Under review as a conference paper at ICLR 2026

STATEX: ENHANCING RNN RECALL VIA POST-
TRAINING STATE EXPANSION

Anonymous authors
Paper under double-blind review

ABSTRACT

While Transformer-based models have demonstrated remarkable language mod-
eling performance, their high complexities result in high costs when processing
long contexts. In contrast, recurrent neural networks (RNNs) such as linear atten-
tion and state space models have gained popularity due to their constant per-token
complexities. However, these recurrent models struggle with tasks that require ac-
curate recall of contextual information from long contexts, because all contextual
information is compressed into a constant-size recurrent state. Previous works
have shown that recall ability is positively correlated with the recurrent state size,
yet directly training RNNs with larger recurrent states results in high training
costs. In this paper, we introduce StateX, a training pipeline for efficiently ex-
panding the states of pre-trained RNNs through post-training. For two popular
classes of RNNS, linear attention and state space models, we design post-training
architectural modifications to scale up the state size with no or negligible increase
in model parameters. Experiments on models up to 1.3B parameters demonstrate
that StateX efficiently enhances the recall and in-context learning ability of RNNs
without incurring high post-training costs or compromising other capabilities.

1 INTRODUCTION

Recently, recurrent neural networks (RNNs) such as gated linear attention (GLA) (Yang et al.| [2024)
and Mamba2 (Dao & Gu, |2024) have shown promising capabilities in language modeling. These
architectures have constant per-token complexity, while the more popular Transformer architec-
ture (Vaswani et al., [2023) has per-token complexity that grows linearly with the context length.
Thus, RNNs are much more efficient than Transformers in processing long contexts.

However, RNNss still underperform Transformers in certain aspects, with one of the most critical
being the long-context recall capability (Jelassi et al., [2024b). Different from Transformers, which
store the representations of every token in the context, RNNs compress all contextual information
into a constant-size smt As a result, the recall ability of RNNs heavily depends on the size and
capacity of this state (Jelassi et al.,|2024a; |Arora et al., 20244} |Yang et al., [2025} [Chen et al.| [2025)).
Despite the positive gains of increasing the state size, considering the increased training costs and the
limited benefits in short-context scenarios and various downstream tasks, most RNNs are still trained
with a relatively small state size compared to the rest of the model. For instance, in Mamba2-2.8B
and GLA-1.3B, their recurrent states are smaller than 2% of their model sizes.

In this paper, we propose StateX, which expands the state size while keeping the training costs low
and introducing little to no additional parameters. Specifically, we expand the state size of pre-
trained RNNs through post-training on much less data than pre-training. Moreover, since larger
recurrent states are more important for long-context models, we perform state expansion prior to
long-context post-training (LPT). The training pipeline is illustrated in Figure

The state expansion process is an architectural change and depends on the pre-trained model archi-
tecture. Therefore, we design two state expansion methods, targeting two popular RNN classes:
linear attention (Katharopoulos et al.l |2020; [Yang et al., [2024) and state space models (Dao & Gul
2024). Additionally, we explore various parameter initialization techniques and select key layers

"This is also called recurrent state in various contexts. We use these two terms interchangeably in this paper.

Under review as a conference paper at ICLR 2026

Traditional Long-context Training Pipeline vs. StateX

Long-context

Traditional: Corpus
1. Pre-training Vanilla N LPT
2. Long-context Model i Model
post-training

StateX (Ours):
1. Pre-training &=
2. State Expansion | wvanilla 2o
3. Long-context Model Expansio'n
post-training

Figure 1: Difference between the traditional pipeline and StateX for training long-context mod-
els. We introduce a state expansion step (architectural modification) before the long-context post-
training (LPT) stage to enhance RNN recall abilities without requiring expensive re-training.

Long-context
Corpus

> StateX
Model

for expansion rather than all layers, to balance model performance and adaptation efficiency. Com-
pared to other state expansion methods that require training from scratch (e.g., MoM (Du et al.|
2025)), LaCT (Zhang et al.,|2025)), our method is simpler and can be seamlessly applied to existing
effective RNN implementations and training pipelines.

We evaluate our method on public 1.3B parameter checkpoints of GL and Mamba by conduct-
ing post-training on 10B tokens. Our empirical results demonstrate that, compared to the traditional
two-stage method, StateX significantly improves performance on recall-intensive tasks, in-context
learning tasks, and needle-in-a-haystack (NIAH) (Hsieh et al., 2024)) tasks while maintaining perfor-
mance on common-sense reasoning tasks. While using the same amount of training data as ordinary
LPT, StateX yields consistently better results: the relative accuracy gain in recall-intensive tasks is
3.36% for GLA and 1.1% for Mamba2, and the relative performance gain in in-context learning is
7.2% for GLA and 1.0% for Mamba?2. Also, the average NIAH accuracy up to 64K context length
improves from 26.0% to 42.2% for GLA, and from 33.2% to 39.2% for Mamba2.

Overall, our contributions include:

* To the best of our knowledge, StateX represents the first work that focuses on expanding
the state size of RNNs through post-training.

* For two popular RNN variants, GLA and Mamba2, we design simple and effective state
expansion techniques and training recipes for efficient post-training.

* We evaluate our method on public 1.3B checkpoints. Our results show consistent improve-
ments in recall-intensive tasks, in-context learning, and long-context retrieval, without sac-
rificing performance on common-sense reasoning benchmarks.

2 RELATED WORKS

In this section, we provide a brief description of RNNs and related work on expanding their state
sizes. For more details about RNNGs, please refer to the surveys (Wang et al., 2025} |Lv et al.| [2025).

Modern RNNs Recently, some RNN variants have shown promising results in sequence model-
ing. Some representative examples include state space models (SSMs) (Dao & Gu, 2024} \Gu &
Daol [2024), the RWKYV series (Peng et al., 2025} 2024;|2023)), linear attention models (Katharopou-
los et al., [2020; |Sun et al.,2023; |Yang et al., [2024)), and DeltaNet (Yang et al., 2025). Some results
have shown that these RNNs can outperform Transformers up to several billion parameters on cer-
tain language tasks, such as common-sense reasoning (Waleffe et al.| 2024} Team| [2024])), and some
hybrid models have scaled up to over 100B parameters and trillions of training tokens (MiniMax
et al 2025). RNNs are attractive alternatives to Transformers because their per-token complex-
ity is constant, while Transformers’ per-token complexity scales linearly with the context length.

