
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DSR: OPTIMIZATION OF PERFORMANCE LOWER
BOUND FOR HIERARCHICAL POLICY WITH
DYNAMICAL SKILL REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Skill-based reinforcement learning (Skill-based RL) is an efficient paradigm for
solving sparse-reward tasks by extracting skills from demonstration datasets and
learning high-level policy which selects skills. Because each selected skill by
high-level policy is executed for multiple consecutive timesteps, the high-level
policy is essentially learned in a temporally abstract Markov decision process
(TA-MDP) built on the skills, which shortens the task horizon and reduces the
exploration cost. However, these skills are usually sub-optimal because of the po-
tential low quality and low coverage of the datasets, which causes the sub-optimal
performance in the downstream task. It is intuitive to refine the skills. However,
it is a hard issue to refine the skills while ensuring performance improvement
and avoiding non-stationarity of transition dynamics caused by skill changes. To
address the dilemma of sub-optimality and ineffectiveness, we propose a unified
optimization objective for the entire hierarchical policy. We theoretically prove
that the unified optimization objective guarantees the performance improvement
in TA-MDP, and that optimizing the performance in TA-MDP is equivalent to
optimizing the performance lower bound of the entire hierarchical policy in orig-
inal MDP. Furthermore, in order to overcome the phenomenon of skill space col-
lapse, we propose the dynamical skill refinement (DSR) mechanism which names
our method. The experiment results empirically validate the effectiveness of our
method, and show the advantages over the state-of-the-art (SOTA) methods.

1 INTRODUCTION

Reinforcement learning has been widely used in complex application scenarios, such as robotics
manipulation Gupta et al. (2019); Chane-Sane et al. (2021); Kipf et al. (2019); Nair et al. (2020);
Pertsch et al. (2021); Shi et al. (2022); Huang et al. (2023); Pertsch et al. (2022). The tasks in
these domains are usually with sparse reward functions which give a positive feedback only when
the task is completed. In order to reduce the extremely high exploration costs caused by sparse
reward functions, prior works have proposed a variety of methods to incorporate prior knowledge
into reinforcement learning Nair et al. (2020); Rajeswaran et al. (2017); Daoudi et al. (2023); Zhang
et al. (2023); Wen et al. (2023); Guo et al. (2023); Pertsch et al. (2021; 2022). In these works,
skill-based reinforcement learning (Skill-based RL) has become an efficient approach to solve the
sparse-reward tasks Kipf et al. (2019); Pertsch et al. (2021; 2022). Skills are temporally extended
behaviors and usually manifest as the segments of consecutive actions in demonstration datasets.
These skills in the dataset are typically embedded into the latent space of the low-level policy which
serves as the action space of the high-level policy. The high-level policy selects the appropriate skills
according to the states, and lets each selected skill be executed for multiple consecutive timesteps
so as to shorten the task horizon and reduce the exploration cost.

These skills may be sub-optimal because of the potential low quality and low coverage of dataset Fu
et al. (2020), which causes the potential sub-optimal performance in downstream task. It is intuitive
to refine the extracted skills with online collected transitions while learning the high-level policy.
However, how to refine skills while achieving performance improvement is still an unresolved issue.
Furthermore, the change of skills will lead to the non-stationarity of the transition dynamics of the
temporally abstract Markov decision process (TA-MDP), which we name temporal abstraction shift.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Temporal abstraction shift hinders us from learning the high-level policy because the actual value of
any state-skill keeps changing, making it difficult for us to accurately estimate it.

Therefore, we usually have to face either the sub-optimal skills or the ineffective skill refinement,
which constitutes a dilemma. Some prior methods assume that skills are nearly optimal and keep
them fixed, but this assumption puts high requirements on datasets, which can hardly be met when
the downstream task is different from all the tasks used to generate the datasets Kipf et al. (2019);
Pertsch et al. (2021; 2022). ReSkill Rana et al. (2023) updates both the high-level policy and the
skills in an on-policy RL manner Schulman et al. (2015; 2017), which is an ingenious way to cir-
cumvent the temporal abstraction shift. However, in ReSkill, the high-level policy and the skills
are updated in the TA-MDP and the original MDP respectively. Inconsistent optimization objec-
tives can not theoretically guarantee the performance improvement. Skill-Critic Hao et al. (2024)
directly ignores the temporal abstraction shift and updates both the high-level policy and the skills
in the off-policy RL manner Haarnoja et al. (2018b). Skill-Critic achieves superior performance and
sample efficiency in some specific tasks. However, ignoring the temporal abstraction shift brings in
uncertainty, and Skill-Critic depends on SPiRL-based Pertsch et al. (2021) warm-up stage.

In order to address the dilemma, we propose an on-policy skill-based RL method named dynamical
skill refinement (DSR) which dynamically refines the skills under the optimization objective unified
with the high-level policy. We theoretically prove that this objective guarantees the performance im-
provement in TA-MDP. More importantly, we innovatively consider skill-based RL as the proxy of
the original RL task, and theoretically prove that optimizing the performance in TA-MDP is equiva-
lent to optimizing a lower bound of the performance in the original MDP. We simultaneously update
high-level policy and skills in an on-policy RL manner, so as to circumvent the temporal abstraction
shift. Furthermore, we point out that directly refining skills may lead to skill space collapse which
brings in performance collapse. This is because all skills are embedded into the latent space of the
same parametric low-level policy. Changing the behavior of one skill may cause the behaviors of
other skills to be changed as well. Therefore, we augment our method with the dynamical skill
refinement mechanism which ensures that the skills maintain their original behaviors before being
explored. We empirically validate the effectiveness of our method and its advantages over the state-
of-the-art (SOTA) methods in multiple sparse-reward tasks of the robotics manipulation domain, and
prove the necessity of dynamical skill refinement.

We summarize the contributions of this paper as follows: (1) we propose a unified optimization
objective for both high-level policy and skills, and theoretically analyze its effectiveness, (2) we
devise an on-policy skill-based RL method and a dynamical skill refinement mechanism which
avoids skill space collapse, and (3) we empirically validate the effectiveness and superiority of our
method in multiple sparse-reward tasks.

2 RELATED WORK

2.1 HIERARCHICAL REINFORCEMENT LEARNING

In hierarchical reinforcement learning (HRL), the policy stitches temporally extended behaviors
rather than primitive actions to be the behavior of solving tasks Pateria et al. (2021); Li et al. (2019;
2022); Kipf et al. (2019); Zhang & Whiteson (2019); Yang et al. (2023). The low-level policy is
usually conditioned on the latent space which serves as the action space of the high-level policy.
Both the high-level and the low-level policies can be learned from the experience obtained from the
agent’s interacting with the environment Bacon et al. (2017); Haarnoja et al. (2018a); Levy et al.
(2019). In practical applications, it is a mainstream approach to extract the low-level policy from
the demonstration dataset and then learn to recompose the behavior modes of the low-level policy to
solve the task Shankar et al. (2019); Krishnan et al. (2017); Kipf et al. (2019); Nachum et al. (2018).

