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Abstract

A remarkable surge in utilizing large deep-learning models yields state-of-the-art
results in a variety of tasks. Recent model sizes often exceed billions of param-
eters, underscoring the importance of fast and energy-efficient processing. The
significant costs associated with training and inference primarily stem from the
constrained memory bandwidth of current hardware and the computationally inten-
sive nature of these models. Historically, the design of machine learning models
has predominantly been guided by the operational parameters of classical digital
devices. In contrast, analog computations have the potential to offer vastly im-
proved power efficiency for both inference and training tasks. This work details
several machine-learning methodologies that could leverage existing analog hard-
ware infrastructures. To foster the development of analog hardware-aware machine
learning techniques, we explore both optical and electronic hardware configurations
suitable for executing the fundamental mathematical operations inherent to these
models. Integrating analog hardware with innovative machine learning approaches
may pave the way for cost-effective AI systems at scale.

1 Introduction

The remarkable success of generative machine-learning (ML) approaches has captivated global
attention by their recent demonstrations of human-quality images, texts, and audio, setting the stage
for a transformative era in artificial intelligence. The rapid proliferation of these technologies across
various industries has placed a significant demand on more energy-efficient hardware solutions.
While cost-effective training has been a longstanding pursuit, the rise in utilization of these models
underscores the significance of efficient model inference, the cornerstone of future developments.
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ML models have been intricately co-designed for the past decade with digital hardware, leading to
substantial advancements in AI capabilities. However, the emergence of analog hardware presents a
tantalizing opportunity for a leap in performance, potentially surpassing the capabilities of classical
digital hardware by orders of magnitude. Leveraging analog hardware for machine learning can be
approached in two fundamental ways.

The first approach involves the direct mapping of existing successful deep neural models onto
unconventional analog hardware that particularly excels in finding equilibrium solutions within
complex systems, often referred to as stationary or fixed point solutions. In Section 2, we will
emphasize methods that seamlessly lend themselves to efficient analog implementations to both
inference and training, highlighting some of the most prominent neural network architectures in
Section 3.

While retrofitting existing models onto analog hardware is a viable strategy, we advocate for the
second approach in which we examine the core mathematical operations that underpin the majority
of ML models. These individual operations and their effective implementation across various analog
hardware paradigms, including optical, electronic, and hybrid solutions, are discussed in Sections 4-5.
Crafting novel ML techniques that are inherently aware of the unique capabilities of analog hardware
to realize such operations could help redefine the energy efficiency boundaries of large ML models.

2 Algorithms for training and inference in analog hardware

Training, inference, or both? Typical deep learning workflow comprises two distinct phases:
training and inference. The training phase entails the iterative refinement of a potentially extensive
parameter set, i.e., weights and biases to minimise a specified error or loss function. In the inference
phase, these parameters remain immutable and only the model variables, i.e., activations evolve to
produce predictions for the given input data.

Analog hardware offers the tantalizing promise of twofold acceleration in processing speed at the
same power efficiency as digital hardware. This acceleration tempts one to establish an entirely
analog pipeline to execute both the training and inference phases. Such a pure analog pipeline avoids
parameter transfer, which could be challenging as analog hardware imperfections could compromise
the model accuracy trained in the digital domain.1 However, confining the training process to
conventional digital hardware while reserving analog hardware solely for inference tasks could be
advantageous for several reasons.

First, while a single training run incurs higher computational costs than a single inference operation,
the latter is executed numerous times once the trained model is deployed for practical applications.
Consequently, the cumulative computational demands for inference can substantially surpass training
demands [Desislavov et al., 2023].

Second, the prevailing method for training neural networks is undeniably backpropagation (BP).
The realization of BP in an analog setting remains to be determined at present. Current proposals
exploring the use of analog hardware for ML model training either resort to alternatives to BP
[Kendall et al., 2020] or involve digital-to-analog and analog-to-digital converters that tend to be
inefficient [Li et al., 2018, Rekhi et al., 2019, Anderson et al., 2023]. Alternative training methods
often exhibit inferior performance on digital hardware compared to BP but may present themselves
as viable contenders when implemented in analog hardware. Hence, we consider models utilizing
alternatives to BP weight update strategies in subsequent sections.