Zhttps://huggingface.co/fla-hub/gla-1.3B-100B
*https://huggingface.co/AntonV/mamba2-1.3b-hf

https://huggingface.co/fla-hub/gla-1.3B-100B
https://huggingface.co/AntonV/mamba2-1.3b-hf

Under review as a conference paper at ICLR 2026

Method | Performance Efficient Training Easy Adoption
Vanilla RNNs (small states) X v v
Training large states from scratch v X v
Novel architectures with large states ? ? X
StateX (ours) v v v

Table 1: Comparison between our work and existing approaches for increasing RNN state sizes.
Vanilla RNNs underperform due to their smaller state sizes. “?” means that these works are rather
new and therefore yet to be extensively tested at scale.

However, since Transformers cache all previous token representations, they outperform RNNs in
recalling contextual information. This is one of the reasons why RNNs have seen limited adoption.

Increasing RNN State Size Many previous works have investigated the influence of state size
on the capabilities of RNNs. One important improvement of modern RNNs over previous works
such as LSTM (Hochreiter & Schmidhuber, |1997) and GRU (Cho et al., 2014) is the adoption of
larger matrix-valued recurrent states over smaller vector-valued states (Sun et al., 2023} |Qin et al.,
2024; |Katharopoulos et al.l [2020; Hua et al. |2022). Some later efforts focus on improving the
forget mechanisms to remove unneeded information in the recurrent states, saving capacity to store
more contextual information (Gu & Dao) 2024} Schlag et al.| 2021). |Arora et al.[(2024a)) provides
a comprehensive comparison of the recall-throughput tradeoff of various recent RNN architectures.
Although these methods show promising results, their state size is still rather small, and they lag
behind Transformers in recall-intensive tasks.

Recent State Expansion Works More recently, |Du et al.| (2025) proposes MoM, a new architec-
ture that maintains a large state size but with lower computational overhead, by updating only parts
of the recurrent state at each time step. LaCT (Zhang et al., [2025)) is a concurrent work to ours that
proposes a novel recurrent architecture based on the test-time training (TTT) framework (Sun et al.|
20235)). LaCT utilizes a much larger state than other RNNs (e.g., GLA and Mamba2) and has demon-
strated strong recall and long-context capabilities. Another relevant concurrent work is by |Liu et al.
(2025). They utilize low-rank projections to increase the state size of RNNs with small parameter
overhead, resulting in considerably better recall performance. However, these architectures have not
been thoroughly evaluated across different tasks and may be hard to adopt into existing codebases.

In brief, the state size is a critical bottleneck of RNNs. Increasing the state size provides consistent
performance gains for many RNN variants. However, previous works on expanding RNN states
are trained from scratch, which is highly expensive and requires significant changes to the model
architecture and implementation. This paper, to the best of our knowledge, is the first effort to expand
states through post-training. Compared to existing architectures with larger states, our method is
simpler and can be seamlessly integrated into popular RNN variants such as linear attention methods
and SSMs. Table[I|shows the comparison between our work and existing works with larger states.

3 PRELIMINARIES

In this section, we first provide a formulation of RNNs as well as two variants—GLA and SSM
(Sections and [3.3). Then, we discuss how the recurrent state size influences the models’
recall capabilities and cost-efficiency (Section 3.4).

3.1 RECURRENT NEURAL NETWORKS

In RNN:s, all contextual information is stored in a constant-size recurrent state S;, where t denotes
the time step. At each time step, new information is inserted into the previous state S;_; with an
update rule fypgae, and then retrieves information from S; with a query rule fquery, which is given as

S; = fupdate(st—lyxt)v
Yt = fquery(st7xt)a

where x;,y; € R? are the input and output representations at the time step ¢. In this paper, we define
state size as the parameter count of S;.

(D

Under review as a conference paper at ICLR 2026

x

o
Expanded Expanded
Em) Em)
Expanded || Expanded

StateX for Linear Attention

Key 1 Key 2 Key 3

Expanded | | Expanded
State State

Key Expand Key

State Expanded State
State Expanded State
State Expanded State

StateX for State Space Model

State

(veuns) (a2) (v 1] 3¢

gnn

Figure 2: Illustration of StateX (our method) for expanding the state size of linear attention and
state space models with little to no parameter increase. The red parts indicate the additional state
parameters unlocked by StateX.

3.2 GATED LINEAR ATTENTION

The GLA model consists of a stack of interleaved layers of GLA blocks and feed-forward network
(FFN) blocks. Since we only modify the GLA block, we omit the formulation for FFNs. Each GLA
block consists of H heads computed in parallel, and the layer output is the sum of the head outputs.
Each GLA head can be formulated as:

Dt,h = XtWD,ha Oe {qa k7 V}a
F,), = diag(ay) € R >k,

2
St7h = Ft,hst—17h + k;hvnh c de de;’ ()
Yeh = de,nSen € Rd”,
where h € {1,---, H} is the head index, di,d, are the key and value dimensions. x;,y; € R4

denote the input and output representations at the time step ¢, respectively, q¢ p, k¢ n, 0 €

R, v, , € R% are projection functions of x;, and LN denotes RMSNorm (Zhang & Sennrich|
2019). The state size in each GLA layer is Hdyd,,.

3.3 STATE SPACE MODELS

We focus on Mamba2, which is a state-of-the-art SSM. A Mamba?2 layer can be formulated asﬂ
Vin = fo(x¢,00,0) € Rd"7
ki = fi(xi, O) € R™,
q: = fq(xt79q) S de7
At,h = fA(Xt7 9A,h) S Ra (3)
ayp = exp(=AAn) €R,
Sth =Si—1,n0h + At,hktTVt,h € Réexdv
Yen = AtSen + Dpvep € Rdva

where f,, fr, fq, fa are differentiable projection functions parameterized with 0,,,0;,0,, 0 », re-
spectively, Ay, Dy, are learnable parameters. dj, and d,, are hyperparameters and are called the state
dimension and head dimension in SSM literature. The state size of Mamba?2 is also Hdd,,, although
these hyperparameter values may differ from GLA.

