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Abstract

Knowledge Graph (KG) plays a crucial role in
Medical Report Generation (MRG) because it re-
veals the relations among diseases and thus can
be utilized to guide the generation process. How-
ever, constructing a comprehensive KG is labor-
intensive and its applications on the MRG pro-
cess are under-explored. In this study, we es-
tablish a complete KG on chest X-ray imaging
that includes 137 types of diseases and abnormal-
ities. Based on this KG, we find that the current
MRG data sets exhibit a long-tailed problem in
disease distribution. To mitigate this problem, we
introduce a novel augmentation strategy that en-
hances the representation of disease types in the
tail-end of the distribution. We further design a
two-stage MRG approach, where a classifier is
first trained to detect whether the input images
exhibit any abnormalities. The classified images
are then independently fed into two transformer-
based generators, namely, “disease-specific gen-
erator” and “disease-free generator” to generate
the corresponding reports. To enhance the clin-
ical evaluation of whether the generated reports
correctly describe the diseases appearing in the
input image, we propose diverse sensitivity (DS),
a new metric that checks whether generated dis-
eases match ground truth and measures the diver-
sity of all generated diseases. Results show that
the proposed two-stage generation framework and
augmentation strategies improve DS by a consid-
erable margin, indicating a notable reduction in
the long-tailed problem associated with under-
represented diseases.
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1. Introduction
Chest radiography is one of the most common and effective
imaging examinations used in clinical practice for diagnos-
ing diseases and evaluating health risks. The obtained im-
ages generally require medical reports with comprehensive
interpretation written by qualified physicians or pathologists,
which can be time-consuming and requires expertise. With
the advancement in deep learning (DL) algorithms, auto-
matic medical report generation (MRG) has been widely
explored and achieved significant performance (Jing et al.,
2018; Wang et al., 2018; Xue et al., 2018; Li et al., 2018;
Boag et al., 2020; Chen et al., 2020; Liu et al., 2021; Wang
et al., 2021; Chen et al., 2021; Liu et al., 2019; Wang et al.,
2022; Yang et al., 2023). These DL-based systems analyze
the chest images and automatically generate a descriptive
report outlining the findings. However, these methods are
primarily designed to optimize the performance of match-
ing generated N-gram to ground truth reports, rather than
focusing on aligning generated medical attributes, i.e., ab-
normalities or diseases with the actual reports, which is
more important when assessing the clinical utility of a gen-
eration algorithm. While some researchers (Irvin et al.,
2019; Harzig et al., 2019; Zhang et al., 2020) propose dis-
ease labeling tools or build disease knowledge graphs to aid
in evaluating the reports, their KG contains limited disease
types and they only consider report-level n-gram match-
ing accuracy, which is a coarse reflection of the medical
attributes.

To address these problems, we construct a large KG with
137 types of chest diseases based on two widely used chest
X-ray datasets, IU-Xray (Demner-Fushman et al., 2016)
and MIMIC-CXR (Johnson et al., 2019) (See Section 2 for
details). Utilizing the diseases from this KG, a rule-based
criterion is adopted to make a detailed statistical analysis
on the appearing diseases and abnormalities in IU-Xray. As
depicted in Figure 1(a), across all reports in the data set,
the frequency of sentences indicating normal results (no
diseases or abnormalities) is three times greater than those
indicating the presence of at least one disease or abnormality.
Moreover, the number of sentences with common diseases
(occurrences greater than 20) is almost 4 times of those
with uncommon diseases (occurrences less than 20). The
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Figure 1. Illustration of counts of labeled sentences and disease keywords in IU-Xray. Part (a) shows the count of sentences that have
common diseases (d com), uncommon diseases (d tail), or do not have diseases (d free). Part (b) shows parts of distributions of diseases
and abnormalities in original (dark blue bars) / augmented (light blue bars) training data. The lower / upper numbers are the occurrence
counts of specific disease keywords in original / augmented training data.

frequency of occurrence for each disease keyword is fur-
ther highlighted in Figure 1(b), which exhibits a long-tailed
distribution of the disease classes in the data set. In the
original training data (dark blue bars), only three diseases
appear more than 100 times and 65.7% diseases appear less
than 10 times in IU-Xray, which shows that several com-
mon diseases dominate but rarer ones are under-represented.
In response, we design a two-stage generation approach to
reduce the bias towards generating “disease-free” reports in-
stead of “disease-specific” reports, i.e., reports that contain
at least one disease or abnormality. We further alleviate the
long-tailed distribution issue by expanding the distribution
of the disease classes through a designed disease augmenta-
tion strategy. According to our statistics on the augmented
training data (light blue bars in Figure 1(b)), the overall
frequency of uncommon diseases in the original data set
increases from 37.6% to 55.5%, while the common diseases
see a decrease in overall frequency from 62.4% to 44.5%.

