Nasiriany et al. (2019) optimize a sequence of reachable intermediate goal states (represented in the
latent space of a variational auto-encoder on states) in order to reach a final goal (single task), using a pre-
computed reachability metric for a given goal-based lower-level policy. Parascandolo et al. (2020) optimize
online a similar curriculum of subgoals between a starting state and a given goal. They implement a divide-
and-conquer approach by building an AND/OR search tree. Each node corresponds to a new subgoal in the
sequence. They explore this tree with a Monte Carlo tree search strategy, which exploits the value function of
a pre-trained goal-based policy. Some methods store explicitly these links between subgoals by constructing
a reachability graph (which encodes transitions between abstractions of states, using abstractions of actions).
In turn, this graph can be used for higher-level goal-based planning. Savinov et al. (2018) build this graph
by randomly exploring the environment, and add a node for every encountered state, which yields a very
dense graph. For a given goal, a shortest path in this graph is computed. Then a sequence of landmark
subgoals is extracted so that each landmark is far enough from the previous one according to a pre-trained
neural network. Eysenbach et al. (2019) introduce Search on the Replay Buffer (SoRB), which supposes the
availability of a replay buffer of states and defines a graph where each state in a random subset of the replay
buffer is a node. Then it uses the goal-reaching policy’s value function to estimate edge weights between these
nodes and finds a shortest path of state waypoints to the goal. Huang et al. (2019) propose a similar approach,
but improve the node sampling strategy, and exploit a policy only to reach close goals during pre-training.
SGM (Emmons et al., 2020) improves SoRB’s results by pruning useless nodes in the graph, and edges
that cannot been traversed by the control policy. Pruning useless nodes enables a reduction in the number
of graph edges and permits a faster convergence to a close-to-optimal graph (ie. representative of actual
reachability with a minimal number of nodes and edges). Chaplot et al. (2020) learn a reachability graph in
a robotics navigation environment. For each new location in its graph, the agent uses its camera to estimate
promising exploration directions. Aubret et al. (2021) and Ruan et al. (2022) incrementally grow a graph
representing reachability, where nodes are abstractions of sets of states, using a neural network as a surrogate
of the similarity between states. Similarly to the work of Aubret et al. (2021), PALMER (Beker et al., 2022)
learns a projection space where the distance between the embeddings of two states represents the number of
actions required by an optimal policy to reach one from the other. DADS (Sharma et al., 2019) learns a set
of diverse skills, and a higher-level policy to decide the sequence of skills that have to be executed to reach a
distant goal. DSG (Bagaria et al., 2021) incrementally grows a graph of options, represented as a local finite
set of goal-reaching skills in each node. The present contribution uses the goal space as a state abstraction,
and translation-invariant pre-trained policies as action abstractions to enable planning in a graph of goals.

Re-using policies across states / Connection with navigation tasks. Learning policies locally to
re-use them in unexplored states has also been investigated to enable hierarchical RL. Konidaris & Barto
(2007) propose to perform skill chaining on skills that are dependent on an discrete set of abstract agent
contexts. These skills become reusable across contexts, but the definition of the contexts are specific to the
task to solve and cannot be fully assimilated to an abstraction of navigation waypoints. PRM-RL (Faust
et al., 2018) and RL-RRT (Chiang et al., 2019) build a re-usable goal-conditioned policy, and use it to
navigate through a graph built using respectively PRM (Kavraki et al., 1996) and RRT (LaValle, 1998),

3



Published in Transactions on Machine Learning Research (/)

hence providing an abstraction of navigation features into a more general framework. Note however that
none of these methods provide a generic and formal definition of policy re-useablity.

Originality of the present work. With respect to this general body of work, our contribution has several
key features. We formalize a set of necessary conditions defining a context which alleviates the need to
train the lower-level goal-conditioned policy on all states and goals, and enables policy re-use. Similarly
to SoRB, we exploit the policy’s value function as a local reachability measure, while introducing a level of
abstraction since we clearly distinguish between goals and states. Similarly to DSG, we incrementally explore
the environment and build a planning graph for chaining local skills, but the pre-training, exploration and
graph growth strategies are different (expanded discussion in Appendix I). As developed in the next sections,
this provides a sparser, abstract planning graph, closer to a hierarchy of options. Also in contrast to SoRB
and SGM, we do not rely on a pre-existing replay buffer and avoid defining nodes over an arbitrary subset
of sampled states; instead we incrementally grow a reachability graph to cover the attainable goal space.

3 Learning a reachability graph to chain translation invariant local policies

We aim to solve large goal-based MDPs, requiring long sequences of actions, and where locally trained
policies can be re-used throughout the state space. The rationale for the method we propose below goes
as follows. Because they are continuous universal approximators, neural networks are intrinsically unsuited
to approximate abrupt environment of skill changes, and discontinuous functions such as the value func-
tions arising in some difficult RL environments (e.g. mazes, non-holonomous robots, etc.). For instance, in
mazes featuring thin walls, the value function is discontinuous and approximating it with a neural network
propagates values through the walls which can lead to catastrophically bad greedy policies. Because neural
network optimization assumes that samples are obtained independently and identically from a stationary
distribution, they are also unsuited to retain local information: either because the distribution (and hence
the training set) is unbalanced or because of distributional shift which causes catastrophic forgetting (French,
1999; Kirkpatrick et al., 2017). The sequential nature of RL decisions makes it crucial to make good deci-
sions in infrequently-visited states, to retain local information even when facing distributional shift, and to
approximate some functions that can easily be discontinuous. Neural networks are a viable policy class for
low-level policies and that it may be advantageous to add additional known structure to the problem setting
(which can be learned) rather than attempting to learn a complete world model with no additional assump-
tions which may require high sample-complexity. Elaborating on this statement, we turn to a hierarchy of
approximators, coupling planning in a graph of goal space waypoints, with local goal-reaching skills learned
with deep neural networks. When we would like to reach a goal g∗ ∈ G from a state s0 ∈ S, we link g∗

and s0 to their closest graph nodes. Specifically, we find vertices v∗ and v0 whose waypoints gv∗ and gv0

minimize some measure of proximity d(g∗, gv∗) and d(P(s0), gv0) respectively, with P(s0) an abstraction of
s0 in the goal space. Then we find a shortest path between them in the graph, which defines an execution
curriculum of waypoints, and the local policy is used to reach each waypoint’s vicinity in sequence.

The core of our contribution lies hence in the graph expansion and pruning method, its ability to accurately
represent an abstraction of the environment dynamics despite unbalanced samples and discontinuous prop-
erties, and finally its use to design goal-conditioned policies over large and complex state spaces. To present
the method in a well-defined framework, we restrict the set of MDPs we consider to those enjoying a prop-
erty we call translation invariance of local optimal policies which we discuss in section 3.2. We also discuss
therein to what extent this assumption is a strong constraint and how it can be related to more general
transformations than translations. Then, given such a generalist goal-reaching policy π, we grow and prune
a graph G which encodes an abstract notion of reachability and distance over the state space (Section 3.3).
The pair (π,G) can then be used jointly to encode a policy that benefits from the best of both worlds and
allows one to exploit planning algorithms over G in order to define an execution curriculum of waypoints for
π; resulting in a global agent that can reliably learn to reach distant goals in complex environments.

3.1 Goals as state abstractions

In the general sense, a goal g is an abstraction for a set of states. For instance, a goal for a robotic ant
might be “reach this room, regardless of orientation, legs configuration, or precise final position”. In this

4



Published in Transactions on Machine Learning Research (/)

section, for the sake of genericity, we assume that goals live in a goal space G, that both S and G are
normed vector spaces, and that there exists a projection P(s) = g which projects states into the (lower
dimensional) goal space.2 Consequently, for any goal g, there exists a set of states which map to g. Formally,
we can define K0 = ker(P) as the set of states corresponding to the null goal 0G ∈ G. Conversely, there
is an inverse function (possibly non-unique) that provides a prototype state for any goal g. Let P̄ be a
mapping from goals to states such that P ◦ P̄ is the identity function on G. There are many possible such
mappings if the dimension of G is smaller than that of S. Conversely, when dim(G) = dim(S), one can take
P̄ = P−1, although in this case it is practical to straightforwardly identify goals and states, which means
P and P̄ are the identity function. When S and G differ, we assume such a P̄ mapping is provided. Then,
Kg = {P̄(g) + δ, δ ∈ K0} is the set of states whose projection by P is g. In what follows, we retain the
P and P̄ notations for genericity, but the reader is encouraged to discard them as the identity function in
order to catch the key intuitions. Finally, when the goal and state spaces differ, we introduce the strong
assumption that for a given goal g ∈ G, any s2 ∈ Kg is reachable for a negligible cost from any other s1 ∈ Kg.
In plain words, moving between any two states which correspond to the same goal (same state abstraction)
is supposed feasible and costless. Note that this is immediately verified when S = G.

3.2 Translation invariance of local optimal policies: re-using macro-actions across all states

Intuition indicates that a four-legged robot should not have to learn to walk again when it is moved from a
room of the lab to another. We formalize this notion of re-usability of learned policies as one of translational
invariance.3 We say an MDP admits translation invariant local optimal policies (TILO policies) if there
exists a goal-conditioned optimal policy π∗ such that

∀(s, δ) ∈ S × S,∃ρ ∈ R, such that ∀g ∈ B (P(s), ρ) , π∗(s, g) = π∗ (s + δ, g + P(δ)) , (1)

where B(P(s), ρ) is a ball, centered in P(s) and of radius ρ. In plain words, such a policy guarantees
that whichever close enough starting states s and s + δ we consider, we can always find local goals g and
g + P(δ) within a distance ρ of P(s), for which the first action recommended by the policy will be the
same. A corollary of this property is that in deterministic MDPs, all actions taken to reach g from s are
the same as those necessary to reach g + P(δ) from s + δ, for goals that are close enough to P(s). TILO
policies can be trained to reach goals from any starting state, and the TILO property enables their re-
usability throughout the state space to reach local goals (which marks a notable difference with the relative
goal policies introduced by Nachum et al. (2018) among others). Note that considering only translation
invariance is somehow restrictive as one could wish to identify invariances to other transformations (e.g.
deformations on images, rotations, etc.) or the more general case of equivariance (Van der Pol et al., 2020;
Mondal et al., 2022; Wang et al., 2022) which is a challenge in itself (Konidaris & Barto, 2007; Faust et al.,
2018; Chiang et al., 2019) and which we reserve for future work. Appendix E discusses such a generalization.