Relationship with GLA It has been identified that Mamba2 can be viewed as a variant of

GLA (Yang et al.,[2024) where heads share the same query/key (QK). In this paper, we view these
two variants as different because this QK sharing mechanism influences our state expansion.

“We use attention notations (g, k¢, v¢) instead of SSM notations (z;, B:, C) from the Mamba2 paper for
simplicity and to highlight the analogy between the two RNN variants.

Under review as a conference paper at ICLR 2026

3.4 INFLUENCE OF STATE SIZE

Recall Ability Since all contextual information is stored in S, the ability of RNNSs to recall con-
textual information depends on the capacity of S;, which in turn depends on the size of S;. Extensive
empirical evidence indicates a strong positive correlation between the size of the recurrent states and
their performance on recall-intensive tasks (Arora et al.,|2024a; Hua et al.| 2022;|Zhang et al., 2025;
Jelassi et al., 2024b). These findings highlight the critical role of state size in determining RNN
recall abilities, underscoring the importance of state expansion for improving recall capabilities.

Efficiency The computational complexity of the token mixing component (i.e., update rule and
query rule) scales linearly with the state size. Therefore, blindly increasing the state size can lead
to high training and inference costs. StateX alleviates these problems during both training and
inference by expanding the states via post-training (so the model is trained with smaller states most
of the time) and expanding only a subset of layers.

4 METHOD

Our method, StateX, involves architectural modifications that expand the RNN state sizes prior to
long-context post-training to boost their recall abilities. Meanwhile, we aim to minimize the ad-
ditional parameters introduced by this modification and keep the final architecture similar to the
original architecture to make it easier for the modified model to adapt. An overview of the architec-
tural modifications is illustrated in Figure

In this section, we describe the state expansion recipe for two popular classes of RNNs—GLA
(Yang et al.|2024) and SSM (Dao & Gul [2024) (Sections@.TJand[4.2)). Then, we describe parameter
initialization methods after the expansion (Section and which layers to expand (Section [4.4).

4.1 STATEX FOR GLA

Since GLA employs a multi-head mechanism with different query, key, and value (QKV) vectors
for each head, we can increase the state size by simply merging multiple heads into one larger head.
This is because the state size of H heads is H X dy x d,, and merging them into one head results
in a state size of 1 x Hdy x Hd,, which is H times larger. Meanwhile, no additional parameters
are introduced since the total number of channels in the QKV vectors remains the same. The effect
of this change is illustrated in the left side of Figure 2] Merging GLA heads activates non-diagonal
regions of the state matrix, thereby achieving larger states than the multi-head counterparts.

In implementation, the only difference between GLA with expanded states and the vanilla formula-
tion (described in Section [3.2)) is the number of heads and head dimension. Thus, this modification
can be seamlessly applied to existing GLA implementations. We always merge all heads into one
large head. This is motivated by the finding that single-head GLA generally outperforms multi-head
GLA (reported in Section[5.7).

4.2 STATEX FOR SSM

The head merging method is not applicable to SSMs because there is only one key vector in each
layer. For this RNN variant, we increase the key dimension by expanding the key and query pro-
jection layers. Specifically, we increase the hyperparameter dj, (the original Mamba2 paper refers
to this as the state dimension) and the parameters 0y, 0, that depend on it. Since these two sets of
parameters are much smaller than the other components, the increase in total parameters is less than
1% when we increase dj, by 4x. This modification is illustrated by Figure 2] (right).

4.3 PARAMETER INITIALIZATION

After the modification, we can inherit the parameters from the pre-trained model and initialize only
the added parameters (for SSMs). However, perhaps surprisingly, we find that inheriting pre-trained
parameters can be detrimental to downstream performance. Thus, we present a better parameter
initialization strategy.

Under review as a conference paper at ICLR 2026

Table 2: Accuracy on recall-intentive tasks with sequences truncated to a maximum of 2K tokens,
as well as the model size and state size of each model. The best scores are bolded.

Model | Params Total State | SWDE SQuAD TQA NQ Drop | Avg. 1
Linear Attention — GLA
Original Model ‘ 1.365B 12.58M ‘ 44.64 54.96 54.80 19.10 33.64 ‘ 41.42
LPT 1.365B 12.58M 47.16 56.84 56.04 2195 3656 | 43.71
StateX (ours) 1.365B 18.87M 50.32 59.15 55.04 21.82 39.58 | 45.18
State Space Model — Mamba2
Original Model | 1.343B 2496M | 5743 59.58 6327 516 3622 | 44.33
LPT 1.343B 24.96M 54.19 57.81 63.51 36.87 3546 | 49.56
StateX (ours) 1.350B 37.44M 56.17 57.91 63.68 3643 3637 | 50.11

Sparse Model — MoM

MoM (Du et al.||2025) | 1.552B 3145M | 344 49.6 50.1 16.0 339 | 36.8

Table 3: In-context learning performance of GLA and Mamba2 variants, evaluated on 12 down-
stream classification tasks. Higher is better.

GLA | 8-shott 16-shott 24-shot? || Mamba2 | 8-shot1 16-shot? 24-shot 1

Original | 48.98 4791 48.50 || Original | 5140 54.34 51.60

LPT 47.33 49.70 48.45 ‘ LPT 47.72 49.79 52.49

StateX (ours) 48.15 52.42 51.95 StateX (ours) 47.68 52.34 53.03
Sparse Model — MoM (Du et al.||2025)

MoM | 426 422 429 || MoM | 426 422 42.9

We assume that world knowledge is usually stored in FFN blocks and the embedding table, and these
parameters take longer to learn than the token-mixing parameters (GLA and SSM blocks). Thus, we
reinitialize parameters that are responsible for token-mixing while other components inherit from
the pre-trained checkpoint. An ablation study on initialization strategies is provided in Section [5.4]

GLA Initialization GLA models consist of interleaving layers of GLA blocks and FFN blocks.
After state expansion, we reinitialize all parameters associated with the GLA blocks, while FFN
blocks and the embedding table inherit the pre-trained parameters.