2.2 SKILL-BASED REINFORCEMENT LEARNING

Skill-based reinforcement learning (skill-based RL) extracts reusable behavior modes from the
demonstration dataset which are used to solve the downstream task Hausman et al. (2018); Pertsch
et al. (2021; 2022). These behavior modes are considered as skills and embedded into the latent
space, which is typically through a variational auto-encoder (VAE) Kingma & Welling (2013). Dur-
ing online learning, the high-level policy learns to select the optimal skills to solve the downstream

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

task. The high-level policy learns to choose temporally extended skills rather than single-timestep
actions, which shortens the task horizon and reduces the exploration cost. Prior works generally fo-
cus on extracting the skill prior from the demonstrations to improve the exploration efficiency Walke
et al. (2023); Xu et al. (2022); Nam et al. (2022); Pertsch et al. (2021; 2022). These works assume
that the skills can be approximately considered as optimal for the downstream task. However, this
assumption can hardly be met when the downstream task is different from the tasks used to generate
the demonstration dataset. It is intuitive and natural to refine the skills while learning the high-level
policy Rana et al. (2023); Hao et al. (2024), but this issue is still not well addressed.

Skill	EncoderSkill	Prior

…

Skill	Embedding	Space

Decoder

… …Reconstruction
Loss

Regularization Prior
Distribution

Optimization
Objective

Figure 1: State-action segments of fixed length are sampled from the demonstration dataset. These
segments are embedded into the latent space by the auto-encoder. The decoder reconstructs the
action segment based on the state segment and the latent variable. We not only reduce the recon-
struction loss, but also make the distribution of skill embedding close to the prior distribution. Skill
prior learns to predict the skill embedding of the state-action segment based on only the first state.

3 PRELIMINARY

3.1 TA-MDP

In skill-based RL, the high-level policy πh and the low-level policy πl whose latent space embeds
the skills {z} constitute the entire hierarchical policy. The high-level policy selects the skills from
the latent space Z which are the behavior modes of the low-level policy πl conditioned on the latent
variables. Each skill manifests as a sequence of primitive actions {at, at+1, ..., at+H−1} over a fixed
horizon H . Once a skill zt is selected from πh(·|st) by the high-level policy, the action distributions
at the next H consecutive timesteps will be at+i ∼ πl(·|st+i, zt), i ∈ [0, H − 1].

In reinforcement learning, the task is formulated in a Markov decision process (MDP) (S,A, p, r, γ)
which consists of the state space S, the action space A, the transition dynamics p(s′|s, a), the
reward function r(s, a) and the discount factor γ. However, in skill-based RL, each skill z selected
by the high-level policy πh is over the fixed horizon H , so πh is actually learning in a TA-MDP
(S,A, pπl,H , r̃, γ̃). The transition dynamics of TA-MDP pπl,H(s′|s, z) is the distribution over the
state st+H after H timesteps conditioned on the state st and the selected skill zt, p(st+H = s′|st =
s, zt = z, πl). The reward function of TA-MDP r̃(st, zt) =

∑H−1
i=0 rt+i is the sum of H consecutive

rewards obtained by executing skill zt from state st.

3.2 EXTRACT SKILLS THROUGH VAE

In order to embed the skills into the latent space of low-level policy, it is common to sample state-
action segments from the demonstration dataset and encode them as latent variables through the
variational auto-encoder (VAE) Pertsch et al. (2021; 2022); Rana et al. (2023). The decoder condi-
tioned on state and latent variable will reconstruct action segments. The sum of the loss of recon-
structed action segment and the KL-divergence between the latent variable distribution and a prior
distribution is the complete optimization objective. The trained decoder will serve as the low-level

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

policy. Usually, a skill prior that is conditioned on the first state and attempts to predict the same
latent variable will also be learned to improve the exploration efficiency in the online learning stage.
The skill prior can be used as the initial high-level policy and be used for biasing the exploration to
the regions of potentially valuable skills. This extraction process is sketched in Figure 1.

4 UPDATE HIGH-LEVEL POLICY AND SKILLS UNDER UNIFIED
OPTIMIZATION OBJECTIVE

We take the expected sum of the discounted rewards in the TA-MDP as the unified optimization ob-
jective of both learning high-level policy and refining skills. In particular, the optimization objective
of skills is the sum of inner-skill single-timestep rewards of MDP and the subsequent discounted H-
timestep rewards of TA-MDP. We prove that this optimization objective can ensure the performance
improvement of the entire hierarchical policy in TA-MDP. Furthermore, we innovatively consider
skill-based RL as a proxy task of RL, and prove that optimizing the expected sum of discounted
H-timestep rewards in the TA-MDP is equivalent to optimizing a lower bound of the expected sum
of the discounted single-timestep rewards in the original MDP, which provides the effectiveness.

4.1 UNIFIED OPTIMIZATION OBJECTIVE AND UPDATE FORMULAE

In skill-based RL, the task of high-level policy is to maximize the expected sum of discounted H-
timestep rewards r̃(s, z) in TA-MDP, which can be formulated as follows:

max
πh

Eπh,πl [
∑
t̂

γ̃ t̂ · r̃t̂],where r̃t̂ =

t̂·H+H−1∑
t=t̂·H

rt. (1)

t̂ and t are the timestep index variables of TA-MDP and MDP respectively. The H-timestep reward
r̃ in the TA-MDP is the sum of H consecutive single-timestep rewards r in the original MDP. Unlike
the high-level policy, skills predict a primitive action at each timestep. We design the optimization
objective of skills to be the sum of all the inner-skill single-timestep rewards and the discounted
H-timestep rewards after the skill. We formulate this objective as follows:

max
πl

Eπh,πl [

t̂·H+H−1∑
i=t̂·H

ri +

∞∑
j=t̂+1

γ̃j−t̂ · r̃j]. (2)

To formulate the optimization objective for policy iteration, we define the state value function
V h
πh,πl(s) and state-skill value function Qh

πh,πl(s, z) in the TA-MDP which are analogous to the state
value function and state-action value function in the original MDP. Therefore, the policy-iteration
optimization objective of the high-level policy regarding a state s can be formulated as follows:

max
πh

Ez∼πh(·|s)[Q
h
πh,πl(s, z)]. (3)

The policy-iteration optimization objective of the skill z executed from state s at timestep t̂ ·H can
be formulated as follows:

max
πl

[Eat∼πl(·|st,z)[

t̂·H+H−1∑
t=t̂·H

rt] + γ̃ · Es′∼p
πl,H

(·|s,z)[V
h
πh,πl(s

′)]], (4)

where pπl,H(·|s, z) is the distribution of reached state after executing z from s for H timesteps.

We parameterize πh(z|s) and πl(a|s, z) as πh
ϕ(z|s) and πl

θ(a|s, z). Then, the recursive update for-
mulae for πh

ϕ(z|s) and πl
θ(a|s, z) are as follows:

∀s ∈ S, πh
ϕ′(·|s)← arg max

πh(·|s)
Ez∼πh(·|s)[Q

h
πh
ϕ,π

l
θ
(s, z)], (5)

∀st ∈ S,∀z ∈ Z, πl
θ′(·|st, z)← arg max

πl(·|st,z)
[Eat∼πl(·|st,z)[

t̂·H+H−1∑
t=t̂·H

rt]+ (6)

γ̃ · Es′∼p
πl,H

(·|st̂·H ,z)[V
h
πh
ϕ,π

l
θ
(s′)]],

where ϕ′ and θ′ are the updated version of parameters ϕ and θ.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.2 PERFORMANCE IMPROVEMENT AND CONVERGENCE IN TA-MDP

We prove that the updates of πh
ϕ, π

l
θ which follow Equations 5 and 6 guarantee the performance

improvement in TA-MDP. Under these updates, the performance in TA-MDP will converge.

