

STATEX: ENHANCING RNN RECALL VIA POST-TRAINING STATE EXPANSION

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 While Transformer-based models have demonstrated remarkable language mod-
 012 eling performance, their high complexities result in high costs when processing
 013 long contexts. In contrast, recurrent neural networks (RNNs) such as linear atten-
 014 tion and state space models have gained popularity due to their constant per-token
 015 complexities. However, these recurrent models struggle with tasks that require ac-
 016 curate recall of contextual information from long contexts, because all contextual
 017 information is compressed into a constant-size recurrent state. Previous works
 018 have shown that recall ability is positively correlated with the recurrent state size,
 019 yet directly training RNNs with larger recurrent states results in high training
 020 costs. In this paper, we introduce StateX, a training pipeline for efficiently ex-
 021 panding the states of pre-trained RNNs through post-training. For two popular
 022 classes of RNNs, linear attention and state space models, we design post-training
 023 architectural modifications to scale up the state size with no or negligible increase
 024 in model parameters. Experiments on models up to 1.3B parameters demonstrate
 025 that StateX efficiently enhances the recall and in-context learning ability of RNNs
 026 without incurring high post-training costs or compromising other capabilities.

1 INTRODUCTION

030 Recently, recurrent neural networks (RNNs) such as gated linear attention (GLA) (Yang et al., 2024)
 031 and Mamba2 (Dao & Gu, 2024) have shown promising capabilities in language modeling. These
 032 architectures have constant per-token complexity, while the more popular Transformer architec-
 033 ture (Vaswani et al., 2023) has per-token complexity that grows linearly with the context length.
 034 Thus, RNNs are much more efficient than Transformers in processing long contexts.

035 However, RNNs still underperform Transformers in certain aspects, with one of the most critical
 036 being the long-context recall capability (Jelassi et al., 2024b). Different from Transformers, which
 037 store the representations of every token in the context, RNNs compress all contextual information
 038 into a constant-size *state*¹. As a result, the recall ability of RNNs heavily depends on the size and
 039 capacity of this state (Jelassi et al., 2024a; Arora et al., 2024a; Yang et al., 2025; Chen et al., 2025).
 040 Despite the positive gains of increasing the state size, considering the increased training costs and the
 041 limited benefits in short-context scenarios and various downstream tasks, most RNNs are still trained
 042 with a relatively small state size compared to the rest of the model. For instance, in Mamba2-2.8B
 043 and GLA-1.3B, their recurrent states are smaller than 2% of their model sizes.

044 In this paper, we propose StateX, which expands the state size while keeping the training costs low
 045 and introducing little to no additional parameters. Specifically, we expand the state size of pre-
 046 trained RNNs through post-training on much less data than pre-training. Moreover, since larger
 047 recurrent states are more important for long-context models, we perform state expansion prior to
 048 long-context post-training (LPT). The training pipeline is illustrated in Figure 1.

049 The state expansion process is an architectural change and depends on the pre-trained model archi-
 050 tecture. Therefore, we design two state expansion methods, targeting two popular RNN classes:
 051 linear attention (Katharopoulos et al., 2020; Yang et al., 2024) and state space models (Dao & Gu,
 052 2024). Additionally, we explore various parameter initialization techniques and select key layers

053 ¹This is also called *recurrent state* in various contexts. We use these two terms interchangeably in this paper.

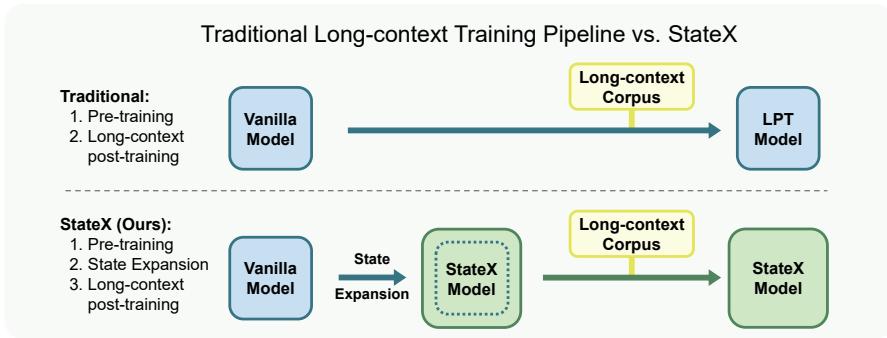


Figure 1: Difference between the traditional pipeline and StateX for training long-context models. We introduce a state expansion step (architectural modification) before the long-context post-training (LPT) stage to enhance RNN recall abilities without requiring expensive re-training.

for expansion rather than all layers, to balance model performance and adaptation efficiency. Compared to other state expansion methods that require training from scratch (e.g., MoM (Du et al., 2025), LaCT (Zhang et al., 2025)), our method is simpler and can be seamlessly applied to existing effective RNN implementations and training pipelines.

We evaluate our method on public 1.3B parameter checkpoints of GLA² and Mamba2³, by conducting post-training on 10B tokens. Our empirical results demonstrate that, compared to the traditional two-stage method, StateX significantly improves performance on recall-intensive tasks, in-context learning tasks, and needle-in-a-haystack (NIAH) (Hsieh et al., 2024) tasks while maintaining performance on common-sense reasoning tasks. While using the same amount of training data as ordinary LPT, StateX yields consistently better results: the relative accuracy gain in recall-intensive tasks is 3.36% for GLA and 1.1% for Mamba2, and the relative performance gain in in-context learning is 7.2% for GLA and 1.0% for Mamba2. Also, the average NIAH accuracy up to 64K context length improves from 26.0% to 42.2% for GLA, and from 33.2% to 39.2% for Mamba2.

Overall, our contributions include:

- To the best of our knowledge, StateX represents the first work that focuses on expanding the state size of RNNs through post-training.
- For two popular RNN variants, GLA and Mamba2, we design simple and effective state expansion techniques and training recipes for efficient post-training.
- We evaluate our method on public 1.3B checkpoints. Our results show consistent improvements in recall-intensive tasks, in-context learning, and long-context retrieval, without sacrificing performance on common-sense reasoning benchmarks.

2 RELATED WORKS

In this section, we provide a brief description of RNNs and related work on expanding their state sizes. For more details about RNNs, please refer to the surveys (Wang et al., 2025; Lv et al., 2025).

Modern RNNs Recently, some RNN variants have shown promising results in sequence modeling. Some representative examples include state space models (SSMs) (Dao & Gu, 2024; Gu & Dao, 2024), the RWKV series (Peng et al., 2025; 2024; 2023), linear attention models (Katharopoulos et al., 2020; Sun et al., 2023; Yang et al., 2024), and DeltaNet (Yang et al., 2025). Some results have shown that these RNNs can outperform Transformers up to several billion parameters on certain language tasks, such as common-sense reasoning (Waleffe et al., 2024; Team, 2024), and some hybrid models have scaled up to over 100B parameters and trillions of training tokens (MiniMax et al., 2025). RNNs are attractive alternatives to Transformers because their per-token complexity is constant, while Transformers' per-token complexity scales linearly with the context length.