Arguably, MDPs that admit TILO policies do not represent the full span of MDPs. However we argue that
with an appropriate choice of the metric on G, defining B(P(s), ρ), this property actually applies to many
common control problems where the goal space supports an addition operation. Moreover, one can extend
the reasoning to ϵ-optimal policies, hence defining ϵ-TILO policies. An MDP admits ϵ-TILO policies if there
exists a policy that is ϵ-optimal and obeys equation 1. When one takes the four-legged robot that has only
been trained on the lab’s concrete grounds, to some other surface, it is reasonable to assume its translated
goal-conditioned policy will not be optimal anymore. However, this policy is still likely to perform better
than most other policies and hence to be ϵ-TILO.

The method we develop herein applies to MDPs which admit ϵ-TILO policies that are pre-trained. Practi-
cally, given a starting state s, we directly train a translation invariant goal-conditioned policy π(s, g). To
enforce the TILO property, we actually train the policy as a function of the difference g−s (or P̄(g)−s when
G ̸= S). Training of this policy is done before directed exploration and graph learning takes place. We also
define a goal-proximity quasi-metric dπ(g, g′) = (Vmax− V π(P̄(g), g′))/(Vmax− Vmin), indicating how close
two goals are under policy π, with Vmax and Vmin chosen so that, on the training domain, dπ(g, g′) ∈ [0, 1]

2Section 4 will relax the vector space requirement on S and G.
3Appendix D discusses a generalization to other transformations.

5



Published in Transactions on Machine Learning Research (/)

and dπ(g, g) = 0. This quasi-metric dπ(g, g′) can be interpreted as a measure of how long it takes for policy π
to reach Kg from Kg′ on average. The goal-conditioned policy training method is any algorithm that trains
a universal value function approximator; it trains π(s, g) and V π(s, g) within a playground task with no
obstacles. For instance, starting with a random exploration strategy, a replay buffer is filled by interaction
samples in the playground environement, and the goal-conditioned policy is trained to reach goals sampled
from this buffer, using HER. This yields a π(s, g) policy that is also an ϵ-TILO policy, along with the cor-
responding dπ(g, g′) quasi-metric. We emphasize that this policy is not required to be able to reach any
possible goal from s, even in the playground environment (Levy et al. (2019) and Nachum et al. (2018) have
illustrated how RL algorithms struggle when the goals become too distant). Instead, its performance and
goal outreach is as good as the training procedure can make it, and we rely on the graph learning procedure
to encode the reachability between states, based on this policy.

This idea of pre-training a policy in a playground task meets the intuition of policy transfer in life-long RL.
The playground stands for the previous MDPs seen in an agent’s life, and the TILO property captures the
idea that translation invariance is an abstraction that enables transfer between MDPs. In turn, goal-reaching
policies trained in the playground stand as generic action primitives, which are then composed hierarchically
when solving a new, complex task.

3.3 Learning a reachability topology

Algorithm 1: Reachability graph learning (RGL)
1 Input: π, dπ, ηreach, ηnode, ηedge, Tr, Te

2 Initialize: V = ∅, E = ∅
3 repeat
4 s0 = env.init()
5 g0 = goal associated to closest node to P(s0)
6 if dπ(P(s0), g0) > ηedge ∨ V = ∅ then
7 V ← V ∪ {node(P(s0))}
8 g0 = P(s0)
9 v∗ = selectExplorationNode(V, g0)

10 (vi)i∈[0,H] = shortestPath(V, E, g0, v∗)
11 s = s0, t = 0
12 for i ∈ [1, H] do
13 while ¬reached(s, vi) ∧ t ≤ Tr do
14 s← env.step(s, π(s, gvi

))
15 t← t + 1
16 if ¬reached(s, vi) then
17 setWeight(E, vi−1, vi, +∞)
18 break

19 if reached(s, v∗) ∨H = 0 then
20 {st}t∈[1,Te] ← explore(s, Te)
21 (V, E) = growGraph

(
V, E, {st}t∈[1,Te]

)

22 Function growGraph(V, E, {st}t∈[1,Te]):
23 for t ∈ [1, Te] do
24 addNode = True, Ein = Eout = ∅,

w = node(P(st))
25 for v ∈ V do
26 lin = dπ(gv, gw)
27 lout = dπ(gw, gv)
28 if lin ≤ ηnode ∧ lout ≤ ηnode then
29 addNode = False; break

30 if lin ≤ ηedge then
31 Ein ← Ein ∪ {edge(v, w)}
32 setWeight(Ein, v, w, lin)
33 if lout ≤ ηedge then
34 Eout ← Eout ∪ {edge(w, v)}
35 setWeight(Eout, w, v, lout)

36 if addNode = True ∧ Ein ̸= ∅ then
37 V ← V ∪ {w}, E ← E ∪ Ein ∪ Eout

38 return V, E

To ease the presentation of ideas, we present the proposed Reachability Graph Learning algorithm (RGL,
Algorithm 1) in the context of deterministic MDPs, and defer the discussion of the stochastic case to the
end of this section. Given a pre-trained ϵ-TILO policy π, we wish to construct an oriented graph G = (V, E)
which will represent the reachability between sub-goals, using π. Each vertex v ∈ V of such a graph is
associated with a given goal gv, and directed edges e ∈ E indicate reachability of the successor node’s goal
from the states corresponding to the source node’s goal. In other words, if an edge exists between v and
w, then π successfully reaches gw from states in Kv = Kgv . The edge linking v and w is weighted with
a traversal cost of dπ(gv, gw). Knowledge of this weighted graph permits running a planning algorithm to

6



Published in Transactions on Machine Learning Research (/)

find an execution curriculum of waypoint vertices (intermediate goals gv) which eventually link any start
state and final goal. This is very similar in spirit to SoRB (although our graph is defined on goals, not
states). The (other) key difference lies in the fact that graph nodes are not built on an arbitrary set of
sampled states, which might be rather sensitive to the distribution of these sampled states, and graph edges
do not rely solely on evaluating the policy’s value function, which might poorly account for discontinuities
(walls) or rarely visited states. Instead we grow and prune the graph dynamically so that it actually encodes
reachability between goals, which is a major difference with most other methods in the literature.

Path planning in G. During an iteration of the RGL procedure, a starting state s0 is first sampled from
an initial state distribution. Note that RGL does not suppose a fixed starting state. If s0 is the first sampled
starting state ever, or if the closest goal to P(s0) lies far from P(s0) in the goal space, this means s0 does
not correspond to any previously explored goal and we add a node in the graph at P(s0). Then, a node
v∗ in the graph is selected for exploration. This selection relies on a count-based criterion which influences
the progressive coverage of the goal space. Although one could design heuristics or refined exploration
strategies (Bellemare et al., 2016; Ecoffet et al., 2019; Badia et al., 2019; Burda et al., 2019; Domingues
et al., 2021) for this criterion, we rely on a simple count of the number of times a node has been selected
for exploration, hence promoting uniform visits to every node in the graph. A finite horizon plan (vi)i∈[0,H]
is computed by finding a shortest path in the graph from the starting state’s node v0 to the selected node
v∗ = vH . Note that there may not exist a path between v0 and v∗ in the graph, in which case H = 0 and
the shortestPath procedure returns the single node {v0}. Let (gi)i∈[0,H] denote the corresponding sequence
of waypoint subgoals. Then π is used to sequentially reach each goal. Specifically, when trying to reach
gv, π(·, gv) is run until a reached(s, v) := [dπ(P(s), gv) ≤ ηreach] condition becomes true, or a maximum
number of steps Tr is exceeded. If applying π allowed the agent to reach the ηreach-neighborhood of gv, then
the next waypoint w in the plan is selected and the procedure is repeated until the node v∗ is reached.

Graph pruning. We interpret not reaching the neighborhood of gw when applying π as a mismatch between
the notion of reachability encoded in the graph and the actual reachability in the environment using π. As
a consequence, we set the cost of edge e between v and w to +∞ to account for this non-reachability.
Consequently, if the graph is learned without errors, the existence of an edge e between two nodes v and
w indicates that π permits reaching the ηreach-neighborhood of gw from states s whose P(s) are in the
ηreach-neighborhood of gv in less than Tr time steps (or that this edge is never selected by the shortest
path planning procedure). This pruning procedure keeps the graph free of mis-identified edges. In mazes, it
deletes edges that cross walls, and hence accounts for the discontinuities we wished to represent within the
policy.

Graph expansion. Conversely, if applying π throughout the sequence of waypoints actually fulfills the goal
g∗ of node v∗ selected for exploration, then a generic exploration procedure is performed from the reached
state s∗ in the ηreach-neighborhood of Kv∗ , during Te time steps. The intention of such an exploration
procedure is to discover states s whose P(s) permit expansion of the graph. We randomly sample a goal
within a certain radius of g∗ and try to reach it using π. If we succeed, we sample another random goal
and repeat this exploration until we obtain a complete exploration trajectory of length Te. Note that this
exploration strategy could be replaced by any other, which is why we refer to it generically as the explore
procedure in Algorithm 1. The states visited along the trajectory are collected in a buffer. We wish to
expand the graph so that its nodes induce a good coverage of the buffer states’ goals and its edges indicate
proximity (but not necessarily reachability at this stage). To that end, we cycle through the buffer and
incrementally add vertices to V whenever a goal is dπ-further away from all nodes than a threshold ηnode.
Edges are created from this new vertex to all nodes within ηedge > ηnode. We differentiate between incoming
and outgoing edges from the new candidate node: if there is no incoming edge, then the node is not added
to the graph. This greedy procedure expands the graph to create new nodes that complete the goal space
coverage wherever required, with limited connectivity between nodes. At this stage, some newly created
edges might not account for reachability, e.g. in a maze, this might happen if the closest existing graph node
to the newly created node is behind a wall. We rely on future iterations to prune the graph as presented in
the previous paragraph.

7



Published in Transactions on Machine Learning Research (/)

Overall, this growth and pruning RGL procedure results in a graph G = (V, E) which encodes goal space
reachability when using π in the state space. The pair (G, π) implicitly defines a general goal-reaching policy
which requires computing a shortest path in G to chain local executions of π between subgoals.

