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Abstract

In the presence of confounding between an endogenous variable and the outcome,1

instrumental variables (IVs) are used to isolate causal effects. Identifying valid2

instruments requires interdisciplinary knowledge and contextual understanding,3

making it a difficult task. In this paper, we examine whether large language models4

(LLMs) can assist. We adopt a two-stage evaluation: first, testing whether LLMs5

recover established instruments from the literature, and second, assessing whether6

they avoid empirically or theoretically discredited ones. Building on these results,7

we introduce IV Co-Scientist, a multi-agent system that proposes, critiques, and8

refines IVs, along with a statistical test to contextualize consistency without ground9

truth. Our results show the potential of LLMs to identify valid IVs from large10

observational data.11

1 Introduction12

Understanding the causal effect of a treatment on an outcome is a central question across disci-13

plines [39]. In economics, for example, we may ask: Does additional schooling increase earnings?.14

Estimating such effects is difficult due to endogeneity, when the treatment is correlated with unob-15

served factors that also influence the outcome [8, 39], and because treatments may be mismeasured16

or unobservable. To address this, researchers use instrumental variables (IVs)[44, 11, 52]. A17

valid IV must causally influence the treatment, not be caused by it, and affect the outcome only18

through the treatment. When these conditions hold, IVs yield consistent causal estimates, even19

in the presence of unobserved confounders. Identifying valid instruments is therefore crucial yet20

challenging, as IV strength and validity determine the reliability of causal estimates in domains such21

as economics[42, 21] and health sciences [12, 5].22

Identifying valid instrumental variables is a challenging task that spans theory, domain expertise,23

and empirical evidence [24]. Statistically, a valid IV must satisfy relevance (correlation with the24

endogenous treatment) and exclusion (no direct effect on the outcome except through the treatment),25

while also being independent of unobserved confounders. Meeting these assumptions requires26

more than statistical tests—it demands contextual knowledge. Experts draw on institutional details,27

historical context, policy design, or mechanisms from natural and social sciences to argue for or28

against validity [14]. IV discovery is thus inherently multidisciplinary and often requires creativity, as29

plausible sources of exogeneity may not be directly observable in data. Moreover, instruments once30

accepted are sometimes later discredited [36]. For example, rainfall has been used to study the effect31

of war on national progress, but later research questioned its exclusion validity due to direct effects32

on outcomes [43]. Such cases underscore both the fragility and difficulty of instrument identification.33

Given these challenges, it is natural to ask whether large language models (LLMs) can aid IV34

discovery. Trained on vast text corpora across economics, health sciences, law, and history, LLMs35

encode broad domain knowledge that may help generate and assess candidate instruments [9].36
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Figure 1: IV Co-Scientist framework, which integrates LLM-based agents with statistical tools.

Recent studies show their utility in literature review, hypothesis generation [45, 2], and experimental37

design [3, 34], suggesting their promise as tools for early-stage IV discovery. We view LLMs not as38

substitutes for theoretical reasoning, but as “thinking collaborators” that can extend human intuition39

and creativity. In this paper, we systematically explore this potential.40

LLMs have shown strong performance in causal discovery, often surpassing statistical methods [51,41

27, 1]. Their contextual reasoning has been used to identify mediators, extract causal graphs from text,42

and simulate interventions through structured prompting. We argue that IV discovery is well-suited43

to LLMs, as it requires both domain-informed reasoning and creative hypothesis generation.44

In this paper, we investigate whether LLMs can aid instrumental variable discovery through a45

structured multi-agent framework, where agents propose, critique, and refine candidate instruments.46

Our goal is to assess their ability not only to recover established instruments but also to generate47

novel ones for previously unstudied treatment–outcome pairs. We adopt a staged evaluation: first,48

testing whether LLMs reproduce well-known instruments from the literature; second, examining49

whether they avoid those invalidated by theory or evidence; and finally, evaluating their capacity to50

generate candidate instruments in new contexts, highlighting their potential for IV discovery.51