²<https://huggingface.co/fla-hub/gla-1.3B-100B>

³<https://huggingface.co/antonV/mamba2-1.3b-hf>

Method	Performance	Efficient Training	Easy Adoption
Vanilla RNNs (small states)	✗	✓	✓
Training large states from scratch	✓	✗	✓
Novel architectures with large states	?	?	✗
StateX (ours)	✓	✓	✓

Table 1: Comparison between our work and existing approaches for increasing RNN state sizes. Vanilla RNNs underperform due to their smaller state sizes. “?” means that these works are rather new and therefore yet to be extensively tested at scale.

However, since Transformers cache all previous token representations, they outperform RNNs in recalling contextual information. This is one of the reasons why RNNs have seen limited adoption.

Increasing RNN State Size Many previous works have investigated the influence of state size on the capabilities of RNNs. One important improvement of modern RNNs over previous works such as LSTM (Hochreiter & Schmidhuber, 1997) and GRU (Cho et al., 2014) is the adoption of larger matrix-valued recurrent states over smaller vector-valued states (Sun et al., 2023; Qin et al., 2024; Katharopoulos et al., 2020; Hua et al., 2022). Some later efforts focus on improving the forget mechanisms to remove unneeded information in the recurrent states, saving capacity to store more contextual information (Gu & Dao, 2024; Schlag et al., 2021). Arora et al. (2024a) provides a comprehensive comparison of the recall-throughput tradeoff of various recent RNN architectures. Although these methods show promising results, their state size is still rather small, and they lag behind Transformers in recall-intensive tasks.

Recent State Expansion Works More recently, Du et al. (2025) proposes MoM, a new architecture that maintains a large state size but with lower computational overhead, by updating only parts of the recurrent state at each time step. LaCT (Zhang et al., 2025) is a concurrent work to ours that proposes a novel recurrent architecture based on the test-time training (TTT) framework (Sun et al., 2025). LaCT utilizes a much larger state than other RNNs (e.g., GLA and Mamba2) and has demonstrated strong recall and long-context capabilities. Another relevant concurrent work is by Liu et al. (2025). They utilize low-rank projections to increase the state size of RNNs with small parameter overhead, resulting in considerably better recall performance. However, these architectures have not been thoroughly evaluated across different tasks and may be hard to adopt into existing codebases.

In brief, the state size is a critical bottleneck of RNNs. Increasing the state size provides consistent performance gains for many RNN variants. However, previous works on expanding RNN states are trained from scratch, which is highly expensive and requires significant changes to the model architecture and implementation. This paper, to the best of our knowledge, is the first effort to expand states through post-training. Compared to existing architectures with larger states, our method is simpler and can be seamlessly integrated into popular RNN variants such as linear attention methods and SSMs. Table 1 shows the comparison between our work and existing works with larger states.

3 PRELIMINARIES

In this section, we first provide a formulation of RNNs as well as two variants—GLA and SSM (Sections 3.1, 3.2, and 3.3). Then, we discuss how the recurrent state size influences the models’ recall capabilities and cost-efficiency (Section 3.4).

3.1 RECURRENT NEURAL NETWORKS

In RNNs, all contextual information is stored in a constant-size *recurrent state* \mathbf{S}_t , where t denotes the time step. At each time step, new information is inserted into the previous state \mathbf{S}_{t-1} with an *update rule* f_{update} , and then retrieves information from \mathbf{S}_t with a *query rule* f_{query} , which is given as

$$\begin{aligned} \mathbf{S}_t &= f_{\text{update}}(\mathbf{S}_{t-1}, \mathbf{x}_t), \\ \mathbf{y}_t &= f_{\text{query}}(\mathbf{S}_t, \mathbf{x}_t), \end{aligned} \tag{1}$$

where $\mathbf{x}_t, \mathbf{y}_t \in \mathbb{R}^d$ are the input and output representations at the time step t . In this paper, we define *state size* as the parameter count of \mathbf{S}_t .

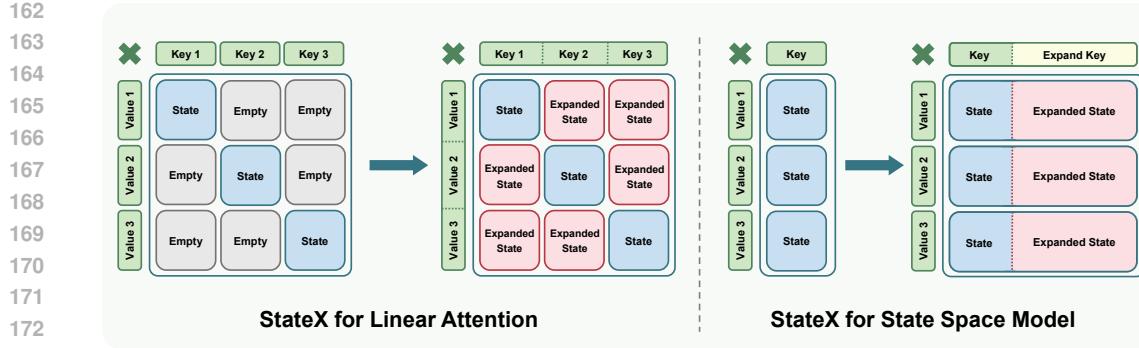


Figure 2: Illustration of StateX (our method) for expanding the state size of linear attention and state space models with little to no parameter increase. The red parts indicate the additional state parameters unlocked by StateX.

3.2 GATED LINEAR ATTENTION

The GLA model consists of a stack of interleaved layers of GLA blocks and feed-forward network (FFN) blocks. Since we only modify the GLA block, we omit the formulation for FFNs. Each GLA block consists of H heads computed in parallel, and the layer output is the sum of the head outputs. Each GLA head can be formulated as:

$$\begin{aligned} \square_{t,h} &= \mathbf{x}_t \mathbf{W}_{\square,h}, \quad \square \in \{\mathbf{q}, \mathbf{k}, \mathbf{v}\}, \\ \mathbf{F}_{t,h} &= \text{diag}(\boldsymbol{\alpha}_{t,h}) \in \mathbb{R}^{d_k \times d_k}, \\ \mathbf{S}_{t,h} &= \mathbf{F}_{t,h} \mathbf{S}_{t-1,h} + \mathbf{k}_{t,h}^\top \mathbf{v}_{t,h} \in \mathbb{R}^{d_k \times d_v}, \\ \mathbf{y}_{t,h} &= \mathbf{q}_{t,h} \mathbf{S}_{t,h} \in \mathbb{R}^{d_v}, \end{aligned} \quad (2)$$

where $h \in \{1, \dots, H\}$ is the head index, d_k, d_v are the key and value dimensions. $\mathbf{x}_t, \mathbf{y}_t \in \mathbb{R}^d$ denote the input and output representations at the time step t , respectively, $\mathbf{q}_{t,h}, \mathbf{k}_{t,h}, \boldsymbol{\alpha}_{t,h} \in \mathbb{R}^{d_k}$, $\mathbf{v}_{t,h} \in \mathbb{R}^{d_v}$ are projection functions of \mathbf{x}_t , and LN denotes RMSNorm (Zhang & Sennrich, 2019). The state size in each GLA layer is $Hd_k d_v$.

