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ABSTRACT

Generative diffusion models, including stochastic interpolants and score-based ap-
proaches, require learning time-dependent drift or score functions through expensive neu-
ral network training. Here we avoid these computations by representing the drift in a
reproducing kernel Hilbert space, reducing the learning problem to solving linear sys-
tems. The key challenge becomes selecting kernels with sufficient expressiveness for the
drift learning task. We address this by constructing kernels from pretrained drift or score
functions, leveraging the fact that our linear systems depend only on gradients of kernel
features—not the features themselves. Since pretrained drifts provide these gradients di-
rectly, we can build expressive kernels without access to the underlying feature representa-
tions. This enables seamless combination of multiple pretrained models at inference time
and cross-domain enhancement through the same framework. Experiments demonstrate
competitive sample quality with significantly reduced computation, consistent ensemble
improvements, and successful cross-domain enhancement—even cheap, low-quality mod-
els can match expensive high-quality models when combined through our framework.

1 INTRODUCTION

The rapid advancement of generative diffusion models has led to an explosion of pretrained mod-
els across diverse domains and modalities, ranging from high-quality models requiring substantial
computational resources to more accessible models trained with limited budgets. This proliferation
presents both new challenges and unprecedented opportunities: how can we effectively leverage and
combine these existing models without expensive retraining? While current approaches to model
combination often require specialized training procedures, domain-specific architectures, or hand-
crafted weight interpolation schemes that may degrade individual model performance, the grow-
ing ecosystem of pretrained models—including computationally accessible “weak” models—opens
possibilities for novel combination strategies that can achieve high-quality generation from low-cost
components.

However, realizing these opportunities requires careful rethinking how models are combined. Tradi-
tional ensemble methods either average parameters (potentially destroying specialized knowledge)
or require running multiple models simultaneously (multiplying computational costs). Recent ap-
proaches like mixture of experts require architectural redesign, while parameter-efficient methods
face degradation issues when combining multiple adaptations. Rather than operating in weight space
(where models may be incompatible) or requiring simultaneous inference (which is computationally
expensive), this suggests combining models in function space through kernel representations. This
preserves individual model strengths while enabling training-free combination.

Following this reasoning, this paper introduces a new approach: kernelizing pretrained diffusion
models for training-free generative modeling. Our first key insight is that the stochastic inter-
polant framework can be reformulated as a kernel learning problem, where expensive neural net-
work training is replaced by solving linear systems to estimate the drift needed in the diffusion used

1



048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

Under review as a conference paper at ICLR 2026

as generative model. Under characteristic kernel assumptions, we provide conditions where this
method recovers the exact drift, using maximum mean discrepancy as a goodness-of-fit indicator.

In this approach, the challenge reduces to identifying expressive kernels for representing this drift.
Our second key insight is that pretrained diffusion models can be directly used to construct these
kernels, bypassing the need for access to underlying feature representations. This rests on a cru-
cial observation: the linear systems depend only on gradients of kernel features, not the features
themselves. Since pretrained diffusion models already provide these gradients (as scores or drifts),
we can build expressive kernels without knowing the original feature space. This enables seamless
model combination through linear algebra rather than neural network training.

While our framework applies broadly to model combination problems, we demonstrate its effective-
ness through two key application domains. First, mixture of weak experts: combining multiple
models trained on the same dataset but with limited computational resources—for instance due to
early stopping, reduced capacity, or constrained training time. While each weak model individually
underperforms, they collectively contain complementary information that, when properly combined,
can recover the performance of a fully-trained strong model. Second, cross-domain enhancement:
combining models trained on different datasets to improve generation quality for each individual
domain. For instance, a model trained on natural images might enhance the generation quality of a
face-specific model when targeting face generation, and vice versa.

Our main contributions can be summarized as follows:

• We reformulate stochastic interpolant learning as a kernel method where the drift is obtained via
direct solutions of linear systems (Theorem 2.5).

• We establish conditions under which this kernel approach recovers the true drift functions under
characteristic kernel assumptions.

• We show how pretrained scores/drifts can construct kernels that preserve the expressiveness of
the original models, enabling two key capabilities:

• Training-free model combination that preserves individual model architectures while enabling
single-model inference, unlike mixture-of-experts architectures that require specialized training
or ensemble methods that multiply inference costs.

