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ABSTRACT

Several algorithms are proposed to improve the robustness of deep neural net-
works against adversarial perturbations beyond ℓp cases, i.e. weather pertur-
bations. However, evaluations of existing robust training algorithms are over-
optimistic. This is in part due to the lack of a standardized evaluation protocol
across various robust training algorithms, leading to ad-hoc methods that test ro-
bustness on either random perturbations or the adversarial samples from gener-
ative models that are used for robust training, which is either uninformative of
the worst case, or is heavily biased. In this paper, we identify such evaluation
bias in these existing works and propose the first standardized and fair evalua-
tion that compares various robust training algorithms by using physics simulators
for common adverse weather effects i.e. rain and snow. Additionally, our frame-
work identified the lack of diversity in existing robust training algorithms. As
a step to address this, we propose a light-weight generative adversarial network
(GAN) with improved diverse weather effects controlled by latent codes that can
be used in robust training. The proposed robust training algorithm is evaluated
on two streetview classification datasets (BIC GSV, Places365), where it outper-
forms other robust training approaches based on generative models for worst-case
adversarial rain and snow attacks.

1 INTRODUCTION

Adversarial robustness of machine learning models has become an important topic in recent years.
For safety-critical applications such as autonomous driving and healthcare systems, it is important to
ensure the robustness of models before deploying them into the real world. Despite an overwhelming
amount of studies on adversarial attacks and defenses from the past few years, most of them focus on
the simplified ℓp norm threat model where robustness is defined as the worst-case perturbation within
a small ℓp ball (Madry et al., 2018; Goodfellow et al., 2015). This simplified assumption ensures
the perturbation is imperceptible and facilitates the development of defense algorithms, since under
the ℓp norm perturbation model, both attacks and defenses can be easily designed and evaluated.
However, in practice there are many other semantic-preserved or natural perturbations that are not
ℓp norm bounded, such as adversarial shadows (Zhong et al., 2022), adversarial rains (Zhai et al.,
2020), and physical adversarial T-shirts (Xu et al., 2020).

Since collecting real-world adversarial examples is infeasible, a natural solution to improve the
natural adversarial robustness is through learning a perturbation set that introduces weather effects
such as rain or snow into the original clean images, and then conduct adversarial training with the ℓp
ball constraint replaced by the general perturbation set (Wong & Kolter, 2020; Robey et al., 2020).
However, the lack of natural adversarial examples also makes evaluating the robustness of such a
perturbation set with real images impossible. To bypass this difficulty, Wong & Kolter (2020) reuses
the pretrained generative model to produce adversarial examples, which is also used in adversarial
training. However, a generator trained on random perturbation set is not guaranteed to match the
perturbation distribution when it is used to generate worst-case adversarial examples. Therefore,
training and evaluating the models with the same generative model can lead to overly optimistic
and unreliable evaluation of robustness. In addition, Robey et al. (2020) deploys out-of-distribution
(OOD) perturbations in evaluation, which limits the exploration in the perturbation space. The ad-
hoc nature of these evaluations makes it difficult to compare existing robust training algorithms.
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This stems from a lack of a standardized and fair evaluation protocol for natural robust training
algorithms, where current evaluation methods potentially lead to unreliable robustness metrics.

To address the above issue, we propose an evaluation framework for robust training algorithms
based on physics-based weather simulators, where the robust training algorithm usually learns the
perturbation set from datasets and train robust models under this perturbation set. The framework
is designed in a differentiable manner to enable the generation of worst-case adversarial examples
during evaluation. The adversarial examples generated by physical simulators can give a fair evalu-
ation by using independent random simulators both in training and evaluation. We show that several
existing models are robust to the perturbations from their own generative models as expected, but
are not robust to our adversarial attacks based on physical simulators.

We further analyze the reason why these existing robust training algorithms perform worse under our
evaluation. With extensive experiments, we identify general drawbacks of existing robust training
algorithms, such as their lack of diversity. As an improvement, we propose a light-weight model
based on generative adversarial networks to produce diverse weather perturbations controlled by
latent codes. Our model supports both unpaired and paired datasets, which makes it more versatile
for weather perturbation sets.

Our main contributions are summarized as follows:

• We propose the first standard protocol for evaluating robust training algorithms for machine
learning models against weather perturbations. We do so by leveraging physics-based sim-
ulators to model adverse weather effects – yielding fair comparisons between algorithms
for learning perturbation sets beyond ℓp norm and robust training.