3.3 STATE SPACE MODELS

We focus on Mamba2, which is a state-of-the-art SSM. A Mamba2 layer can be formulated as:⁴

$$\begin{aligned} \mathbf{v}_{t,h} &= f_v(\mathbf{x}_t, \theta_{v,h}) \in \mathbb{R}^{d_v}, \\ \mathbf{k}_t &= f_k(\mathbf{x}_t, \theta_k) \in \mathbb{R}^{d_k}, \\ \mathbf{q}_t &= f_q(\mathbf{x}_t, \theta_q) \in \mathbb{R}^{d_k}, \\ \Delta_{t,h} &= f_\Delta(\mathbf{x}_t, \theta_{\Delta,h}) \in \mathbb{R}, \\ \alpha_{t,h} &= \exp(-\Delta_{t,h} A_h) \in \mathbb{R}, \\ \mathbf{S}_{t,h} &= \mathbf{S}_{t-1,h} \alpha_{t,h} + \Delta_{t,h} \mathbf{k}_t^\top \mathbf{v}_{t,h} \in \mathbb{R}^{d_k \times d_v}, \\ \mathbf{y}_{t,h} &= \mathbf{q}_t \mathbf{S}_{t,h} + D_h \mathbf{v}_{t,h} \in \mathbb{R}^{d_v}, \end{aligned} \quad (3)$$

where f_v, f_k, f_q, f_Δ are differentiable projection functions parameterized with $\theta_v, \theta_k, \theta_q, \theta_{\Delta,h}$, respectively, A_h, D_h are learnable parameters. d_k and d_v are hyperparameters and are called the *state dimension* and *head dimension* in SSM literature. The state size of Mamba2 is also $Hd_k d_v$, although these hyperparameter values may differ from GLA.

Relationship with GLA It has been identified that Mamba2 can be viewed as a variant of GLA (Yang et al., 2024) where heads share the same query/key (QK). In this paper, we view these two variants as different because this QK sharing mechanism influences our state expansion.

⁴We use attention notations $(\mathbf{q}_t, \mathbf{k}_t, \mathbf{v}_t)$ instead of SSM notations (x_t, B_t, C_t) from the Mamba2 paper for simplicity and to highlight the analogy between the two RNN variants.

216 3.4 INFLUENCE OF STATE SIZE
217218 **Recall Ability** Since all contextual information is stored in \mathbf{S}_t , the ability of RNNs to recall con-
219 textual information depends on the capacity of \mathbf{S}_t , which in turn depends on the size of \mathbf{S}_t . Extensive
220 empirical evidence indicates a strong positive correlation between the size of the recurrent states and
221 their performance on recall-intensive tasks (Arora et al., 2024a; Hua et al., 2022; Zhang et al., 2025;
222 Jelassi et al., 2024b). These findings highlight the critical role of state size in determining RNN
223 recall abilities, underscoring the importance of state expansion for improving recall capabilities.
224225 **Efficiency** The computational complexity of the token mixing component (i.e., update rule and
226 query rule) scales linearly with the state size. Therefore, blindly increasing the state size can lead
227 to high training and inference costs. StateX alleviates these problems during both training and
228 inference by expanding the states via post-training (so the model is trained with smaller states most
229 of the time) and expanding only a subset of layers.
230231 4 METHOD
232233 Our method, StateX, involves architectural modifications that expand the RNN state sizes prior to
234 long-context post-training to boost their recall abilities. Meanwhile, we aim to minimize the ad-
235 ditional parameters introduced by this modification and keep the final architecture similar to the
236 original architecture to make it easier for the modified model to adapt. An overview of the architec-
237 tural modifications is illustrated in Figure 2.
238239 In this section, we describe the state expansion recipe for two popular classes of RNNs—GLA
240 (Yang et al., 2024) and SSM (Dao & Gu, 2024) (Sections 4.1 and 4.2). Then, we describe parameter
241 initialization methods after the expansion (Section 4.3) and which layers to expand (Section 4.4).
242243 4.1 STATEX FOR GLA
244245 Since GLA employs a multi-head mechanism with different query, key, and value (QKV) vectors
246 for each head, we can increase the state size by simply merging multiple heads into one larger head.
247 This is because the state size of H heads is $H \times d_k \times d_v$, and merging them into one head results
248 in a state size of $1 \times Hd_k \times Hd_v$, which is H times larger. Meanwhile, no additional parameters
249 are introduced since the total number of channels in the QKV vectors remains the same. The effect
250 of this change is illustrated in the left side of Figure 2. Merging GLA heads activates non-diagonal
251 regions of the state matrix, thereby achieving larger states than the multi-head counterparts.
252253 In implementation, the only difference between GLA with expanded states and the vanilla formula-
254 tion (described in Section 3.2) is the number of heads and head dimension. Thus, this modification
255 can be seamlessly applied to existing GLA implementations. We always merge all heads into one
256 large head. This is motivated by the finding that single-head GLA generally outperforms multi-head
257 GLA (reported in Section 5.7).
258259 4.2 STATEX FOR SSM
260261 The head merging method is not applicable to SSMs because there is only one key vector in each
262 layer. For this RNN variant, we increase the key dimension by expanding the key and query pro-
263 jection layers. Specifically, we increase the hyperparameter d_k (the original Mamba2 paper refers
264 to this as the *state dimension*) and the parameters θ_k, θ_q that depend on it. Since these two sets of
265 parameters are much smaller than the other components, the increase in total parameters is less than
266 1% when we increase d_k by 4×. This modification is illustrated by Figure 2 (right).
267268 4.3 PARAMETER INITIALIZATION
269270 After the modification, we can inherit the parameters from the pre-trained model and initialize only
271 the added parameters (for SSMs). However, perhaps surprisingly, we find that inheriting pre-trained
272 parameters can be detrimental to downstream performance. Thus, we present a better parameter
273 initialization strategy.
274

270
 271 Table 2: Accuracy on recall-intentive tasks with sequences truncated to a maximum of 2K tokens,
 272 as well as the model size and state size of each model. The best scores are bolded.

273 Model	274 Params	275 Total State	276 SWDE	277 SQuAD	278 TQA	279 NQ	280 Drop	281 Avg. \uparrow
<i>Linear Attention — GLA</i>								
275 <i>Original Model</i>	276 1.365B	277 12.58M	278 44.64	45.96	54.80	19.10	33.64	41.42
275 LPT	276 1.365B	277 12.58M	278 47.16	56.84	56.04	21.95	36.56	43.71
275 StateX (ours)	276 1.365B	277 18.87M	278 50.32	59.15	55.04	21.82	39.58	45.18
<i>State Space Model — Mamba2</i>								
280 <i>Original Model</i>	281 1.343B	282 24.96M	283 57.43	59.58	63.27	5.16	36.22	44.33
280 LPT	281 1.343B	282 24.96M	283 54.19	57.81	63.51	36.87	35.46	49.56
280 StateX (ours)	281 1.350B	282 37.44M	283 56.17	57.91	63.68	36.43	36.37	50.11
<i>Sparse Model — MoM</i>								
285 <i>MoM (Du et al., 2025)</i>	286 1.552B	287 31.45M	288 34.4	49.6	50.1	16.0	33.9	36.8

288 Table 3: In-context learning performance of GLA and Mamba2 variants, evaluated on 12 down-
 289 stream classification tasks. Higher is better.