Energy Based Models (EBMs). EBMs are a class of neural networks whose dynamics seek to
minimize a global energy function. As an example, we consider feedforward neural networks with
neural activations x = {xl}Ll=0 and weights W = {Wl}Ll=0 across L layers. The input layer x0 is
always fixed to the input data vector d. In EBMs, the energy E(x,W ) is a function of both the neural

1Another aspect to consider in this discussion might be the recently proposed concept of Mortal Computation
[see Hinton, 2022, Section 9]. In short, this is the idea that weights could be inherently linked to the physical
substrate in the analog domain and thus “die” when the physical hardware dies. Contrast that to neural networks
run on conventional hardware where weights are encoded in an abstract way (strings of bits that represent
floating point numbers) that is independent of the actual hardware used. A more detailed discussion of Mortal
Computation and how it relates practically to the use of analog hardware in machine learning is, unfortunately,
outside the scope of this review.
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activities and the weights inducing the dynamics

dxl

dt
= − ∂E

∂xl
,

dWl

dt
= − ∂E

∂Wl
. (1)

Only the neural activations are updated according to the first equation until an equilibrium (or fixed
point) is reached during inference. During training, these equilibrium activations are further used
for updating the weights according to the second equation. Such parameter update rule is equivalent
to BP in a certain limit. It unifies several previously investigated models under a common energy
framework [Millidge et al., 2023], including predictive coding (PC), contrastive Hebbian learning
(CHL), and equilibrium propagation (EqProp).

The energy function in PC is derived from a probabilistic model for supervised learning [Whittington
and Bogacz, 2017] and is given by

E =

L∑
l=1

W 2
l (xl − f(Wl−1xl−1))

2
, (2)

where f(·) is a nonlinear function. Each term in the sum quantifies how much the output of one
layer deviates from the prediction of the previous layer (hence the name predictive coding). The
weights Wl can be interpreted as inverse covariances, giving the network information about its own
uncertainty.

CHL operates in two phases. In the free phase, the neurons x0 are fixed to the input data, the model
searches for an equilibrium state xf . The weights are then updated according to the anti-Hebbian rule
∆W ∝ −xfx

T
f . In the clamped phase, the output neurons are also set to specified targets and the

model reaches the clamped phase equilibrium xc. Afterwards, the Hebbian update rule is performed
for the weight as ∆W ∝ xcx

T
c . Such a two-phase approach minimizes the cost function

C(W ) = E(xc,W )− E(xf ,W ) , (3)

where E(x,W ) = −xTWx − bTx is the Hopfield energy with a bias vector b [Hopfield, 1984].
In a first-order approximation, the CHL is equivalent to BP [Xie and Seung, 2003]. In the EBM
framework, PC is recognized as a variant of CHL that uses the energy (2) instead of the Hopfield
energy [Millidge et al., 2023].

In EqProp [Scellier and Bengio, 2017], the energy function E(x,W ) = I(x,W ) + λL(xL, T )
consists of two parts: internal energy I and a loss L that depends only on the activations in the
final layer L and the targets T . Similar to CHL, EqProp is a two-phase method. In the free phase,
λ = 0 and the network activations vary freely according to the gradient of the internal energy until an
equilibrium state xf is reached. In the second nudged (soft clamping) phase, the λ parameter is set to
a small value and another equilibrium state xλ is found. Weights are then updated according to

∆W ∝ 1

λ

[
f(xλ)f(xλ)

T − f(xf)f(xf)
T
]
. (4)

The EqProp weight update rule is shown to approximate BP in the limit λ → 0 [Scellier and Bengio,
2017] and is equivalent to CHL in the limit λ → ∞, when the output neuron activations are clamped
to the targets rather than nudged in their direction.