Moreover, when evaluating generated reports, more empha-
sis should be placed on clinic-efficacy information. Previ-
ous works employ the commonly used N-gram evaluation
metrics from image captioning tasks, such as BLEU-N (Pap-
ineni et al., 2002). However, these metrics do not necessarily
reflect the clinical quality of the diagnostic reports, such as
the accuracy of the specific diseases. In our experiments,
as well as in previous studies (Harzig et al., 2019), it has
been observed that with an imbalanced data set, models
tend to achieve the highest BLEU score when generating
repetitive sentences that most frequently appear in the train-
ing set. Li et al. (Li et al., 2021) argue that the quality of
medical reports largely depends on the accurate detection of
positive disease keywords. Therefore, they employ several
human evaluations as additional measurements. Neverthe-
less, implementing this evaluation requires significant expert
efforts and is prone to subjectivity and variability. Based

on KG, we propose a new evaluation metric, diverse sensi-
tivity (DS), to assess the model’s ability to generate reports
containing special diseases, which concentrates more on
clinical-relevant texts. Our KG and codes will be available
at https://github.com/Wangyixinxin/MRG-KG.

Our contributions are as follows:

• A complete knowledge graph with 8 disease categories
and 137 diseases or abnormalities of chest radiographs
is built based on accurate and detailed disease classifi-
cation.

• A novel augmentation strategy is proposed to address
the long-tailed problems in chest X-ray data sets.

• An effective two-stage MRG approach is designed to
separately handle normal and abnormal images, gener-
ating texts more specific to the identified diseases.

• A KG-based evaluation metric, DS, is further proposed
to assess the quality of generated reports, prioritizing
the accuracy of disease-relevant attributes.

2. Knowledge Graph
Starting from (Zhang et al., 2020), several works have
demonstrated the effectiveness of KG on chest report genera-
tion (Li et al., 2019; Liu et al., 2021; Zhang et al., 2020). The
existing KG, which includes the most common diseases or
abnormalities (Zhang et al., 2020), consists of 7 organs with
18 corresponding diseases, along with “normal” and “other
findings”. However, this KG lacks comprehensiveness as it
omits many common diseases such as “calcification”, “spine
degenerative”, and “lung consolidation”. The restriction in
disease types places a limitation on the model’s capacity
to learn about the relationships between diseases, result-
ing in a lack of clinical depth. For example, lung opacity
can be divided into categories like “nodular opacity”, “lobe
opacity”, and “hilar opacity”. Besides, identical abnormali-
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Figure 2. An illustration of our proposed knowledge graph, which contains “normal” and 8 disease categories including 7 organs and an
“other” category. Each category further branches out into its corresponding specific diseases.
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ties can appear in different organs, such as “lung opacity”,
“diaphragm opacity” and “airspace opacity”. Lastly, the
current KG does not account for several rare diseases or
anomalies, leaving them unclassified. To overcome these
limitations, we extend the knowledge graph by adding more
diseases based on IU-Xray (Demner-Fushman et al., 2016)
and MIMIC-CXR (Johnson et al., 2019). Figure 2 depicts
a partial representation of our proposed knowledge graph.
In our work, we retain the current seven organ categories
while supplementing them with additional diseases. We also
introduce another new category “other”, which contains ab-
normalities, such as “tube” and “sternotomy” that do not
belong to any of the seven organs. While constructing this
KG, we also take into account the synonyms and variations
of each specific disease, leading to a comprehensive repre-
sentation of 137 disease types. These will be leveraged in
our training approach (See Section 3) and evaluation metrics
(See Section 4).

Based on the knowledge graph, we build a rule-based crite-
rion to classify diagnostic reports. Firstly, each word will be
replaced by its synonyms through a pre-defined synonyms
pool. Then, each sentence in the report will be labeled
by a concatenation of “diseases-organs” pairs if it includes
keywords from the KG or “normal” class otherwise. For
example, the sentence “there are low lung volumes with
bronchovascular crowding” will be labeled as “bronchovas-
cular crowding-lung-low volume-lung”. A report is labeled
as “disease-free” if all its sentences are labeled as “normal”,
otherwise it’s marked as ”disease-specific”. These report
labels will be utilized to train a classifier in our proposed
two-stage generation approach.