• Cross-domain enhancement where models trained on different datasets can be combined to mutu-
ally improve generation quality for each individual domain, rather than traditional domain adap-
tation which transfers from source to target.

• We demonstrate the applicability of the approach through experiments on MNIST and CelebA
where we show that competitive sample quality can be obtained with significantly reduced com-
putational requirements, and observe consistent improvements from model ensembling and suc-
cessful cross-domain enhancement.

The method addresses several key challenges in modern generative modeling: the computational
expense of training from scratch, the difficulty of combining specialized models, and the challenge
of adapting to new domains with limited data. It also offers a path toward computational democ-
ratization: Training many weak models is more accessible than training single strong models, yet
our approach shows that several weak models can recover strong model performance.

1.1 RELATED WORK

Our approach builds upon recent advances in generative modeling based on dynamical transport of
measure, as implemented in score-based diffusion models (Song et al., 2020), flow matching (Lip-
man et al., 2022), rectified flows (Liu et al., 2022b), and stochastic interpolants (Albergo & Vanden-
Eijnden, 2022; Albergo et al., 2023). Existing work in this area mostly focuses on training single
models rather than combining existing ones. We reformulate the stochastic interpolant framework
as a kernel method (Muandet et al., 2017), enabling training-free estimation of the drift through

2



096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Under review as a conference paper at ICLR 2026

linear solve rather than expensive neural network training and provding theoretical guarantees using
the mean maximum distance (MMD). RKHS reformulations of diffusion models have been consid-
ered e.g. in Maurais & Marzouk (2024); Yi et al. (2024): in contrast with these approaches that
use standard kernels (Gaussian/RBF, Laplacian, etc.) we build the kernel using pre-trained score
or drifts, thereby avoiding the identification of the feature map as well as the calculation of their
gradient. MMD-based methods in generative modeling have been primarily used to assess perfor-
mance (Gretton et al., 2012; Sutherland et al., 2017), though recently they also have been leveraged
for model-building, see e.g. Galashov et al. (2024); Bortoli et al. (2025); Shen et al. (2025); Zhou
et al. (2025). However these methods also require careful engineering of feature maps as opposed
to combination of existing scores or drifts.

Efficient finetuning methods like LoRA (Hu et al., 2021; Ruiz et al., 2023) leverage the vast
amounts of information encoded into the model during pre-training, but typically build on top of a
single model and work best in specialising for a specific data property. Ensembling models trained
on similar data is a well-established way of improving performance. More diverse models yield
even better results (Fort et al., 2019) aligning with our mixture of weak experts scenario where
models trained with limited resources naturally exhibit diversity yet collectively recover strong per-
formance. However, aggregating model outputs comes at an additional inference cost. In turn,
inference-efficient methods that average in weight space, such as Model Soup (Wortsman et al.,
2022) and Diffusion Soup (Biggs et al., 2024), can lead to performance degradation. Knowledge
transfer from multiple models into one (Hinton et al., 2015) and teacher-student setups (Medvedev
et al., 2025) still require training, while parameter-based knowledge transfer requires a careful prob-
ing of the model internals (Zhong et al., 2023). In contrast, our method is training-free and achieves
cheap inference while maintaining generation quality.

Composing separate models can also be used to enable generalization to different, more complex
data than seen in training (Luo et al., 2025; Liu et al., 2021) or for increased generation control (Ho
& Salimans, 2022). Frameworks focusing on enabling compositionality through distributions did
so through the lens of energy based models (Liu et al., 2021; Du et al., 2020) or diffusion mod-
els (Liu et al., 2022a). Ensuring that the reverse process samples correctly from the composed
model may require complex sampling modifications, such as MCMC (Du et al., 2023) or advanced
resampling methods (Skreta et al., 2025; 2024) or precise specifications on how to modify the base
distributions (Bradley et al., 2025). Other work enables compositionality through the LoRAs. But
linearly merging different LoRAs (Shah et al., 2024; Zhang et al., 2023; Huang et al., 2023) shows
reduced accuracy with an increasing number of models. A more recent approach (Zhong et al.,
2024) presents a more accurate training-free approach, but lacks a firm theoretical underpinning.
Our work presents a theoretically grounded method with a simple inference procedure.