Time complexities during learning. At execution time, determining the action to undertake in s in
order to reach g requires solving a shortest path problem in G. This can be typically implemented using
Dijkstra’s algorithm (Dijkstra, 1959), which has complexity O(E+V log V ).4 It is important to note however
that in deterministic MDPs (or MDPs with limited noise) this shortest path needs only be computed once
per goal-reaching task and can be carried over to the next time step of the task, thus strongly dampening
the overall computational cost. During learning, the pruning phase of an iteration of RGL has complexity
O(E + V (log V + Tr)). The exploratory collection of new samples runs in O(Te), while the growGraph
function has complexity O(TeV ).5 This results in an overall time complexity of O(E + V (log V + Tr + Te))
for each iteration of RGL, which involves O(V Tr + Te) iteration steps with the environment.

In the general case of MDPs with stochastic transitions, the pruning procedure of RGL needs to be adapted
to account for the stochastic outcomes when trying to reach g′ from Kg. Note that, in this case, dπ(g, g′)
captures a broader notion than the number of required time steps for π to reach g′ from g: it captures
the overall probability to reach g′ from Kg, given the transition model and a probability of termination
of 1 − γ at each time step. Thus, reachability can be redefined as the probability of reaching g′ from Kg

being actually equal (or close to) dπ(g, g′). Verifying this with high confidence requires running several
trials between Kg and g′, which can be implemented by enhancing the algorithm with a memory of trial
outcomes for each edge in the graph. Introducing such a delay in updates is similar in spirit to the practice
of RMAX (Brafman & Tennenholtz, 2002) or Delayed Q-learning (Strehl et al., 2006), which introduce an
Nknown number of samples which are necessary to correctly identify a transition. Note that in most practical
implementations of such algorithms, Nknown is arbitrarily set to a small value to preserve computational
efficiency. An alternative, which we do not explore here and reserve for future work, is to let the weight of
an edge adapt to the observed trial durations between g and g′.

4 Experimental setup

To highlight the behavior of RGL, and provide a fair and interpretable benchmark against comparable
methods, we consider a set of navigation tasks in mazes, including a high-dimensional state space one.

Environments. In each maze, an agent should be able to reach any goal position from its starting point.
Hence the goal space G is always the 2-dimensional set of positions in the maze. We consider mazes of
different complexities, with various map sizes and heterogeneous corridor widths, as illustrated in Figure 1.
Namely, “four-rooms” is a 41× 41-size maze resembling the classical “four-rooms” benchmark, “medium” is
a more challenging maze of the same size, “hard” is an even more challenging 57×57-size maze and “mixed”
has the same size as “hard” and mixes corridors and rooms of different sizes. Note that compared to mazes
used in the literature (e.g. those of Eysenbach et al. (2019)), here the walls are thin, inducing sharper
discontinuities in the value function across a wall. For each map, we consider three different dynamics and
state spaces for the navigating agent, which we refer to as grid-maze, point-maze and ant-maze (Table 1).
Grid-maze features a discrete {N, S, E, W} action space and deterministic transitions which perform unit-
length moves, hence emulating navigation on a grid. Point-maze emulates a point mass moving freely in the
maze. It has a continuous, two-dimensional action space of position increments in [−1, 1] on the x and y
axes. The transitions are stochastic due to an added Gaussian noise N (0, 1). Contrarily to grid-maze which
has a fixed starting state, point-maze randomly draws the starting point at every episode. In grid-maze and
point-maze environments, the state space is simply described by the geographical position of the agent, as
in the benchmarks of SoRB (Eysenbach et al., 2019) or SGM (Emmons et al., 2020), and S = G. Ant-maze
environments build upon the MuJoCo Ant simulator (Todorov et al., 2012) and sets the ant in one of the
navigation maps. Actions belong to the standard 8-dimensional action space of the Ant simulator, and the
state space is the 29-dimensional space whose first two coordinates are the position of the ant’s torso, as
in the benchmarks of HAC (Levy et al., 2019) or Distop (Aubret et al., 2021). The transitions follow the

4For the sake of simplicity we adopt the notation O(V ) in place of O(|V |).
5This can be amortized to O(Te log V ) with efficient data structures for storing V and finding nearest neighbors.

8



Published in Transactions on Machine Learning Research (/)

Figure 1: Mazes and starting points. From left to right: “four-rooms”, “medium” (size 41 × 41), “hard”, “mixed”
(size 57 × 57).

dynamics of the Ant simulator. In ant-maze environments, the goal space G describes only the torso’s x and
y coordinates. In all environments, agents receive a −1 reward at each time step, unless they reach the goal
which terminates the episode. In all evaluations, every agent is independently trained 10 times. For the sake
of reproducibility, the hyperparameters for all algorithms are summarized in Appendix A, and our code and
results are available at [anonymous URL].

Table 1: Summary of environments

dim(S) dim(G) actions dynamics starting state
grid-maze 2 2 discrete (number = 4) deterministic fixed single state
point-maze 2 2 continuous (dim(A) = 2) stochastic uniform distribution on S
ant-maze 29 2 continuous (dim(A) = 8) deterministic fixed single state

Baselines. To illustrate the behavior of RGL, we compare against a plain DQN agent (Mnih et al., 2015)
with HER in grid-maze environments, and SAC (Haarnoja et al., 2018) with HER in point-maze and ant-
maze environments. As illustrated by previous works (Nachum et al., 2018; Levy et al., 2019), such a
combination can efficiently learn a goal-reaching policy for goals lying a few actions away from the starting
state, but struggles to reach goals that require turning around walls. These DQN+HER and SAC+HER
agents provide a baseline for performance. Another baseline consists in passing the policy learned by these
base agents, along with their final replay buffer, to SoRB, to extend their outreach throughout the goal space
via planning in a random subset of size Ninit of the replay buffer. Since SGM is more efficient than SoRB
(due to their pruning method), we directly compare with SGM.6

Ablations. We also implement three variants of RGL. The first one is called TC-RGL, inspired by the
STC method (Ruan et al., 2022), where we replace the dπ pseudo-metric by a so-called temporal correlation
network, which is an additional network trained to measure reachability between states, based on their
temporal proximity during training trajectories. This variant permits evaluating the core feature of STC as
an alternative to using the value function as a reachability metric between goals. The second one is called
Prune-only RGL (PO-RGL). This version samples n states from S using an oracle, and sets them as graph
nodes. Edges are computed in the same way than RGL. This algorithm does not need graph extension, and
simply prunes the graph as it successively tries to reach random goals. Finally, NoPG-RGL (no playground)
is an RGL agent whose lower-level policy has not been pre-trained in an obstacle-free playground but in the
true maze, to illustrate the influence of playground environments on the pre-trained policy’s quality.

Pretraining. First of all, it is important to note that only RGL can, by design, exploit a goal-reaching policy
which has not been trained on the actual full maze (further discussion in Appendix J). This enables training
RGL’s goal-reaching policy in a 40× 40 playground environment with no walls which facilitates pre-training
(training in the full maze, as done with NoPG-RGL, is still possible but totally unnecessary since RGL’s
goal-reaching policy needs only navigate to local goals). Such a pre-training is not compatible with SGM or

6Note that SoRB and SGM were introduced with tailor-made, goal-based, distributional DQN and DDPG agents. We found
this was not necessary for finite-length trajectories and we retain the names even though we slightly change the base agents.

9



Published in Transactions on Machine Learning Research (/)

SoRB. To ensure SGM builds on a sufficiently good pre-trained policy, and following the practice of SoRB, we
let the base agent learn a goal-reaching policy over 300 (resp. 500) episodes in grid-maze (resp. point-maze).
RGL’s lower level goal-reaching TILO policy is only trained for 100 (resp. 70) episodes in the playgrounds for
grid-maze (resp. point-maze) environments. Because training the temporal consistency network of TC-RGL
required more samples, it was trained for 200 (resp. 600) episodes in the playgrounds. Finally, NoPG-RGL
is trained for 150 episodes in the true mazes in both grid-maze and point-maze environments. To account
for pre-training durations, all figures below (e.g. Figure 3) report them using vertical lines and count them
within the total training time. Because ant-maze environments required specific pre-training, we defer their
discussion to the end of this section.

5 RGL in action

This section illustrates how RGL dynamically grows and prunes its graph, illustrates the comparative im-
portance of each part of the algorithm, and reports on its ability to reach far-standing goals.

Visualizing graph growth and pruning. We start by assessing separately the influence of the growth
and pruning procedures on the properties of the final reachability graph. To isolate the effect of pruning, we
artificially generate waypoints by using a generative model to draw states from the full state space, which
yields a graph with the same number of nodes Ninit as the SGM agents (edges weights are also initialized
with dπ), but with better state space coverage since the drawn states are not constrained by the exploration
of the pre-trained DQN+HER agent. This graph is illustrated in Figures 2a and 2e for the “four-rooms” and
“hard” grid-mazes (full results in Appendix B). In Figure 2, red edges are those whose weights have been
set to +∞ by the pruning procedure. We observe that (as anticipated in Section 3) only erroneous edges
which were selected in a shortest path are pruned, and some remain in the graph, especially in grid-maze,
which features a fixed unique starting state. This bears little consequences in terms of goal reachability since
these are never selected in shortest paths from the initial state, but still result in a rather dense reachability
graph. Conversely, Figures 2b-2d and 2f-2h illustrate the graph growth and the pruning for RGL in the same
environment after respectively 1,000, 40,000 and 270,000 interaction steps. To avoid misinterpretations, it is
important to note that since the graph is oriented, each green edge in these figures actually stands for two
edges in the graph. If only one has been pruned and rendering of the other happens afterwards, the segment
appears green while only one edge in the graph has non-infinite weight. Overall, the incremental growth of
RGL’s graph yields an efficient coverage of the state space, avoiding the clusters of unnecessary nodes of
Figures 2a and 2e, and reducing the need for pruning.

(a) PO-RGL, 400 nodes (b) RGL, t = 1,000 (c) RGL, t = 40,000 (d) RGL, t = 100,000

(e) PO-RGL, 600 nodes (f) RGL, t = 1,000 (g) RGL, t = 40,000 (h) RGL, t = 150,000

Figure 2: Reachability graphs.