3. Two-Stage Generation Approach
Figure 1 illustrates an imbalance distribution within the IU-
Xray dataset between the number of sentences that indicates
the presence or absence of diseases, along with a long-tail
issue in the disease distributions. To address these issues,
we propose two solutions: firstly, a novel two-stage pipeline
including an image classifier and two generation networks
with identical structures. These networks are trained with
“disease-free” and “disease-specific” data separately (Sec-
tion 3.1). Secondly, a disease-specific augmentation strategy
to alleviate the imbalanced distribution of disease data (Sec-
tion 3.2).

3.1. Training and Inference Stage

To address the dominance of normal findings in the data, we
propose a two-stage approach. During the training phase, we
leverage the available ground-truth reports to segregate the
training data into the defined two classes, i.e., “disease-free”
and “disease-specific”. Following this strategy, the images
corresponding to each report, paired with their respective

labels, are leveraged to train an image classifier, ResNet101
(He et al., 2016), with standard cross-entropy loss to detect
if an input image contains diseases. In parallel, we employ
two generative models for report generation: a “disease-free
generator” and a “disease-specific generator”, each trained
on data from their respective classes. Both generators uti-
lize the same architectural design based on R2Gen (Chen
et al., 2020), one of the most popular approaches for MRG.
Specifically, given a radiology image as an input, a visual
extractor is trained to extract related features. Subsequently,
a transformer encoder and a transformer decoder, both con-
sisting of a multi-head self-attention and a multi-head cross-
attention module, are further employed to generate long
reports. During the inference stage, a two-stage approach
is adopted, where an input image is first fed to the image
classifier to distinguish whether it contains any disease or
abnormality, and then the corresponding generator is chosen
to generate the diagnostic report in the second stage.

Although the two-stage strategy can improve the ability
of the generator to specifically generate “disease-specific”
reports, there is still an inherent challenge of data imbalance
which biases the model towards producing reports of the
most dominant diseases found in the training data. With our
disease KG, we further propose a novel data augmentation
method to mitigate the disease imbalance issue.

3.2. Disease-Specific Augmentation

The first step of our augmentation strategy is to create a key-
value pool of disease sentences, where the keys represent
sentence labels (See Section 2) which are a concatenation of
“diseases-organs” pairs such as “opacity-lung”, and values
include all unique-format sentences under this label such as
“The lung is opacity” and “This patient has lung opacity”.
We define the label count as the number of unique-format
sentences for each sentence label. A higher label count
indicates more sentence variations that describe that label,
which is easier to perform disease augmentation through ran-
dom substitution. Therefore, we define a count interval [5,
100] by omitting sentence labels with a label count less than
5 or more than 500. Starting from the label with the fewest
unique-format sentences in this interval, we first find all
diagnostic reports that contain sentences under this sentence
label. For each report, we substitute the sentence under this
sentence label with another format from the key-value pool
and repeat this operation for all reports. For example, if
5 distinct sentences belong to a particular label, the pro-
posed augmentation strategy will generate 5× (5− 1) = 20
additional reports. Given that a report might contain mul-
tiple disease sentences, this augmentation process could
inadvertently boost the frequency of various diseases con-
currently. To moderate this undesired effect, we update the
statistics of disease labels after each round of augmentation
and find the next least frequent disease that has not been
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augmented before. Figure 1 (b) indicates that the applied
augmentation strategy successfully evens out the distribu-
tion of diseases, especially reducing the long-tail problem.
It is noted that although the augmentation strategy increases
the occurrences of all types of diseases, it prioritizes the
occurrence of diseases in the tailed population.

4. Evaluation Metric
Common evaluation metrics, including BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee &
Lavie, 2005), etc., fail to consider whether the generated
reports describe the diseases appearing in the input image.
The accurate description of disease keywords is the main
criterion for radiologists to decide whether to use the gen-
erated reports. Therefore, based on our proposed KG, we
introduce a new evaluation metric, Diverse Sensitivity (DS),
that evaluates whether the diseases identified in the ground-
truth report are also accurately depicted in the generated
report. Firstly, we consider a generated report to be correct
iff it depicts at least one disease that appears in the ground
truth. The Sensitivity (Sen.) is defined as Sen. = TP

TP+FN ,
where TP and FN stand for true positive and false negative
respectively. However, due to the long-tail disease distri-
bution, the network is able to achieve a high sensitivity if
all the generated reports contain the most common disease.
Thus, we propose a different metric, Diversity (Div.), to ac-
count for the variability during generation. Div. is defined as
the ratio between the number of uniquely generated disease
types and the number of total disease types. Lastly, DS is a
harmonic mean of Sen. and Div., i.e., DS = 2× Sen.×Div.