2 GENERATIVE MODELS WITH KERNELIZED STOCHASTIC INTERPOLANTS

2.1 FEATURE MAPS, KERNELS, AND MAXIMUM MEAN DISCREPANCY

We begin by giving some background material on kernel methods with feature maps, referring the
reader to Appendix A for more details.

Definition 2.1 (Feature Map and Kernel). A feature map is a function Φ : H → F that maps
points from the input space H to the feature space F , where F is a Hilbert space with inner product
⟨·, ·⟩F . Associated with Φ : H → F , there is a positive-definite kernel function k : H×H → R
given by

k(x, y) = ⟨Φ(x),Φ(y)⟩F (1)

Correspondingly, given any positive-definite kernel k, the representation (1) for some feature map
Φ is guaranteed for all positive-definite kernels by Mercer’s theorem.
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Definition 2.2 (Maximum Mean Distance (MMD)). Given a positive-definite kernel k(x, y) de-
fined by the feature map Φ, the maximum mean distance between two distribution µ and µ̂ with
support H is defined via

MMD2(µ, µ̂) =

∫
H×H

(µ(dx)− µ̂(dx))k(x, y)(µ(dy)− µ̂(dy))

=
∥∥Ex∼µ[Φ(x)]− Ey∼µ̂[Φ(y)]

∥∥2
F

(2)

where ∥ · ∥ denotes the norm on F .

We also have
Definition 2.3 (Characteristic Kernel). The kernel k : H×H → R is characteristic iff the MMD
is a true distance: MMD(µ, µ̂) = 0 implies that µ = µ̂.

Examples of characteristic kernels are given in Appendix A where we also give a more detailed
definition of these kernels.

2.2 KERNELIZED STOCHASTIC INTERPOLANTS

Our aim is to construct a generative model to sample a target distribution µ known through data. We
will do so using the framework of stochastic interpolants:
Definition 2.4. Given the data a ∈ H with probability distribution µ and some independent Gaus-
sian variable z ∈ H with probability distribution γ = N(0, Id), the stochastic interpolant between
z and a is the stochastic process

It = αtz + βta, z ∼ γ, a ∼ µ, a ⊥ z, t ∈ [0, 1] (3)

where α, β ∈ C1([0, 1]) with α̇t < 0, β̇t > 0, α0 = β1 = 1, and α1 = β0 = 0.

For example we could take αt = 1 − t, βt = t. By definition, we see that I0 = z ∼ γ and
I1 = a ∼ µ, i.e. this process interpolates between Gaussian samples from γ at time t = 0 and target
samples from µ at that time t = 1.

From the results in Albergo & Vanden-Eijnden (2022); Albergo et al. (2023), we know that, for
each t ∈ [0, 1], the law of It is the same as the law of the solution Xt of the stochastic differential
equation

dXt = bt(Xt)dt+ ϵtst(Xt)dt+
√
2ϵtdWt, Xt=0 = z ∼ ν, (4)

Here ϵt ≥ 0 is a diffusion coefficient that can be adjusted, and bt : H → H and st : H → H are the
velocity field and the score given by

bt(x) = E[İt|It = x] = α̇tE[z|It = x] + β̇tE[a|It = x], st(x) = −α−1
t E[z|It = x], (5)

where İt = α̇tz+ β̇ta is the derivative of It with respect to t (e.g. İt = a− z if αt = 1− t, βt = t)
and E[·|It = x] denotes the expectation over the law of It conditional on It = x. Using the relation
x = E[It|It = x] = αtE[z|It = x] + βtE[a|It = x] the score can be expressed in term of the
velocity and vice versa via

st(x) =
βtbt(x)− β̇tx

αt(αtβ̇t − α̇tβt)
⇔ bt(x) =

αtst(x) + β̇tx

βt(αtβ̇t − α̇tβt)
(6)

showing that we only need to estimate bt(x) or st(x).
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In general, neither bt(x) nor st(x) are available in closed form. However, our next reult shows that
we can give exact tractable expressions for them using any feature map that leads to a characteristic
kernel:
Theorem 2.5. Assume that the kernel k is characteristic in the sense of Definition 2.3 and define
the operator Kt ∈ F × F via