10



Published in Transactions on Machine Learning Research (/)

RGL agents can reach any goal. Figure 3 reports the ability of each agent to reach any goal in the
maze, along training. The vertical lines correspond to the time at which each agent starts exploiting the
pre-trained policy. Every 1,000 interactions with the environment, we randomly draw 30 goals across the full
goal space, and report the fraction of these goals the agent managed to reach. We call this metric the agent’s
accuracy. As expected, since exploration in mazes is difficult, the pre-training replay buffers do not cover
the full state space and the baselines fail to reach all goals. Interestingly, despite the low performance of
the pre-trained DQN+HER and SAC+HER agents, RGL is still able to leverage their ability to reach local
goals and manages to quickly grow a goal graph which eventually covers the full maze. NoPG-RGL, despite
its pre-training in the actual maze, still manages to grow a relevant planning graph and outperform SGM.
It is interesting to note that this pre-training still costs less than that of SGM in number of interactions.
It also yields a local policy which is strongly biased by the obstacles around the starting states. The pre-
training might have learned to avoid a specific wall close to the starting point, which hinders the ability of
NoPG-RGL to reach waypoints and slows graph expansion. PO-RGL displays a clear jumpstart effect in
the “four-rooms” maze since its initial graph requires little pruning and most goals are readily reachable.
Conversely, early planning graphs of RGL and TC-RGL contain few nodes and require expansion (and thus
interaction steps) before their accuracy reaches 1. After 1,000 interactions, even though the planning graph
of RGL contains only a few nodes (Figure 2b), it already reaches more goals than the baseline agents. As
the mazes become more difficult, many more edges need to be pruned from PO-RGL’s initial graph before it
effectively represents graph reachability and the plans reliably lead to goals. This need for extended pruning
is completely compensated by the sparse growth of the graph of RGL and TC-RGL; thus PO-RGL presents
no advantage in terms of learning curve. In the most difficult “hard” and “mixed” mazes, the set of Ninit

initial nodes of PO-RGL is just insufficient to properly cover the full goal space with feasible edges and
PO-RGL’s accuracy is capped around 0.5 and 0.8, while the dynamic growth of RGL permits reaching close
to 1 accuracies. Also, the extra temporal consistency network of TC-RGL seems detrimental to the training
process compared to RGL. Since this network only approximates the notion of reachability instead of directly
using the value function, it induces a graph expansion and pruning phase with more errors or missed nodes
(which were actually reachable). In turn, as TC-RGL’s graph does not accurately represent reachability,
some goals are eventually missed. In all environments, RGL reaches an accuracy of 1 and dominates over
all variants.

Figure 3: Accuracy for all agents on grid-maze environments, versus interaction steps. Take-aways: 1) RGL (all
versions) consistently outperform the baselines, 2) the TC metric (TC-RGL) is detrimental to performance compared
to the plain dπ metric, 3) pre-training in the real maze (NoPG-RGL) can induce suboptimal local reaching behaviors
which do not prevent overall coverage but limit performance, 4) online graph expansion is necessary (PO-RGL) as
pre-sampled graph nodes do not match the environment’s topology.

Graph size. Figures 4 and 5 report the number of nodes and edges for RGL agents as their graph grows
in the grid-maze environments. Recall that instead of deleting edges that need to be pruned, their traversal
weights are set to +∞ (to avoid re-creating them again later). This is why the number of edges of PO-
RGL does not decrease. Dotted curves in Figure 5 indicate the number of edges with a non-infinite weight.
Overall, RGL and TC-RGL create just enough nodes to accurately represent the reachability graph given
their underlying dπ and temporal consistency networks. The relative number of nodes and edges between
RGL and TC-RGL cannot be directly compared as the former uses dπ as a distance metric while the latter
uses a reachability representation, on a different (uncontrolled) scale. Still, the number of nodes is similar

11



Published in Transactions on Machine Learning Research (/)

Four rooms Medium Hard Mixed
RGL (ours) 0.99(0.02) 0.98(0.03) 0.93(0.13) 0.97(0.03)
NoPG-RGL 0.86(0.26) 0.6(0.29) 0.7(0.22) 0.8(0.14)

TC-RGL 0.97(0.05) 0.97(0.03) 0.68(0.26) 0.56(0.22)
PO-RGL 0.99(0.01) 0.96(0.05) 0.52(0.26) 0.77(0.27)

SGM 0.59(0.23) 0.28(0.07) 0.16(0.09) 0.25(0.09)
DQN + HER 0.4(0.13) 0.14(0.08) 0.06(0.05) 0.1(0.08)

Table 2: Final average score for each method (standard deviation in parenthesis). Take-away: RGL statistically
outperforms non-dynamic graph methods.

across mazes. Interestingly, RGL produces graphs with less connectivity, which can be interpreted as a better
ability to create meaningful connections between goal waypoints for navigation, and hence sparser abstract
models for planning while retaining the useful information for plan efficiency. Additionally, TC-RGL features
a large variance in the number of nodes and edges developed in the graph. This appears to stem from the
training of the temporal consistency network which is very sensitive to the distribution of trajectories during
pre-training. In turn, this strongly affects the estimation of reachability when learning the graph and induces
this variance in graph density. Appendix F provides further discussion on the impact of the graph density’s
hyperparameters (ηnode and ηedge) on RGL’s behavior.

Figure 4: Number of graph nodes in grid-maze versus interaction steps. Shaded area is the 1σ confidence interval.

Figure 5: Number of graph edges in grid-maze versus interaction steps. Shaded area is the σ confidence interval.

6 Scaling up RGL to more difficult environments

The previous section demonstrated the overall behavior of RGL and its ability to build a more relevant
planning graph than similar methods. In this section, we consider additional challenges and evaluate RGL
in other contexts. Namely, we explore how RGL compares to other approaches when the environment is
not constrained to start in the same states every time. We also evaluate how RGL can cope with stochastic
transition dynamics. Finally, we scale up RGL to the large state space of MuJoCo’s ant simulator and

12



Published in Transactions on Machine Learning Research (/)

demonstrate its behavior when the state space is much larger than the goal space, while comparing its
behavior to state-of-the-art competitors HAC (Levy et al., 2019) and DSG (Bagaria et al., 2021).

Easier exploration in environments with the ability to “reset anywhere”. Point-maze environments
permit resetting the environment anywhere in the state space at the beginning of each episode, as in the
benchmarks of Eysenbach et al. (2019); Emmons et al. (2020). This feature induces diversity in the replay
buffers by triggering easier exploration of the state space, simply by enabling these random resets, and
somehow departs from the more constrained RL framework with a fixed (or a limited set of) starting state(s).
Consequently, these environments are more favourable to SGM since their replay buffer covers a larger portion
of the state space, and SGM performs better in these environments than in grid-maze ones. Figure 6 compares
the behavior of all methods in the point-maze environments and illustrates how, even in this case, the graph
growth of RGL eventually outperforms competing methods, as it dynamically and progressively discovers
new goal waypoints to better map the state space.

Figure 6: Accuracy for all agents on point-maze environments, versus interaction steps. Take-away: the ability to
reset anywhere during training strongly helps SGM’s coverage by design, but the dynamic graph growth of RGL and
its variants still enables more efficient overall goal-reaching behaviors.

Four rooms Medium Hard Mixed
RGL (ours) 0.91(0.1) 0.85(0.24) 0.77(0.2) 0.67(0.23)
NoPG-RGL 0.94(0.05) 0.87(0.05) 0.7(0.15) 0.61(0.15)

TC-RGL 0.82(0.17) 0.68(0.27) 0.54(0.31) 0.64(0.19)
PO-RGL 0.87(0.18) 0.7(0.18) 0.48(0.2) 0.64(0.17)

SGM 0.88(0.09) 0.79(0.13) 0.43(0.24) 0.34(0.13)
SAC + HER 0.54(0.1) 0.23(0.06) 0.11(0.05) 0.11(0.05)

Table 3: Final average score for each method (standard deviation in parenthesis). Take-away: RGL statistically
outperforms non-dynamic graph methods, and methods that are unable to expand their graph after pre-training.

Accommodating stochastic transition models. As mentioned in Section 3.3, RGL in its presented
version is designed for deterministic dynamics and would require some adaptations to account for transition
uncertainty. Point-maze environments feature a rather high level of action noise (σ = 1 for action values in
[−1, 1]). This makes the pruning procedure stochastic, as it will prune out edges depending of a single trial’s
success. Despite this rather naive behavior, RGL still manages to find paths (possibly sub-optimal) to goals
and reaches a high level of accuracy (Figure 6) demonstrating a reasonable level of robustness to transition
stochasticity.

Scaling-up to high-dimensional and large state spaces, where G ̸= S: ant-maze tasks. A key
achievement of deep RL is its ability to scale up to high-dimensional state spaces, either in continuous
control (e.g. MuJoCo robotic environments) or in image-based tasks (e.g. video games). In this last part, we
consider such environments, where RGL retains the same overall behavior, as its planning graph is defined
over the goal state G and not the state space. The key challenge in these environments is therefore to derive
a good lower-level goal-reaching control policy π(s, g), which is independent of the contribution of this paper
and may require a large engineering effort, unrelated to RGL itself. In other words, the lower level policy in
the Ant environment should learn to walk to any nearby position around its starting position, while RGL
will enable it to navigate to distant positions in the maze.

13



Published in Transactions on Machine Learning Research (/)

Training a universal local goal-reaching policy in ant-maze environments, even in an obstacle-free playground,
is already a challenging task. Appendix G expands on the pre-training procedure set in place to attain such
a policy π(s, g). HAC is the reference method for ant-maze environments but, as discussed in Appendix H,
its efficiency appears brittle and despite our best efforts and the use of the original HAC implementation,
it could not solve any of the ant-maze tasks. Similarly, the more recent (and comparable to RGL in spirit)
DSG method reaches an extremely low accuracy, as reported in Figure 7 and discussed in Appendix I, where
RGL eventually reaches very high levels of accuracy.

Figure 7: RGL accuracy in ant-maze tasks, as a function of training time steps. See Appendix H and I for a detailed
discussion on HAC and DSG’s low score.

Four rooms Medium Hard Mixed
RGL (ours) 0.91(0.06) 0.86(0.06) 0.48(0.24) 0.73(0.16)

HAC 0.0(0.01) 0.01(0.01) 0.06(0.05) 0.06(0.05)
DSG (Sparse rwd.) 0.02(0.03) 0.01(0.02) 0.01(0.02) 0.0(0.0)

Table 4: Final average score for each method (standard deviation in parenthesis). Take-away: RGL statistically
outperforms all baselines.