To prove that there is a monotonic increase in the state value function, we first illustrate Lemma 1:
Lemma 1. ∀s ∈ S , we denote the value of first predicting a skill z with πh

ϕ′ , executing πl
θ′(·|s, z)

for H timesteps and then executing πh
ϕ, π

l
θ by Ṽ h

πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(s). The following inequality relations

are valid, if we follow the update formulae in Equations 5 and 6:

∀s ∈ S, Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s) ≥ V h

πh
ϕ,π

l
θ
(s). (7)

See Appendix A.1 for proof.

Based on Lemma 1, we prove the monotonic performance increase in the TA-MDP:
Theorem 1. If we update πh

ϕ and πl
θ following Equations 5 and 6, then:

∀s ∈ S, V h
πh
ϕ′ ,π

l
θ′
(s) ≥ V h

πh
ϕ,π

l
θ
(s). (8)

See Appendix A.2 for proof.

Due to the performance improvement in Theorem 1, we get the convergence of performance:
Theorem 2. With the policy update formulae in Equations 5 and 6, the state value function
V h
πh
ϕk

,πl
θk

(s) will finally converge. πh
ϕk
, πl

θk
are the k-th version of high-level policy and low-level

policy respectively. See Appendix A.3 for proof.

4.3 EFFECTIVENESS OF LEARNING IN TA-MDP

To analyze the effectiveness of our optimization objective, we propose that the essential purpose
of skill-based RL is to make the behavior of the entire hierarchical policy approximate to that of
the optimal policy in the original MDP. Unlike prior works Pertsch et al. (2021; 2022); Rana et al.
(2023); Hao et al. (2024) which considers skill-based RL as a paradigm parallel to RL, our perspec-
tive establishes a connection between skill-based RL and RL. We sketch this perspective in Figure 2
which motivates us to analyze the relationship between the performance in the TA-MDP and that in
the original MDP. We prove that optimizing the performance of a hierarchical policy in the TA-MDP
is equivalent to optimizing a lower bound of its performance in the original MDP.

Given the original MDP (S,A, p, r, γ) and hierarchical policy (πh, πl), we denote the corresponding
TA-MDP by (S,A, pπl,H , r̃, γ̃). The performance of (πh, πl) in the original MDP and that in the
TA-MDP can be formulated into analogous expanded forms:

Vπh,πl(s) =

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ△t · r(s′, a′)da′ds′, (9)

V h
πh,πl(s) =

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ̃⌊△t/H⌋ · r(s′, a′)da′ds′, (10)

ρ△t(s
′, a′|s, πh, πl) is the state-action distribution after executing πh, πl for△t timesteps from s.

Since the discount factor is manually specified, we can let γ̃ = γH . We illustrate in Theorem 3 that
optimizing the performance of the hierarchical policy in the TA-MDP is equivalent to optimizing its
performance lower bound in the MDP if the reward function gives a positive feedback only when
the task is completed.
Theorem 3. If the MDP (S,A, p, r, γ) and the TA-MDP (S,A, pπl,H , r̃, γ̃) satisfy that γ̃ = γH ,
then ∀s ∈ S, γ̃ · V h

πh,πl(s) ≤ Vπh,πl(s). It means that optimizing V h
πh,πl(s) is equivalent to optimiz-

ing a lower bound of Vπh,πl(s). See Appendix A.4 for proof.

Since we have proved in Theorem 1 that our optimization objective can guarantee the monotonic
increase in V h

πh,πl(s), refining skills under this objective is equivalent to optimizing the lower bound
of Vπh,πl(s), which illustrates the effectiveness of our method.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

MDP Demonstrations

SkillsTA-MDPHigh-level

Policy
Encapsulated Policy

Approximate

Proxy Task

Original Task

Data Approximate Constitute Convert

Figure 2: In skill-based RL, the extracted skills and the original MDP constitute the TA-MDP. We
regard learning the hierarchical policy in TA-MDP as a proxy task of learning a flat policy in the
original MDP. We consider the hierarchical policy as a whole, which gives an action at each timestep,
just like the flat policy.

5 UPDATE HIERARCHICAL POLICY WITH DYNAMICAL SKILL REFINEMENT
IN AN ON-POLICY RL MANNER

We first illustrate how to optimize our objective in an on-policy RL manner. Then, we elaborate on
the dynamical skill refinement mechanism and explain its necessity.

5.1 OPTIMIZING THE OBJECTIVE IN AN ON-POLICY RL MANNER

Since high-level policy is learned in TA-MDP, we can directly apply the on-policy RL algorithms
Schulman et al. (2015; 2017) to learn it. Therefore, we focus on illustrating how to refine the skills.

We first observe that the policy-iteration optimization objective of skills in Equation 6 can be decom-
posed into two components: (1) the expected sum of the inner-skill rewards given by original MDP
and (2) the expected sum of the discounted H-timestep rewards given by TA-MDP. In addition, a
trajectory is composed of transition segments with the length of H timesteps generated by multiple
skills. Therefore, we innovatively consider the H-timestep transition segment generated by a skill
in the trajectory as a rollout and equivalently add the sum of subsequent discounted H-timestep re-
wards to the last reward of the rollout. This idea is sketched in Figure 3. We can directly apply the
on-policy RL algorithms on the resulted rollout to refine the corresponding skill.

… … … …
Rewards	from	Rollout Discounted						-timestep	Rewards

Figure 3: The H consecutive transitions generated by the same skill can be seen as a rollout. We
add the sum of discounted H-timestep rewards r̃ to the last reward rt̂·H+H−1 in it. Then, we apply
on-policy RL methods on the resulted rollout to optimize the skill. In this way, we equivalently
optimize the expected sum of inner-skill rewards and discounted H-timestep rewards after the skill.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5.2 DYNAMICAL SKILL REFINEMENT MECHANISM

We first explain why directly refining skills causes skill space collapse which manifests as perfor-
mance collapse. We then elaborate on the dynamical skill refinement mechanism.

As we have mentioned in Section 3, all the skills are usually embedded into the latent space of
the same parametric low-level policy. If we refine a skill, the behaviors of other skills may change
stochastically. For a state, the optimal and near-optimal skills usually occupy only a small region of
the entire skill space, which means that these skills may have experienced lots of stochastic updates
and lost their original behaviors before being sampled by the high-level policy. As shown in Figure
4, good candidate skills may no longer exist in a specific state. We name this phenomenon skill
space collapse. See Appendix B for the visualization of skill space collapse in specific task.

Curren	State
High-level
Policy

Observed

Skill	2

Skill	3

Skill	4

Skill	5

Skill	1

Optimal
Choice

Sample

Low-level
Policy

Rollout	and	Refine

Skill	2

Skill	3

Skill	4

Skill	5

Skill	1

High-level
Policy

Sample Skill	2

Skill	3

Skill	4

Skill	5

Skill	1

Skill	1
Optimal
Skill

Skill

Existence	of	Near-optimal	Skill Direct	Skill	Refinement

Other	Skills	are	Stochastically	Changed

Again,	State

Observed
Again

Skill	Space	Collapse	in	State

No	High-value	Skills	Exist

Rollout	and	Refine

Low-level
Policy

Low-level
Policy

High-level
Policy

Skill	2

Skill	3

Skill	4

Skill	5

Skill	1

Low-level
Policy

Figure 4: Before predicting the optimal skill, the high-level policy usually needs to sufficiently
explore the skill space in a given state. If we refine selected skills directly, a terrible selected skill
will not quickly approach the optimal skill, but other skills will change stochastically. The best
skill in the skill library for a state may be destroyed after consecutive rollouts and skill refinements.
When encountering the state again, there are actually no good candidate skills that can be explored.