Kt = E
[
⟨∇Φ(It),∇Φ(It)⟩

]
(7)

where ∇Φ(x) denotes the gradient of Φ(x) with respect to x, ⟨·, ·⟩ is the inner product in the input
space H, and E denotes expectation over the law of It. Assume that Kt is positive-definite for all
t ∈ [0, 1]. Then, the velocity field bt(x) = E[İt|It = x] can be expressed for each t ∈ [0, 1] as

bt(x) =
〈
∇Φ(x), ηt

〉
F , (8)

where ηt ∈ F is the unique solution to the linear system of equations

⟨Kt, ηt⟩F = E
[
⟨∇Φ(It), İt⟩

]
(9)

Similarly, the score st(x) = −α−1
t E[z|It = x] can be expressed for each t ∈ (0, 1] as

st(x) = −α−1
t

〈
∇Φ(x), ζt

〉
F , (10)

where ζt ∈ F is the unique solution to the linear system of equations

⟨Kt, ζt⟩F = E
[
⟨∇Φ(It), z⟩

]
(11)

Note that all the expectations in the theorem can be estimated empirically on the data, making the
solution of the linear systems (9) and (11) tractable, and expressions (8) and (10) for bt(x) and st(x)
usable in the SDE (4). Note also that we can still get the score st(x) from bt(x) and vice versa
via (6), so only one of them needs to be estimated.

The proof of Theorem 2.5 is given in Appendix B. To give some intuition for (8), recall that, by the
L2 characterization of the conditional expectation, the velocity bt defined in (5) is the mimimizer
over b̂t of the objective function

Lb[b̂t] = E
[∥∥b̂t(It)− İt

∥∥2] (12)

where the expectation is taken over the law of It. If we insert the ansatz b̂t(x) = ⟨∇Φ(x), η̂t⟩F
into (12) we turn this objective into a quadratic objective for η̂t ∈ F :

Lb[⟨∇Φ, η̂t⟩F ] = E
[∥∥⟨∇Φ(It), η̂t⟩F − İt

∥∥2]
=

〈
η̂t,Ktη̂t

〉
F − 2

〈
E
[〈
∇Φ(It), İt

〉]
, η̂t

〉
F + E[∥İt∥2].

(13)

where Kt is the operator defined in (7). Assuming that Kt is postive-definite, the minimizer of this
objective is unique and given by the unique solution ηt of (9). This establishes that (8) is the best
approximation of bt(x) in the class b̂t(x) = ⟨∇Φ(x), η̂t⟩F . Theorem 2.5 shows that, if the kernel is
characteristic, this class is expressive enough to recover the exact bt(x). A similar argument can be
used to justify (10) starting from the denoising loss for st(x),

Ls[ŝt] = E
[∥∥ŝt(It) + α−1

t z
∥∥2] (14)

and minimizing it over function in the class ŝt(x) = ⟨∇Φ(x), ζ̂t⟩F .

We stress that (8) and (10) remain usable approximations of bt(x) and st(x) regardless of whether
the kernel is characteristic. Since we do not explicitly construct the kernel in our approach, we
cannot guarantee this property (see however the remark below after (16)), but (8) and (10) remain
practically viable as demonstrated through our numerical experiments.
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Algorithm 1: Learning-Free Generation with Pre-Trained Velocity Fields

input: time step h = 1/K with K ∈ N, batch size N ∈ N, pretrained velocity fields bit(x),
i = 1, . . . , P , coefficients αt, βt, ϵt ≥ 0

initialize: X0 ∼ γ;
for k = 0, . . . ,K − 1 do

set t = kh;
draw samples {z1, . . . , zN} ∼ ν, and {a1, . . . , aN} ∼ µ;
calculate Int = αtzn + βtan and İnt = α̇tzn + β̇tan, n = 1, . . . , N ;
obtain (η1t , . . . , η

P
t ) by solving the linear system:

P∑
j=1

1

N

N∑
n=1

〈
bit(I

n
t ), b

j
t (I

n
t )⟩η

j
t =

1

N

N∑
n=1

⟨bit(Int ), İnt ⟩, i = 1, . . . , N

set bt(Xt) =

P∑
i=1

bit(Xt)η
i
t and st(Xt) =

βtbt(Xt)− β̇tXt

αt(αtβ̇t − α̇tβt)
;

update Xt+h = Xt + h (bt(Xt) + ϵtst(Xt)) +
√
2hϵt gt, gt ∼ N(0, Id)

output: X1 ∼ µ (approximately)

2.3 PRACTICAL CONSIDERATIONS

Theorem 2.5 shows that we can use any characteristic kernel to construct a training-free generative
model. Still, in practice, the choice of the kernel will dramatically impact the performance of this
model. Here we discuss a simple and natural way to use kernels without having to identify their
feature map explicitly using pre-trained models. To this end, a key observation is that:

Neither equations (8) and (9) defining bt(x), nor equations (10) and (11) defining st(x)
depend on the feature map Φ(x) itself: rather they only depend on its gradient ∇Φ(x).