In comparison to the ant-maze environments used in Bagaria et al. (2021), the maps used here are larger.
In turn, this makes reaching specific areas (goals) of the maze more difficult to reach. Besides, even when
taking into account the pre-training time of RGL’s lower-level policy, Figure 7 (and the original DSG paper)
shows that DSG requires many more learning steps to correctly learn the individual options corresponding
to the vertices in its planning graph. In contrast, RGL leverages the possibility to re-use the same TILO
policy throughout the state space, and quickly grows the planning graph while leaving the lower-level policy
unchanged after the first 20, 000 time steps. Additionally, DSG relies quite strongly on dense reward models
for efficient training of options. The present environments avoid the (dense) reward shaping mechanism used
in Bagaria et al. (2021)’s experiments, to avoid pre-training biases, which strongly penalizes DSG. Appendix I
test DSG in various Ant-Maze settings to analyse the reasons of DSG under-performances in the current
context.

Finally, ant-maze tasks, on top of being highly challenging for the baseline agent, also violate the assumption
of Section 3.1 that any two states within Kg are reachable from each other for a negligible cost. For
instance, some ant orientations, velocities and leg configurations are rather complex to reach from others.
Consequently, an edge between g and g′ in RGL’s graph only represents reachability of g′ from a subset
of states in Kg, which can lead to plan failure (extended discussion in Appendix B). Despite this, RGL
manages to achieve large values of accuracy almost as high as those obtained on point-maze tasks on the
“four-rooms”, “medium” and “mixed” mazes. The most challenging setting remains the “hard” maze, which
requires fine motor skills to efficiently navigate through narrow corridors and requires turning around many
corners to navigate to far goals.

High-dimensional goal spaces. The question of scaling up RGL to large goal spaces arises naturally as a
follow-up to the previous paragraphs. For instance, when extending RGL from navigation to manipulation
tasks, goal space dimension might increase and RGL’s graph growth will suffer from the curse of dimension-
ality. This issue arises for all methods which design a graph in goal space; for instance, SGM or SoRB will

14



Published in Transactions on Machine Learning Research (/)

face the same issue as their state and goal spaces are identical. RGL’s (slight) advantage here is precisely
that the P projection enables building the graph in a lower-dimensional space than in the full state space,
provided one could provide a suitable mapping for P. We reserve the automated discovery of P for future
work as it is a distinct challenge in itself.

7 Conclusion

Efficient coupling of planning and learning in complex MDPs with temporally extended goals is an active
field of research. In this work we defend the idea that efficient mechanisms rely on two implicit hypotheses:
planning agents should plan in the goal space and learned policies are often re-usable throughout the state
space. We propose a formal framework accounting for these two notions, defining goals as state abstractions,
and casting re-usability as translation invariance. This permits deriving an algorithm which performs plan-
ning over a graph of goal waypoints, reachable by a lower level goal-reaching policy. This agent is named
RGL (reachability graph learning) after its training mechanism, which incrementally explores its environ-
ment using a pre-trained lower level translation invariant goal-reaching policy, expands and prunes a graph
encoding goal reachability. This approach can be seen either as a more grounded version of STC (Ruan et al.,
2022), or a generalization of SoRB (Eysenbach et al., 2019) or SGM (Emmons et al., 2020) to a hierarchical
setting with translation invariance. Empirical evaluation confirms the relevance of RGL agents and their key
features.

This contribution also forms a basis for future research directions. As is, RGL agents build a somewhat
uniformly dense graph, as illustrated in Figure 2h. This might not be necessary and further sparsity can be
achieved in the open rooms of the “four-rooms” or the “mixed” environments. Similarly, weight learning in
the graph is currently rather naive and could better exploit interaction data during exploration, in particular
in stochastic environments. The influence of playground environments on the final policies is also an open
question, which connects to lifelong RL and curriculum learning: can one design good playgrounds for pre-
training, the same way we let kids learn generic skills from simple (playground) tasks before we encourage
them to compose these solutions together?

Finally, RGL requires an ϵ-TILO policy for agent control. Appendix D and E propose a discussion on
whether such policies are easy to obtain in the general case, beyond navigation tasks. We conjecture such
policies also exist in more complex contexts, like vision-based navigation (PO)MDPs, such as those proposed
by Kempka et al. (2016) or for real-life robots, since humans seem to exploit such invariances in daily life.
Formalizing how these policies can be discovered and how their definition affects the properties derived in
the present work is an exciting avenue for research.

References
Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew,

Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. Advances in
neural information processing systems, 30, 2017.

Giorgio Angelotti, Nicolas Drougard, and Caroline PC Chanel. Expert-guided symmetry detection in markov
decision processes. In Proceedings of the 14th International Conference on Agents and Artificial Intelli-
gence, 2022.

Arthur Aubret, Salima Hassas, et al. Distop: Discovering a topological representation to learn diverse and
rewarding skills. arXiv preprint arXiv:2106.03853, 2021.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven Kapturowski,
Olivier Tieleman, Martin Arjovsky, Alexander Pritzel, Andrew Bolt, et al. Never give up: Learning directed
exploration strategies. In International Conference on Learning Representations, 2019.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In International Conference
on Learning Representations, 2019.

15



Published in Transactions on Machine Learning Research (/)

Akhil Bagaria, Jason K Senthil, and George Konidaris. Skill discovery for exploration and planning using
deep skill graphs. In International Conference on Machine Learning, pp. 521–531. PMLR, 2021.

Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on systems, man, and cybernetics, 13(5):834–846,
1983.

Onur Beker, Mohammad Mohammadi, and Amir Zamir. Palmer: Perception-action loop with memory for
long-horizon planning. arXiv preprint arXiv:2212.04581, 2022.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying
count-based exploration and intrinsic motivation. Advances in neural information processing systems, 29,
2016.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Interna-
tional conference on Machine Learning, pp. 41–48, 2009.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning Research, 3:213–231, 2002.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
In International Conference on Learning Representations, 2019.

Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural topological
slam for visual navigation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12875–12884, 2020.

Hao-Tien Lewis Chiang, Jasmine Hsu, Marek Fiser, Lydia Tapia, and Aleksandra Faust. Rl-rrt: Kinodynamic
motion planning via learning reachability estimators from rl policies. IEEE Robotics and Automation
Letters, 4(4):4298–4305, 2019.

Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik, 1(1):
269–271, 1959.

Omar Darwiche Domingues, Corentin Tallec, Remi Munos, and Michal Valko. Density-based bonuses on
learned representations for reward-free exploration in deep reinforcement learning. In ICML Workshop on
Unsupervised Reinforcement Learning, 2021.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Scott Emmons, Ajay Jain, Misha Laskin, Thanard Kurutach, Pieter Abbeel, and Deepak Pathak. Sparse
graphical memory for robust planning. Advances in Neural Information Processing Systems, 33:5251–5262,
2020.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. Search on the replay buffer: Bridging
planning and reinforcement learning. arXiv preprint arXiv:1906.05253, 2019.

Aleksandra Faust, Kenneth Oslund, Oscar Ramirez, Anthony Francis, Lydia Tapia, Marek Fiser, and James
Davidson. Prm-rl: Long-range robotic navigation tasks by combining reinforcement learning and sampling-
based planning. In 2018 IEEE international conference on robotics and automation (ICRA), pp. 5113–5120.
IEEE, 2018.

Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal
exploration processes with automatic curriculum learning. The Journal of Machine Learning Research, 23
(1):6818–6858, 2022.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3(4):
128–135, 1999.

16



Published in Transactions on Machine Learning Research (/)

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. In International Conference on Learning Representations, 2021.

Zhiao Huang, Fangchen Liu, and Hao Su. Mapping state space using landmarks for universal goal reaching.
Advances in Neural Information Processing Systems, 32, 2019.

Brian Ichter, Pierre Sermanet, and Corey Lynch. Broadly-exploring, local-policy trees for long-horizon task
planning. arXiv preprint arXiv:2010.06491, 2020.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8. Citeseer, 1993.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE transactions on Robotics and Automation, 12
(4):566–580, 1996.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Vizdoom: A
doom-based ai research platform for visual reinforcement learning. In 2016 IEEE conference on computa-
tional intelligence and games (CIG), pp. 1–8. IEEE, 2016.

Hajime Kimura, Toru Yamashita, and Shigenobu Kobayashi. Reinforcement learning of walking behavior for
a four-legged robot. IEEJ Transactions on Electronics, Information and Systems, 122(3):330–337, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference for Learning Representations, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

George Konidaris and Andrew Barto. Skill discovery in continuous reinforcement learning domains using
skill chaining. Advances in neural information processing systems, 22, 2009.

George Dimitri Konidaris and Andrew G Barto. Building portable options: Skill transfer in reinforcement
learning. In Ijcai, volume 7, pp. 895–900, 2007.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. Technical Report 98-11,
Department of Computer Science, Iowa State University, 1998.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies with
hindsight. In International Conference on Learning Representations, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. nature, 518(7540):529–533, 2015.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. EqR: Equivariant represen-
tations for data-efficient reinforcement learning. In International Conference on Machine Learning, pp.
15908–15926. PMLR, 2022.

17



Published in Transactions on Machine Learning Research (/)

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforcement
learning. Advances in neural information processing systems, 31, 2018.

Soroush Nasiriany, Vitchyr H Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned policies.
arXiv preprint arXiv:1911.08453, 2019.

Giambattista Parascandolo, Lars Buesing, Josh Merel, Leonard Hasenclever, John Aslanides, Jessica B
Hamrick, Nicolas Heess, Alexander Neitz, and Theophane Weber. Divide-and-conquer monte carlo tree
search for goal-directed planning. arXiv preprint arXiv:2004.11410, 2020.

Alexandre Péré, Sébastien Forestier, Olivier Sigaud, and Pierre-Yves Oudeyer. Unsupervised learning of goal
spaces for intrinsically motivated goal exploration. In International Conference on Learning Representa-
tions, 2018.

Doina Precup. Temporal abstraction in reinforcement learning. University of Massachusetts Amherst, 2000.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Jette Randløv and Preben Alstrøm. Learning to drive a bicycle using reinforcement learning and shaping.
In ICML, volume 98, pp. 463–471. Citeseer, 1998.

Xiaogang Ruan, Peng Li, Xiaoqing Zhu, and Pengfei Liu. A target-driven visual navigation method based
on intrinsic motivation exploration and space topological cognition. Scientific Reports, 12(1):1–22, 2022.

Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun. Semi-parametric topological memory for naviga-
tion. In International Conference on Learning Representations, 2018.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators. In
International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and
shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware unsu-
pervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold,
David Reichert, Neil Rabinowitz, Andre Barreto, et al. The predictron: End-to-end learning and planning.
In International Conference on Machine Learning, pp. 3191–3199. PMLR, 2017.

Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac model-free
reinforcement learning. In International Conference on Machine learning, pp. 881–888, 2006.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

Elise Van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. MDP homomorphic
networks: Group symmetries in reinforcement learning. In Advances in Neural Information Processing
Systems, 2020.

Dian Wang, Robin Walters, and Robert Platt. So (2)-equivariant reinforcement learning. In International
Conference on Learning Representations, 2022.

18



Published in Transactions on Machine Learning Research (/)

A Hyperparameters and computational setup

Tables 5 to 12 summarize the hyperparameters used when training the different algorithms. The actor
network used for the lower level goal-reaching policy takes a state and a goal as input (the dimension varies
depending on the task) and processes them through a 2 hidden layer MLP. The output layer depends on
the algorithm. Training follows the procedure of DQN and HER with discount factor γ and exponential
smoothing on the target network (factor τ), and an Adam (Kingma & Ba, 2015) optimizer with default
parameters. These parameters are the same for pretraining lower level policies for all algorithms. All RGL
agents share the same Te, ηnode, ηedge, and ηreach when applicable (for instance, PO-RGL uses ηedge but not
ηnode since it does not create new nodes). TC-RGL uses specific values ηnode and ηedge for thresholds on
node and edge creation, since it uses STC’s temporal consistency network to measure node distance instead
of our dπ pseudo-metric; the scale of this network’s output is unrelated to that of dπ (hence the different
values of ηnode and ηedge).

The results on grid-maze and point-maze were run on a desktop machine (Intel i9, 10th generation processor,
64GB RAM) with no GPU usage. The results on ant-maze were obtained with single node computations.
Each of these nodes was composed of 2 12-core Skylake Intel(R) Xeon(R) Gold 6126 2.6 GHz CPUs with 96
Go of RAM (no GPU hardware).

Our code is available at [Anonymous URL].

B Complete results on reachability graphs

Figures 8, 9 and 10 present an extended version of the reachability graphs of figure 2 for all mazes in,
respectively, grid-maze, point-maze and ant-maze environments. Blue dots in some figures correspond to the
current selected goal at the time the graph was printed and should be discarded.

PO-RGL was created purely for didactic reasons in order to illustrate the pruning process independently
of the incremental graph growth. Besides this illustration itself, these figures underline two features. First,
the fact that RGL creates the graph incrementally makes it much sparser and avoids clusters of really close,
redundant nodes. In turn, this sparse graph is much easier to prune than that of PO-RGL. Secondly, in
environments with a fixed initial state (grid-maze, ant-maze), some edges never participate in the shortest
path to any goal and hence are never pruned. Even if the sparse growth of the RGL graph limits this
phenomenon, some impassable edges remain; e.g. some edges at the far right of figure 8p. Randomly
resetting the starting state at each episode permits a more complete and easier exploration of all shortest
paths, and hence results in a slightly more accurate pruning; e.g. the unpruned edges in grid-maze are better
pruned on figure 9p.

Figure 10 (ant-maze environments) deserves a few additional comments. On this graph, to ease the readability
and account for directed edges, whenever a directed edge exists between v and w, we plot the edge’s segment
closest to v in green. Orange then means the reverse edge has not been created. Red means the edge has been
pruned. Some pruned edges appear in areas which seem passable. To explain this phenomenon, one needs to
recall that the state space is 29-dimensional and a waypoint in the goal space (a geographical position of the
ant’s center of mass) can stand for a wide variety of configurations, as discussed in Section 4. For any two
nodes g and g′, it is possible that g′ was reachable from P̄(g) but is not reachable from some other states in
Kg, since ant-maze environments violate the hypothesis that all states in Kg are reachable from each other
for a negligible cost given the pre-trained policy. This leads to some edges being legitimately pruned while
a “naive eye” laid on the reachability graph might conclude there was a mistake.

Finally, the graphs grown by RGL in ant-maze environments feature very few edges crossing walls. This is a
side effect of the default values of ηnode and ηedge (kept the same throughout all environments and mazes),
and the fact that the ant’s geometry prevents its center of mass to get close to the wall. This sometimes
happens nonetheless when the ant randomly "tries" to climb over the wall (and systematically fails), which
also places a few nodes that appear to be inside the walls.

19



Published in Transactions on Machine Learning Research (/)

Table 5: DQN hyperparameters. DQN+HER is used in grid-maze tasks to compute goal reaching policies.

DQN
model hidden layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-3, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5
batch size 100

discount factor γ 0.95
exponential smoothing factor τ 1e-3

Table 6: SAC hyper-parameters. SAC+HER serves as a control policy for RGL, PO-RGL, and TC-RGL, as well as
a baseline, in the “point-maze” and “ant-maze” environments.

SAC
Point-Maze Ant-Maze

critic hidden layers 250, Relu, 150, Reluactor layers

optimiser Adam(lr=5e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5 1e6
batch size 100 500

γ 0.99 0.99
τ 5e-3 5e-3

critic alpha 0.6 0.6
actor alpha 0.05 0.1

Table 7: C51 hyper-parameters, which serves as a control policy for SGM in the “grid-maze” environment.

C51
output distribution

size 20

models layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-3, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e5
batch size 100

γ 0.95
τ 1e-3

Table 8: Distributional DDPG hyper-parameters, which serves as a control policy for SGM in the “point-maze”
environment.

Distributional DDPG
output distribution

size 20

models layers 64, ReLU, 64, ReLU

optimiser Adam(lr=1e-4, betas=(0.9, 0.999),
eps=1e-08, weight_decay=0)

replay buffer size 1e6
batch size 64

γ 0.99
τ 0.05

20



Published in Transactions on Machine Learning Research (/)

Table 9: RGL hyper-parameters.

RGL
Grid-maze Point-maze Ant-Maze

ηedges 0.2 0.045 0.3
ηnodes 0.1 0.017 0.1

reachability threshold
of the nodes 1 0.8 0.7

max time-steps to
reach next node 50 50 150

Exploration goal range 2 4 6
interactions per

exploration 90 90 150

Table 10: PO-RGL hyper-parameters.

PO-RGL
Grid-maze Point-maze

ηedges 0.2 0.03
reachability threshold

of the nodes 1 0.8

max time-steps to
reach next node 50

nb nodes

four rooms: 400
medium: 600

hard: 600
mixed: 900

four rooms: 400
medium: 500

hard: 700
mixed: 900

Table 11: TC-RGL hyper-parameters. Hyper-parameters that are not reported here are the same that the ones in
Table 9 for RGL. “targeted edge length” is the minimum number of interactions that must separate two states of the
same trajectory, so that they can form a positive pair (distant states) in the TC-network training data.

TC-RGL
Grid-maze Point-maze

ηedges 0.4 0.1
ηnodes 0.2 0.03

TC-Network

layers 125, ReLU, 100, ReLU, 1, Sigmoid
batch size 250
buffer max

size 1e9

optimizer Adam(lr=1e-3, betas=(0.9, 0.999), eps=1e-08, weight_decay=0)
targeted edge length 20

21



Published in Transactions on Machine Learning Research (/)

Table 12: SGM hyper-parameters.

SGM
Grid-maze Point-maze

node pruning
threshold

four rooms: 2
medium: 3

hard: 3
mixed: 2

four rooms: 3
medium: 3

hard: 3
mixed: 3

max edges
length

four rooms: 5
medium: 6

hard: 6
mixed: 5

four rooms: 7
medium: 7

hard: 7
mixed: 7

nb initial
nodes

four rooms: 1400
medium: 1400

hard: 1800
mixed: 1600

reachability
threshold 1

max interactions
per sub task 20

C Complete results on graph sizes

Figures 12 and 15 complement Figures 4 and 5 by reporting the evolution of nodes/edges count across
interaction time steps in point-maze environments. Note that graphs on point-maze environments required
a log-scale on the y-axis for readability since TC-RGL spanned an order of magnitude more nodes than RGL
(and two to three orders of magnitude more edges).

D Are ϵ-TILO policies common?

In the present work, an important assumption is the existence of an ϵ-TILO policy. Thus it seems important
to discuss how restrictive this assumption is, and how commonly such policies might occur.

In position-based navigation tasks where S = G, generalization by translation invariance seems intuitive
and easily justified by the translation invariance of the MDP’s transition model properties throughout the
state space. In navigation tasks where the state space is the agent’s full configuration, but with abstract
goal spaces (e.g. agent overall position), such as the ant-maze benchmarks, finding TILO policies is closely
linked to defining the goal space, and hence the P : S → G projection. In this specific example, P is defined
by simply keeping some variables of S and discarding the others. Here again, the TILO property is intuitive
and translation invariance permits generalizing learned policies to unexplored parts of the state and goal
spaces.

However, when it comes to state spaces with confounding variables, such as visual navigation tasks, then
defining P for abstract goal spaces might become more difficult as it links the input image pixels to positions
on the navigation map. In a way, P encodes expert knowledge about what abstractions of the state define
a useful goal space, as discussed for instance by Forestier et al. (2022). Such abstractions might be learned
(Péré et al., 2018) but since they are a pre-requisite for training a goal-based policy, they are generally
considered to be provided by some expert. Such a description of goals is sometimes accessible for a minimal
cost (as in navigation tasks), but a perspective for future work implies learning relevant goal descriptors
from data. One one can draw a parallel with recent work in expressing goals with natural language and
exploiting (large) language models to embed the goal description. Note, however, that in the general case,
even if the corresponding P encoding is given, there is no guarantee that a TILO policy exists.

22



Published in Transactions on Machine Learning Research (/)

(a) PO-RGL, 400 nodes (b) RGL graph, t = 1,000 (c) RGL graph, t = 4,000
(d) RGL graph, t =
100,000

(e) PO-RGL 600 nodes (f) RGL graph, t = 1,000 (g) RGL graph, t = 4,000
(h) RGL graph, t =
150,000

(i) PO-RGL 600 nodes (j) RGL graph, t = 1,000 (k) RGL graph, t = 4,000
(l) RGL graph, t =
250,000

(m) PO-RGL 900 nodes (n) RGL graph, t = 1,000 (o) RGL graph, t = 4,000
(p) RGL graph, t =
210,000

Figure 8: Reachability graphs, grid-mazes.