• We demonstrate that existing robust training methods are over-optimistic in their claims
due to their ad-hoc evaluations, which are either uninformative of worst case perturbations
or favorable towards the particular training algorithm.

• We show that existing methods that learn from unpaired datasets failed to generate diverse
perturbation sets; whereas those that rely on paired data are limited by the availability of
paired datasets containing adverse weather conditions. To address this pervasive drawback,
we improve the robust training algorithm for unpaired datasets with a light-weight GAN
model that can generate more diverse weather perturbations.

• We leverage our GAN in adversarial training to yield robust classifiers. We demonstrate the
effectiveness of our approach on two datasets, BIC GSV (Kang et al., 2018) and Places365
(Zhou et al., 2017). Models trained with our approach achieve the best overall robustness
for adversarial rain and snow perturbations compared to existing works.

2 RELATED WORK

Adversarial robustness of beyond ℓp robustness: Neural Networks are shown to be vulnerable
to perturbations that are imperceptible to humans. Several papers (Biggio et al., 2013; Carlini &
Wagner, 2017; Goodfellow et al., 2015) have shown that neural networks can be attacked by small
perturbations bounded by ℓ1, ℓ2, ℓp balls. For instance, Szegedy et al. (2014) shows that such pertur-
bations can alter the output of a classification network. Goodfellow et al. (2015) introduces the fast
gradient sign method (FGSM). Dong et al. (2018); Kurakin et al. (2016); Madry et al. (2018) ex-
tend FGSM to iterative optimization to boost its performance. Moosavi-Dezfooli et al. (2016) finds
the minimal perturbation to alter the predicted class while Madry et al. (2018) proposed projected
gradient descent (PGD) to find the worst-case perturbations.

Beyond ℓp robustness, some recent papers extend the perturbation sets to settings that can preserve
semantic meaning. Some can be well-defined mathematically such as Wasserstein robustness (Wong
et al., 2019), distributional shifts (Sinha et al., 2017; Sagawa et al., 2019) and word substitution (Jia
et al., 2019) in texts. Others can not be well-defined but perturbed datasets can be generated or
collected, like adversarial shadows (Zhong et al., 2022), adversarial rains (Zhai et al., 2020) and
some physical adversarial perturbations (Duan et al., 2020; 2021; Li et al., 2019a; Xu et al., 2020).

Robust training algorithms for natural robustness: For general natural robustness settings, at-
tack methods like PGD (Madry et al., 2018) and FGSM (Goodfellow et al., 2015) cannot be directly
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applied whithin the perturbation set. Some works use generative adversarial networks (GANs) to
learn the perturbation set and then generate adversarial examples during adversarial training (Xiao
et al., 2018; Wong & Kolter, 2020; Robey et al., 2020). Another line of work uses random pertur-
bations to improve the out-of-distribution robustness (Hendrycks et al., 2021; 2019; Calian et al.,
2021). However, these solutions cannot bypass the lack of natural adversarial examples in evalua-
tion. Wong & Kolter (2020) reuses the learned generators to generate adversarial examples, where
the learned generators is not guaranteed to match the perturbation set under the worst-case pertur-
bations, and evaluating and training the models with the same generative model can leads to fake
robustness in evaluation. Robey et al. (2020) uses out-of-distribution (OOD) perturbations, which
limits the exploration in perturbation space.

Weather simulation: The appearance of falling particles in rain and snow are highly compli-
cated and can be affected by multiple factors, such as the particle properties, camera configurations,
and environmental illumination (Garg & Nayar, 2007; Barnum et al., 2010). Copious amounts of
research has been conducted to simulate the weather dynamics based on different principles, includ-
ing raindrop oscillation models (Garg & Nayar, 2006; Li et al., 2016), frequency domain analysis
(Barnum et al., 2010; Weber et al., 2015), and depth dependent formulations (Hu et al., 2019; Li
et al., 2019b; Halder et al., 2019; Von Bernuth et al., 2019; Tremblay et al., 2021). More recently,
several data-driven deep learning techniques have also been developed for weather effect simulation
(Shen et al., 2019; Pizzati et al., 2020a;b; Wang et al., 2021; Wei et al., 2021). Other than these,
the community also resorts to some existing image editing software (e.g. PhotoShop) for weather
simulation (Liu et al., 2018; Zhang & Patel, 2018; Zhang et al., 2019; Chen et al., 2020; 2021).