290 GLA	291 8-shot \uparrow	292 16-shot \uparrow	293 24-shot \uparrow	294	290 Mamba2	291 8-shot \uparrow	292 16-shot \uparrow	293 24-shot \uparrow
291 <i>Original</i>	292 48.98	293 47.91	294 48.50	295	291 <i>Original</i>	292 51.40	293 54.34	294 51.60
291 LPT	292 47.33	293 49.70	294 48.45	295	291 LPT	292 47.72	293 49.79	294 52.49
291 StateX (ours)	292 48.15	293 52.42	294 51.95	295	291 StateX (ours)	292 47.68	293 52.34	294 53.03
<i>Sparse Model — MoM (Du et al., 2025)</i>								
296 <i>MoM</i>	297 42.6	298 42.2	299 42.9	300	296 <i>MoM</i>	297 42.6	298 42.2	299 42.9

300 We assume that world knowledge is usually stored in FFN blocks and the embedding table, and these
 301 parameters take longer to learn than the token-mixing parameters (GLA and SSM blocks). Thus, we
 302 reinitialize parameters that are responsible for token-mixing while other components inherit from
 303 the pre-trained checkpoint. An ablation study on initialization strategies is provided in Section 5.4.

304
 305 **GLA Initialization** GLA models consist of interleaving layers of GLA blocks and FFN blocks.
 306 After state expansion, we reinitialize all parameters associated with the GLA blocks, while FFN
 307 blocks and the embedding table inherit the pre-trained parameters.

310
 311 **SSM Initialization** Mamba2 merges FFN blocks and the SSM mechanism into one unified layer.
 312 Motivated by the SSM literature, we only reinitialize the parameters of the SSM mechanism, which
 313 are $A_h, \theta_k, \theta_q, \theta_{\Delta, h}$, while other modules inherit the pre-trained parameters. Further implementation
 314 details can be found in Appendix A.4.

315 4.4 HOW MANY LAYERS TO EXPAND?

316 Modifying all layers may result in a too disruptive change, making it harder for the modified model
 317 to recover from this change through post-training. Existing works have shown that not all layers are
 318 responsible for recalling information (Bick et al., 2025). Thus, we hypothesize that only a subset
 319 of layers can benefit from a larger state. Concretely, we adopt a uniform expansion strategy by
 320 expanding one layer every $\lfloor L/m \rfloor$ layers (where L is the total number of layers), starting from the
 321 first layer, so that exactly m layers are expanded. For both GLA and Mamba2, we use $m = 4$ by
 322 default. In Section 5.5, we empirically ablate the influence of the number of expanded layers.

Model	PIQA acc ↑	Hella. acc ↑	Wino. acc ↑	ARC-e acc ↑	ARC-c acc ↑	SIQA acc ↑	Avg. ↑
<i>Linear Attention — GLA</i>							
Original Model	69.70	38.97	53.35	55.13	23.38	39.92	46.74
LPT	69.64	38.21	54.78	54.59	22.70	39.61	46.58
StateX (ours)	69.75	37.16	54.93	53.91	22.53	39.97	46.37
<i>State Space Model — Mamba2</i>							
Original Model	73.29	45.89	60.85	64.31	30.12	43.14	52.93
LPT	73.07	45.48	59.67	64.31	29.10	41.10	52.12
StateX (ours)	73.67	45.09	59.98	64.02	29.61	41.61	52.33
<i>Sparse Model — MoM</i>							
<i>MoM (Du et al., 2025)</i>	63.3	30.4	50.8	45.2	18.8	37.4	41.0

5 EXPERIMENTS

We first describe the details of the experiments (Section 5.1). Then, we present the main results of our method (Section 5.2) as well as improvement on long-context retrieval tasks (Section 5.3). Finally, we provide ablation studies involving the choices of parameter initialization (Section 5.4), the number of expanded layers (Section 5.5), multi-head mechanism in GLA (Section 5.7). We also report the training loss in Section 5.6.

5.1 EXPERIMENTAL DETAILS

Models We apply StateX to the official 1.3B checkpoints of GLA and Mamba2. In StateX for Mamba2, we increase the d_k hyperparameter from 128 to 512. For GLA, the pre-trained 1.3B checkpoint has four heads, so StateX versions of the expanded layers have 4× larger states.

Data All models are trained on SlimPajama (Soboleva et al., 2023), a widely-used, high-quality, and deduplicated corpus with 627B tokens extracted from the Internet. We concatenate documents with a special token as the delimiter. Then, these concatenations are split into chunks of the specified training context length.

Training Configuration The training follows common practices in context length extension by post-training as closely as possible. Concretely, we use the cosine learning rate scheduler, with a maximum learning rate of 3e-4, and a warmup phase of 5% of the total training steps. To better evaluate the ability to recall information from long contexts, we use a 64K context length. The training spans a total of 10B tokens, with a batch size of 0.5M tokens.

Evaluation We evaluate the models’ context utilization abilities with recall-intensive tasks and in-context learning (ICL). The recall-intensive tasks involves 5 popular document question-answering tasks. To assess ICL, we adopt a suite of 7 classification and 5 multiple-choice tasks selected from Min et al. (2022), a study that systematically evaluates ICL capabilities. Models are evaluated with accuracy across varying number of demonstrations, and ICL performance is summarized by the mean accuracy averaged over all tasks. Furthermore, we measure the general language processing abilities with 6 popular multiple-choice common-sense reasoning tasks.

More details are given in Appendix B.1.

Baselines We mainly compare StateX against vanilla RNNs and the ordinary LPT versions. The LPT models undergo the same post-training process, but without any architectural modifications, so their state sizes remain unchanged.

378
 379 Figure 3: Performance on retrieving specific in-
 380 formation (i.e., a needle) from synthetically gen-
 381 erated long documents up to 64K tokens.

Model	4K	8K	16K	32K	64K
<i>GLA — Passkey Retrieval</i>					
<i>Original</i>	0.25	0.01	0.00	0.00	0.00
LPT	0.74	0.41	0.13	0.01	0.01
StateX (ours)	0.93	0.77	0.34	0.06	0.01
<i>Mamba2 — NIAH-Single-2</i>					
<i>Original</i>	0.05	0.00	0.00	0.00	0.00
LPT	0.83	0.43	0.30	0.09	0.01
StateX (ours)	0.94	0.61	0.32	0.09	0.00

393 5.2 MAIN RESULTS

394
 395 **Recall Abilities** Table 2 presents scores on recall-intensive tasks for the original model (Vanilla),
 396 the model using the standard long-context post-training (LPT), and the model enhanced with StateX.
 397 The columns ‘‘Params’’ and ‘‘Total State’’ report the number of model parameters and state
 398 parameters for each model, respectively. StateX increases the total state sizes by roughly 50%. The
 399 main takeaway is that StateX models achieve the highest average performance, underscoring the
 400 advantage of larger states.

401
 402 **In-Context Learning** Table 3 shows the in-context learning performance of various RNN variants,
 403 and StateX variants exhibits significantly greater in-context learning abilities.