This indicates that we can pick ∇Φ(x) directly rather than Φ(x), thereby avoiding the costly com-
putation of a gradient. One way to do so is to use pretrained velocity fields. Denoting these velocity
by bit(x) with i = 1, . . . , P , this amounts to assuming that the feature space F is N -dimensional,
and that the ith component of ∇Φ(x) is1

∇Φi(x) = bit(x), i = 1, . . . , P (15)

This makes the feature map time-dependent, but does not change the result of Theorem 2.5 since (8)
and (9) as well as (8) and (9) holds pointwise in time. For example, if we use (15) in (8) and (9),
these equations become

bt(x) =

P∑
i=1

bit(x)η
i
t where

P∑
j=1

E
[
⟨bit(It), b

j
t (It)⟩

]
ηit = E

[
⟨bit(It), İt⟩

]
. (16)

1Strictly speaking, the velocity fields bit(x) and the scores sit(x) should be in gradient form to use represen-
tations (15) and (17). For scores, this holds by definition since st(x) = ∇ log ρt(x). For velocity fields, any
bt(x) can in principle be expressed as ∇ϕt for some potential ϕt (by solving the appropriate Poisson equation
to preserve the transport dynamics). While pretrained models are not typically trained to enforce this gradi-
ent structure explicitly, in practice we observe that using them directly in our framework works effectively,
indicating that our approach remains robust even when the theoretical gradient representation is not rigorously
maintained.

6
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Figure 1: Left: Sample images from models trained on MNIST. First and second rows: samples
from weak models trained with 50 and 100 SGD steps, respectively. Third row: samples from
our approach kernelizing 20 weak models trained over 100 steps. Right: Ground truth likelihood
averaged over 10k samples from our approach as a function of the number of weak models used.

Having calculated bt(x) this way, we can then estimate st(x) using (6). In terms of generation,
this leads to the scheme summarized in Algorithm 1. Note that the linear solves required in this
algorithm need to be performed only once, and can be re-used for each sample generation—the cost
of this operation depends on the number P of pretrained models used, which can be kept relatively
small as demonstrated in our numerical experiments. Note also that we could guarantee that the
kernel is characteristic by using e.g. the feature map of a characteristic kernel (Gaussian/RBF,
Laplacian) and adding its gradient to (15): in our experiments, we observed that such an addition
was unnecessary.

Similarly if sit(x) with i = 1, . . . , P are pretrained scores, one can use

∇Φi(x) = sit(x), i = 1, . . . , P (17)

In this case (10) and (11) become

st(x) = −α−1
t

P∑
i=1

sit(x)ζ
i
t where

P∑
j=1

E
[
⟨sit(It), s

j
t (It)⟩

]
ζit = E

[
⟨sit(It), z⟩

]
. (18)

and we can estimate st(x) from bt(x) using (6).

We could also use (15) in the equations for the score st(x), or (17) in the equations for the velocity
field bt(x), or combine both feature maps, etc. In the next section we illustrate how to instantiate
this construction on concrete examples.

3 NUMERICAL ILLUSTRATIONS

3.1 MIXTURE OF (WEAK) EXPERTS

We evaluate our method on two datasets: MNIST, with images of size 28× 28 and CelebA, resized
to 128× 128. Details of the experimental setup can be found in Appendix C.

MNIST: We stress-test our framework in a compute-constrained regime by composing the ensemble
from deliberately under-trained models. To this end we train two cohorts: 20 models trained for
50 steps of stochastic gradient descent (SGD) and another 20 trained for 100 steps, each using
mini-batches of 128. To induce diversity, each model is initialized with an independent random
seed, ensuring that after n SGD updates the members remain distinct. All models share the same

7
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Figure 2: Top: Typical samples images from weak model. Bottom: Typical samples images from
ensemble model of 25 weak models.

backbone: a standard time-conditioned convolutional U-Net described in Appendix C. We then
generate samples from the ensemble using Algorithm 1 on the test set.