SSM Initialization Mamba2 merges FFN blocks and the SSM mechanism into one unified layer.
Motivated by the SSM literature, we only reinitialize the parameters of the SSM mechanism, which
are Ay, 0, 04, 0 n, while other modules inherit the pre-trained parameters. Further implementation
details can be found in Appendix [A.4]

4.4 HoOw MANY LAYERS TO EXPAND?

Modifying all layers may result in a too disruptive change, making it harder for the modified model
to recover from this change through post-training. Existing works have shown that not all layers are
responsible for recalling information (Bick et al.| [2025). Thus, we hypothesize that only a subset
of layers can benefit from a larger state. Concretely, we adopt a uniform expansion strategy by
expanding one layer every | L/m]| layers (where L is the total number of layers), starting from the
first layer, so that exactly m layers are expanded. For both GLA and Mamba2, we use m = 4 by
default. In Section[5.5] we empirically ablate the influence of the number of expanded layers.

Under review as a conference paper at ICLR 2026

Table 4: Performance on language modeling and zero-shot common-sense reasoning.

Model PIQA Hella. Wino. ARC-e ARC-c SIQA | Avg. 1
acc T acc T acc T acc T acc T acc T

Linear Attention — GLA

Original Model | 69.70 3897 5335 55.13 23.38 39.92 | 46.74
LPT 69.64 38.21 54.78 54.59 22770 39.61 | 46.58
StateX (ours) 69.75 37.16 54.93 53.91 22.53 39.97 | 46.37
State Space Model — Mamba?2
Original Model | 73.29 4589 60.85 64.31 30.12 43.14 | 5293
LPT 73.07 4548 59.67 64.31 29.10 41.10 | 52.12
StateX (ours) 73.67 45.09 59.98 64.02 29.61 41.61 | 52.33
Sparse Model — MoM
MoM (Du et al.||2025) | 63.3 30.4 50.8 45.2 18.8 374 | 41.0

5 EXPERIMENTS

We first describe the details of the experiments (Section [5.I). Then, we present the main results
of our method (Section [5.2)) as well as improvement on long-context retrieval tasks (Section [5.3).
Finally, we provide ablation studies involving the choices of parameter initialization (Section [5.4),
the number of expanded layers (Section[5.3), multi-head mechanism in GLA (Section[5.7). We also
report the training loss in Section[5.6]

5.1 EXPERIMENTAL DETAILS

Models We apply StateX to the official 1.3B checkpoints of GLA and Mamba2. In StateX for
Mamba?2, we increase the dj hyperparameter from 128 to 512. For GLA, the pre-trained 1.3B
checkpoint has four heads, so StateX versions of the expanded layers have 4 x larger states.

Data All models are trained on SlimPajama (Soboleva et al,|2023), a widely-used, high-quality,
and deduplicated corpus with 627B tokens extracted from the Internet. We concatenate documents
with a special token as the delimiter. Then, these concatenations are split into chunks of the specified
training context length.

Training Configuration The training follows common practices in context length extension by
post-training as closely as possible. Concretely, we use the cosine learning rate scheduler, with a
maximum learning rate of 3e-4, and a warmup phase of 5% of the total training steps. To better
evaluate the ability to recall information from long contexts, we use a 64K context length. The
training spans a total of 10B tokens, with a batch size of 0.5M tokens.

Evaluation We evaluate the models’ context utilization abilities with recall-intensive tasks and in-
context learning (ICL). The recall-intensive tasks involves 5 popular document question-answering
tasks. To assess ICL, we adopt a suite of 7 classification and 5 multiple-choice tasks selected
from Min et al| (2022)), a study that systematically evaluates ICL capabilities. Models are evalu-
ated with accuracy across varying number of demonstrations, and ICL performance is summarized
by the mean accuracy averaged over all tasks. Furthermore, we measure the general language pro-
cessing abilities with 6 popular multiple-choice common-sense reasoning tasks.

More details are given in Appendix

Baselines We mainly compare StateX against vanilla RNNs and the ordinary LPT versions. The
LPT models undergo the same post-training process, but without any architectural modifications, so
their state sizes remain unchanged.

Under review as a conference paper at ICLR 2026

Figure 3: Performance on retrieving specific in- 54 53.64 53.45 5318 5y 0
formation (i.e., a needle) from synthetically gen- 2/ N :
erated long documents up to 64K tokens. S N .
Model | 4K 8K 16K 32K 64K DA .
GLA — Passkey Retrieval g 6 A |
o
Original 025 001 0.00 0.00 0.00 S a4] == GlaReinit 2 S
LPT 0.74 041 013 001 0.01 a2) momtmsrerie (R
StateX (OUI'S) 0.93 0.77 0.34 0.06 0.01 Mamba2-Inherit
Mamba2 — NIAH-Single-2 40 Common-sense Recall
Original 0.05 0.00 0.00 0.00 0.00
LPT 083 043 030 0.09 0.01 Figure 4: Model performance of reinitializa-
StateX (ours) | 0.94 0.61 032 0.09 0.00 tion and parameter inheritance.

5.2 MAIN RESULTS

Recall Abilities Table 2] presents scores on recall-intensive tasks for the original model (Vanilla),
the model using the standard long-context post-training (LPT), and the model enhanced with Sta-
teX. The columns “Params” and “Total State” report the number of model parameters and state
parameters for each model, respectively. StateX increases the total state sizes by roughly 50%. The
main takeaway is that StateX models achieve the highest average performance, underscoring the
advantage of larger states.

In-Context Learning Table[3|shows the in-context learning performance of various RNN variants,
and StateX variants exhibits significantly greater in-context learning abilities.

Common-Sense Reasoning Table [4] shows that StateX models’ performance on common-sense
reasoning is comparable to the vanilla model, implying that pre-training knowledge remains largely
unaffected by the architectural change.