404
 405 **Common-Sense Reasoning** Table 4 shows that StateX models’ performance on common-sense
 406 reasoning is comparable to the vanilla model, implying that pre-training knowledge remains largely
 407 unaffected by the architectural change.

408 5.3 IMPROVEMENT ON LONG-CONTEXT RETRIEVAL

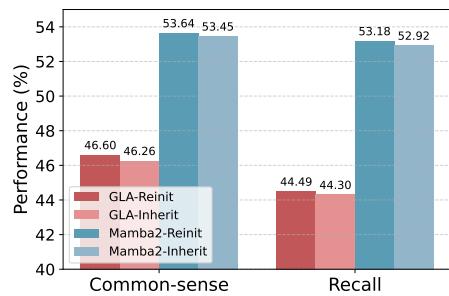
409
 410 The recall-intentive tasks we used in Section 5.2 contain mostly sequences with fewer than 4K
 411 tokens. To evaluate the models’ abilities to retrieve information from longer contexts, we use the
 412 popular NIAH task (Hsieh et al., 2024). Due to differences in the recall abilities between the GLA
 413 and Mamba2, we evaluate them using NIAH tasks of varying difficulty to avoid score saturation and
 414 preserve discriminative resolution. For the GLA model, we employed the simpler passkey retrieval
 415 task from ∞ Bench (Zhang et al., 2024), which involves retrieving a single 5-digit passkey from long
 416 documents consisting of repeated text. For Mamba2, we use the more challenging NIAH-Single-
 417 2 task from RULER (Hsieh et al., 2024), where a 7-digit passkey is embedded in a semantically
 418 meaningful, non-repetitive distractor content. More details can be found in Appendix B.3.

419
 420 **Results** Table 3 reports the models’ performances in NIAH. It shows that, by unlocking a larger
 421 state size, StateX significantly improves the model’s recall performance in long contexts.

422 5.4 COMPARISON BETWEEN REINITIALIZATION AND PARAMETER INHERITANCE

423
 424 Although it may seem natural to inherit pre-trained parameters, our experiments show that reini-
 425 tializing the modified parameters yields better performance. For Mamba2, whose state expansion
 426 process introduces new parameters, we initialize the new parameters with zeros.

427
 428 As illustrated in Figure 4, the model with reinitialized parameters (Reinit) consistently outperforms
 429 the one that inherits parameters (Inherit) on both common-sense reasoning and recall tasks. We hy-
 430 pothesize that the performance gap arises because the inherited parameters have already converged,
 431 making it difficult to effectively utilize the newly introduced channels (indicated in red in Figure 2)
 via post-training.



432
 433 Figure 4: Model performance of reinitializa-
 434 tion and parameter inheritance.

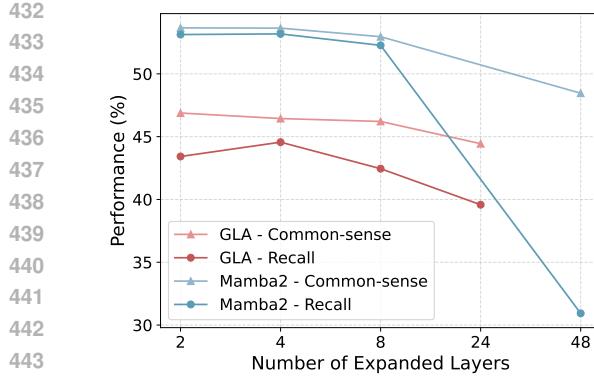


Figure 5: Model performance under varying numbers of expanded layers. Mamba2 has twice as many layers as GLA because it does not have FFN layers.

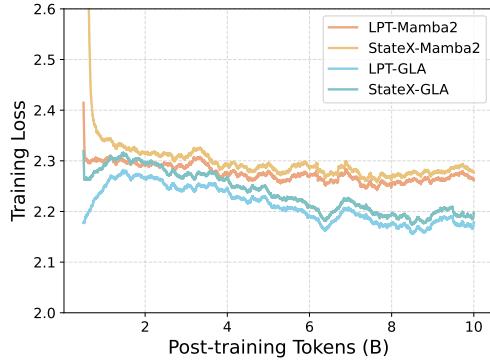


Figure 6: Post-training loss (on SlimPajama) of vanilla models and expanded models. GLA has lower loss as it is pre-trained on SlimPajama while Mamba2 is pre-trained on Pile.

5.5 BEST PROPORTION OF EXPANDED LAYERS

As mentioned in Section 4.4, it is important to balance the number of expanded layers. To investigate this trade-off, we conducted an ablation study by varying the number of expanded layers. The results, shown in Figure 5, indicate that both the GLA and Mamba2 models achieve optimal average performance when four layers are expanded (out of 24 layers and 48 layers, respectively). When too many layers are modified, the reinitialized parameters fail to converge effectively under limited post-training, leading to a sharp drop in overall performance.

5.6 TRAINING LOSS

We also tracked the training loss curves of models trained with standard LPT and with StateX. Figure 6 shows the loss curves for both GLA and Mamba2. The former has generally lower loss because it was pre-trained on SlimPajama, while Mamba2 was not. Notably, the StateX models have a higher initial training loss due to the architectural change, but quickly close the gap. Interestingly, although their final training loss is slightly higher than the LPT counterparts, they achieve better performance on downstream tasks.

5.7 THE OPTIMALITY OF SINGLE-HEAD GLA

As mentioned in Section 4.1, the multi-head mechanism in GLA significantly reduces the size of the recurrent state, which in turn leads to a degradation in model performance. This section presents an ablation study on the number of heads for GLA models trained from scratch.

We conducted experiments on GLA models with 340M parameters, trained on 20B tokens from the SlimPajama dataset (Soboleva et al., 2023). More experimental details are described in Section B.4. Table 5 reports the performance of these models on a range of common tasks. As shown, the single-head model achieves higher average scores on the benchmark tasks and converges to a lower final training loss. Given the same number of parameters and other configurations, using fewer heads allows for a larger state size, which in turn leads to improved performance in common-sense reasoning, recall, and training loss.

Table 5: Common-sense reasoning (CSR), recall, and training loss of GLA-340M models with different numbers of heads. Single-head GLA outperforms other configurations due to larger states.