A modified variant of EqProp with nudging for both positive and negative λ values have recently been
successful in training larger-scale neural networks [Laborieux et al., 2021]. Several works proposed
EqProp as a method to train end-to-end analog neural networks [Kendall et al., 2020, Zoppo et al.,
2020].

Other non-BP algorithms. The recently proposed forward-forward (FF) algorithm performs the
same forward pass for two types of input data [Hinton, 2022]. The first forward pass is applied for
“positive” data, which consists of the real data with correct labels. The weights are then adjusted to
increase a certain measure of goodness in every hidden layer. The second forward pass operates on
“negative” data that could be obtained by corrupting real data or correcting labels. The weights are
updated to decrease the goodness in every hidden layer.

As a possible goodness measure, the sum of squared neural activities in a layer is proposed in Hinton
[2022]. After each layer, the output activations are normalized, hence “resetting” the goodness for
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the next layer. Such resetting prevents the subsequent layers from learning to trivially measure the
goodness of the previous layer and forces each layer to use the given information in the relative neural
activities.

For analog computing, the FF method could be easier to realize than BP. BP requires perfect
knowledge of the forward pass for computing correct derivatives in the backward pass. In contrast,
the FF approach can deal with a black box inserted in the forward pass, allowing one to embrace the
inherited imperfections of analog hardware [Momeni et al., 2023]. Similar to the other alternatives
to BP, the FF method could also eliminate the need to use digital-to-analog and analog-to-digital
converters, which are needed to implement BP in the analog domain.

Other algorithms proposed in the past are target propagation [Le Cun, 1986, Bengio, 2014, Lee et al.,
2015] and feedback alignment [Lillicrap et al., 2016]; both of which, however, do not scale to larger
networks [Bartunov et al., 2018].

3 Notable Neural Network Architectures for Analog Implementation

Deep Equilibrium (DEQ) models. In the equilibrium models above, the feedforward-like neural
networks are usually considered at each iteration, with additional iterations performed until reaching
convergence criteria. The generalization of these approaches to an arbitrary neural network architec-
ture at each iteration is known as the DEQ model [Bai et al., 2019]. In DEQ models, the network
architecture is represented as a single implicitly defined layer, fθ, and the forward pass searches for
the fixed point x⋆ of the equation fθ(x

⋆, x0) = x⋆ for input data x0. To update parameters without
computing the inverse Jacobian, the backward pass computes another fixed point to find the vector
Jacobian product. In the context of analog hardware, implementing the DEQ model would require
engineering hardware capable of finding two fixed points in both forward and backward passes and
realizing Jacobians over parameters and variables. In this way, DEQs could be another method that
enables both training and inference in analog hardware.

Recurrent neural networks (RNNs). In contrast to feedforward neural networks, RNNs allow
neurons to be connected in a loop. This causes information to persist through the network, enabling
RNNs to exhibit short or long-term memory. RNNs shine at tasks that can be expressed as trans-
forming an input sequence into an output sequence including speech recognition, transcription, and
machine translation.

A recent paper [Ambrogio et al., 2023] has presented an analog AI chip for running one of the most
widely used RNN architectures, the RNN transducer model. This chip is based on phase-change
memory devices and performs inference on a speech-to-text transcription task with accuracy similar
to digital hardware. Zoppo et al. [2020] proposed a memristor-based RNN for fully analog training
and inference.

A type of stochastic RNN that is used for optimization and learning tasks are Boltzmann Machines
(BMs) [Salakhutdinov and Hinton, 2009]. BMs are visible, hidden, interconnected nodes that can
take on binary states. BMs are based on a probabilistic model in which the probability distribution of
the data is approximated using a finite set of samples. The probability of a particular configuration
of the network is given by the Boltzmann distribution exp[−E(x, h)]/Z, where Z is the partition
function given by the sum of exp[−E(x, h)] over all possible configurations of states x and h. In
such architecture, stochastic operation and energy-based frameworks are naturally suited for finding
solutions that minimize (or maximize) certain criteria and allow them to learn and represent complex
data distributions for feature learning, pattern recognition, and optimization.