Sen.+Div. .
Since DS focuses on evaluating “disease-specific” sentences,
we also introduce Diagnostic Odds Ratio (DOR), similar
to the concept defined in (Glas et al., 2003). This comple-
mentary metric evaluates the model’s ability to generate
correct “disease-free” reports. Formally, DOR = TP×TN

FP×FN ,
where TN and FP stand for true negative and false positive
respectively. DS and DOR are considered jointly to evaluate
the clinical efficacy of a generation model.

5. Experiment
5.1. Datasets and Implementation

In the experiments, we adopt IU X-ray (Demner-Fushman
et al., 2016) which consists of 7,470 chest X-ray images
with 3,955 radiology reports. Each report is paired with
two associated images - a frontal and a lateral view. This
dataset is split into train/validation/test set by 7:1:2, follow-
ing R2Gen (Chen et al., 2020). Model selection is based
on the best DS score on the validation set and we report its
performance on the test set. For a fair comparison, we keep
all experimental settings consistent with those used in the
R2Gen (Chen et al., 2020).

5.2. Comparison Results

5.2.1. QUANTITATIVE RESULTS.

We evaluate the effectiveness of our proposed method as
compared to R2Gen (Chen et al., 2020) using DS and DOR.
We also include Sensitivity (Sen.) and Diversity (Div.) in
our comparison for reference. As shown in Table 1, our
method achieves a DS score of 0.1902 and a DOR score
of 0.5138, outperforming R2Gen by a large margin. This
improvement on these two clinical-relevant metrics implies
a greater applicability of our method in real-world clinical
settings.

Method DOR DS Sen. Div.

R2Gen (Chen et al., 2020) 0.2911 0.1523 0.0932 0.4153
Two-Stage + Aug. (Ours) 0.5138 0.1902 0.1220 0.4305

Two-Stage 0.4223 0.1634 0.1034 0.3898
Disease-Specific Only 0 0.1955 0.1305 0.3898

R2Gen∗ (Chen et al., 2020) 0.4366 0.0324 0.0186 0.1220

Table 1. Comparison results. R2Gen∗ means the best model under
BLEU.

We further investigate the effect of augmentation and the
two-stage generation process in Table 1. The observed
decrease in DOR to 0.4223 and DS to 0.1634, when the
low-frequency diseases are not augmented, emphasizes the
significance of ensuring a balanced disease distribution in
the data set. Given our objective to improve the correct
generation of disease sentences, we compare the two-stage
generation model to its “disease-specific generator”. Al-
though the “disease-specific generator” achieves a higher
DS, it can only generate reports with diseases, leading to
zero TN and thus a zero score on DOR. Such a model is
not clinically useful as it lacks the ability to distinguish
between normal and disease images. Introducing a classi-
fier can alleviate this problem, but it gives rise to another
issue of having FN, which is beyond the scope of this pa-
per. Lastly, we show the discrepancy between the common
metric and the proposed one in the last row by recording
a second R2Gen model that is selected based on the best
BLEU-4 score. Although this BLEU-based model gains an
improvement of 0.1656 (the leading performance under this
metric on IU-Xray) in our experiments, which are not pre-
sented in this table, it achieves close to zero in both DS and
sensitivity. This implies that the majority of the generated
reports do not align with the actual diseases, reducing their
usefulness in a clinical setting.

5.2.2. QUALITATIVE RESULTS.

Figure 3 provides a qualitative analysis that demonstrates the
clinical efficacy of our methods and metrics. The generated
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the heart is enlarged . there
is pulmonary vascular
congestion with diffusely
increased interstitial and mild
patchy airspace opacities .
the <unk> xxxx pulmonary
edema . there is no
pneumothorax or large
pleural effusion . there are no
acute bony findings .

patchy subsegmental
atelectasis is seen bibasilar
region no evidence of
pneumothorax or pleural
effusion is present . the
cardiomediastinal silhouette
is unremarkable . old
fractures seen the left 9th
rib .

there is mild cardiomegaly .
aorta is <unk> calcified and
tortuous consistent with
atherosclerotic disease .
there are diffuse increased
interstitial opacities
identified . this may be
secondary to edema or
<unk> <unk> infection . no
large effusion or visualized
pneumothorax . osteopenia
of the spine is identified .