Intuitively, before a skill is executed in a specific state, its behavior in the state should remain the
same as when it was extracted. In addition, since we have theoretically proved the effectiveness of
skill refinement, we believe that sufficiently refining a skill in a state can overcome the potential
damage to its behavior caused by stochastic changes. We learn skill refinements into a separate
residual policy Rana et al. (2023) rather than the low-level policy, which can preserve the extracted
behaviors of the skills. The action increment predicted by the residual policy is added to the action
predicted by the low-level policy to form the practical action given by the skill. We assign a dynami-
cal weight to action increment, that is, when a skill has been sufficiently refined in a state, the action
increment for the state-skill will be given a high weight, otherwise, it should be given a low weight.
We name this measure dynamical skill refinement (DSR) mechanism.

We use random network distillation (RND) Burda et al. (2019) to measure whether the behavior of
a skill in a state has been sufficiently refined. It involves two randomly initialized neural networks,
namely, fixed target network and variable predictor network. The target network takes a state-skill
to an embedding f : S × Z → Rk. The predictor network f̂ : S × Z → Rk is trained to minimize
the MSE loss ||f̂((s, z); ξ) − f((s, z))||2 with respect to its parameters ξf̂ . Every time we refine
the behavior of skill z in state s, we optimize the prediction error of the predictor network on the
state-skill (s, z). We expect that the prediction errors on those state-skills on which the predictor
network has been trained for many times are obviously lower than the prediction errors on the novel
state-skills. We can map the prediction error on a state-skill to the weight of action increment. See
Appendix C for the complete algorithm incorporating the dynamical skill refinement.

6 EXPERIMENTS

In the experiments, we first compare the performance of DSR to the SOTA methods in solving
sparse-reward tasks. Then, we conduct the ablation analysis on the dynamical skill refinement mech-
anism and the involved hyper-parameters.

We adopt the 4 robotic manipulation tasks proposed in ReSkill Rana et al. (2023). These tasks
involve a manipulator arm that can fetch objects, push objects and even move objects using tools.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Move Grasp Haul Haul

Figure 5: These tasks are shown in the upper part. (1) SlipperyPush: push the cube to the target
position. (2) TableCleanup: Grab the cube and place it on the tray. (3) PyramidStack: Grab the
cube and place it on the larger cube. (4) ComplexHook: Use the hook to move the object to the
target position. The lower part shows the skill sequence to complete ComplexHook.

We show these tasks and how the arm solves a task through combining multiple skills in Figure
5. The demonstration datasets are generated by hand-scripted controller’s interacting with the en-
vironments. The physically modified versions of these tasks serve as the downstream tasks. These
physical modifications necessitate skill refinements. See Appendix D for the details of experiments.

6.1 COMPARISON WITH SOTA METHODS

0 200 400 600 800 1000 1200
(*1000) Timesteps

0

5

10

15

20

Ep
iso

di
c

Re
tu

rn

PyramidStack

0 100 200 300 400 500
(*1000) Timesteps

0

10

20

30
TableCleanup

0 100 200 300 400 500
(*1000) Timesteps

0

20

40

60
ComplexHook

0 200 400 600 800 1000 1200
(*1000) Timesteps

0

5

10

15

20
SlipperyPush

PPO PPO+BC Skill-Critic SPiRL ReSkill DSR

Figure 6: DSR achieves the highest performance, except for slightly lower performance than ReSkill
in SlipperyPush, but DSR shows significantly lower variance. Due to the sub-optimality of skills for
downstream tasks, SPiRL can only solve ComplexHook and SlipperyPush, and its performance is
limited. Without the warm start phase based on SPiRL, Skill-Critic can only solve ComplexHook in
the initial phase and eventually suffers performance collapses in all the tasks. PPO+BC suffers from
low sample efficiency, and PPO doesn’t even improve performance at all.

We compare our method with several SOTA skill-based RL methods. SPiRL Pertsch et al. (2021)
extracts temporally extended behaviors along with a skill prior from the demonstration dataset and
assume these skills are approximately optimal for the downstream task. Skill-Critic Hao et al.
(2024) ignores the temporal abstraction shift and updates the entire hierarchical policy in an off-
policy RL manner. ReSkill Rana et al. (2023) learns skill refinement into the residual policy and
updates the entire hierarchical policy in an on-policy RL manner, which circumvents the temporal
abstraction shift. We also compare our method with PPO Schulman et al. (2017) and PPO+BC.
The latter one fine-tunes a policy initialized by behavior cloning through PPO.

For fair comparison, our method (DSR), SPiRL, ReSkill, and Skill-Critic share the same model
architecture of VAE. The warm start phase of Skill-Critic with the help of SPiRL is removed. The
trick of ReSkill that gradually gives higher weight to the prediction of residual policy with the
number of updates is retained. The results are averaged over four random seeds.

The performance curves are presented in Figure 6. SPiRL can only solve ComplexHook and Slip-
peryPush with low performance illustrating that the extracted skills are sub-optimal for downstream
tasks with modifications on the physical properties. Only in the initial stage of ComplexHook, the
performance of Skill-Critic can be temporarily improved, and the performance collapses in all other

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

times, which shows that the temporal abstraction shift can not be ignored. ReSkill learns the skill
refinements into the residual policy, which preserves the original behaviors of the extracted skills to
some extent. However, it still suffers significant performance degradation in ComplexHook, which
indicates that skill space is still compromised. In contrast, DSR can steadily improve the perfor-
mance throughout the online learning stage, which verifies the effectiveness of our optimization
objective and indicates that skill space collapse is completely avoided. Both PPO and PPO+BC
suffer from extremely slow performance improvement. On the contrary, DSR can improve the per-
formance to a high level at a fast speed, which illustrates the necessity of temporal abstraction.

6.2 ABLATION ANALYSIS OF DYNAMICAL SKILL REFINEMENT

In the ablation analysis, we analyze the necessity of dynamical skill refinement, the improvement of
skills’ optimality, and whether DSR is sensitive to hyper-parameters.

0 250 500 750 1000
(*1000) Timesteps

0

10

20

30

Ep
iso

di
c

Re
tu

rn

TableCleanup

0 250 500 750 1000
(*1000) Timesteps

0
10
20
30
40
50
60

ComplexHook

0 250 500 750 1000
(*1000) Timesteps

0

5

10

15

20
PyramidStack

0 250 500 750 1000
(*1000) Timesteps

0.0

2.5

5.0

7.5

10.0

12.5
SlipperyPush

NoRefinement DirectRefinement DSR

Figure 7: If skills are kept fixed, the asymptotic performance are limited. The extracted skills are
not well initialized for PyramidStack, so the skill space collapse caused by direct skill refinement
destroys the low-level policy and the performance is not improved at all. In contrast, when we fine-
tune the entire hierarchical policy with dynamical skill refinement mechanism, the performance is
improved significantly than fixing the skills. Furthermore, our method can still improve the perfor-
mance in PyramidStack where direct skill refinement fails, which indicates that the dynamical skill
refinement mechanism prevents low-level policy from being destroyed by skill space collapse.