3 BACKGROUND AND DEFINITIONS

In this section, we introduce the problem formulation and definitions used throughout the paper.

We consider the robust training problem where we are given a clean dataset and a perturbed dataset,
which is normally the case when we want to train a model robust against natural perturbations where
the perturbation set is difficult to be defined mathematically. For example, we can collect a dataset
of sunny images (x0,x1, ...,xn) and a dataset of rainy i.e. perturbed images (x′

0,x
′
1, ...,x

′
m). Here

the clean dataset is sampled from the clean distribution x ∈ Rd ∼ p(x). Each perturbed example
x′ in the perturbed dataset is corresponding to a clean image x and x′ = g(x, z) where z is the
feature vector for this perturbation and g is the perturbation function. In this work, we focus on rain
and snow perturbations where we can write the perturbation function as x′ = g(x, z) = x + δ =
x + g′(x, z). Here g′ is the function that generates the perturbation mask δ from the perturbation
feature z. Here z can be limited within a pre-defined perturbation set z ∈ ∆ which limits the
perturbation δ from being too strong to alter the semantic meaning of the clean image x.

A classifier trained with a (robust) training algorithm fθ(x) : Rd → C parameterized by θ is
considered as safe for an example x if we cannot find an adversarial example with an adversarial
attack algorithm. In adversarial attack, we find the worst-case examples:

x̂ = argmax
z∈∆

l(fθ(x
′), y). (1)

Here l(·, y) is the standard cross entropy loss where y is the ground-truth label.

If fθ(x̂) = y, fθ is safe for x under adversarial attack. In this work, we evaluate the robustness of a
given model fθ by evaluating the percentage of safe examples in the test set.

4 EVALUATION FRAMEWORK FOR ROBUST TRAINING ALGORITHMS

In this section, we describe our evaluation framework for robust training algorithms. Given a robust
training algorithm, we run the algorithm with the same datasets generated by our framework and
then evaluate the result robust model with the same environment. We illustrate the overview of this
framework in Figure 2.

Differentiable physics-based weather simulator: The key module of this framework is the dif-
ferentiable simulation engine which enables us to apply adversarial attacks directly to evaluate the
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(a) Clean (b) Random (c) Adversarial (d) Difference

Figure 1: Examples for random simulation and simulation attack for rainy effects. (a) is the original
clean image sampled from BIC GSV Kang et al. (2018) dataset.; (b) is produced by random rain
simulation; (c) is an adversarial example for a ResNet34 classifier pretrained with clean training; (d)
is the difference between (b) and (c).

robustness of downstream models without the need for ad-hoc generative models used by previous
works (Wong & Kolter, 2020; Robey et al., 2020).

The simulator generates weather perturbations in a two-stage process: (1) particles rendering, and
(2) particles aggregation.

Falling particles like rain drops and snowflakes are rendered according to physical parameters such
as particle size, scene illumination, and camera settings. For rain drops, we follow Garg & Nayar
(2006). The appearance of each rain drop is controlled by several parameters including camera
angle, rain drop size, light angle, and view angle. For snowflakes, we generate each snowflake from
a Gaussian noise image and control the size, shape, and direction with threshold, standard deviation,
and a motion blur, respectively. By altering these parameters, we are able to generate complex snow
conditions, such as the snow streaks mentioned in Chen et al. (2021). These diverse rain drops and
snowflakes are pre-generated with random parameters and stored in a database.

At the second stage, we randomly sample N particles from the particle database and aggregate them
to form a weather mask. To make it differentiable, each particle image denoted by si is parameter-
ized by a translation matrix Ti and a rotation matrix Ri. We can generate a weather effect mask
with N particles via:

o =

N−1∑
i=0

siRiTi. (2)

Then the mask can be merged with the clean image to produce a perturbed image x′ = o+x(1−o)
where x is the clean image. parameters in the translation matrix Ti and the rotation matrix Ri are
differentiable in adversarial attack. This differentiable aggregation enables us to generate adversarial
examples directly in the simulator:

R∗
i ,T

∗
i = argmax

Ri,Ti

l(f(x′), y),

where Ri and Ti are constrained in some given perturbation set. The constrained maximization
problem can be solved with PGD attack (Madry et al., 2018). We call the adversarial attack with our
differentiable simulator as simulation attack.

In Figure 1, we show examples generated by our simulator and simulation attack. We can see that
the our adversarial examples are of the similar quality as the random ones.