Head number	CSR \uparrow	Recall \uparrow	Tr. Loss \downarrow
1	42.715	25.992	2.722
4	42.029	24.012	2.762
8	42.401	21.780	2.798
16	41.527	15.395	2.883

486 5.8 EFFICIENCY ANALYSIS OF STATEX
487488 Although there is expansion of states in StateX, these models still have a high efficiency compared
489 to their vanilla versions. We have measured the throughput of the vanilla GLA and Mamba2, their
490 StateX versions, and MoM (Du et al., 2025), in training, prefilling (which is correlated with latency),
491 and decoding.492 The RNN component of each model is implemented with kernels from the widely-used flash-linear-
493 attention GitHub repository (4K stars). Inference throughput measurements are performed on one
494 NVIDIA A800-SXM4-80GB GPU, and training throughput is measured on a machine equipped
495 with eight NVIDIA A800-SXM4-80GB GPU. The training framework is implemented with the
496 popular HuggingFace Accelerate framework with data parallelism (which is a common approach
497 for single-machine, multi-GPU training).499 Table 6: Prefilling throughput (tokens/s) across different context lengths.
500

Context Length	1K	4K	16K	64K	Avg. \uparrow
<i>Linear Attention — GLA</i>					
Vanilla GLA	72.5K	72.6K	72.2K	70.4K	71.9K
StateX GLA (ours)	70.0K	70.1K	69.5K	68.0K	69.4K
<i>State Space Model — Mamba</i>					
Vanilla Mamba	44.0K	44.1K	44.2K	50.7K	45.7K
StateX Mamba (ours)	45.1K	45.3K	42.6K	52.2K	46.3K
<i>Sparse Model — MoM</i>					
MoM	20.3K	28.1K	29.5K	31.4K	27.3K

512 Table 7: Decoding throughput (tokens/s) across different batch sizes.
513

Model	BSZ=64	BSZ=128	BSZ=256	BSZ=512	Average \uparrow
<i>Linear Attention — GLA</i>					
Vanilla GLA	3548.1	3814.6	9594.8	10225.9	6795.9
StateX-GLA (ours)	3769.6	6371.1	7082.5	7394.9	6154.5
<i>State Space Model — Mamba</i>					
Vanilla Mamba	2275.5	3033.7	4754.9	5730.0	3948.5
StateX-Mamba (ours)	2173.5	3120.6	4350.8	4836.8	3620.4
<i>Sparse Model — MoM</i>					
MoM	46.3	47.5	48.2	OOM	47.3

525 It can be shown that StateX versions of GLA and Mamba2 almost as fast as the original models in
526 prefilling and training, and slightly slower in decoding. Compared to MoM, StateX is:527

528
- roughly 1.9x to 2.2x faster in training (Section B.5);
529
- roughly 1.7x to 2.5x faster in prefilling (Table 6);
530
- roughly up to 147x faster (using batch size of 256) during decoding, while MoM gets out
531 of CUDA memory in the batch size of 512 (Table 7).

532 6 CONCLUSIONS
533535 We have proposed StateX, a novel method for enhancing the recall abilities of two popular RNN vari-
536 ants by expanding the state sizes of pre-trained RNNs through post-training. Compared to training
537 RNNs with larger state sizes from scratch, our method is much faster to train and can be seamlessly
538 applied to existing pre-trained models of said RNN variants. StateX is valuable for closing the gap
539 in the recall abilities of RNNs and Transformers, especially in long-context scenarios. This work
represents an important step toward RNNs as an efficient alternative to attention-based architectures.

540 REPRODUCIBILITY STATEMENT

541

542 We have included the code for reproducing our results as supplementary materials. We will release
 543 the model checkpoints after the anonymous period.

544

545 REFERENCES

546

547 Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
 548 Rudra, and Christopher Ré. Simple linear attention language models balance the recall-throughput
 549 tradeoff. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 1763–
 550 1840, 2024a.

551

552 Simran Arora, Aman Timalsina, Aaryan Singhal, Benjamin Spector, Sabri Eyuboglu, Xinyi Zhao,
 553 Ashish Rao, Atri Rudra, and Christopher Ré. Just read twice: closing the recall gap for recurrent
 554 language models, 2024b. URL <https://arxiv.org/abs/2407.05483>.

555

556 Aviv Bick, Eric Xing, and Albert Gu. Understanding the skill gap in recurrent language models:
 557 The role of the gather-and-aggregate mechanism, 2025. URL <https://arxiv.org/abs/2504.18574>.

558

559 Yingfa Chen, Xinrong Zhang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Stuffed
 560 mamba: Oversized states lead to the inability to forget, 2025. URL <https://arxiv.org/abs/2410.07145>.

561

562 Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
 563 of neural machine translation: Encoder-decoder approaches, 2014. URL <https://arxiv.org/abs/1409.1259>.

564

565 Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
 566 structured state space duality. In *International Conference on Machine Learning*, pp. 10041–
 567 10071. PMLR, 2024.

568

569 Jusen Du, Weigao Sun, Disen Lan, Jiaxi Hu, and Yu Cheng. Mom: Linear sequence modeling with
 570 mixture-of-memories, 2025. URL <https://arxiv.org/abs/2502.13685>.

571

572 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
 573 ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muen-
 574 nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
 575 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
 576 evaluation harness, 2024. URL <https://zenodo.org/records/12608602>.

577

578 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
 URL <https://arxiv.org/abs/2312.00752>.

579

580 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. *Neural Computation*, 9(8):
 581 1735–1780, 1997.

582

583 Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
 584 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language
 585 models?, 2024. URL <https://arxiv.org/abs/2404.06654>.

586

587 Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time, 2022.
 URL <https://arxiv.org/abs/2202.10447>.

588

589 Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
 590 formers are better than state space models at copying. In *International Conference on Machine
 591 Learning*, pp. 21502–21521. PMLR, 2024a.

592

593 Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
 594 formers are better than state space models at copying, 2024b. URL <https://arxiv.org/abs/2402.01032>.

594 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
595 rnns: Fast autoregressive transformers with linear attention, 2020. URL <https://arxiv.org/abs/2006.16236>.
596
597 Kai Liu, Jianfei Gao, and Kai Chen. Scaling up the state size of RNN LLMs for long-context sce-
598 narios. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
599 (eds.), *Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
600 (Volume 1: Long Papers)*, pp. 11516–11529, Vienna, Austria, July 2025. Association for Compu-
601 tational Linguistics. ISBN 979-8-89176-251-0. URL <https://aclanthology.org/2025.acl-long.564>.
602
603 Xingtao Lv, Youbang Sun, Kaiyan Zhang, Shang Qu, Xuekai Zhu, Yuchen Fan, Yi Wu, Ermo Hua,
604 Xinwei Long, Ning Ding, and Bowen Zhou. Technologies on effectiveness and efficiency: A
605 survey of state spaces models, 2025. URL <https://arxiv.org/abs/2503.11224>.
606
607 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
608 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
609 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference
610 on Empirical Methods in Natural Language Processing*, pp. 11048–11064, Abu Dhabi, United
611 Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.759. URL <https://aclanthology.org/2022.emnlp-main.759>.
612
613 MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
614 Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
615 Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
616 Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lian-
617 fei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi
618 Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qixiang
619 Wang, Qin Wang, Qiuwei Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu,
620 Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
621 Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
622 Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
623 Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
624 Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
625 and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
626 <https://arxiv.org/abs/2501.08313>.
627
628 Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
629 Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen
630 Hou, Jiaju Lin, Przemysław Kazienko, Jan Kocon, Jiaming Kong, Bartłomiej Koptyra, Hayden
631 Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
632 Bolun Wang, Johan S. Wind, Stanisław Woźniak, Ruichong Zhang, Zhenyuan Zhang, Qihang
633 Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the
634 transformer era, 2023. URL <https://arxiv.org/abs/2305.13048>.
635
636 Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
637 Cheah, Xingjian Du, Teddy Ferdinand, Haowen Hou, Przemysław Kazienko, Kranthi Kiran GV,
638 Jan Kocoń, Bartłomiej Koptyra, Satyapriya Krishna, Ronald McClelland Jr., Jiaju Lin, Niklas
639 Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu, Cahya Wirawan, Stanisław
640 Woźniak, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie
641 Zhu. Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence, 2024. URL
642 <https://arxiv.org/abs/2404.05892>.
643
644 Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
645 Jiaxing Liu, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan
646 Wilce, Johan S. Wind, Tianyi Wu, Daniel Wuttke, and Christian Zhou-Zheng. Rwkv-7 "goose"
647 with expressive dynamic state evolution, 2025. URL <https://arxiv.org/abs/2503.14456>.
648
649 Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
650 Hgrn2: Gated linear rnns with state expansion, 2024. URL <https://arxiv.org/abs/2404.07904>.