To illustrate the need for skill refinement and the need for the dynamical skill refinement mechanism,
we compare the performance of our complete method with the performance of two other cases. In
the first case, the skills are not refined (NoRefinement). In the second case, the dynamical skill
refinement mechanism is removed and the skills are refined directly (DirectRefinement). These
performance curves are presented in Figure 7. We find that if the skills are not refined, the asymp-
totic performance is limited even if the skills are well initialized, which is shown in TableCleanup,
ComplexHook and SlipperyPush. If the extracted skills are not well initialized for the downstream
task, then the entire hierarchical policy completely fails to solve the task, which is shown in Pyra-
midStack. In contrast, our method achieves obviously higher performance in all the tasks, which
illustrates the necessity of refining skills. When the extracted skills are well initialized for the down-
stream task, the potential skill space collapse may not be enough to destroy the low-level policy,
and refining the skills directly can still improve the performance. However, if the extracted skills
are not well initialized for the downstream task, the skill space collapse will destroy the low-level
policy and the performance can not be improved at all, which is shown in PyramidStack. In contrast,
if skills are not well initialized, the dynamical skill refinement mechanism can effectively prevent
the fragile low-level policy from being destroyed by skill space collapse. Moreover, in contrast to
successful cases of direct skill refinement, we find that though the dynamical skill refinement is a
conservative measure, it does not reduce the sample efficiency.

To analyze the improvement in the optimality of skills, we compare the performance achieved by
the same sufficiently trained high-level policy when the skills are refined and when they are not. The
performance brought about by the skills with refinement (With) and the performance brought about
by the skills without refinement (Without) are shown in Figure 8. Since the high-level policy is the
same, the performance improvement reflects the improvement of skills’ optimality.

Finally, we empirically demonstrate the insensitivity of our method to hyper-parameters. The map-
ping to the weights of action increment from prediction errors (S(x) = α 1

1+e−k(x−c) , see Appendix
D.3 for details, α is simply set to 1) is mainly determined by two parameters, c and k which are

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

With Without
0

10

20

30

Ep
iso

di
c

Re
tu

rn

TableCleanup

With Without
0

20

40

60
ComplexHook

With Without
0

10

20
PyramidStack

With Without
0

5

10

SlipperyPush

Figure 8: Under the same high-level policy, skills with refinement lead to higher performance, which
obviously benefits from the improved optimality of skills.

hand-scripted. We determined the values of k and c as −300 and 0.025 for TableCleanup accord-
ing to the method in the Appendix D.4. Similarly, the total rounds of variable predictor network’s
being trained in every epoch is also a hyper-parameter. We set the number of rounds to 10 which
is an empirical value. To demonstrate that dynamical skill refinement is insensitive to these hyper-
parameters, we respectively adjust them within a certain range and show in Figure 9 the performance
curves of these cases in TableCleanup. It is evident that adjusting these hyper-parameters within the
certain intervals centered in the manually specified values results no significant performance decline,
indicating DSR’s insensitivity to hyper-parameters.

0 200 400 600 800 1000 1200
(*1000) Timesteps

0

5

10

15

20

25

30

35

Ep
iso

di
c

Re
tu

rn

Values of c
0.01
0.015
0.025
0.035
0.045

(a) ablation of c

0 200 400 600 800 1000 1200
(*1000) Timesteps

0

5

10

15

20

25

30

35

Ep
iso

di
c

Re
tu

rn

Values of k
-100
-200
-300
-400
-500

(b) ablation of k

0 200 400 600 800 1000 1200
(*1000) Timesteps

0

5

10

15

20

25

30

35

Ep
iso

di
c

Re
tu

rn
Values of rounds

8
9
10
11
12

(c) ablation of rounds

Figure 9: We conduct ablation analysis on the three hyper-parameters separately in TableCleanup.
Modifying the hyper-parameters in the certain intervals centered in the hand-scripted values results
in no significant changes in performance.

7 CONCLUSION

In this paper, we study the skill-based RL method of updating both high-level policy and skills. We
innovatively consider skill-based RL as the proxy task of RL, and theoretically prove that optimizing
the performance of the hierarchical policy in TA-MDP is equivalent to optimizing the performance
lower bound in original MDP. We devise the optimization objective of skills which is unified with
high-level policy and propose to update the entire hierarchical policy in an on-policy RL manner so
as to circumvent the temporal abstraction shift. We propose for the first time that direct skill refine-
ment leads to the skill space collapse phenomenon since all the skills are embedded into the latent
space of the same parametric policy. To address skill space collapse, we propose the dynamical skill
refinement mechanism which can be simply integrated into our algorithm. Dynamical skill refine-
ment guarantees that the behavior of low-level policy on a given state-skill remains approximate to
the extracted behavior before it is sufficiently refined, thus avoiding skill space collapse.

REFERENCES

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In Seventh International Conference on Learning Representations, pp. 1–17, 2019.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In International conference on machine learning, pp. 1430–1440.
PMLR, 2021.

Paul Daoudi, Bogdan Robu, Christophe Prieur, Ludovic Dos Santos, and Merwan Barlier. Enhancing
reinforcement learning agents with local guides. In International Conference on Autonomous
Agents and Multiagent Systems, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Siyuan Guo, Yanchao Sun, Jifeng Hu, Sili Huang, Hechang Chen, Haiyin Piao, Lichao Sun, and
Yi Chang. A simple unified uncertainty-guided framework for offline-to-online reinforcement
learning. arXiv preprint arXiv:2306.07541, 2023.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. arXiv preprint
arXiv:1910.11956, 2019.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning, pp.
1851–1860. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018b.

Ce Hao, Catherine Weaver, Chen Tang, Kenta Kawamoto, Masayoshi Tomizuka, and Wei Zhan.
Skill-critic: Refining learned skills for hierarchical reinforcement learning. IEEE Robotics and
Automation Letters, 2024.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations, 2018.

Tao Huang, Kai Chen, Bin Li, Yun-Hui Liu, and Qi Dou. Guided reinforcement learning with
efficient exploration for task automation of surgical robot. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4640–4647. IEEE, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas Kipf, Yujia Li, Hanjun Dai, Vinicius Zambaldi, Alvaro Sanchez-Gonzalez, Edward Grefen-
stette, Pushmeet Kohli, and Peter Battaglia. Compile: Compositional imitation learning and
execution. In International Conference on Machine Learning, pp. 3418–3428. PMLR, 2019.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. Ddco: Discovery of deep continuous
options for robot learning from demonstrations. In Conference on robot learning, pp. 418–437.
PMLR, 2017.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In Proceedings of International Conference on Learning Representations, 2019.

Alexander C Li, Carlos Florensa, Ignasi Clavera, and Pieter Abbeel. Sub-policy adaptation for
hierarchical reinforcement learning. arXiv preprint arXiv:1906.05862, 2019.

Jinning Li, Chen Tang, Masayoshi Tomizuka, and Wei Zhan. Hierarchical planning through goal-
conditioned offline reinforcement learning. IEEE Robotics and Automation Letters, 7(4):10216–
10223, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Near-optimal representation learning
for hierarchical reinforcement learning. arXiv preprint arXiv:1810.01257, 2018.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J Lim. Skill-based meta-
reinforcement learning. arXiv preprint arXiv:2204.11828, 2022.

Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical reinforcement
learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35, 2021.

Karl Pertsch, Youngwoon Lee, and Joseph Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on robot learning, pp. 188–204. PMLR, 2021.

Karl Pertsch, Youngwoon Lee, Yue Wu, and Joseph J Lim. Guided reinforcement learning with
learned skills. In Conference on Robot Learning, pp. 729–739. PMLR, 2022.

Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John Schulman, Emanuel
Todorov, and Sergey Levine. Learning complex dexterous manipulation with deep reinforcement
learning and demonstrations. arXiv preprint arXiv:1709.10087, 2017.

Krishan Rana, Ming Xu, Brendan Tidd, Michael Milford, and Niko Sünderhauf. Residual skill
policies: Learning an adaptable skill-based action space for reinforcement learning for robotics.
In Conference on Robot Learning, pp. 2095–2104. PMLR, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Tanmay Shankar, Shubham Tulsiani, Lerrel Pinto, and Abhinav Gupta. Discovering motor programs
by recomposing demonstrations. In International Conference on Learning Representations, 2019.

Lucy Xiaoyang Shi, Joseph J Lim, and Youngwoon Lee. Skill-based model-based reinforcement
learning. arXiv preprint arXiv:2207.07560, 2022.

Homer Rich Walke, Jonathan Heewon Yang, Albert Yu, Aviral Kumar, Jedrzej Orbik, Avi Singh, and
Sergey Levine. Don’t start from scratch: Leveraging prior data to automate robotic reinforcement
learning. In Conference on Robot Learning, pp. 1652–1662. PMLR, 2023.

Xiaoyu Wen, Xudong Yu, Rui Yang, Chenjia Bai, and Zhen Wang. Towards robust offline-to-online
reinforcement learning via uncertainty and smoothness. arXiv preprint arXiv:2309.16973, 2023.

Mengda Xu, Manuela Veloso, and Shuran Song. Aspire: Adaptive skill priors for reinforcement
learning. Advances in Neural Information Processing Systems, 35:38600–38613, 2022.

Yiqin Yang, Hao Hu, Wenzhe Li, Siyuan Li, Jun Yang, Qianchuan Zhao, and Chongjie Zhang. Flow
to control: Offline reinforcement learning with lossless primitive discovery. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 10843–10851, 2023.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning
options. Advances in Neural Information Processing Systems, 32, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DETAILED THEORETICAL PROOF

A.1 PROOF OF LEMMA 1

Lemma 1. ∀s ∈ S , we denote the value of first predicting a skill z with πh
ϕ′ , executing πl

θ′(·|s, z)
for H timesteps and then executing πh

ϕ, π
l
θ by Ṽ h

πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(s). The following inequality relations

are valid, if we follow the update formulae in Equations 5 and 6:

∀s ∈ S, Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s) ≥ V h

πh
ϕ,π

l
θ
(s). (11)

Proof.

∀s ∈ S, Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s) = (12)

Ez∼πh
ϕ′ (·|s)[Eai∼πl

θ′ (·|si,z),s0=s[

H−1∑
i=0

ri] + γ̃ · Es′∼p
πl
θ′

,H
(·|s,z)[V

h
πh
ϕ,π

l
θ
(s′)]].

According to the update formula of skills in Equation 6, we can infer that it is larger than the
following equation:

≥ Ez∼πh
ϕ′ (·|s)[Eai∼πl

θ(·|si,z),s0=s[

H−1∑
i=0

ri] + γ̃ · Es′∼p
πl
θ
,H

(·|s,z)[V
h
πh
ϕ,π

l
θ
(s′)]] (13)

= Ez∼πh
ϕ′ (·|s)[Q

h
πh
ϕ,π

l
θ
(s, z)]. (14)

By applying the properties of the high-level policy update formula in Equation 5, we can further
infer that:

≥ Ez∼πh
ϕ(·|s)

[Qh
πh
ϕ,π

l
θ
(s, z)]. (15)

Obviously, it is the value of constantly executing the πh
ϕ, π

l
θ from state s, namely V h

πh
ϕ,π

l
θ

(s). In

summary, we get the following inequality relationship:

∀s ∈ S, Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s) ≥ V h

πh
ϕ,π

l
θ
(s). (16)

A.2 PROOF OF THEOREM 1

Theorem 1. If we update πh
ϕ and πl

θ following Equations 5 and 6 respectively, then ∀s ∈
S, V h

πh
ϕ′ ,π

l
θ′
(s) ≥ V h

πh
ϕ,π

l
θ

(s).

Proof. We first rewrite Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(s) in its expansion:

Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s) = Ez∼πh

ϕ′ (·|s)[Eai∼πl
θ′ (·|si,z),s0=s[

H−1∑
i=0

ri] + γ̃ · Es′∼p
πl
θ′

,H
(·|s,z)[V

h
πh
ϕ,π

l
θ
(s′)]].

(17)

We can enlarge V h
πh
ϕ,π

l
θ

(s′) to Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(s′) according to Lemma 1:

≤ Ez∼πh
ϕ′ (·|s)[Eai∼πl

θ′ (·|si,z),s0=s[

H−1∑
i=0

ri] + γ̃ · Es′∼p
πl
θ′

,H
(·|s,z)[Ṽ

h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s′)]]. (18)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

We can expand the Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(s′) and get:

= Ez∼πh
ϕ′ (·|s)[Eai∼πl

θ′ (·|si,z),s0=s[

H−1∑
i=0

ri]+ (19)

γ̃ · Es′∼p
πl
θ′

,H
(·|s,z)[Ez′∼πh

ϕ′ (·|s′)[Eaj∼πl
θ′ (·|sj ,z

′),sH=s′ [

2H−1∑
j=H

rj] + γ̃ · Es′′∼p
πl
θ′

,H
(·|s′,z′)[V

h
πh
ϕ,π

l
θ
(s′′)]]]].

If we expand Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(·) and enlarge V h
πh
ϕ,π

l
θ

(·) to Ṽ h
πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ

(·) infinitely and repeatedly,

we will obviously get:

≤ ... ≤ ... = V h
πh
ϕ′ ,π

l
θ′
(s). (20)

Taking Lemma 1 into account, we get the following inequality:

∀s ∈ S, V h
πh
ϕ,π

l
θ
(s) ≤ Ṽ h

πh
ϕ′ ,π

l
θ′ ,π

h
ϕ,π

l
θ
(s) ≤ V h

πh
ϕ′ ,π

l
θ′
(s). (21)

In summary, the following inequality relationship is valid:

∀s ∈ S, V h
πh
ϕ′ ,π

l
θ′
(s) ≥ V h

πh
ϕ,π

l
θ
(s). (22)

A.3 PROOF OF THEOREM 2

Theorem 2. With the policy update formulae in Equations 5 and 6, the state value function
V h
πh
ϕk

,πl
θk

(s) will finally converge. πh
ϕk
, πl

θk
are the k-th version of high-level policy and low-level

policy respectively.

Proof. Obviously, the H-timestep rewards have an upper bound H · rmax where rmax is the maxi-
mum reward given by the original MDP. Therefore, there is a value upper bound in the TA-MDP:

H · rmax

1− γ̃
. (23)

Based on Theorem 1, we can know that V h
πh
ϕk

,πl
θk

(s) increases monotonically. In summary,

V h
πh
ϕk

,πl
θk

(s) converges as k →∞.