Evaluation framework: We illustrate the overview of our evaluation framework in Figure 2. To
evaluate robust training algorithms, we have a clean dataset which is the same for all training al-
gorithms. Then we use the simulator described earlier to generate a random perturbed dataset with
random transformation and rotation matrix. The clean and perturbed datasets are then fed into the
training algorithm, where potentially the training algorithm includes a module to learn perturbation
set and then conduct adversarial training within this learned perturbation set. After obtaining the
trained robust model, we use the differentiable simulator to evaluate the adversarial natural robust-
ness of this model with adversarial attack on the simulation parameters Ri and Ti.

4



Under review as a conference paper at ICLR 2023

6LPXODWLRQ�(QJLQH

3HUWXUEHG�,PDJHV

"

0RGHO�5REXVWQHVV�(YDOXDWLRQ

"

$GYHUVDULDO�,PDJHV

/HDUQLQJ�3HUWXUEDWLRQ�6HW

$GYHUVDULDO�$WWDFN

$GYHUVDULDO�7UDLQLQJ

*7

&OHDQ�,PDJHV

(YDOXDWLRQ�

7UDLQLQJ *HQHUDWRU

&ODVVLILHU

Figure 2: An overview of our proposed evaluation framework.

5 EVALUATION BIAS IN EXISTING EVALUATIONS

In this section, we evaluate some existing robust training algorithms with our proposed evaluation
framework and compare the results with their own evaluations. We will show that evaluations in
existing work have bias which prefers the models trained with its own generative models.

5.1 SETTINGS

Datasets: Although there are some existing datasets for rain and snow effects like Snow100k (Liu
et al., 2018), Snow Removal in Realistic Scenarios (Chen et al., 2020), and Rain100 (Zou et al.,
2020), they are designed for deraining or desnowing tasks and do not have classification labels. In
our experiments, we choose two streetview classification datasets which are suitable for weather
effects. The BIC GSV (Kang et al., 2018) dataset contains streetview figures extracted from Google
StreetView labeled as 8 classes.

Another dataset is the commonly used Places365 dataset (Zhou et al., 2017) for scene recognition
which includes 365 scene categories. We picked a subset with 7 outdoor scenes from Places365 as
the dataset used in our experiments. We also picked another 4 classes for our unpaired dataset. A
list of categories chosen in the subset can be found in the Appendix. When the Places dataset is used
for training the unpaired generator models, we generate the perturbed dataset from the additional 4
classes. In all of our experiments, the input images are resized to 256× 256 pixels. The number of
particles in simulation is set to be 2,000.

Robust training algorithm baselines: We include three robust training algorithms in our eval-
uation experiments. VRGNet (Wang et al., 2021) proposes a Bayesian weather generation model
to generate rain/snow masks with an input latent code which can be used in adversarial training by
attacking the latent code. Robey et al. (2020) implements MUNIT (Huang et al., 2018) as the gen-
erator model which maps clean images to naturally perturbed images with a latent code which can
also be used in adversarial training. For experiments related to MUNIT, we implemented a modified
version of MUNIT for weather perturbations. The architecture of MUNIT used in our experiments
can be found in the Appendix. Wong & Kolter (2020) learns the perturbation set with a CVAE model
conditioned on a latent code. Both VRGNet and CVAE require paired datasets and MUNIT supports
unpaired datasets.

Training settings: The number of dimensions for the latent code in VRGNet, MUNIT is set at
128. MUNIT is trained with a learning rate of 2e-4 for 5 epochs. For VRGNet, we ran the code
provided by the authors for 100 epochs on our datasets with default hyper-parameters. For the
CVAE model, we ran the code provided by the authors with the same configuration as the Multi-
illumination dataset. For VRGNet and CVAE, we scaled the encoder and decoder to fit the image
size in our datasets. Details of the architectures are listed in the Appendix. For all adversarial
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Table 1: Ranks and robust error (R.E.) of different training methods under different evaluations for
BIC GSV (Kang et al., 2018) with rainy effects. Method with the lowest robust error is ranked as
1. “Random” is evaluated with randomly generated perturbed images, VRGNet (Wang et al., 2021),
CVAE (Wong & Kolter, 2020) and MUNIT (Robey et al., 2020) are evaluated with adversarial attack
based on different generators and “Attack” is evaluated with simulation attack.