648 Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
 649 programmers, 2021. URL <https://arxiv.org/abs/2102.11174>.
 650

651 Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
 652 **SlimPajama**: A 627B token cleaned and deduplicated version of RedPajama. <https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama>, 2023. URL <https://huggingface.co/datasets/cerebras/SlimPajama-627B>.
 653

654

655 Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
 656 Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
 657 (learn at test time): Rnns with expressive hidden states, 2025. URL <https://arxiv.org/abs/2407.04620>.
 658

659

660 Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
 661 Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL <https://arxiv.org/abs/2307.08621>.
 662

663

664 Falcon-LLM Team. The falcon 3 family of open models, December 2024. URL <https://huggingface.co/blog/falcon3>.
 665

666

667 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 668 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL <https://arxiv.org/abs/1706.03762>.
 669

670

671 Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
 672 Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh,
 673 Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An empirical study of
 674 mamba-based language models, 2024. URL <https://arxiv.org/abs/2406.07887>.
 675

676

677 Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework for
 678 designing sequence models with associative memory, 2025. URL <https://arxiv.org/abs/2501.12352>.
 679

680

681 Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
 682 transformers with hardware-efficient training. In *International Conference on Machine Learning*,
 683 pp. 56501–56523, 2024.

684

685

686 Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
 687 delta rule, 2025. URL <https://arxiv.org/abs/2412.06464>.
 688

689

690 Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL <https://arxiv.org/abs/1910.07467>.
 691

692

693

694

695

696

697

698

699

700 Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan Sunkavalli,
 701 William T. Freeman, and Hao Tan. Test-time training done right, 2025. URL <https://arxiv.org/abs/2505.23884>.
 702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

702
 703 Table 8: Overview of GLA and Mamba2, two popular RNNs with matrix-valued recurrent states.
 704 H, P, N, d_k, d_v are hyperparameters of the architectures. E is the expansion ratio of StateX for
 705 SSMs, which is set to 4, as mentioned in Section 4.2

Model	Update rule	Query rule	State size	StateX state size
GLA	$\mathbf{S}_{t-1,h} \text{diag}(\alpha_{t,h}) + \mathbf{k}_{t,h}^T \mathbf{v}_{t,h}$	$\mathbf{q}_{t,h} \mathbf{S}_{t,h}$	$H d_k d_v$	$H^2 d_k d_v$
Mamba2	$\mathbf{S}_{t-1,h} \alpha_{t,h} + \Delta_{t,h} \mathbf{k}_t^T \mathbf{v}_{t,h}$	$\mathbf{q}_t \mathbf{S}_{t,h} + D_h \mathbf{v}_{t,h}$	$H d_k d_v$	$H d_v d_k E$

710 A FORMULATION OF GATED LINEAR ATTENTION AND MAMBA2

713 For completeness, we provide the complete formulation of GLA and Mamba2 in this section. These
 714 models are trained on the next-token prediction task, which means that their input is a sequence of
 715 token IDs and their output is a sequence of probability distributions over the vocabulary $\{1, \dots, V\}$,
 716 where V is the vocabulary size.

717 At the beginning, each token ID is converted to a d -dimensional token embedding by looking up an
 718 embedding table (also called the *input embeddings*) before passing to the backbone network. Let
 719 T denote the sequence length. This creates a sequence of T embeddings $\mathbf{X}^{(0)} \in \mathbb{R}^{T \times d}$. On the
 720 output side, the output embeddings at each position $t \in \{1, \dots, T\}$ are converted to a probability
 721 distribution over the vocabulary via a linear layer called the *language modeling head*.

722 In the following discussion, we denote the input and output sequences of representations for the l -th
 723 layer as:

$$724 \quad \mathbf{X}^{(l)} = \begin{bmatrix} \mathbf{x}_1^{(l)} \\ \vdots \\ \mathbf{x}_T^{(l)} \end{bmatrix}, \mathbf{Y}^{(l)} = \begin{bmatrix} \mathbf{y}_1^{(l)} \\ \vdots \\ \mathbf{y}_T^{(l)} \end{bmatrix} \quad (4)$$

725 where T is the sequence length, and $\mathbf{x}_t^{(l)}, \mathbf{y}_t^{(l)} \in \mathbb{R}^{1 \times d}$ are the input and output representations at
 726 time step t . Since the input of each layer is the output of the previous layer, we have $\mathbf{X}^{(l)} = \mathbf{Y}^{(l-1)}$.
 727

728 A.1 GATED LINEAR ATTENTION

729 The entire model of GLA consists of interleaving GLA blocks and FFN blocks.

$$730 \quad \mathbf{Y}'^{(l)} = \text{GLA}^{(l)} \left(\mathbf{X}^{(l-1)} \right) + \mathbf{X}^{(l-1)} \quad (5)$$

$$731 \quad \mathbf{Y}^{(l)} = \text{FFN}^{(l)} \left(\mathbf{Y}'^{(l)} \right) + \mathbf{Y}'^{(l)}$$

732 Each GLA block consists of multiple heads that are computed in parallel, and the block’s output is
 733 the sum of the head outputs. This can be formulated as (omitting the layer index for simplicity):

$$734 \quad \mathbf{y}_t = \sum_{h=1}^H \text{GLA}_h(\mathbf{x}_t) \quad (6)$$

735 Each head in GLA can be formulated as:

$$736 \quad \mathbf{q}_{t,h} = \mathbf{x}_t \mathbf{W}_\square, \quad \square \in \{\mathbf{q}, \mathbf{k}, \mathbf{v}, \boldsymbol{\alpha}\},$$

$$737 \quad \mathbf{S}_{t,h} = \text{diag}(\boldsymbol{\alpha}_{t,h}) \mathbf{S}_{t-1,h} + \mathbf{k}_{t,h}^T \mathbf{v}_{t,h},$$

$$738 \quad \mathbf{o}_{t,h} = \text{LN}(\mathbf{q}_{t,h} \mathbf{S}_{t,h}),$$

$$739 \quad \mathbf{r}_t = \text{SILU}(\mathbf{x}_t \mathbf{W}_r + b_r),$$

$$740 \quad \text{GLA}_h(\mathbf{x}_t) = (\mathbf{r}_t \odot \mathbf{o}_{t,h}) \mathbf{W}_o.$$

741 A.2 MAMBA2

742 Mamba2 does not have FFNs and consists only of a stack of Mamba2 blocks:

$$743 \quad \mathbf{Y}^{(l)} = \text{Mamba2}^{(l)} \left(\mathbf{X}^{(l)} \right) + \mathbf{X}^{(l)} \quad (8)$$