Besides the considerations above, we argue that the existence of TILO policies is intrinsically linked more to
the nature of the task at hand than the definition of the goal space. Navigation is implicitly about finding
a (potentially convoluted) path through a terrain with somewhat homogeneous properties. Hence, at least
for this family of tasks, the existence of ϵ-TILO policies is a plausible assumption.

E From translation invariance to transformation invariance

Considering only translation invariance is somehow restrictive as one could wish to identify invariances to
other transformations (e.g. deformations on images, rotations, etc.). In this section, we attempt to abstract
the intuitions of translation invariance into a more general concept of transformation invariance.

23



Published in Transactions on Machine Learning Research (/)

(a) PO-RGL, 400 nodes (b) RGL graph, t = 1,000 (c) RGL graph, t = 4,000
(d) RGL graph, t =
100,000

(e) PO-RGL 500 nodes (f) RGL graph, t = 1,000 (g) RGL graph, t = 4,000
(h) RGL graph, t =
150,000

(i) PO-RGL 700 nodes (j) RGL graph, t = 1,000 (k) RGL graph, t = 4,000
(l) RGL graph, t =
250,000

(m) PO-RGL 900 nodes (n) RGL graph, t = 1,000 (o) RGL graph, t = 4,000
(p) RGL graph, t =
210,000

Figure 9: Reachability graphs, point-mazes.

Suppose τ(s, δ) is a transformation of s, with a parameter δ. In Section 3.2, the transformation was a
translation of vector δ ∈ S, which defined τ(s, δ) = s + δ. But as another example, when s stands for
geographic coordinates, τ(s, δ) can be a rotation of angle δ ∈ [−π, π] around a central point. For genericity,
we shall write δ ∈ ∆.

Then, to define the invariance of the policy to this transformation, we need the analogous transformation
in the goal space, which we write τ̃(g, δ). If S = G this transformation is obviously τ itself. For translation
invariance in the general S ̸= G case of Section 3.2, we defined τ̃(g, δ) = g + P(δ).

Then, equation 1 can be re-written as

∀s ∈ S, δ ∈ ∆,∃ρ ∈ R, such that ∀g ∈ B(P(s), ρ), π∗(s, g) = π∗(τ(s, δ), τ̃(g, δ)). (2)

24



Published in Transactions on Machine Learning Research (/)

(a) RGL, t = 6,000 (b) RGL, t = 24,000 (c) RGL, t = 500,000

(d) RGL, t = 6,000 (e) RGL, t = 24,000 (f) RGL, t = 700,000

(g) RGL, t = 6,000 (h) RGL, t = 24,000 (i) RGL, t = 1200,000

(j) RGL, t = 6,000 (k) RGL, t = 24,000 (l) RGL, t = 1200,000

Figure 10: Reachability graphs, ant-mazes.

Figure 11: Number of graph nodes in grid-maze versus interaction steps. Shaded area is the 1σ confidence interval.

25



Published in Transactions on Machine Learning Research (/)

Figure 12: Number of graph nodes in point-maze versus interaction steps. Shaded area is the 1σ confidence interval.

Figure 13: Number of graph nodes in ant-maze versus interaction steps. Shaded area is the 1σ confidence interval.

Figure 14: Number of graph edges in grid-maze versus interaction steps. Shaded area is the σ confidence interval.

Figure 15: Number of graph edges in point-maze versus interaction steps. Shaded area is the σ confidence interval.

An optimal policy respecting equation 2 can now be called τ -invariant locally optimal (τ ILO). Note that
translation invariance was an intuitive and straightforward application of this definition, which holds in

26



Published in Transactions on Machine Learning Research (/)

Figure 16: Number of graph edges in ant-maze versus interaction steps. Shaded area is the σ confidence interval.

navigation tasks. Depending on the task at hand and the transformation τ considered, it might be very
difficult to prove the existence of τ ILO policies (Angelotti et al., 2022).

A special case of τ ILO policies appears in visual navigation tasks, as those presented in the work of Eysenbach
et al. (2019) or Emmons et al. (2020). Appendix J further discusses this specific case and the technicalities
of training visual goal-reaching policies; in the present paragraph, we restrict ourselves to discussing why
the corresponding policies are τ ILO. In such tasks, the policy’s input is a first-person view of a robot’s
surroundings, the goal space is the state space, the action space are relative movements, and previous works
discard the fact that the stochastic process defined by the visual observations is likely not an MDP (rather a
POMDP). Now, let us consider two different states s and s′ of the robot in the maze, with the corresponding
image observations o(s) and o(s′). Suppose also that the relative positions of the walls around s and s′ are
the same, that is for instance, if the agent was facing a wall from a certain distance and with a certain angle
in s, it is also facing a wall with the same distance and angle in s′. Then o(s) and o(s′) differ only through
graphical features like texture or lighting for example. If the policy (or value function) has been properly
trained to detect the wall in the picture, regardless of its texture or lighting, then it will be insensitive to
the texture or lighting change between o(s) and o(s′), and hence will be able to generalize a goal-reaching
policy trained in s, to s′. Formally, let τ be the transformation that turns s into s′, then a locally optimal
policy π∗(s, g) will output the same action in (τ(s), τ(g)). These policies are τ ILO by construction (because
they rely on first-person views and because their neural network embeddings are supposedly trained to be
insensitive to irrelevant image features) and respect equation 2.

F Influence of graph density hyperparameters.

The thresholds ηnode and ηedge on node and edge creation condition how coarse the graph is in the goal space.
Consequently, they impact the density of the graph, hence the ability to accurately represent transition
dynamics. As such, they encode a notion of minimal required granularity to efficiently generate efficient
goal-reaching plans in the goal space. Despite RGL’s ability to build sparse representative graphs, a poor
choice of ηnode and ηedge parameters can be detrimental to RGL’s goal reaching accuracy. Figure 17 reports
how sensitive PO-RGL and RGL agents are to these parameters, in the “medium” grid-maze. Figure 17a
illustrates how increasing the values of ηnode to 0.2 (then 0.3) and ηedge to 0.4 (then 0.5) results in a graph
which does not enable reaching distant goals anymore. A similar effect happens for PO-RGL, as choices for
Ninit will have a direct impact on the accuracy of the algorithm. Figure 17b reports how varying Ninit from
100 to 600 affects the goal reaching accuracy of PO-RGL. With only 100 nodes, the reachability graph of
PO-RGL features subgoals which are very distant from each other and rarely reachable between each-other,
resulting in a graph with almost no edges (Figure 17c). Hence, no goals besides those reachable by the
lower-level policy can be reached. With 200 nodes (Figure 17d), the final goal reaching accuracy of PO-RGL
improves to about 50% and keeps improving until Ninit = 400 nodes. For Ninit = 500 and 600, the number
of edges to prune in the graph becomes so large that it slows the learning down, resulting in less reachable
nodes after 100,000 interaction steps because the graph contains too many misleading edges which have not
been pruned yet. Overall, this illustrates how the directed, exploration-driven node and edge creation of
RGL yields graphs which are both much sparser and much more representative of reachability, than building

27



Published in Transactions on Machine Learning Research (/)

a graph over randomly sampled goals (either randomly sampled from a replay buffer as in SoRB, or randomly
sampled from an oracle as PO-RGL).

(a) Influence of ηnode and ηedge (b) Influence of Ninit on PO-RGL

(c) PO-RGL initial graph for Ninit = 100 (d) PO-RGL initial graph for Ninit = 200

Figure 17: Hyperparameter influence on goal-reaching accuracy in the “medium” grid-maze after 100,000 interaction
steps.

G Pre-training a goal-conditioned TILO policy in ant-maze.

Learning goal-based policies for ant-maze environments is challenging, even in the obstacle-free playground.
To let SAC+HER converge efficiently, we build a process inspired from curriculum learning (Bengio et al.,
2009). We sample goals uniformly in a disc around the agent, starting with a radius of 0. Every time the
agent reaches a goal, we increment the radius of 0.1, and decrease it when it fails. If the radius reaches
a value of 6, we stop incrementing and let the agent reach an accuracy close to 100% in this pre-training
playground. Note that this value of 6 is much larger than that of ηnode and ηedge (see Appendix A).

While navigating in the graph, following a sequence of sub-goals, the agent will change its direction many
times in an episode. This may lead to more diversity in the states encountered while navigating the maze
than those seen during the pre-training. To mitigate this aspect and improve state diversity during pre-
training, every 5 episodes, instead of a full agent reset, we reset only the agent’s position but retain the
orientation, legs configuration and velocities from the last state of the previous episode.

28



Published in Transactions on Machine Learning Research (/)

H Hierarchical actor critic on various tasks

Ant-maze tasks have been tackled in previous work, notably in the important HAC (Levy et al.,
2019) contribution, on similar tasks to those reported here, in particular the “four-rooms” maze. In
order to provide a fair comparison with RGL, we used the reference implementation of HAC pro-
vided by the authors at https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-/tree/master/
ant_environments/ant_four_rooms_3_levels. This section discusses why this implementation (without
modifications) fails on the tasks reported here.

Goal and initial state sampling in HAC to promotes diversity. In the original HAC contribution,
during training, goals are sampled uniformly in the center of each room (red areas in figure 18), then initial
states are sampled uniformly in the center of another room. This induces a variety of starting states and
insures that starting states and goals are always at least one room away from each other. In turn, this
promotes diversity in the replay buffers, which facilitate policy training. In the experiments reported in
Section 4, we argued that this “reset anywhere” feature was a particularly favourable case for exploration.

Figure 18: Illustration of goals and initial states sampling areas.

Variations in mazes. We also investigated whether the loss of efficiency of HAC could be attributed to
the difference between the mazes presented here and those of the HAC paper. For this purpose, we tested
HAC on three tasks and report results in Figure 19 (averaged over 10 trials).

1. The exact 17× 17 “four-rooms” map used in the HAC paper, with the goal / initial state sampling
strategy defined above (labelled HAC sampling / small four-rooms in Figure 19).

2. The same 17×17 maze map, but with uniformly sampled goals while keeping the starting state fixed
(labelled Uniform goals / small “four-rooms” in Figure 19).