Training methods Random VRGNet CVAE MUNIT Attack
Rank R.E. Rank R.E. Rank R.E. Rank R.E. Rank R.E.

Clean Training 4 0.6424 5 0.7634 5 0.4893 5 0.8027 5 0.6890
Augmented Training 3 0.4815 3 0.5656 2 0.4592 3 0.5928 3 0.5136

VRGNet AT (Wang et al., 2021) 1 0.4587 1 0.4767 3 0.4742 1 0.5063 1 0.4665
CVAE AT (Wong & Kolter, 2020) 5 0.6113 4 0.7498 3 0.4742 4 0.7430 4 0.6477
MUNIT AT (Robey et al., 2020) 2 0.4728 2 0.5228 1 0.4397 1 0.5063 2 0.4893

training, we set batch size to 8 and learning rate to 5e-5. After obtaining these trained generators,
we use them to train a ResNet34 classifier with adversarial training. More details on the classifier
training are introduced in Section 7.

5.2 EVALUATION RESULTS

We evaluate and compare the robust error of five models trained with different methods under the
five evaluations for BIC GSV (Kang et al., 2018) under rain perturbations. Clean training is trained
with only the clean dataset. Augmented Training is augmented with randomly perturbed images
from the simulator. For the five different evaluation methods, we use 10-step PGD attack in all
methods that requires adversarial attack. In Table 1, we list the ranks of different training methods
under different evaluations where the model with the lowest robust error is ranked as 1. We also
report the exact numbers in evaluation.

As illustrated in Table 1, if we train and test a model using the same generator, the model can over-
fit the perturbation set defined by the generator during training. For example, when evaluating the
model with adversarial attacks using VRGNet or MUNIT, the model trained with the correspond-
ing AT has the best adversarial robust accuracy. This result validates our motivation to propose a
standard evaluation protocol for robust training algorithms.

6 GENERATE DIVERSE WEATHERS WITH IMPROVED GAN

6.1 LACK OF DIVERSITY IN EXISTING METHODS

In this section, we illustrate why these existing methods, especially CVAE and MUNIT fail to be
robust under our evaluation framework. We start the analysis by showing the adversarial examples
generated by generative models used in these robust training algorithms. We show the clean images
and corresponding generated adversarial images by different methods in Figure 3. For each method,
we show 3 groups of generated adversarial examples. For each group, we randomly sample 3 latent
codes and generate natural adversarial examples using its generative model and 10-step PGD attack
starting from this latent code. The generative models are trained with the same setting as in Section 4
and we attack a clean trained ResNet34 model on BIC GSV to generate these adversarial examples.

As shown in Figure 3, CVAE fails to capture the rain perturbation set with high diversity and simply
generates adversarial examples with imperceptible perturbations. MUNIT is able to learn the pertur-
bation set from given datasets, however, since the generator is conditioned on the original image to
generate a perturbed image, the generator can make use of some lines on the clean image to generate
rain streaks. The diversity is therefore limited and the distribution of strong streaks are similar for
these generated examples.

6.2 GENERATE MORE DIVERSE PERTURBATIONS WITH IMPROVED GAN

Inspired by the observations in Section 6.1, we introduce a light-weight model based on Generative
Adversarial Networks (GANs), which is an improved version over MUNIT. With GANs, we can
model the perturbation set from unpaired clean and perturbed datasets which are more feasible in
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Figure 3: Illustration of adversarial examples generated by PGD attack with CVAE and MUNIT.
Column 1: Clean images. Column 2-4: Adversarial examples generated by PGD attack with CVAE
starting from three different random latent codes. Column 5-7: Adversarial examples generated by
PGD attack with MUNIT starting from three different random latent codes.

real-world scenarios. In short, we want to learn a model g(x, z) which can map a clean image x to a
perturbed image x̂ = g(x, z) where the diversity of perturbations can be captured by the latent code
z.

In MUNIT, the GAN model transforms the original clean image into a perturbed image given the
latent code. The GAN model is conditioned on the clean image as well as the latent code to generate
the perturbed image, which can weaken the connection between latent code and perturbations. For
example, on Row 2 in Figure 3, the MUNIT generator makes use of window borders on buildings
to generate rain streaks. To address this issue, we only use the GAN to model the rain/snow mask
inspired by the simulation process for weather effects. We then combine the mask with the original
clean image. Specifically, the model g(x, z) is decoupled into g(x, z) = x + g′(z)(1 − x) where
g′(z) is the generator for the rain/snow mask.