5.3 IMPROVEMENT ON LONG-CONTEXT RETRIEVAL

The recall-intentive tasks we used in Section [5.2] contain mostly sequences with fewer than 4K
tokens. To evaluate the models’ abilities to retrieve information from longer contexts, we use the
popular NIAH task (Hsieh et al.l |2024). Due to differences in the recall abilities between the GLA
and Mamba2, we evaluate them using NIAH tasks of varying difficulty to avoid score saturation and
preserve discriminative resolution. For the GLA model, we employed the simpler passkey retrieval
task from coBench (Zhang et al.,|2024), which involves retrieving a single 5-digit passkey from long
documents consisting of repeated text. For Mamba2, we use the more challenging NIAH-Single-
2 task from RULER (Hsieh et al.| [2024), where a 7-digit passkey is embedded in a semantically
meaningful, non-repetitive distractor content. More details can be found in Appendix

Results Table 3] reports the models’ performances in NIAH. It shows that, by unlocking a larger
state size, StateX significantly improves the model’s recall performance in long contexts.

5.4 COMPARISON BETWEEN REINITTIALIZATION AND PARAMETER INHERITANCE

Although it may seem natural to inherit pre-trained parameters, our experiments show that reini-
tializing the modified parameters yields better performance. For Mamba2, whose state expansion
process introduces new parameters, we initialize the new parameters with zeros.

As illustrated in Figure [d] the model with reinitialized parameters (Reinit) consistently outperforms
the one that inherits parameters (Inherit) on both common-sense reasoning and recall tasks. We hy-
pothesize that the performance gap arises because the inherited parameters have already converged,
making it difficult to effectively utilize the newly introduced channels (indicated in red in Figure2)
via post-training.

Under review as a conference paper at ICLR 2026

w
o

S
w

IS
o

GLA - Common-sense
| —e— GLA - Recall

Mamba2 - Common-sense
—e— Mamba2 - Recall

Performance (%)

w
w

30+

2 4 8 24 43
Number of Expanded Layers

Figure 5: Model performance under varying
numbers of expanded layers. Mamba2 has twice

N
o

LPT-Mamba2
StateX-Mamba2
LPT-GLA
StateX-GLA

Training Loss
N N N N
[N} w IS wn

N
-
L

2.0

2 4 6 8 10
Post-training Tokens (B)

Figure 6: Post-training loss (on SlimPajama) of
vanilla models and expanded models. GLA has

as many layers as GLA because it does not have
FFN layers.

lower loss as it is pre-trained on SlimPajama
while Mamba?2 is pre-trained on Pile.

5.5 BEST PROPORTION OF EXPANDED LAYERS

As mentioned in Section[4.4] it is important to balance the number of expanded layers. To investigate
this trade-off, we conducted an ablation study by varying the number of expanded layers. The
results, shown in Figure[5] indicate that both the GLA and Mamba2 models achieve optimal average
performance when four layers are expanded (out of 24 layers and 48 layers, respectively). When
too many layers are modified, the reinitialized parameters fail to converge effectively under limited
post-training, leading to a sharp drop in overall performance.

5.6 TRAINING LOSS

We also tracked the training loss curves of models trained with standard LPT and with StateX.
Figure [6] shows the loss curves for both GLA and Mamba2. The former has generally lower loss
because it was pre-trained on SlimPajama, while Mamba2 was not. Notably, the StateX models have
a higher initial training loss due to the architectural change, but quickly close the gap. Interestingly,
although their final training loss is slightly higher than the LPT counterparts, they achieve better
performance on downstream tasks.

5.7 THE OPTIMALITY OF SINGLE-HEAD GLA

As mentioned in Section [A.1] the multi-head
mechanism in GLA significantly reduces the
size of the recurrent state, which in turn leads to
a degradation in model performance. This sec-
tion presents an ablation study on the number

Table 5: Common-sense reasoning (CSR), recall,
and training loss of GLA-340M models with dif-
ferent numbers of heads. Single-head GLA out-
performs other configurations due to larger states.

of heads for GLA models trained from scratch. Head CSRT Recall 7 Tr. Loss |
number

We conducted experiments on GLA models 1 02715 25.992 2722

with 340M parameters, trained on 20B tokens 4 42.029 24.012 2.762

from the SlimPajama dataset (Soboleva et al.| 8 42.401 21.780 2.798

2023). More experimental details are described 16 41.527 15.395 2.883

in Section[B.4] Table[5|reports the performance
of these models on a range of common tasks. As shown, the single-head model achieves higher
average scores on the benchmark tasks and converges to a lower final training loss. Given the same
number of parameters and other configurations, using fewer heads allows for a larger state size,
which in turn leads to improved performance in common-sense reasoning, recall, and training loss.

Under review as a conference paper at ICLR 2026

5.8 EFFICIENCY ANALYSIS OF STATEX

Although there is expansion of states in StateX, these models still have a high efficiency compared
to their vanilla versions. We have measured the throughput of the vanilla GLA and Mamba2, their
StateX versions, and MoM 2025), in training, prefilling (which is correlated with latency),
and decoding.

The RNN component of each model is implemented with kernels from the widely-used flash-linear-
attention GitHub repository (4K stars). Inference throughput measurements are performed on one
NVIDIA A800-SXM4-80GB GPU, and training throughput is measured on a machine equipped
with eight NVIDIA A800-SXM4-80GB GPU. The training framework is implemented with the
popular HuggingFace Accelerate framework with data parallelism (which is a common approach
for single-machine, multi-GPU training).

Table 6: Prefilling throughput (tokens/s) across different context lengths.

Context Length | 1K 4K 16K 64K | Avg. T
Linear Attention — GLA

Vanilla GLA 725K 72.6K 722K 704K | 719K

StateX GLA (ours) 70.0K 70.1K 69.5K 68.0K | 69.4K

State Space Model — Mamba
Vanilla Mamba 440K 44.1K 442K 50.7K ‘ 45.7K

StateX Mamba (ours) | 45.1K 453K 426K 522K | 46.3K
Sparse Model — MoM
MoM \ 20.3K 28.1K 29.5K 314K \ 27.3K

Table 7: Decoding throughput (tokens/s) across different batch sizes.