Figure 1 shows the results from two individual weak models and from an ensemble of 20 weak mod-
els (each trained for 100 steps of SGD) used in Algorithm 1. The images on the left panel indicate
that our method achieves good visual quality by combining even very weak models. To quantify the
performance, we compute the sample likelihoods using a fully trained U-Net as an oracle model,
treating its outputs on the test set as ground truth. The plot on right panel shows that the likeli-
hood improves as more weak models are ensembled, but saturates beyond a certain ensemble size:
adding additional models yields diminishing returns once this plateau is reached. Using stronger
weak models further improves performance and reduces the number of models needed.

CelebA: To assess scalability to natural images, we repeat the protocol on CelebA. We train 25
deliberately under-trained models for 5 epochs (learning rate 10−4, batch size 128) on the training
split, each initialized with an independent random seed. All models share the same U-Net back-
bone described in Appendix C. At evaluation, we generate samples with Algorithm 1. Figure 2
qualitatively demonstrate the improvement performance our approach provides using the 25 weak
models.

3.2 CROSS-DOMAIN ENHANCEMENT

We test whether ensembles of weak learners trained on semantically related source domains can
bootstrap sampling on a distinct target domain. Concretely, we train 10 weak models each on
Fashion-MNIST, EMNIST (letters only), MNIST and Kuzushiji-MNIST using 50 steps of SGD
with mini-batches of 128 and independent random initializations. All models share the U-Net back-
bone described in Appendix C. At inference, we use these 30 source-domain models in Algorithm 1
to sample from the MNIST distribution. Figure 3 presents representative samples, illustrating that
semantically aligned sources can be composed to produce better target-domain images.

4 CONCLUSION

This paper introduces a novel framework for training-free generative modeling by reformulating
stochastic interpolants as kernel methods and leveraging pretrained diffusion models to construct ex-
pressive kernels. Our approach enables seamless combination of multiple pretrained models without

8
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Figure 3: Samples images of weak models trained on Kuzushiji-MNIST (first row), Fashion-MNIST
(second row), EMNIST letters (third row) and MNIST (fourth row). The last row shows samples
images from MNIST using the weak models from all the source-domains in Algorithm 1.

requiring retraining or architectural modifications, addressing key challenges in the growing ecosys-
tem of specialized generative models.

The theoretical foundation rests on Theorem 2.5, which shows that drift and score functions can be
exactly recovered through linear systems when using characteristic kernels. By constructing kernels
from pretrained velocity fields or scores, we bypass the need for explicit feature map construction
while preserving the expressiveness of the original models. This enables two key capabilities: mix-
ture of weak experts that can recover strong model performance from computationally accessible
components, and cross-domain enhancement where models trained on different datasets mutually
improve generation quality.

Our experimental results on MNIST and CelebA demonstrate the practical viability of the approach.
We observe consistent improvements from ensembling weak models and successful cross-domain
enhancement, achieving competitive sample quality with significantly reduced computational re-
quirements compared to training strong models from scratch..

Future work could investigate weaker sufficient conditions for theoretical guarantees, develop more
sophisticated constructions using pretrained velocity fields and scores, and extend the framework to
other generative modeling tasks.
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A KERNEL METHODS, RKHS, AND MAXIMUM MEAN DISCREPANCY
(MMD)

Here we give some additional information about kernel methods. This is a well-mapped topic, with
many good references including Muandet et al. (2017) where the interested reader will find more
details.

A.1 KERNEL DEFINITION VIA FEATURE MAPS

A positive-definite kernel function k : H ×H → R can be defined via a feature map Φ : H → F ,
where F is a Hilbert space with inner product ⟨·, ·⟩F :

k(x, y) = ⟨Φ(x),Φ(y)⟩F (19)

This representation is guaranteed for all positive-definite kernels by Mercer’s theorem. The function
Φ maps points from the input space H to the feature space F where the inner product between
mapped points corresponds to the kernel evaluation.