We show an overview of the generator architecture in Figure 4 which is highlighted by orange
arrows. The model includes a decoder g′(z) which maps a latent code z to a rain/snow mask. To
stabilize the training, we also incorporate an inverse encoder h(x) which encodes the perturbed
image into a latent code and recovers the clean input image.

Loss construction: To encourage the generator to generate realistic rain/snow masks, we use a
discriminator D1 to distinguish generated perturbed images and perturbed images from the dataset.
For the inverse encoder h(x̂), we include another discriminator D2 to discriminate the real clean
image and the reconstructed clean image. This constructs the standard GAN loss for forward gener-
ation where

LGAN,1 = Ez∼p(z),x∼p(x)[log(1−D1(g(x, z)))] + Ex̂∼p(x̂)[logD1(x̂)].

The standard GAN loss for discriminator D2 can be defined similarly.

In addition to the standard GAN loss, we also incorporate reconstruction loss Lx
recon, L

z
recon for the

input image and the latent code to encourage the generator to preserve the semantic meaning of input
images and also generate diverse weather effects controlled by the latent code. A small identity loss
Lidentity is also added for stable training.

Lx
recon = Ez∼p(z),x∼p(x)[∥hx(g(x, z))− x∥1],

Lz
recon = Ez∼p(z),x∼p(x)[∥hz(g(x, z))− z∥1],

Lidentity = Ex∼p(x)[∥hx(x)− x∥1].

Total loss: Combining all the losses with weighted sum, we can get the total loss as

LGAN = LGAN,1 + LGAN,2 + Lx
recon + Lz

recon + Lidentity.
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Figure 4: An overview of the GAN model introduced in Section 6.2. Architecture of the generator
is highlighted by orange arrows.

Adversarial training: Given unpaired clean and perturbed datasets, we can train a generator
g(x, z) as described before. We can then use this generator in adversarial training to improve the
adversarial robustness of downstream classifiers under natural weather perturbations.

The optimization equation 1 can be converted to finding the latent code z that can produce the worst-
case perturbed image. By applying adversarial attack on the latent code z, we can use any existing
adversarial training algorithm to boost the adversarial robustness of downstream models. We use
x̂i to denote the adversarial example found for xi given a downstream model f(x), then we can
construct the adversarial loss for adversarial training as

zi ∼ N(0, I),

z′i = argmax
∥z′

i∥=∥zi∥
l(f(g(xi, z

′
i)), y), ,x

′
i = g(x, z′), (3)

Ladv = λclean

∑
(xi,yi)∈O

l(f(xi), yi) + (1− λclean)
∑

x′
i:(xi,y)∈O

l(f(x′
i), yi),

where λclean ∈ [0, 1] is the weight factor for clean training.

7 ROBUST TRAINING WITH OUR IMPROVED GAN

To boost the adversarial robustness under weather perturbations, we apply adversarial training (AT)
by augmenting with adversarial examples generated by our proposed GAN model. We compare
the performance of AT with our proposed GAN model with AT augmented by baseline generators.
Besides generator-based AT, we also trained classifiers with clean training, augmented training with
random perturbed images, and AT with PGD attack within the ℓ∞ perturbation with perturbation
radius ϵ = 1/255. We use 5-step PGD in all training methods that requires adversarial training.

Datasets: For the clean datasets, we reuse the datasets BIC GSV and Places365 used in Section 5.
All the robust training algorithms are trained with the same clean dataset. The randomly perturbed
dataset required by MUNIT, VRGNet, CVAE and our GAN model is generated by the simulator
described in Section 4. For CVAE and VRGNet, the datasets are paired while for other methods the
datasets are unpaired.

Classifier training setup: We use ResNet34 as our classifier architecture, which is one of the
models used in Kang et al. (2018). We also follow the hyperparamter settings in Kang et al. (2018)
where the learning rate is 5e-5, and the weight decay is 1e-5. We also add standard data augmenta-
tions, including random crops and horizontal flips in the training. For all the adversarial training and
augmented training, we set the ratio of clean training to be λclean = 0.1. We trained the classifier for
10 epochs and we choose the epoch with the best adversarial robust error among the 10 epochs for
each configuration and evaluate the clean error and perturbed error of this epoch. For each dataset,
we also list the best clean accuracy from clean training among the 10 epochs.
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Table 2: The clean error, adversarial robust error (Adv Err.) and error under random perturbations
(Perturbed Err.) of models under rain and snow perturbations. Adv Err. is evaluated with simulation
attack, and perturbed error is evaluated with random simulation.