756 Mamba2 also employs a multi-head mechanism where the layer output is the sum of the head outputs
 757 (omitting the layer index for simplicity):
 758

$$759 \quad \text{Mamba2}(\mathbf{x}_t) = \sum_{h=1}^H \text{Mamba2}_h(\mathbf{x}_t) \quad (9)$$

760 where H is the number of heads, and h is the head index. Each Mamba2 head can be formulated as:
 761

$$\begin{aligned} 763 \quad \mathbf{v}_{t,h} &= f_v(\mathbf{x}_t, \theta_{v,h}) \in \mathbb{R}^{d_v} \\ 764 \quad \mathbf{k}_t &= f_k(\mathbf{x}_t, \theta_k) \in \mathbb{R}^{d_k} \\ 765 \quad \mathbf{q}_t &= f_q(\mathbf{x}_t, \theta_q) \in \mathbb{R}^{d_k} \\ 766 \quad \Delta_{t,h} &= \text{SILU}(\mathbf{x}_t \mathbf{W}_{\Delta,h} + \mathbf{b}_{\Delta,h}) \in \mathbb{R} \\ 767 \quad \alpha_{t,h} &= \exp(-\Delta_{t,h} A_h) \in \mathbb{R} \\ 768 \quad \mathbf{S}_{t,h} &= \mathbf{S}_{t-1,h} \alpha_{t,h} + \Delta_{t,h} \mathbf{k}_t^\top \mathbf{v}_{t,h} \in \mathbb{R}^{d_k \times d_v} \\ 769 \quad \mathbf{o}_{t,h} &= \mathbf{q}_t \mathbf{S}_{t,h} + D_h \mathbf{v}_{t,h} \in \mathbb{R}^{d_v} \\ 770 \quad \mathbf{z}_{t,h} &= \text{SILU}(\mathbf{x}_t \mathbf{W}_{z,h}) \in \mathbb{R}^{d_v} \\ 771 \quad \mathbf{y}_{t,h} &= \text{Norm}(\mathbf{o}_{t,h} \odot \mathbf{z}_{t,h}) \mathbf{W}_{o,h} \in \mathbb{R}^d \\ 772 \quad & \\ 773 \quad & \\ 774 \quad & \\ 775 \end{aligned} \quad (10)$$

776 A.3 UPDATE RULE AND QUERY RULE

777 Central to recurrent architectures are the update rule and query rule (described in Section 3.1),
 778 which dictate how the architecture models inter-token dependencies. Table 8 shows the update rule
 779 and query rule of GLA and Mamba2.
 780

781 A.4 DETAILS OF PARAMETER REINITIALIZATION

782 In the case of GLA, we reinitialize all parameters within the GLA block, including its normalization
 783 layer. For Mamba, we reinitialize all parameters of A_h, θ_k, θ_q . And $\theta_{\Delta,h}$ is reinitialized specifically
 784 by resetting its internal `dt_bias` component.
 785

787 B EXPERIMENT DETAILS

789 B.1 EVALUATION

790 We configure the evaluation tasks using the lm-evaluation-harness framework Gao et al. (2024). A
 791 set of widely adopted benchmark tasks is selected to assess the models' capabilities in common-
 792 sense reasoning and information recall. For the common-sense and recall tasks, we adopt *accuracy*
 793 (not *normalized accuracy*) and *contains* as the respective evaluation metrics. *Accuracy* directly
 794 reflects the correctness of the common-sense task results, while *contains* measures the proportion
 795 of recall task outputs that include the passkey. Notably, for tasks related to recall ability, we adopt
 796 the Just Read Twice prompt from Arora et al. (2024b), which is also used in Yang et al. (2024) and
 797 Yang et al. (2025), given that all models under evaluation are based on recurrent architectures.
 798

799 B.2 IN-CONTEXT LEARNING EVALUATION

800 For the in-context learning (ICL) evaluation, we follow the setup introduced by Min et al. (2022),
 801 which systematically benchmarks ICL capabilities across classification and multiple-choice tasks.
 802 Our evaluation adopts the same protocol, but we evaluate also with different number of
 803 in-context demonstrations for comprehensiveness.
 804

805 The tasks that were used for evaluation are:
 806

- 807 • commonsense_qa
- 808 • ai2_arc
- 809 • superglue-copa

- 810 • superglue-cb
- 811 • glue-mrpc
- 812 • glue-sst2
- 813 • glue-qqp
- 814 • glue-cola
- 815 • superglue-rte
- 816 • superglue-wic
- 817 • codah
- 818 • dream

822 B.3 NEEDLE-IN-A-HAYSTACK TASKS

824 As mentioned in the previous section, we design two passkey retrieval tasks with varying levels of
 825 difficulty. The specific noise configurations and prompt templates used in each task are detailed in
 826 Table 9. We use 5-digit passkeys in Passkey Retrieval and 7-digit passkeys in NIAH-Single-2. For
 827 each unique test length, the task will be tested on 256 randomly generated examples to ensure the
 828 consistency of the results.

830 Table 9: The prompt templates of the NIAH tasks used to evaluate the models in retrieving information
 831 from long contexts.

832 Passkey Retrieval 833 (∞ Bench)	834 Task Template: 835 836 837 838 839 840
	The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again. The pass key is {number}. Remember it. {number} is the pass key. The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
	Task Answer Prefix: What is the pass key? The pass key is
841 NIAH-Single-2 842 (RULER)	843 Task Template: 844 845 846 847 848 849 850 851 852 853 854 855
	Some special magic numbers are hidden within the following text. Make sure to memorize it. I will quiz you about the numbers afterwards. Paul Graham Essays. One of the special magic numbers for {word} is: {number}. What is the special magic number for {word} mentioned in the provided text?
	Task Answer Prefix: The special magic number for {word} mentioned in the provided text is

856 B.4 MORE DETAILS: ABLATION STUDY ON THE NUMBER OF GLA HEADS

859 The training procedure for these models follows common language model pre-training practices as
 860 closely as possible. The model is trained on 20B tokens from SlimPajama, with a 0.5M tokens
 861 per batch, and a sequence length of 4k. We employ a cosine learning rate scheduler with an initial
 862 learning rate of 3e-4 and no specified minimum learning rate. All models consist of 340 million
 863 parameters and comprise 24 layers, each with an identical hidden state dimension. The only archi-
 864 tectural difference lies in the number of attention heads: the single-head model uses one head with

864 a dimensionality of 512, while the four-head model uses four heads, each with a dimensionality of
 865 128, and so on, following the same principle.
 866

867 **B.5 EFFICIENCY DETAILS**
 868

870 Table 10: **Training throughput of vanilla models, StateX models and MoM.** The StateX models have
 871 a close throughput to vanilla ones, while they are roughly 2x faster than MoM.
 872

Model	Vanilla GLA	StateX-GLA	Vanilla Mamba	StateX-Mamba	MoM
Throughput (tokens/s)	129.1K	122.1K	108.5K	104.3K	55.9K

875
 876 **C THE USE OF LARGE LANGUAGE MODELS**
 877

878 Large language models (LLMs) were used to quality-check the final draft, but we never explicitly
 879 instruct LLMs to write any parts of this paper.
 880

881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917