Transformers. Recently, the transformer architecture [Vaswani et al., 2017] has replaced RNNs
and convolutional neural networks as the state-of-the-art for many tasks, including language, vision,
and audio processing. Among other things, it has fueled the current success of large language models
(LLMs) [OpenAI, 2023]. Since these models use billions of parameters, training and inference are
resource-intensive.

A possible optical implementation of transformer architecture is discussed in Anderson et al. [2023].
Currently, their optical hardware performs only linear operations, requiring conversions to the digital
domain for realizing nonlinearities and attention, and the weights are pre-trained using a model aware
of the limited precision of the optical hardware. In principle, their simulations show that optical
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hardware could be 100 times more energy efficient than conventional hardware. Another recent work
attempts to build a more solid theoretical foundation for the transformer by replacing it with the
energy transformer [Hoover et al., 2023]. The energy transformer is characterized by a global energy
function similar to EBMs.

Diffusion models. Diffusion models [Sohl-Dickstein et al., 2015] have recently become state-of-
the-art models for generating high-quality images [Dhariwal and Nichol, 2021, Ramesh et al., 2021,
Meng et al., 2022, Nichol et al., 2022]. Their generative process relies on the iterative injection of
Gaussian noises.

Generating sequential Gaussian noise with specific mean and variance values can be challenging
in analog hardware due to inherent nonlinearities and variations. This complexity underscores
the importance of exploring alternative diffusion mechanisms. Such alternatives, potentially more
amenable to implementation in unconventional hardware, merit deeper investigation. For example,
deterministic image degradation techniques [Bansal et al., 2022] are still behind traditional diffusion
models but could be easier to realize in analog hardware. Overall, in scenarios where the diffusion
process’s robustness, security, or accuracy is paramount, the true randomness provided by physical
random number generators can be a significant advantage.

4 Core operations

Linear operations. Linear computations make up the overwhelming majority, even in smaller ML
models [Anderson et al., 2023, Matuszewski et al., 2023]. Hence, analog hardware accelerators are
commonly built for performing matrix-vector or matrix-matrix multiplications. Analog accelerators
are particularly suited to this type of computation because the multiply and accumulate operation
(MAC) can be naturally realized through either Kirchhoff’s Law and Ohm’s Law in electronic devices
[Jo et al., 2010, Sebastian et al., 2020, Zoppo et al., 2020, Ambrogio et al., 2023] or the superposition
of light in optical or photonic devices [Shen et al., 2017, Andregg et al., 2019, Hamerly et al., 2019,
Zuo et al., 2019, Bogaerts et al., 2020, Spall et al., 2020, Wang et al., 2022, Anderson et al., 2023].

Optical hardware has also been used to implement convolutions and convolutional neural networks
[Miscuglio et al., 2020, Feldmann et al., 2021, Wu et al., 2021, Xu et al., 2021].

Many schemes for analog matrix or vector multiplication only allow for static weights, where only
the input vector can vary during runtime. This poses an issue for operations like dot-product attention,
which have to perform vector-vector dot product of queries and keys which are dynamically defined
for a given input.

Nonlinearities. Real-world problems are nonlinear by their nature, which requires one to realize
nonlinear activation functions for building deep neural networks. The commonly used activations
from various nonlinearities include sigmoid, hyperbolic tangent, and rectified linear unit (ReLU),
which act elementwise on an input. Another group of nonlinearities, such as softmax or layer
normalization, affect the layer as a whole. Such non-elementwise nonlinearities are generally more
difficult to implement in analog hardware while they are critical for realizing the attention mechanism
in transformer models [Vaswani et al., 2017, Hoover et al., 2023].

Nonlinearities can be applied in analog electronic circuitry by using a ramp and comparator arrange-
ment [Chang et al., 2019]. The shape of the ramp pulse then determines the kind of nonlinearity. Most
easily implementable with this setup are piecewise linear functions like ReLU or “hard” versions of
the sigmoid or tanh function. More precise nonlinearities are, in principle, possible but require a
more complicated pulse shapes.