Dataset Training methods Rain Snow

Clean Err. Adv Err. Perturbed Err. Clean Err. Adv Err. Perturbed Err.

BIC GSV(Kang et al., 2018)
Best clean err.: 0.4339

clean training 0.4344 0.6890 0.6467 0.4524 0.5330 0.5180
Augmented Training 0.4257 0.5136 0.4825 0.4310 0.4801 0.4650
ℓ∞ AT (ϵ = 1/255) 0.4402 0.6492 0.5986 0.4699 0.5389 0.5243

VRGNet AT *(Wang et al., 2021) 0.4441 0.4665 0.4587 0.4286 0.4495 0.4407
CVAE AT *(Wong & Kolter, 2020) 0.5005 0.6477 0.6161 0.4966 0.5831 0.5734
MUNIT AT (Robey et al., 2020) 0.4388 0.4893 0.4772 0.4286 0.4563 0.4456

Ours AT 0.4281 0.4631 0.4553 0.4212 0.4470 0.4383

Places(Zhou et al., 2017)
Best clean err.: 0.2357

clean training 0.2443 0.3729 0.3514 0.2443 0.2957 0.2829
Augmented Training 0.2542 0.2857 0.2700 0.2514 0.2700 0.2643
ℓ∞ AT (ϵ = 1/255) 0.2786 0.3843 0.3686 0.2571 0.3086 0.3014

VRGNet AT *1(Wang et al., 2021) 0.2543 0.2671 0.2543 0.2414 0.2500 0.2471
CVAE AT *(Wong & Kolter, 2020) 0.3029 0.4243 0.4143 0.2686 0.3171 0.3071
MUNIT AT (Robey et al., 2020) 0.2300 0.2786 0.2729 0.2529 0.2671 0.2643

Ours AT 0.2343 0.2614 0.2557 0.2257 0.2443 0.2386
* VRGNet and CVAE models are trained on paired dataset.

Table 3: Average variance of the generated perturbed images of different methods. We compare the
average variance of our GAN model with two generative models for unpaired datasets.

MUNIT CVAE Our GAN model

Avg. variance 14.94 0.03 97.65

Better natural adversarial robustness under simulation attack: In Table 2 we list the clean
error and the adversarial robust error evaluated by simulation attacks. Note that in (Kang et al., 2018)
they classify a building by averaging the predictions of images taken from different view angles, but
the view angles are not provided in the open-sourced dataset. Therefore, they have a higher clean
accuracy than our results. As shown in the table, adversarial training with our GAN model achieves
the best adversarial robustness under simulation attack with unpaired dataset. Compared with CVAE
and VRGNet which only support paired dataset, adversarial training with our model can achieve
comparable robust accuracy with better clean accuracy. Besides, the adversarial augmentation can
also help the model to generalize better in the test set with a higher clean accuracy.

More diverse perturbations: To show that our improved GAN model is able to generate more
diverse perturbations with the same training datasets, we compare the diversity with average variance
of the generated images. For each method, we sample 10 clean images from the BIC GSV dataset
and generate 10 perturbed images with random latent codes. Then we compute the diversity score as
the average variance of all pixel among these 10 generated images. We report the average diversity
score among 10 samples of each method in Table 3. We can see from the table that our GAN model
can generate perturbations with the highest diversity.

8 DISCUSSION

In the paper, we propose the first standard evaluation protocol for robust training algorithms under
perturbation sets beyond ℓp. This addresses a gap in the community as evaluations were previously
performed using ad-hoc generative models that were also used by the robust training algorithms.
Conscious of the limited diversity in weather perturbations generated by existing works, we show
that our light-weight GAN can not only produce diverse perturbations, but also yields classifiers
that achieve the best adversarial robustness among existing works. Although the evaluation results
can provide some insights for other perturbation sets beyond ℓp, our work currently only focuses on
weather perturbations i.e. rain and snow. We expect to extend to more perturbation sets in the future.
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A APPENDIX

A.1 EXPERIMENT DETAILS

Computational resources All the experiments are conducted on a single NVIDIA GeForce RTX
2080 Ti GPU. One epoch of adversarial training with our GAN model takes around 40 minutes on
BIC GSV dataset and 80 minutes on the Places dataset. The time cost of simulation attack with
PGD-10 on Places dataset is around 10 minutes per epoch and on BIC GSV dataset is around 25
minutes per epoch.