2 IV Co-Scientist52

Having validated LLMs’ ability to recover canonical IVs (subsection Appendix C..1) and avoid53

discredited ones (subsection Appendix C..2), we next evaluate the system in a fully open-ended54

setting. Our goal is to test whether LLMs can generate meaningful and potentially novel instrumental55

variables for real-world causal questions without relying on prior literature. This reflects a realistic56

and challenging scenario: in applied research, analysts often explore large observational datasets to57

estimate causal effects for which no established IVs exist, requiring domain expertise, creativity, and58

data-driven reasoning. We assess whether LLMs, paired with a structured evaluation pipeline, can59

support this discovery process. Within this pipeline, all validity criteria for IVs are tested: relevance60

is evaluated statistically, while exclusion and independence are assessed through LLM reasoning,61

mirroring the approach taken by applied economists. We use a real-world, high-dimensional sandbox62

to test open-ended causal exploration. The Gapminder dataset [41] includes socio-economic indicators63

across countries and over time. The dataset has observations for more than 500 such indicators. We64

aim to find IVs of novel pairs that are still statistically sound.65

We formulate a multi-stage, multi-agent system, where each agent is responsible for a specific task in66

the discovery pipeline (see Figure 2). Let V = {v1, v2, . . . , vn} denote the set of all variables in the67

dataset. Our goal is to identify a valid IV Z for a treatment-outcome pair (T, Y ) ∈ V × V , such that68

the IV conditions are satisfied. Below, we describe the different stages and agents of IV Co-scientist.69

Correlation Filter (PreSelector) We compute the Pearson correlation coefficient ρ(vi, vj) for all70

candidate variable pairs, (vi, vj) ∈ V × V . We retain pairs satisfying:71

P = {(vi, vj) | |ρ(vi, vj)| > τρ, } (1)
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for pre-defined thresholds τρ. This step eliminates weak or statistically noisy pairs. However, since72

correlation strength alone does not account for sample size, we also consider the number of data73

points over which the correlation was computed.74

Semantic Relevance Agent (HumanProxy) LLM selects human-meaningful and policy-relevant75

pairs from P . Output is set S = {(vi, vj)}s, to be hypothesized as candidate (T, Y ) pairs. This76

step simulates the reasoning a researcher might apply in choosing interpretable or practically socio-77

economic questions.78

Causal Direction Agent (CausalOracle) For each (vi, vj) ∈ S, apply LLM causal reasoning and79

statistical tests via Granger causality to infer directionality:80

• LLM-based Causal Reasoning: Prompted judgments on whether vi → vj or vj → vi, based81

on world knowledge.82

• Granger Causality Test: Statistical test of the temporal data, verifying whether lagged values83

of vi improve the prediction of vj , beyond vj’s history. See Appendix F..1 for details.84

We retain only those pairs (vi, vj) for which both the LLM and Granger test agree on the direction.85

The directionally inferred pair is now labeled as (T, Y ), with T as treatment and Y as outcome.86

IV Suggestor Agent (HypothesisGenerator) Given a causal pair (T → Y ), the LLM generates a set87

of k candidate IVs. See Appendix Appendix C..88

IV Critic Agents (CriticAgents) Each candidate Zi is passed through two critic agents that critique89

the IVs and give a list of Zvalid. See Appendix Appendix C..90

Proxy Matching Agent (Grounder)91

For each valid IV Zi ∈ Zvalid proposed by the LLM, we attempt to ground it in the dataset by92

identifying a concrete proxy variable. If no such proxy is found, Zi is excluded from downstream93

evaluation. Otherwise, the discovered IV is retained as (Zi,Proxy(Zi)).94

The IV Co-scientist starts with the PreSelector, which filters variable pairs based on correlation and95

sample size. The HumanProxy then selects socio-economically meaningful pairs, forming candidate96

causal pairs S . The CausalOracle applies LLM reasoning and Granger tests to infer directionality. For97

each (T → Y ), the HypothesisGenerator proposes candidate IVs, which are vetted by CriticAgents.98

Valid IVs are then grounded to dataset variables by the Grounder, and only those with concrete99

proxies proceed to causal estimation. If no valid IVs were found, then HypothesisGenerator and the100

following agents are rerun.101

2.1 Evaluation102

Given that the discovered (T, Y, Z) triplets in our open-ended pipeline are novel, direct comparison to103

ground truth IVs is not feasible. To evaluate the plausibility and effectiveness of the LLM-suggested104

IVs, we use the statistical strength of the IV, a standard measure that is used in the IV literature.105

Further, we propose a novel metric to compare sets of valid and invalid IVs.106

2.1.1 Statistical Strength via F-statistic107

A key requirement for a valid IV is relevance, which means that the IV must be sufficiently correlated108

with the treatment variable. To quantify this, we compute the first-stage F-statistic, a standard method109

used in instrumental variables analysis to detect weak IVs. Specifically, we regress the treatment110

variable T on the candidate IV Z and assess whether Z explains significant variation in T . A high111