A.2 REPRODUCING KERNEL HILBERT SPACE (RKHS)

Given a positive definite kernel k, there exists a unique Reproducing Kernel Hilbert Space (RKHS)
Hk consisting of the functions f : H → R with the following key property:

f(x) = ⟨f, k(x, ·)⟩Hk
, ∀f ∈ Hk, ∀x ∈ H, (20)

where k(x, ·) represents the function that maps y ∈ H 7→ k(x, y) ∈ R for each fixed x ∈ H. This
is known as the reproducing property. The RKHS Hk can be constructed as the completion of the
space of all finite linear combinations of the form:

f(x) =

n∑
i=1

αik(xi, x), αi ∈ R, xi ∈ H (21)

The inner product in Hk is defined such that:

⟨k(x, ·), k(y, ·)⟩Hk
= k(x, y) (22)

A.3 MEAN EMBEDDING OF DISTRIBUTIONS

For a probability distribution µ on H, we can define its mean embedding mµ in the RKHS Hk as:

mµ =

∫
H
k(x, ·)µ(dx) (23)

If we define the feature map Φ : H → Hk as Φ(x) = k(x, ·), this embedding can also be written as

mµ =

∫
H
Φ(x)µ(dx) (24)

The mean embedding has the property that for any function f ∈ Hk:

Ex∼µ[f(x)] = ⟨f,mµ⟩Hk
(25)

Given samples {a1, a2, . . . , aN} from distribution µ, the empirical estimate of the mean embedding
is:

m̂µ =
1

N

N∑
n=1

k(an, ·) =
1

N

N∑
n=1

Φ(an) (26)
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A.4 MAXIMUM MEAN DISCREPANCY (MMD)
The Maximum Mean Discrepancy (MMD) between two distributions µ and µ̂ is defined as the
RKHS distance between their mean embeddings:

MMD(µ, µ̂) = ∥mµ −mµ̂∥Hk
(27)

Using the properties of inner products, this can be expanded as:
MMD2(µ, µ̂) = ∥mµ −mµ̂∥2Hk

(28)

= ⟨mµ,mµ⟩Hk
+ ⟨mµ̂,mµ̂⟩Hk

− 2⟨mµ,mµ̂⟩Hk
(29)

= Ex,x′∼µ[k(x, x
′)] + Ey,y′∼µ̂[k(y, y

′)]− 2Ex∼µ,y∼µ̂[k(x, y)] (30)

The MMD is a pseudometric on the space of probability distributions. For it to be a true metric (so
that MMD(µ, µ̂) = 0 if and only if µ = µ̂), the kernel must be characteristic:

Definition A.1 (Characteristic kernels). A kernel k is characteristic if the mean embedding map
µ 7→ mµ is injective, meaning that different distributions get mapped to different elements in the
RKHS. Formally, a kernel is characteristic if:

mµ = mµ̂ ⇒ µ = µ̂ (31)

For shift-invariant kernels k(x, y) = k(x−y), a sufficient condition for the kernel to be characteristic
is that the support of its Fourier transform spans the entire domain. Examples of shift-invariant
characteristic kernels include:

• Gaussian/RBF kernel: k(x, y) = exp
(
−∥x−y∥2

2σ2

)
• Laplacian kernel: k(x, y) = exp (−γ∥x− y∥1)
• Inverse multiquadratic kernels: k(x, y) = (c2 + ∥x− y∥2)−β with β > 0

All these kernels can be expressed as expectations over random feature maps.

B PROOF OF THEOREM 2.5
Let us begin by introducing the following probability flow ODE:

Ẋ∗
t = b∗t (X

∗
t ), X∗

t=0 = z ∼ γ, (32)
where

b∗t (x) =
〈
∇Φ(X∗

t ), η
∗
t

〉
(33)

with η∗t solution to the linear system〈
EX∗

t

[
⟨∇Φ(X∗

t ),∇Φ(X∗
t )⟩

]
, η∗t

〉
F
= EIt [⟨∇Φ(It), İt⟩] (34)

Note that the expectation defining the operator at the right hand side in this equation is over X∗
t , the

solution to (32): in contrast the expectation defining the operator Kt appearing in (34) is over It.