Datasets For Places dataset, we picked 7 categories from the 365 categories in Places365
Zhou et al. (2017) dataset as the training and test datasets for classifier training, including:
apartment building-outdoor, church-outdoor, garage-outdoor, general store-outdoor, house, library-
outdoor and office building. For generator training which supports unpaired dataset, we picked 4
additional categories to generate the perturbed dataset, which includes art gallery, entrance hall,
golf course and yard.

Classifier architectures We use ResNet34 He et al. (2016) as our classifier architecture. In our
classifier training, we initialize the Resnet34 classifier with pretrained weights on Imagenet provided
by cnn finetune1 and the final linear layer is randomly initialized.

Generator architectures We implement MUNIT and our model based on pytorch-CycleGAN-
and-pix2pix.2 We denote a convolutional layer with padding 1, k 4 × 4 filters and stride s as Ck-s.
Then the discriminators can be represented as C64-2 C128-2 C256-2 C512-2 C512-1 C1-1.

For the generators, we let x-Rk denote x ResNet blocks, each of which contains two 3 × 3 con-
volutional blocks with k filters, TCk denote a transpose convolutional block with k filters of size
3, stride 2, padding 1, output padding 1, SCk denote a convolutional block with k filters of size 3,
stride 2, padding 1 and Ck denote a convolutional block with k filters of size 7 and padding 0. Then
the mask generator can be represented as 9-R256 TC256 TC256 C3. The generator from perturbed
image to clean image can be represented as C64 SC128 SC256 9-R256 TC256 TC256 C3. In our
MUNIT implementation, we insert the latent code by concatenating into the hidden layer of the gen-
erator from clean images to perturbed images. The generator from clean image to perturbed image
can be represented as C64 SC128 SC256 9-R257 TC257 TC257 C3 where the latent code which is
transformed by a full-connected layer is concatenated with the output of SC256. For our model and
MUNIT, we also have a simple convolutional neural network to reconstruct the latent code which
takes the output of 9-R256 as the input. The architecture can be represented C16 C32 C64 L128
L128 where Ck is a convolutional layer with k 4 × 4 filters, stride 2 and padding 1 and Lk is a
fully-connected layer with output dimension k.

For VRGNet and CVAE, we run the code provided by authors and we scale the architectures defined
in the VRGNet code to fit the image size in our dataset where the input is randomly cropped to
224×224 in training. The weather mask generator architecture in VRGNet is L12544 TC128-4-2-1
TC64-4-2-1 TC32-4-2-1 TC3-8-4-2 and the encoder architecure is C32-8-4-2 C64-4-2-1 C128-4-2-
1 C256-4-2-1 L256 where Lk is a fully-connected layer with output dimension k and TCk-f-s-p and
Ck-f-s-p are a transposed convolutional and convolutional layers with k filters of size f, stride s and
padding p.

License of the assets We include the licenses of codebases in the submitted code of our supple-
mentary material. For Places and BIC GSV datasets, they do not explicitly contain a license in their
code repository, but are under MIT license.

A.2 ADDITIONAL RESULTS

Ablation study Here we did an ablation study to show the effectiveness of our proposed GAN
model. There are two modules in the decoder of our GAN model including hz and hx. Including

1https://github.com/creafz/pytorch-cnn-finetune
2https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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Figure 5: Examples of images used to compute the average variance score in Table 3 for our GAN
model.

hz in the GAN loss will encourage the model to use the information in z when generating the
perturbations. And including hx is a common practice used in GAN training which can stabilize the
training Zhu et al. (2017). As an ablation study, we trained a GAN model without hz and listed the
clean accuracy and robust accuracy of the model trained with the GAN without hz under simulation
attack in Table 4.

Table 4: Ablation study: Performance comparison of adversarial training using GAN model with
and without hz .

AT with our GAN w/ hz 0.4631
AT with our GAN w/o hz 0.4757

Without hz , the GAN model will generate weather masks without diversity and therefore decrease
the robust accuracy.

Examples of images used to compute Table 3 We show some examples of images used to com-
pute the variance score for MUNIT and CVAE in Figure 3. Here we show some examples of images
used to compute the average variance of our GAN model in Figure 5. We can see that our model can
generate rainy images with more diverse rain steak distribution.
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