F-statistic indicates strong predictive power.112

In our analysis, we use robust heteroskedasticity-consistent estimators that do not assume Gaussian113

errors, reflecting the potentially complex and noisy nature of observational data.The F-statistic tests114

the null hypothesis H0 : β = 0. An F-statistic value above the conventional threshold (typically 10)115

indicates a strong IV.116

2.1.2 Consistency of Estimated Effects117

While the relevance of an instrument can be assessed via predictive strength (e.g., F-statistic), its118

overall validity also relies on the more elusive exclusion and independence assumptions, which119
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GDP → Health Income → Emissions Sanitation → Mortality Poverty → Cholesterol Female literacy → Kids
Relevance Cnorm Relevance Cnorm Relevance Cnorm Relevance Cnorm Relevance Cnorm

GPT-4.1 14.28 0.94 17.52 0.91 11.37 0.97 13.44 0.88 19.81 0.93
o3-mini 14.28 0.94 14.88 0.98 11.37 0.97 10.32 0.76 19.81 0.93
QwQ 13.10 0.85 16.05 0.89 10.76 0.94 12.51 0.85 18.23 0.89
Llama3.1 70b 12.65 0.95 15.33 0.89 10.28 0.72 11.90 0.86 17.50 0.79
Llama3.1 8b 13.10 0.85 11.92 0.79 10.76 0.94 12.51 0.85 18.23 0.89

Table 1: Performance of different LLMs in discovering novel IVs. Relevance is defined by the first
stage F-statistic and Cnorm gives the consistency when compared to random IVs.

cannot be directly verified without ground-truth causal effects. To address this, we introduce a novel120

evaluation metric, consistency, to assess the quality of IV sets.121

The idea is that if a set of instruments truly isolates exogenous variation in the treatment, each122

instrument should produce similar estimates of the average treatment effect (ATE) via two-stage123

least squares (2SLS). For two instruments Z1 and Z2 proposed by the LLM, we compute their124

2SLS estimates β̂
(Z1)
ATE and β̂

(Z2)
ATE and define the consistency score as ∆LLM =

∣∣∣β̂(Z1)
ATE − β̂

(Z2)
ATE

∣∣∣,125

where smaller values indicate stronger internal agreement. To contextualize this measure, we126

construct a null distribution by randomly sampling proxy variables R1 and R2 from the dataset,127

defining ∆Rand =
∣∣∣β̂(R1)

ATE − β̂
(R2)
ATE

∣∣∣, which captures the variability expected from invalid or spurious128

instruments. Comparing ∆LLM to ∆Rand allows us to test whether LLM-suggested IVs exhibit greater129

internal consistency than would be expected by chance. Inspired by the self-compatibility test in130

causal discovery [16], this approach provides indirect evidence that LLMs may identify variables131

isolating genuine exogenous variation, even when the exclusion and independence assumptions132

cannot be directly verified.133

2.2 Results134

In Table 1, we evaluate the quality of LLM-suggested IVs from two perspectives: statistical relevance135

and consistency of estimated causal effects. An IV is considered strong if it predicts variation in the136

treatment T , typically with an F -statistic exceeding 10. We examine five examples autonomously137

generated by our multi-agent IV Co-Scientist (see Appendix Appendix H. for details). To quantify138

stability, we define a normalized consistency score Cnorm =
∣∣∣∆LLM−∆Rand

∆Rand

∣∣∣, where values near 1 indicate139

that LLM-suggested IVs are more internally consistent than random proxies.140

Many LLM-suggested IVs achieve high relevance, though statistical significance alone does not141

guarantee sufficient strength to avoid weak-IV issues [29]; hence, we emphasize Cnorm. Empirically,142

Cnorm scores are often near or above 1, showing a clear gap between LLM-suggested and random143

IVs, with GPT-4.1 and o3-mini producing similar IVs and results. Figure 3 further supports this:144

panel (a) shows posterior distributions of ATE1 and ATE2 using LLM-suggested IVs, suggesting145

both relevance and meaningful local treatment effect heterogeneity, whereas panel (b) highlights146

weak or inconsistent IVs.147

Human evaluation. We consulted a faculty-level economist to qualitatively assess the LLM-148

generated IVs. They found the CriticAgents’ reasoning and confounder identification generally sound.149

They noted that accepted and rejected IVs often differ not in validity but in generality: accepted ones150

tend to be broader and less debated, while rejected ones are more specific, often with known critiques.151

3 Conclusion152

Instrumental variables are central to causal inference in observational studies, but identifying them153

is challenging and typically demands deep domain expertise. While large language models offer154

new opportunities for extracting knowledge from text, their use in discovering instruments beyond155

toy examples remains underexplored. We introduce a multi-agent framework that analyses the data,156

proposes candidate instruments for a given treatment-outcome pair, and validates them semantically.157