3. A larger 41 × 41 “four-rooms” map which is the one used in the RGL experiments of Section 4,
with the HAC goal / initial state sampling strategy (labelled HAC sampling / large “four-rooms” in
Figure 19). This map features slightly narrower passages between each room (proportionally to the
size of the room). Actions remain the same: the ant is not scaled up. Goals are sampled uniformly.
HAC’s states and goals are scaled to the size of the map.

4. The same 41× 41 “four-rooms” map with a fixed starting state and uniform goal sampling (labelled
Uniform goals / large “four-rooms” in Figure 19).

The evaluation accuracy of each agent reported in Figure 19 follows the agent’s goal / initial state sampling
procedure than during training. Specifically, agents that were trained with the HAC sampling strategy are

29

https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-/tree/master/ant_environments/ant_four_rooms_3_levels
https://github.com/andrew-j-levy/Hierarchical-Actor-Critc-HAC-/tree/master/ant_environments/ant_four_rooms_3_levels


Published in Transactions on Machine Learning Research (/)

Figure 19: HAC average accuracy on variations of the “four-rooms” ant-maze task, versus number of episodes (episode
length is capped at 700 time steps but can be smaller if the goal is reached before).

Figure 20: HAC average accuracy on the “medium”, “hard”, and “mixed” mazes for the ant-maze task, versus number
of episodes (episode length is capped at 700 time steps but can be smaller if the goal is reached before). Green curve:
uniform initial state sampling. Blue curve: fixed initial state.

evaluated by the proportion of reached goals when goals and initial states are drawn according to HAC’s
sampling strategy. Similarly, agents that were trained with a fixed starting state are evaluated on the same
setting. Consequently, the only fair comparison with the RGL results of Section 4 is when the starting state
is fixed and the goals are sampled uniformly. Recall that RGL reaches an accuracy of 89% on the large
“four-rooms” environment with fixed initial state and uniform goal sampling (Figure 7).

It appears that the goal / initial state sampling strategy is a crucial feature of HAC in ant-maze. Removing
this feature, and sampling goals uniformly, reduces the accuracy of HAC’s optimized policy from 76% to
28% in the small “four-rooms” environment, and from 29% to 5% in the large one.

It also appears HAC is rather sensitive to the scale of the map (despite appropriate state scaling in the
inputs of the neural networks): even with the HAC initial state / goal sampling strategy, the accuracy of
the optimized policy does not exceed 28% (versus the 89% of RGL). More steps are required to cross a room
between passages and we hypothesize HAC suffers from this difficulty to span long trajectories between goals
and hence struggles to reach good accuracy in larger mazes.

Note that the HAC sampling strategy is tailor-made for the “four-rooms” maze and is undefined for other
mazes, so the comparison above cannot be reproduced for the “medium”, “hard”, and “mixed” mazes. Instead
(and this goes beyond what was proposed by the HAC authors), in an attempt to have a comparison baseline,

30



Published in Transactions on Machine Learning Research (/)

we replaced this HAC sampling strategy by uniform sampling of both the initial state and the goal in these
three mazes. We also evaluated the fixed initial state / uniform goal sampling setting. Results (Figure 20)
on other maps are similar to those of Figure 19: HAC reaches very small accuracy levels compared to RGL,
even with the diversity of initial states and goals induced by uniform sampling. For this reason, we chose
not to include these results in Section 4.

I Deep Skill Graphs on various tasks

This section discusses the similarities and differences between DSG and RGL. While there are similarities in
their design principles, the two approaches remain quite different.

The main difference lies in the fact that DSG trains a different option for every vertex in the graph, following
DSC’s procedure (Bagaria & Konidaris, 2019). In contrast, RGL does not interleave lower-level policy
training (which is a local goal reaching policy instead of a set of options) with graph expansion. This has
the drawback (for RGL) of preventing local adaptation of behaviors, but the advantage of sample efficiency
and a full re-use of pre-trained policies (which is the key interest of the TILO abstraction).

Beyond this key difference, initiation and effect sets of DSG play the same role as the neighborhoods defined
by ηnode and ηedge in RGL.

Aside from these elements, one should note that RGL generalizes from the S = G context to contexts where
S ̸= G.

Also, and quite importantly, DSG uses the Euclidean distance between states as a reachability heuristic in
graph construction, while RGL uses the value function V (s, g) – which is somehow more principled. This
distance is also used to define a dense reward model when training options.

This last point is particularly important in explaining the difference in empirical scores between DSG and
RGL (see Figure 7). As indicated by Bagaria et al. (2021, Section 4), DSG makes use of dense rewards and
this is where it really shines (Section 5 of the DSG paper actually discusses shortly the need to extend to
sparse rewards). In the experiments reported in the present paper, the rewards are sparse, as we are in a
purely goal-reaching policy search, where we did not introduce any reward shaping.

Figure 21: Accuracy of various methods in the Ant-Maze, using the same maps used in figure 7. Every methods are
trained using sparse rewards, except the experiments labelled "DSG (Dense rwd.)

Figure 21 reports the difference in performance of DSG in the 4-rooms environment, both with dense and
sparse rewards. In the case of sparse rewards, using DSC’s procedure to re-train local options for every graph
vertex might quickly become inefficient and, in contrast, the TILO policies of RGL appear as a better option
in this context. In comparison, performing the same experiment with sparse rewards leads to an accuracy
gap, and shows the reliance of this method for dense reward. However, the accuracy observed for DSG with
dense reward is still far from the accuracy presented in the original paper. According to the authors, this
method can fail to reach some goals while using dense rewards, especially when the goal to reach is at the
other side of a wall.

However, the learned value function is less influenced by this reward the further away the goal is from the
agent. Such problems are more likely to occur when both the goal and the agent are close to the wall. In

31



Published in Transactions on Machine Learning Research (/)

our experiments, the goals are sampled uniformly in the reachable space, and walls are thinner (in mujoco
units, our mazes have a thickness of 1, while the ones used in DSG paper have a thickness of 4). We consider
that such walls thickness could lead to a higher chance of seeing the DSG agent failing while trying to reach
a goal by trying to cross a wall. DSG suffers from the same issue, but it can be easily corrected by adjusting
the graph density hyper-parameter ηnode, since RGL agent will only try to reach a goal from the closest
node. Figure 22 shows the accuracy of DSG in a U-Maze with thick walls. The only difference between this
experiment and the one called "DSG (Dense rwd.)" in figure 21 is the walls positions and their thikness.

Figure 22: Accuracy of DSG with dense reward in a U-Maze with a wall thickness of 4

J Training in playgrounds and generalizing to unseen states

In Section 4 we claimed that “only RGL can, by design, exploit a goal-reaching policy which has not been
trained on the actual full maze”. This contrasts with, for instance, Section 5.5 of the SoRB paper (Eysenbach
et al., 2019) where a visual policy is first trained to navigate in 100 houses from the SUNCG dataset from
first-person images, then this policy’s value function is transferred to new houses where it enables building a
naviagtion graph. We argue the claim of Section 4 still holds and introduce nuance and justification below.

It is important to note that (i) this visual policy is very close to being TILO (see Appendix E) and, (ii) more
importantly, is trained on data that covers reasonably well the set of images the agent might encounter. This
second property makes the policy likely to generalize well to new houses in the first place. Consequently,
although SoRB is indeed tested on new mazes, the combination of a first-person visual value function and the
fact that training covers a representative set of images creates a favourable setting which implicitly captures
translation invariance. We expand on this aspect in the following paragraphs.

SoRB and SGM are designed to build a graph on states from the pre-training replay buffer or on states
that are close enough to those of the pre-training replay buffer, when such states can be drawn from an
oracle (which is what happens in the experiment of Section 5.5 in the SoRB paper). This constraint is lifted
with RGL thanks to the TILO property which nicely decouples local TILO skills learning from macro-action
graph building. Specifically, for the transfer to new houses in the SoRB paper, it is important to examine
how the value function is trained. In a nutshell, the authors of SoRB take (s, g) pairs that are about 4 steps
away in many different houses, and train a value function that indicates “how many consecutive actions
does it take to transform this s image into this g image?”. We conjecture that the combination of a “reset
anywhere” possibility, plus training on 100 different houses, permits seeing a diversity of (s, g) pairs that
enables generalization to similar images in new houses (unfortunately the SUNCG dataset is not available
anymore to verify this conjecture, due to legal issues). Then, SoRB’s MAXDIST parameter is set to 3, which
means SoRB creates an edge between two nodes whenever the value function estimates one needs at most
3 actions to connect the two corresponding states. Our point is that the diversity of (s, g) pairs sampled

32



Published in Transactions on Machine Learning Research (/)

from the first 100 houses actually reasonably covers the set of possible images and that the pre-trained value
function is a good estimator of “can I reach g from s in less than 3 actions?”, even for images from different
houses, that were not seen during training.

From this perspective, SoRB’s value function in this precise case captures the notion of translation invariance
without stating it explicitly. Once this is made clear, then what SoRB really does is sample states from
an oracle (the reset function in the environment) and connects them using this value function, while SGM
becomes almost equivalent to PO-RGL: it builds the same graph as SoRB and then prunes it. What enables
SoRB and SGM to perform this graph building is precisely because the value function was trained on rich
enough data to be able to evaluate distances between images sampled from new houses. Without this
“implicitly-TILO” property, they wouldn’t be able to build this graph reliably.

In conclusion, the exploitation of translation invariance in RGL can be interpreted as a principled general-
ization of the previous example: it permits pre-training the lower-level policy in a playground (such as the
100 first houses of the SUNCG dataset) and transferring the pre-trained value function to unseen states in
another MDP, where the TILO property ensures to retain local optimality of policies. In turn, this decou-
ples, in a principled way, learning lower-level skills (like walking in ant-maze, regardless of locally specific
surrounding obstacles) from chaining skills and navigating.

33


	Introduction
	Background and related work
	Learning a reachability graph to chain translation invariant local policies
	Goals as state abstractions
	Translation invariance of local optimal policies: re-using macro-actions across all states
	Learning a reachability topology

	Experimental setup
	RGL in action
	Scaling up RGL to more difficult environments
	Conclusion
	Hyperparameters and computational setup
	Complete results on reachability graphs
	Complete results on graph sizes
	Are -TILO policies common?
	From translation invariance to transformation invariance
	Influence of graph density hyperparameters.
	Pre-training a goal-conditioned TILO policy in ant-maze.
	Hierarchical actor critic on various tasks
	Deep Skill Graphs on various tasks
	Training in playgrounds and generalizing to unseen states