Model | BSZ=64 BSZ=128 BSZ=256 BSZ=512 | Average |
Linear Attention — GLA

Vanilla GLA 3548.1 3814.6 9594.8 10225.9 6795.9
StateX-GLA (ours) 3769.6 6371.1 7082.5 7394.9 6154.5

State Space Model — Mamba
Vanilla Mamba 2275.5 3033.7 4754.9 5730.0 ‘ 3948.5

StateX-Mamba (ours) | 2173.5 3120.6 4350.8 4836.8 3620.4
Sparse Model — MoM
MoM | 463 47.5 48.2 ooM | 473

It can be shown that StateX versions of GLA and Mamba2 almost as fast as the original models in
prefilling and training, and slightly slower in decoding. Compared to MoM, StateX is:

* roughly 1.9x to 2.2x faster in training (Section[B.3));
* roughly 1.7x to 2.5x faster in prefilling (Table [6));

 roughly up to 147x faster (using batch size of 256) during decoding, while MoM gets out
of CUDA memory in the batch size of 512 (Table[7).

6 CONCLUSIONS

We have proposed StateX, a novel method for enhancing the recall abilities of two popular RNN vari-
ants by expanding the state sizes of pre-trained RNNs through post-training. Compared to training
RNNs with larger state sizes from scratch, our method is much faster to train and can be seamlessly
applied to existing pre-trained models of said RNN variants. StateX is valuable for closing the gap
in the recall abilities of RNNs and Transformers, especially in long-context scenarios. This work
represents an important step toward RNNs as an efficient alternative to attention-based architectures.

10

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have included the code for reproducing our results as supplementary materials. We will release
the model checkpoints after the anonymous period.

REFERENCES

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
Rudra, and Christopher Ré. Simple linear attention language models balance the recall-throughput
tradeoff. In Proceedings of the 41st International Conference on Machine Learning, pp. 1763—
1840, 2024a.

Simran Arora, Aman Timalsina, Aaryan Singhal, Benjamin Spector, Sabri Eyuboglu, Xinyi Zhao,
Ashish Rao, Atri Rudra, and Christopher Ré. Just read twice: closing the recall gap for recurrent
language models, 2024b. URL https://arxiv.org/abs/2407.05483\

Aviv Bick, Eric Xing, and Albert Gu. Understanding the skill gap in recurrent language models:
The role of the gather-and-aggregate mechanism, 2025. URL https://arxiv.org/abs/
2504.18574.

Yingfa Chen, Xinrong Zhang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Stuffed
mamba: Oversized states lead to the inability to forget, 2025. URL https://arxiv.org/
abs/2410.07145.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches, 2014. URL https://arxiv.or
g/abs/1409.12509.

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. In Infernational Conference on Machine Learning, pp. 10041—
10071. PMLR, 2024.

Jusen Du, Weigao Sun, Disen Lan, Jiaxi Hu, and Yu Cheng. Mom: Linear sequence modeling with
mixture-of-memories, 2025. URL https://arxiv.org/abs/2502.13685.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 2024. URL https://zenodo.org/records/12608602.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2024.
URL https://arxiv.org/abs/2312.00752.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735-1780, 1997.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time, 2022.
URL https://arxiv.org/abs/2202.10447.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. In International Conference on Machine
Learning, pp. 21502-21521. PMLR, 2024a.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-

formers are better than state space models at copying, 2024b. URL https://arxiv.org/
abs/2402.01032!

11

https://arxiv.org/abs/2407.05483
https://arxiv.org/abs/2504.18574
https://arxiv.org/abs/2504.18574
https://arxiv.org/abs/2410.07145
https://arxiv.org/abs/2410.07145
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/1409.1259
https://arxiv.org/abs/2502.13685
https://zenodo.org/records/12608602
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2202.10447
https://arxiv.org/abs/2402.01032
https://arxiv.org/abs/2402.01032

Under review as a conference paper at ICLR 2026

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention, 2020. URL https://arxiv.or
g/abs/2006.16236|

Kai Liu, Jianfei Gao, and Kai Chen. Scaling up the state size of RNN LLMs for long-context sce-
narios. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar
(eds.), Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 11516-11529, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-251-0. URL https://aclanthology.org/202
5.acl-long.564/.

Xingtai Lv, Youbang Sun, Kaiyan Zhang, Shang Qu, Xuekai Zhu, Yuchen Fan, Yi Wu, Ermo Hua,
Xinwei Long, Ning Ding, and Bowen Zhou. Technologies on effectiveness and efficiency: A
survey of state spaces models, 2025. URL https://arxiv.org/abs/2503.11224}

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 11048-11064, Abu Dhabi, United
Arab Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/20
22.emnlp-main.759. URL https://aclanthology.org/2022.emnlp-main. 759/,

MiniMax, Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang,
Congchao Guo, Da Chen, Dong Li, Enwei Jiao, Gengxin Li, Guojun Zhang, Haohai Sun, Houze
Dong, Jiadai Zhu, Jiaqi Zhuang, Jiayuan Song, Jin Zhu, Jingtao Han, Jingyang Li, Junbin Xie,
Junhao Xu, Junjie Yan, Kaishun Zhang, Kecheng Xiao, Kexi Kang, Le Han, Leyang Wang, Lian-
fei Yu, Liheng Feng, Lin Zheng, Linbo Chai, Long Xing, Meizhi Ju, Mingyuan Chi, Mozhi
Zhang, Peikai Huang, Pengcheng Niu, Pengfei Li, Pengyu Zhao, Qi Yang, Qidi Xu, Qiexiang
Wang, Qin Wang, Qiuhui Li, Ruitao Leng, Shengmin Shi, Shuqi Yu, Sichen Li, Songquan Zhu,
Tao Huang, Tianrun Liang, Weigao Sun, Weixuan Sun, Weiyu Cheng, Wenkai Li, Xiangjun Song,
Xiao Su, Xiaodong Han, Xinjie Zhang, Xinzhu Hou, Xu Min, Xun Zou, Xuyang Shen, Yan Gong,
Yingjie Zhu, Yipeng Zhou, Yiran Zhong, Yongyi Hu, Yuanxiang Fan, Yue Yu, Yufeng Yang,
Yuhao Li, Yunan Huang, Yunji Li, Yunpeng Huang, Yunzhi Xu, Yuxin Mao, Zehan Li, Zekang
Li, Zewei Tao, Zewen Ying, Zhaoyang Cong, Zhen Qin, Zhenhua Fan, Zhihang Yu, Zhuo Jiang,
and Zijia Wu. Minimax-01: Scaling foundation models with lightning attention, 2025. URL
https://arxiv.org/abs/2501.08313.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huangi Cao, Xin Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen
Hou, Jiaju Lin, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden
Lau, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru Tang,
Bolun Wang, Johan S. Wind, Stanislaw Wozniak, Ruichong Zhang, Zhenyuan Zhang, Qihang
Zhao, Peng Zhou, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. Rwkv: Reinventing rnns for the
transformer era, 2023. URL https://arxiv.org/abs/2305.13048.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, Przemystaw Kazienko, Kranthi Kiran GV,
Jan Koconi, Barttomiej Koptyra, Satyapriya Krishna, Ronald McClelland Jr., Jiaju Lin, Niklas
Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu, Cahya Wirawan, Stanistaw
Wozniak, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie
Zhu. Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence, 2024. URL
https://arxiv.org/abs/2404.05892.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Xingjian Du, Haowen Hou, Jiaju Lin,
Jiaxing Liu, Janna Lu, William Merrill, Guangyu Song, Kaifeng Tan, Saiteja Utpala, Nathan
Wilce, Johan S. Wind, Tianyi Wu, Daniel Wuttke, and Christian Zhou-Zheng. Rwkv-7 ”goose”
with expressive dynamic state evolution, 2025. URL https://arxiv.org/abs/2503.1
4456,