A.4 PROOF OF THEOREM 3

Theorem 3. If the MDP (S,A, p, r, γ) and the TA-MDP (S,A, pπl,H , r̃, γ̃) satisfy that γ̃ = γH ,
then ∀s ∈ S, γ̃ · V h

πh,πl(s) ≤ Vπh,πl(s). It means that optimizing V h
πh,πl(s) is equivalent to optimiz-

ing a lower bound of Vπh,πl(s).

Proof. We can expand γ̃ · V h
πh,πl(s) with Equation 10 as follows:

γ̃ · V h
πh,πl(s) = γ̃ ·

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ̃⌊△t/H⌋ · r(s′, a′)da′ds′ (24)

=

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ̃⌊△t/H⌋+1 · r(s′, a′)da′ds′. (25)

Because r is always non-negative and the discount factor γ̃ ∈ (0, 1], we know γ̃ · V h
πh,πl(s) satisfies

that:

≤
∫ ∞∑

△t=0

ρ△t(s
′, a′|s, πh, πl)γ̃△t/H · r(s′, a′)da′ds′. (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We can replace γ̃ with γH and get:

=

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)(γH)△t/H · r(s′, a′)da′ds′ (27)

=

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ△t · r(s′, a′)da′ds′ (28)

= Vπh,πl(s). (29)

In summary, ∀s ∈ S, γ̃ ·V h
πh,πl(s) ≤ Vπh,πl(s), which means that optimizing V h

πh,πl(s) is equivalent
to optimizing a lower bound of Vπh,πl(s).

B VISUALIZATION OF SKILL SPACE COLLAPSE

0 1 2 3 4 5 6 7 8 9 10
Number of Updates

0
1

2
3

Pr
ed

ict
io

ns
 o

f
 S

ki
ll-

St
at

e
1

0 1 2 3 4 5 6 7 8 9 10
Number of Updates

0
1

2
3

Pr
ed

ict
io

ns
 o

f
 S

ki
ll-

St
at

e
2

0 1 2 3 4 5 6 7 8 9 10
Number of Updates

0
1

2
3

Pr
ed

ict
io

ns
 o

f
 S

ki
ll-

St
at

e
3

0 1 2 3 4 5 6 7 8 9 10
Number of Updates

0
1

2
3

Pr
ed

ict
io

ns
 o

f
 S

ki
ll-

St
at

e
4

0 1 2 3 4 5 6 7 8 9 10
Number of Updates

0
1

2
3

Pr
ed

ict
io

ns
 o

f
 S

ki
ll-

St
at

e
5

0.5
0.0
0.5

0.5
0.0
0.5

0.5
0.0
0.5

0.5
0.0
0.5
1.0

0.5
0.0
0.5

Figure 10: Each sub-figure represents the change process of actions predicted by the low-level policy
for a state-skill. Each column of the sub-figure represents a predicted action, and the four rows in this
column represent the four components of the action. The i-th column represents the predicted action
after i updates of the hierarchical policy. The predicted actions after two updates are significantly
different from the initial predicted actions.

To visually show the process in which skill space collapse occurs, we visualize the change of the
predicted actions given by the low-level policy for 5 state-skills that are not used for updating as the
whole hierarchical policy is updated. This process of change takes place in the PyramidStack task
adopted in Section 6 and is shown in Figure 10. We find that after 1 update, the predicted actions
still remain highly similar to the initial predicted actions. However, after 2 and more updates, the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

predicted actions and the initial predicted actions are obviously different, although the low-level
policy is never updated with respect to these state-skills.

C ALGORITHM OF UPDATING HIGH-LEVEL POLICY AND SKILLS
SIMULTANEOUSLY

Algorithm 1 DSR: Dynamical Skill Refinement in Skill-based RL

Input: Pretrained high-level policy πh
off , extracted low-level policy πl

off , length of temporal abstrac-
tion H

Output: High-level policy πh
ϕ, residual low-level policy πl

θ, target network f̂ , variable network fξ

1: Initialize πh
ϕ = πh

off and create πl
θ, f̂ , fξ

2: for each epoch do
3: Create high-level buffer βh = ∅ and low-level buffer βl = ∅
4: for each episode do
5: Initialize trajectory queue tq = []
6: for timestep t = 0, 1, 2, ... do
7: if t mod H = 0 then
8: Sample a skill z ∼ πh

ϕ(·|st)
9: end if

10: Decode an action at ∼ πl
off(·|st, z) and an action increment ât ∼ πl

θ(·|st, z)
11: Map prediction error ||f̂((st, z); ξ)− f((s, z))||2 to a weight αt

12: Add weighted increment to action at ← at + αt · ât
13: Execute at and get rt, st+1

14: Append (st, z, ât, rt, st+1) to tq
15: end for
16: Extract high-level trajectory from tq and store it:

βh ← βh ∪ {(..., (st̂·H , zt̂·H , r̂t̂·H , s(t̂+1)·H), ...)}
17: Divide tq into H-timestep rollouts and store them:

βl ← βl ∪ {..., ((st̂·H , zt̂·H , ât̂·H , rt̂·H , st̂·H+1), ...,
(st̂·H+H−1, zt̂·H , ât̂·H+H−1, rt̂·H+H−1, st̂·H+H)), ...}
where each rt̂·H+H−1 has been processed as Figure 3

18: end for
19: Apply PPO on βh to update πh

ϕ

20: Apply PPO on βl to update πl
θ

21: Minimize ||f̂(·; ξ)− f(·)||2 with all (s, z) in βl to update ξ
22: end for
23: return πh

ϕ, π
l
θ, f̂ , fξ

In the online learning stage, the high-level policy and the skills interact with the environment to
generate the trajectories which can be converted to the trajectories in the TA-MDP and divided into
the constructed rollouts for refining the skills. We can directly use PPO Schulman et al. (2017) to
finetune the high-level policy. With the constructed rollouts, the skills can also be directly refined
through PPO. Notably, when the behavior of a skill z in a state s is refined, the predictor network’s
prediction error ||f̂((s, z); ξ) − f((s, z))||2 regarding the state-skill (s, z) should be accordingly
optimized.

During the interaction between the hierarchical policy and the environment, when a skill z predicts
an action in the current state s, the residual policy predicts the action increment of the skill in the
state. We convert the prediction error of the predictor network in this state-skill (s, z) into a weight in
the interval [0, 1], assign this weight to the action increment, and add the weighted action increment
to the predicted action to get the practical action. This conversion can be implemented by a scaled
and shifted Sigmoid function.

The complete algorithm that incorporates dynamical skill refinement is detailedly illustrated in Al-
gorithm 1. Obviously, the high-level policy and skills are updated only at the end of each epoch.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

During the epoch, all the skills remain fixed, which means that the transition dynamics of the TA-
MDP are stationary. Due to the natural circumvention of the temporal abstraction shift, we can
directly use the PPO algorithm to update both the high-level policy and skills. The dynamical skill
refinement mechanism is easily integrated into our algorithm. Its predictor network is updated along-
side the skills, and the only way it influences the action is by assigning a dynamical weight to the
action increment.