In addition, we propose a consistency-based metric to assess internal validity in the absence of ground158

truth. Our empirical results on real-world data demonstrate that LLM-suggested instruments show159

meaningful consistency, providing a first step toward principled use of LLMs in variable discovery.160

4



References161

[1] Ahmed Abdulaal, adamos hadjivasiliou, Nina Montana-Brown, Tiantian He, Ayodeji Ijishakin162

an d Ivana Drobnjak, Daniel C. Castro, and Daniel C. Alexander. Causal modelling agents:163

Causal graph discovery through synergising metadata- and data-driven reasoning. In ICLR,164

2024.165

[2] Shubham Agarwal, Gaurav Sahu, Abhay Puri, Issam H Laradji, Krishnamurthy Dj Dvijotham,166

Jason Stanley, Laurent Charlin, and Christopher Pal. Litllms, llms for literature review: Are we167

there yet? Transactions on Machine Learning Research.168

[3] Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large language169

models on scientific discovery: a preliminary study using gpt-4. arXiv, 2023.170

[4] Joshua D Angrist and Alan B Krueger. Instrumental variables and the search for identification:171

From supply and demand to natural experiments. Journal of Economic perspectives, 15(4):69–172

85, 2001.173

[5] Michael Baiocchi, Jing Cheng, and Dylan S Small. Instrumental variable methods for causal174

inference. Statistics in medicine, 33(13):2297–2340, 2014.175

[6] Taiyu Ban, Lyvzhou Chen, Xiangyu Wang, and Huanhuan Chen. From query tools to causal176

architects: Harnessing large language models for advanced causal discovery from data. arXiv,177

2023.178

[7] Shraddha Barke, Michael B James, and Nadia Polikarpova. Grounded copilot: How pro-179

grammers interact with code-generating models. Proceedings of the ACM on Programming180

Languages, 7(OOPSLA1):85–111, 2023.181

[8] Roger John Bowden, Roger J Bowden, and Darrell A Turkington. Instrumental variables.182

Number 8. Cambridge university press, 1990.183

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,184

Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are185

few-shot learners. In NeurIPS, 2020.186

[10] S. Burgess, Dylan S. Small, and S. Thompson. A review of instrumental variable estimators for187

mendelian randomization, 2015.188

[11] Raymond J Carroll and Leonard A Stefanski. Measurement error, instrumental variables189

and corrections for attenuation with applications to meta-analyses. Statistics in Medicine,190

13(12):1265–1282, 1994.191

[12] John Cawley and Chad Meyerhoefer. The medical care costs of obesity: an instrumental192

variables approach. Journal of health economics, 31(1):219–230, 2012.193

[13] Victor-Alexandru Darvariu, Stephen Hailes, and Mirco Musolesi. Large language models are194

effective priors for causal graph discovery. arXiv, 2024.195

[14] Neil M Davies, George Davey Smith, Frank Windmeijer, and Richard M Martin. Issues in the196

reporting and conduct of instrumental variable studies: a systematic review. Epidemiology,197

24(3):363–369, 2013.198

[15] Richard Disney, John Gathergood, Stephen Machin, and Matteo Sandi. Does homeownership199

reduce crime? a radical housing reform from the uk. The Economic Journal, 133(655):2640–200

2675, 2023.201

[16] Philipp M Faller, Leena C Vankadara, Atalanti A Mastakouri, Francesco Locatello, and Dominik202

Janzing. Self-compatibility: Evaluating causal discovery without ground truth. In International203

Conference on Artificial Intelligence and Statistics, pages 4132–4140. PMLR, 2024.204

[17] Trevor S. Gallen. Broken instruments, 2020.205

[18] Gautam Gowrisankaran and Robert J Town. Estimating the quality of care in hospitals using206

instrumental variables. Journal of health economics, 18(6):747–767, 1999.207

5



[19] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,208

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama209

3 herd of models. arXiv preprint arXiv:2407.21783, 2024.210

[20] Sukjin Han. Mining causality: Ai-assisted search for instrumental variables. arXiv preprint211

arXiv:2409.14202, 2024.212

[21] James Heckman and Salvador Navarro-Lozano. Using matching, instrumental variables, and213

control functions to estimate economic choice models. Review of Economics and statistics,214