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion, 2024. URL https://arxiv.org/abs/24
04.07904.

12

https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2006.16236
https://aclanthology.org/2025.acl-long.564/
https://aclanthology.org/2025.acl-long.564/
https://arxiv.org/abs/2503.11224
https://aclanthology.org/2022.emnlp-main.759/
https://arxiv.org/abs/2501.08313
https://arxiv.org/abs/2305.13048
https://arxiv.org/abs/2404.05892
https://arxiv.org/abs/2503.14456
https://arxiv.org/abs/2503.14456
https://arxiv.org/abs/2404.07904
https://arxiv.org/abs/2404.07904

Under review as a conference paper at ICLR 2026

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers, 2021. URL https://arxiv.org/abs/2102.11174l

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. https://cere
bras.ai/blog/slimpajama—-a-627b—-token—-cleaned-and-deduplicated-v
ersion-of-redpaijama, 2023. URL https://huggingface.co/datasets/cere
bras/SlimPajama—-627B.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): Rnns with expressive hidden states, 2025. URL https://arxiv.org/
abs/2407.04620.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023. URL
https://arxiv.org/abs/2307.08621.

Falcon-LLM Team. The falcon 3 family of open models, December 2024. URL https://hugg
ingface.co/blog/falcon3l

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://ar
xiv.org/abs/1706.03762.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh,
Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An empirical study of
mamba-based language models, 2024. URL |https://arxiv.org/abs/2406.07887,

Ke Alexander Wang, Jiaxin Shi, and Emily B. Fox. Test-time regression: a unifying framework for
designing sequence models with associative memory, 2025. URL https://arxiv.org/ab
s/2501.12352.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. In International Conference on Machine Learning,
pp- 56501-56523, 2024.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule, 2025. URL https://arxiv.org/abs/2412.06464.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https:
//arxiv.org/abs/1910.07467.

Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan Sunkavalli,
William T. Freeman, and Hao Tan. Test-time training done right, 2025. URL https://arxi
v.org/abs/2505.23884.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun. cobench: Extending long context
evaluation beyond 100k tokens, 2024. URL https://arxiv.org/abs/2402.13718.

13

https://arxiv.org/abs/2102.11174
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://cerebras.ai/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2407.04620
https://arxiv.org/abs/2307.08621
https://huggingface.co/blog/falcon3
https://huggingface.co/blog/falcon3
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2501.12352
https://arxiv.org/abs/2412.06464
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2505.23884
https://arxiv.org/abs/2505.23884
https://arxiv.org/abs/2402.13718

Under review as a conference paper at ICLR 2026

Table 8: Overview of GLA and Mamba?2, two popular RNNs with matrix-valued recurrent states.
H, P, N,dy,d, are hyperparameters of the architectures. FE is the expansion ratio of StateX for
SSMs, which is set to 4, as mentioned in Section 4.2

Model | Update rule Query rule State size StateX state size
GLA Stfl,hdiag(at,h) —‘rkzﬂhvtyh qt,hSt,h Hdd, Hdedv
Mamba2 | Si—inaen + Aepki vin @St + Daven Hdidy Hdydp B

A FORMULATION OF GATED LINEAR ATTENTION AND MAMBA2

For completeness, we provide the complete formulation of GLA and Mamba?2 in this section. These
models are trained on the next-token prediction task, which means that their input is a sequence of
token IDs and their output is a sequence of probability distributions over the vocabulary {1,--- , V'},
where V' is the vocabulary size.

At the beginning, each token ID is converted to a d-dimensional token embedding by looking up an
embedding table (also called the input embeddings) before passing to the backbone network. Let
T denote the sequence length. This creates a sequence of 7 embeddings X(*©) € R7*4. On the
output side, the output embeddings at each position ¢ € {1,--- , T} are converted to a probability
distribution over the vocabulary via a linear layer called the language modeling head.

In the following discussion, we denote the input and output sequences of representations for the [-th
layer as:

I
xX®) — YD = 4)
Xg{) yg)

where T is the sequence length, and xgl), ygl) € R are the input and output representations at

time step ¢. Since the input of each layer is the output of the previous layer, we have X() = Y (-1,

A.1 GATED LINEAR ATTENTION

The entire model of GLA consists of interleaving GLA blocks and FFN blocks.

YD = gLA® (X(l—1)> +x0-D
®)
v — gpNO® (Y/m) Ly'®

Each GLA block consists of multiple heads that are computed in parallel, and the block’s output is
the sum of the head outputs. This can be formulated as (omitting the layer index for simplicity):

H
ye =Y GLAj(x:) 6)
h=1

Each head in GLA can be formulated as:
O:n =xWno, O€{qk,v, a},
S¢n = diag(ow p)Si—1,n + kZhvt,hv
Ot.h = LN(Qt,hSt,h% %)
ry = SILU(x,W, + b,),
GLAR(x¢) = (r; © 04,5)W,,.