Ground Truth R2Gen (DS) Ours (DS)

the trachea is midline . the
cardio mediastinal silhouette
is of normal size and contour .
no evidence of focal infiltrate
or effusion . low lung
volumes xxxx xxxx
atelectasis and
bronchovascular crowding .
there is no pneumothorax .
the visualized bony
structures reveal no acute
abnormalities . lateral view
reveals degenerative
changes of the thoracic
spine .",

the trachea is midline . the
cardiomediastinal silhouette
is normal . there are low lung
volumes causing bibasilar
atelectasis and
bronchovascular crowding .
there is a xxxx opacity in the
left lingula . there is no
pleural effusion or
pneumothorax . visualized
bony structures reveal no
acute abnormalities .

heart size is mildly
enlarged . tortuous aorta .
lung volumes are low with
central bronchovascular
crowding and patchy basilar
atelectasis . degenerative
changes of the spine .

there is moderate
cardiomegaly . there are
bilateral interstitial opacities
increased since the previous
exam . no focal airspace
consolidation pleural
effusions or pneumothorax .
no acute bony abnormalities .

mild cardiomegaly . low
lung volumes without focal
consolidation pneumothorax
or large pleural effusion .
negative for acute bone
abnormality .

cardiomegaly . interstitial
opacities consistent with
edema in the lower lobes .
no pneumothorax . no large
pleural effusion .

cardiomegaly
interstitial opacity

edema

low volume
Atelectasis

bronchovascular crowding 
degenerative

cardiomegaly
interstitial 

opacity

again seen are platelike
<unk> opacities in both lung
bases through this is
consistent with scarring or
subsegmental atelectasis .
there are t-spine
osteophytes . the
cardiomediastinal silhouette
and pulmonary vasculature
are within normal limits .
there is no pneumothorax or
pleural effusion . there there
is no lobar pneumonia . there
are calcified right hilar
granuloma .

heart size upper limits
normal . vascularity <unk>
breast <unk> obscure some
<unk> . lungs are clear .
vascular calcifications aorta .
no pleural effusions or
pneumothoraces .

the heart is top normal in
size . the mediastinum is
stable . the aorta is
atherosclerotic . xxxx
opacities are noted in the
lung bases compatible with
scarring or atelectasis .
there is no acute infiltrate or
pleural effusion .

lung opacity
Scar

Atelectasis

Disease Keyword
the lungs are clear bilaterally .
specifically no evidence of
focal consolidation
pneumothorax or pleural
effusion . cardio mediastinal
silhouette is unremarkable .
visualized osseous structures
of the thorax are without
acute abnormality .

R2Gen (BLEU-4)

the heart is normal in size
and contour . there is no
mediastinal widening . the
lungs are clear bilaterally . no
large pleural effusion or
pneumothorax . the xxxx are
intact .

the lungs are clear bilaterally .
specifically no evidence of
focal consolidation
pneumothorax or pleural
effusion . cardio mediastinal
silhouette is unremarkable .
visualized osseous structures
of the thorax are without
acute abnormality .

the lungs are clear . there is
no pleural effusion or
pneumothorax . the heart
and mediastinum are normal .
the skeletal structures are
normal .

Figure 3. Qualitative comparison on abnormal cases. Only our method based on DS evaluation metric successfully generates the correct
disease mentions. Highlighted words can be accurately captured by “Disease Keywords” from our KG.

reports reveal an important finding: the best R2Gen model,
when selected based on the BLEU-4 metric (referring to as
R2Gen (BLEU-4)), fails to generate disease-specific sen-
tences, disregarding clinical-relevant information. In con-
trast, when selecting the models using our proposed DS
metric (referring to as R2Gen (DS)), the chosen R2Gen
model performs much better, indicating its ability to gener-
ate disease-specific sentences and emphasizing the need for
a more clinical-relevant evaluation metric. Moreover, our
two-stage generation approach, incorporating our augmen-
tation strategy based on the DS metric, denoted as “Ours
(DS)”, effectively tackles the long-tailed issue by success-
fully capturing rare abnormalities such as “interstitial opac-
ity” and “edema”. The accurate descriptions of diseases
generated by our approach, which align with the keywords
in our knowledge graph (referred to as “Disease Keyword”),
further validate the utility of our approach.

6. Conclusion
In this paper, we present the construction of a comprehen-
sive knowledge graph focusing on chest X-ray images to
uncover disease relationships and investigates the signif-
icance of disease mentions in medical report generation
task. We propose a two-stage generation approach and a
KG-based augmentation strategy to mitigate the challenges
associated with imbalanced data sets. The KG developed in
this study can be extended and utilized by other researchers.
Furthermore, a novel evaluation metric is devised, leverag-
ing the information captured in the KG to measure clinical
relevance. This work serves as a catalyst for future explo-
ration of the clinical efficacy in medical report generation.
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