To realize nonlinearities in optics, only a few mechanisms are available, among them optical bistability
[Goldstone and Garmire, 1984, Ríos et al., 2015], saturable absorption [Selden, 1967, Cheng et al.,
2014] and electromagnetically induced transparency [Boller et al., 1991, Zuo et al., 2019].

In hybrid optoelectronic setups, optical signals can be converted to analog electronic signals to apply
nonlinearities in the electronic domain [Hamerly et al., 2019, Kalinin et al., 2023]. Another possibility
is to exploit the inherent nonlinearity of photoelectronic conversion when using photodiodes [Chen
et al., 2023].

5



Noise and (pseudo-) randomness. The presence of classical and quantum noise can reduce the
effective bit precision of weights and variables in neural networks. The unexpectedly lower weight
precision could lead to worse performance for the digitally trained models with weights transferred
to analog hardware. One could introduce noise during training or use stronger weight quantizations
to mitigate noise effects. Another method, which comes at the cost of increased energy, time, or
area usage, is to implement architectural elements in the analog hardware that aim to compensate for
noise, such as the MAC asymmetry balance method in [Ambrogio et al., 2023].

The recent success of diffusion models offers another perspective on noise. In these models, noise
is injected in a specific and controlled manner to realize a diffusion process whose inverse can then
be learned. To implement such a model in fully analog hardware, we would need components that
can efficiently sample from a given probability distribution. Such a component could be built, for
example, out of asymmetric dyads in photon or polariton condensates [Johnston and Berloff, 2022].

5 Candidate analog technologies

Analog electronic hardware The primary way neural networks are implemented in analog elec-
tronic hardware is via circuits of memristors. Memristors are two-terminal electronic devices whose
conductance can be modulated by controlling the charge or flux through them and can thus act
as artificial synapses [Jo et al., 2010]. The predominant memristor technologies are phase-change
memories [Chang et al., 2019, Narayanan et al., 2021, Marrone et al., 2022, Ambrogio et al., 2023]
and transition metal-oxide memristors [Hu et al., 2018, Lin et al., 2020, Yao et al., 2020].

Optical and photonic technologies In the optical domain, a large variety of technologies is
proposed to implement core operations in neural networks using free-space setups and integrated
photonic circuits. These range from integrated optical elements like programmable Mach-Zehnder
interferometer (MZI) meshes [Shen et al., 2017, Bogaerts et al., 2020], photonic crossbar arrays
using phase-change materials [Feldmann et al., 2021], or microring weight banks [Tait et al., 2015,
2016] to free-space setups using spatial light modulators (SLMs) [Andregg et al., 2019, Spall et al.,
2020, Wang et al., 2022], 3D-printed diffractive elements [Lin et al., 2018], or coherent photoelectric
multiplication [Hamerly et al., 2019]. Most of these components can be used to perform matrix-vector
multiplication with statically encoded weights, while the coherent matrix multiplier of Hamerly et al.
[2019] can also adjust weights dynamically. The diffractive elements in Lin et al. [2018] lead to a
network with complex biases, thus implementing a deep complex network [Trabelsi et al., 2018].

A summary of electronic and optical AHW and its ML applications can be found in Table A1.

Quantum Machine Learning Many basic operations can benefit from quantum hardware. Quan-
tum mechanics is based on matrix operations on vectors in high-dimensional vector spaces, so
speed-up over various linear algebraic operations such as Fourier transforms [Shor, 1999], solving
linear equations [Harrow et al., 2009], and finding eigenvectors and eigenvalues [Abrams and Lloyd,
1999] is expected.