D DETAILS OF EXPERIMENTS

D.1 DISCOUNT THE INNER-SKILL REWARDS

We find that the values of all the inner-skill state-actions are the same when the reward function is
sparse, which is shown in Figure 3. However, in sparse-reward tasks, we want to solve the task as
soon as possible; therefore, we propose to optimize the expected sum of the single-timestep rewards
which are discounted by γ = γ̃

1
H after every timestep rather than being discounted by γ̃ after every

H timesteps. We prove theoretically in Corollary 1 that such a skill refinement is equivalent to
optimizing the lower bound of the performance in TA-MDP, which means that it is still unified with
the high-level policy.

Corollary 1. If the original MDP (S,A, p, r, γ) and the TA-MDP (S,A, pπl,H , r̃, γ̃) satisfy that
γ̃ = γH , then ∀s ∈ S, Vπh,πl(s) ≤ V h

πh,πl(s).

Proof. We can expand Vπh,πl(s) with Equation 9 as follows:

Vπh,πl(s) =

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ△t · r(s′, a′)da′ds′. (30)

Then, we rewrite it in the equivalent form:

=

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)(γH)△t/H · r(s′, a′)da′ds′ (31)

=

∫ ∞∑
△t=0

ρ△t(s
′, a′|s, πh, πl)γ̃△t/H · r(s′, a′)da′ds′. (32)

We enlarge it and get:

≤
∫ ∞∑

△t=0

ρ△t(s
′, a′|s, πh, πl)γ̃⌊△t/H⌋ · r(s′, a′)da′ds′ (33)

= V h
πh,πl(s). (34)

In summary, if we refine the skills with respect to the expected sum of the single-timestep rewards
discounted by γ̃

1
H , we actually optimize a lower bound of the state-value in the TA-MDP.

Intuitively, we can consider such a skill refinement as optimizing the low-level policy πl in an MDP
(Ŝ, Â, p̂πh , r̂, γ̂). The state space Ŝ = S × Z is Cartesian product of the state space S of the
original MDP and the skill space Z . The action space Â = A is equal to the original action space.
The transition dynamics p̂πh is determined by the original transition dynamics p and the high-level
policy πh. The reward function r̂ : S × A → R maps the original state component and the action
to the reward value which the original reward function will also give. The discount factor γ̂ = γ̃

1
H .

The trajectory generated by the interaction of the entire hierarchical policy with the environment can
be viewed as the rollout of the low-level policy. From this perspective, we can directly use the PPO
Schulman et al. (2017) algorithm to optimize the low-level policy. We find in experiments that this
practical implementation of skill refinement works well.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D.2 DETAILS OF DATASETS AND DOWNSTREAM TASKS

We reuse the datasets from ReSkill Rana et al. (2023), which were collected by hand-scripted con-
trollers. The fetch block 40000 dataset consists of 40,000 trajectories collected from three tasks:
TableCleanup, SlipperyPush and PyramidStack. We extract the skills from it for the physically
modified versions of these tasks which serve as downstream tasks. The fetch hook 40000 dataset
consists of 40,000 trajectories collected from ComplexHook. We extract the skills from it for the
physically modified version of ComplexHook which serves as the downstream task.

When these tasks are used as downstream tasks, their physical properties are modified appropriately
in order to make skill refinement more necessary. In SlipperyPush, the friction of the table surface
is reduced compared to the transitions in the dataset. In TableCleanup, the tray is actually added and
the agent has to overcome the edges of the tray which are the obstacles. In PyramidStack, the gripper
can reach higher heights. In ComplexHook, the objects are drawn randomly from a library of unseen
objects and the table surface is scattered rigid obstacles. The lengths of episodes in TableCleanup,
PyramidStack, SlipperyPush and ComplexHook are 50, 50, 100 and 100 respectively. These details
remain consistent with ReSkill.

D.3 MAP PREDICTION ERROR TO THE WEIGHT OF ACTION INCREMENT

Downstream Task Hyper-parameter Value

TableCleanup α 1
TableCleanup k -300
TableCleanup c 0.025
SlipperyPush α 1
SlipperyPush k -300
SlipperyPush c 0.025
PyramidStack α 0.6
PyramidStack k -10
PyramidStack c 0.01
ComplexHook α 1
ComplexHook k -20
ComplexHook c 0.04

Table 1: Hyper-parameters of mapping prediction error to weight of action increment.

We point out that the prediction error given by distillation networks can be mapped to the weight of
the action increment by the following scaled and shifted Sigmoid function.

S(x) = α
1

1 + e−k(x−c)
. (35)

α, k, c can be seen as the hand-drafted task-specific hyper-parameters. The values of these hyper-
parameters in different downstream tasks are shown in Table 1. We can collect very few transitions
generated by agent’s interacting with downstream tasks and visualize the prediction error curves
to determine appropriate values of these hyper-parameters. The architectures of the prediction and
target networks are the same and illustrated in Table 2.

Properties Value

Hidden sizes [64, 64]
Activation function Tanh

Output activation function Identity
Optimizer Adam

Learning rate 3e− 4

Table 2: Architecture of the prediction and the target networks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.4 DETERMINE α, k, c WITH A FEW OF ONLINE INTERACTIONS

We use the TableCleanup task as an example to show how to determine the hyper-parameters α, k, c
used to map the prediction error to the weight of the action increment. We use a few of online
interactions to select the appropriate values of α, k, c. We use only 50 epochs to tentatively train the
hierarchical policy and variable prediction network and record the prediction errors. We visualize
these prediction errors in Figure 11. We find that the prediction errors concentrate below 0.025 as the
training progresses. Before that, the prediction errors hover in (0.025, 0.04]. When the prediction
errors are above 0.04, they show a trend of divergence. It is natural to consider the state-skill with
a prediction error less than 0.025 as a sufficiently refined state-skill. This observation motivates us
to set c to 0.025, which means that when the prediction error is around 0.025, the mapped weight
increases rapidly. When the prediction error approaches 0, we expect the weight to approach 1. With
this goal, we can simply set α equal to 1 and just adjust k. Since the adjustment process is done
on the collected data, it involves no online interaction costs. The mapping from prediction error to
weight obtained by adjusting k is presented in Figure 12.

Figure 11: The prediction errors are given different colors according to the scopes to which they
belong.

Figure 12: After adjusting, by setting α = 1 and c = 0.025, we find that k = −300 works as
expected.

19

	Introduction
	Related Work
	Hierarchical Reinforcement Learning
	Skill-based Reinforcement Learning

	Preliminary
	TA-MDP
	Extract Skills through VAE

	Update High-level Policy and Skills under Unified Optimization Objective
	Unified Optimization Objective and Update Formulae
	Performance Improvement and Convergence in TA-MDP
	Effectiveness of Learning in TA-MDP

	Update Hierarchical Policy with Dynamical Skill Refinement in an On-policy RL Manner
	Optimizing the Objective in an On-policy RL Manner
	Dynamical Skill Refinement Mechanism

	Experiments
	Comparison with SOTA Methods
	Ablation Analysis of Dynamical Skill Refinement

	Conclusion
	Detailed Theoretical Proof
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Visualization of Skill Space Collapse
	Algorithm of Updating High-level Policy and Skills Simultaneously
	Details of Experiments
	Discount the Inner-skill Rewards
	Details of Datasets and Downstream Tasks
	Map Prediction Error to the Weight of Action Increment
	Determine ,k,c with a few of online interactions