A.2 MAMBA2

Mamba2 does not have FFNs and consists only of a stack of Mamba2 blocks:
YO = Mamba2® (x@) + X0)

14

Under review as a conference paper at ICLR 2026

Mamba? also employs a multi-head mechanism where the layer output is the sum of the head outputs
(omitting the layer index for simplicity):

H
Mamba2(x;) = Z Mamba2y, (x:) 9)

h=1
where H is the number of heads, and h is the head index. Each Mamba?2 head can be formulated as:
Vin = fo(xe,000) € R%
k, = fu(xy,0;) € R%
qr = fy(xt,0,) € R%*
Agp =SILU:WA L +bar) €R
arp = exp(—AA,) €R (10
Sin =St 1nn + Arpk/ vip € RIEXd
04 n = qtSep + Dpven € R
7z, = SILU(x, W,) € R%
v, = Norm(o, ® 24)W, € R

A.3 UPDATE RULE AND QUERY RULE

Central to recurrent architectures are the update rule and query rule (described in Section [3.1),
which dictate how the architecture models inter-token dependencies. Table 8| shows the update rule
and query rule of GLA and Mamba2.

A.4 DETAILS OF PARAMETER REINITIALIZATION

In the case of GLA, we reinitialize all parameters within the GLA block, including its normalization
layer. For Mamba, we reinitialize all parameters of Ay,, 0y, 04. And 0 , is reinitialized specifically
by resetting its internal dt _bias component.

B EXPERIMENT DETAILS

B.1 EVALUATION

We configure the evaluation tasks using the Im-evaluation-harness framework (Gao et al.| (2024). A
set of widely adopted benchmark tasks is selected to assess the models’ capabilities in common-
sense reasoning and information recall. For the common-sense and recall tasks, we adopt accuracy
(not normalized accuracy) and contains as the respective evaluation metrics. Accuracy directly
reflects the correctness of the common-sense task results, while contains measures the proportion
of recall task outputs that include the passkey. Notably, for tasks related to recall ability, we adopt
the Just Read Twice prompt from |Arora et al.|(2024b), which is also used in|Yang et al.[(2024) and
Yang et al.[(2025), given that all models under evaluation are based on recurrent architectures.

B.2 IN-CONTEXT LEARNING EVALUATION

For the in-context learning (ICL) evaluation, we follow the setup introduced by Min et al.| (2022),
which systematically benchmarks ICL capabilities across classification and multiple-choice tasks.
Our evaluation adopts the same protocol, but we evaluate also evaluate with different number of
in-context demonstrations for comprehensiveness.

The tasks that were used for evaluation are:

* commonsense_ga
* ai2_arc

* superglue—copa

15

Under review as a conference paper at ICLR 2026

* superglue-cb
* glue-mrpc

* glue—-sst2

* glue-qgp

* glue-cola

* superglue-rte
* superglue-wic
* codah

* dream

B.3 NEEDLE-IN-A-HAYSTACK TASKS

As mentioned in the previous section, we design two passkey retrieval tasks with varying levels of
difficulty. The specific noise configurations and prompt templates used in each task are detailed in
Table[0] We use 5-digit passkeys in Passkey Retrieval and 7-digit passkeys in NIAH-Single-2. For
each unique test length, the task will be tested on 256 randomly generated examples to ensure the
consistency of the results.

Table 9: The prompt templates of the NIAH tasks used to evaluate the models in retrieving informa-
tion from long contexts.

Passkey Retrieval Task Template:

(ccBench)
The pass key is . Remember it. is the pass key.
Task Answer Prefix:
What is the pass key? The pass key is

NIAH-Single-2 Task Template:

(RULER)

Some special magic numbers are hidden within the following text.
Make sure to memorize it. I will quiz you about the numbers after-
wards.

One of the special magic numbers for {word} is:
What is the special magic number for {word} mentioned in the pro-
vided text?

Task Answer Prefix:
The special magic number for {word} mentioned in the provided text
is

B.4 MORE DETAILS: ABLATION STUDY ON THE NUMBER OF GLA HEADS

The training procedure for these models follows common language model pre-training practices as
closely as possible. The model is trained on 20B tokens from SlimPajama, with a 0.5M tokens
per batch, and a sequence length of 4k. We employ a cosine learning rate scheduler with an initial
learning rate of 3e-4 and no specified minimum learning rate. All models consist of 340 million
parameters and comprise 24 layers, each with an identical hidden state dimension. The only archi-
tectural difference lies in the number of attention heads: the single-head model uses one head with

16

Under review as a conference paper at ICLR 2026

a dimensionality of 512, while the four-head model uses four heads, each with a dimensionality of
128, and so on, following the same principle.

B.5 EFFICIENCY DETAILS

Table 10: Training throughput of vanilla models, StateX models and MoM. The StateX models have
a close throughput to vanilla ones, while they are roughly 2x faster than MoM.

Model \ Vanilla GLA StateX-GLA Vanilla Mamba StateX-Mamba MoM
Throughput (tokens/s) ‘ 129.1K 122.1K 108.5K 104.3K 559K

C THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used to quality-check the final draft, but we never explicitly
instruct LLMs to write any parts of this paper.

17

	Introduction
	Related Works
	Preliminaries
	Recurrent Neural Networks
	Gated Linear Attention
	State Space Models
	Influence of State Size

	Method
	StateX for GLA
	StateX for SSM
	Parameter Initialization
	How Many Layers to Expand?

	Experiments
	Experimental Details
	Main Results
	Improvement on Long-Context Retrieval
	Comparison Between Reinitialization and Parameter Inheritance
	Best Proportion of Expanded Layers
	Training Loss
	The Optimality of Single-Head GLA
	Efficiency Analysis of StateX

	Conclusions
	Formulation of Gated Linear Attention and Mamba2
	Gated Linear Attention
	Mamba2
	Update Rule and Query Rule
	Details of Parameter Reinitialization

	Experiment Details
	Evaluation
	In-Context Learning Evaluation
	Needle-in-a-Haystack Tasks
	More Details: Ablation Study on the Number of GLA Heads
	Efficiency Details

	The Use of Large Language Models