Quantum systems can capture more complex correlations and dependencies in data using entan-
glement and quantum interference. For instance, in a quantum implementation of the Boltzmann
Machine (QBM) [Amin et al., 2018], the classical energy function is replaced with the energy of the
quantum system (quantum Hamiltonian that uses the quantum analogs of weights and biases), the
binary states with qubits and the probability of a configuration by the quantum amplitudes. Training of
quantum machines involves tuning its quantum Hamiltonian to assign high probabilities to desirable
configurations (e.g., correct classifications or encodings of data), which are typically achieved using
quantum annealing processes. D-Wave systems [Benedetti et al., 2016] and other quantum annealers
can be employed to sample from the quantum Boltzmann distribution, solving the problem encoded
in the QBM. Another example is associative memory which can be implemented using quantum
optical systems such as confocal cavity QED [Marsh et al., 2021] and other systems governed by the
nonequilibrium strongly interacting multimode Dicke model such as atoms in a cavity or vibrating
ion chains [Torggler et al., 2017, Fiorelli et al., 2020].

In general, quantum machine learning algorithms are yet to become more practical, given the current
noise and error rates in quantum computers.
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6 Efficiency

Analog hardware is expected to achieve accurate enough results in an energy-efficient manner. For
instance, optical neural networks are capable of calculating vector dot products with high accuracy in
the MNIST digits classification using a few photons of the order 100 zJ of optical energy per weight
multiplication [Wang et al., 2022]. Another photonic accelerator architecture based on coherent
detection is an ultra-low-energy processor operating at sub-aJ energies per MAC operation [Hamerly
et al., 2019]. The main restriction comes from the standard quantum limit of optical neural networks
at 50 zJ/MAC for irreversible digital computation. Overall, some neuromorphic photonic systems
may offer petascale MAC per second per mm2 processing speeds [Nahmias et al., 2019] and aJ/MAC
energy efficiency [Nozaki et al., 2019]. An optoelectronic spiking neuron with 200 aJ/spike input can
create an output with 10 fJ/spike while running at 1010 spikes per second [Lee et al., 2021].

Matuszewski et al. [2023] have estimated the potential efficiency of analog neural networks in the
form of energy cost per operation for a hypothetical large-scale neural network with 1000 input and
output nodes, optical fan-in of 1000 inputs per neuron in the hidden layer, and 108 hidden nodes. The
average energy cost per operation in the inference stage including data acquisition cost is estimated
as 1 pJ for electronic, 1 fJ for optoelectronic, and 100 zJ for an all-optical network.

7 Conclusions

In an era of increasing analog platform diversity, the pursuit of efficient ML models relies on the
seamless execution of fundamental mathematical operations by these platforms. Adapting and
designing ML models with consideration for operations easily realizable in analog domain could help
unlock the full potential of analog hardware for future AI systems.
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Table A1: The listed mathematical operations can be found in the following neural network (NN)
blocks and realised in the specified analog hardware types. Notations: MVM – matrix-vector
multiplication, CMM – coherent matrix multiplier [Hamerly et al., 2019], SLM – spatial light
modulator [Andregg et al., 2019, Spall et al., 2020, Wang et al., 2022], MZI – Mach-Zehnder
interferometer [Shen et al., 2017, Bogaerts et al., 2020], 3DPDE – 3D printed diffractive element [Lin
et al., 2018], PCMCB – phase change material cross bar [Feldmann et al., 2021], MRWB – microring
weight bank [Tait et al., 2015, 2016]. Hardware marked with an asterisk has not been utilized in this
specific task but we believe the technology could in principle be used to do so.

Mathematical operations NN blocks/components Analog hardware

Optical Electronic

Static MVM Feedforward layer,
convolutions

SLM, MZI, CMM,
3DPDE, PCMCB,
MRWB

Electric circuits,
memristors

Dynamic MVM Attention CMM∗ –(transformers)
Elementwise Neural activations: Optical bistability, Ramp and
nonlinearities sigmoid, tanh, ReLU saturable absorption comparator
Non-elementwise Layer norm, batch norm, – –nonlinearities softmax

Noise injection (e.g.
Gaussian(µ, σ)) Diffusion model

Asymmetric dyads
–in photon/polariton

condensate∗

12


	Introduction
	Algorithms for training and inference in analog hardware
	Notable Neural Network Architectures for Analog Implementation
	Core operations
	Candidate analog technologies
	Efficiency
	Conclusions
	Table of analog hardware and its uses in neural network