Consider the MMD between the distributions of It and the solution X∗
t to (32):∥∥EIt [Φ(It)]− EX∗

t
[Φ(X∗

t )]
∥∥2
F (35)

By taking the derivative with respect to t of this expression we obtain
d

dt

∥∥EIt [Φ(It)]− EX∗
t
[Φ(X∗

t )]
∥∥2
F

=
〈(

EIt [Φ(It)]− EX∗
t
[Φ(X∗

t )]
)
,
(
E[⟨∇Φ(It), İt⟩]− EX∗

t
[⟨∇Φ(X∗

t ), Ẋ
∗
t ⟩]

)〉
F

=
〈(

EIt [Φ(It)]− EX∗
t
[Φ(X∗

t )]
)(
EIt [⟨∇Φ(It), İt⟩]−

〈
EX∗

t
[⟨∇Φ(X∗

t ),∇Φ(X∗
t )⟩], η∗t

〉
F

)〉
F

= 0
(36)
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where we used the chain rule to get the first equality, (32) to get the second, and (34) to get the last.
By integrating this equation, we deduce

∀t ∈ [0, 1] :
∥∥EIt [Φ(It)]− EX∗

t
[Φ(X∗

t )]
∥∥2
F = C (37)

where C is an integration constant. Since X∗
t=0 = z = It=0, we know that the left hand side of (37)

is zero at t = 0, i.e. C = 0 in (37). Since the kernel k associated with Φ is characteristic by
assumption, this implies that X∗

t
d
= It for all t ∈ [0, 1], which has two consequences:

First, the ODE (32) allows us to transport samples X∗
t that have the same law as It, i.e. the velocity

field b∗t (x) defined in (33) is an exact representation of the desired bt(x) = E[İt|It = x].

Second, in (34) we can set EX∗
t

[
⟨∇Φ(X∗

t ),∇Φ(X∗
t )⟩

]
= EIt

[
⟨∇Φ(It),∇Φ(It)⟩

]
= Kt, i.e. (34)

is the same equation as (9), meaning that η∗t = ηt and as a result the velocity field defined in (8) is
the same as b∗t (x) = E[İt|It = x].

To prove that (10) gives an exact representation of the score, we can follow similar steps starting
from a probability flow ODE similar to (32) in which we express the velocity field in terms of the
score using (6)

Ẋ∗
t =

αts
∗
t (X

∗
t ) + β̇txX

∗
t

βt(αtβ̇t − α̇tβt)
, X∗

t=0 = z ∼ γ, (38)

where
s∗t (x) = −α−1

t

〈
∇Φ(X∗

t ), ζ
∗
t

〉
(39)

with ζ∗t solution to the linear system〈
EX∗

t

[
⟨∇Φ(X∗

t ),∇Φ(X∗
t )⟩

]
, ζ∗t

〉
F
= EIt [⟨∇Φ(It), z⟩] (40)

These calculation show again that the MMD distance between the solution to (38) is zero, implying
that (i) (39) is an exact expression for the score and (ii) (40) is the same equation as (40), i.e. (10) is
also an exact expression for the score. □

Note that this proof shows that we can use (32) as alternative generative model. However (32) is
more costly to integrate than the model with the velocity field and score specified in Theorem 2.5
since it requires the on-the-fly computation of EX∗

t

[
⟨∇Φ(X∗

t ),∇Φ(X∗
t )⟩

]
to obtain η∗t from (34);

in contrast the factor EIt

[
⟨∇Φ(It),∇Φ(It)⟩

]
entering (9) can be pre-computed from the data.

C DETAILS OF THE NUMERICAL EXPERIMENTS

C.1 MNIST UNET

A sinusoidal time embedding (scaled for t ∈ [0, 1]) is passed through a small MLP and injected into
every UNetBlock by projecting it to channel size and additively conditioning feature maps after the
first conv. The U-Net has two encoder stages (32→64 channels) with 3× 3 convs, BatchNorm, and
ReLU, each separated by 2× 2 max pooling, followed by a bottleneck (128 channels). The decoder
mirrors this with two transposed-conv upsampling steps, skip connections from the encoder, and
UNetBlocks that reduce concatenated features back to 64 and then 32 channels. A final 1× 1 conv
produces the single-channel output. Time is never concatenated as an image channel; instead, its
embedding conditions all scales of the network, enabling the model (VelocityFieldImage) to predict
a time-dependent velocity field from a 1-channel input.

C.2 CELEBA UNET

We followed the architecture and training setting of (Martin et al., 2025), yet we trained the weak
models for only 5 epochs over the train set.
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