86(1):30–57, 2004.215

[22] Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jia-216

jun Zhang, Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint217

arXiv:2409.12186, 2024.218

[23] Guido W Imbens and Paul R Rosenbaum. Robust, accurate confidence intervals with a weak219

instrument: quarter of birth and education. Journal of the Royal Statistical Society Series A:220

Statistics in Society, 168(1):109–126, 2005.221

[24] Wei Jiang. Have instrumental variables brought us closer to the truth. Review of Corporate222

Finance Studies, 6(2):127–140, 2017.223

[25] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and224

Karthik R Narasimhan. Swe-bench: Can language models resolve real-world github issues? In225

The Twelfth International Conference on Learning Representations.226

[26] Yiqiao Jin, Qinlin Zhao, Yiyang Wang, Hao Chen, Kaijie Zhu, Yijia Xiao, and Jindong Wang.227

Agentreview: Exploring peer review dynamics with llm agents. In Proceedings of the 2024228

Conference on Empirical Methods in Natural Language Processing, pages 1208–1226, 2024.229

[27] Emre Kıcıman, Robert Ness, Amit Sharma, and Chenhao Tan. Causal reasoning and large230

language models: Opening a new frontier for causality. arXiv, 2023.231

[28] Apoorva Lal, Mac Lockhart, Yiqing Xu, and Ziwen Zu. How much should we trust instrumental232

variable estimates in political science? practical advice based on over 60 replicated studies.233

arXiv preprint arXiv:2303.11399, 2023.234

[29] Daniel J Lewis and Karel Mertens. A robust test for weak instruments with multiple endogenous235

regressors. Technical report, Staff Reports, 2022.236

[30] Long Li, Weiwen Xu, Jiayan Guo, Ruochen Zhao, Xingxuan Li, Yuqian Yuan, Boqiang Zhang,237

Yuming Jiang, Yifei Xin, Ronghao Dang, et al. Chain of ideas: Revolutionizing research via238

novel idea development with llm agents. arXiv preprint arXiv:2410.13185, 2024.239

[31] Ethan Lin, Zhiyuan Peng, and Yi Fang. Evaluating and enhancing large language models240

for novelty assessment in scholarly publications. In Annual Conference of the Nations of the241

Americas Chapter of the Association for Computational Linguistics, page 46, 2025.242

[32] Joan Llull. The effect of immigration on wages: exploiting exogenous variation at the national243

level. Journal of Human Resources, 53(3):608–662, 2018.244

[33] Stephanie Long, Tibor Schuster, Alexandre Piché, ServiceNow Research, et al. Can large245
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Appendix A. Related Works289

LLMs and Causality. LLMs have been used as priors to discover the relationships between causal290

variables [27, 33, 13, 6, 51, 1, 48]. These methods, alone or in combination with statistical or deep291

learning methods outperformed the latter. Sheth et al. [47] proposed a benchmark for discovering292

causal variables from a partial graph; however, they compared against the ground truth semantically293

without knowing the statistical effect. The closest work to ours is by Sukjin Han [20], however, our294

work goes beyond prompting the previously established instruments.295

LLMs and Scientific Discovery. LLMs are increasingly integrated into various stages of the296

scientific research workflow, including hypothesis generation and reasoning [53, 40, 49, 30], coding297

and implementation [25, 7], data analysis [35], and even peer review [26]. Despite their growing role,298

it remains challenging to assess the significance or scientific plausibility of hypotheses generated by299

LLMs [31], especially when another LLM is used as a judge. In this work, we study LLM-driven300

discovery of instrumental variables for novel treatment–outcome pairs and propose evaluation metrics301

to validate their statistical and causal validity.302

Testing an instrumental variable beyond the relevance test is challenging [46], hence we introduce a303

treatment effect-based consistency metric to quantify the stability of causal estimates across candidate304

instruments, offering indirect evidence of validity.305

Appendix B. Preliminaries306

The instrumental variable enables identification of causal effects in the presence of endogeneity,307

i.e, when the treatment variable is correlated with unobserved confounders that also influence the308

outcome. Formally, let T denote the treatment variable, Y the outcome, and U represent unobserved309

confounders. A valid instrument Z is a variable that influences T but does not directly affect Y ,310

except through its effect on T .311

We consider the structural equations:312

T = f(Z,UT ) (2)
Y = g(T,UY ) (3)

where UT and UY may be arbitrarily dependent due to shared unobserved variables U . In this setup,313

Z qualifies as an instrumental variable for estimating the causal effect of T on Y if the IV validity314

conditions [39] are satisfied.315

Appendix B..1 IV Validity Conditions316

Relevance. The instrument must be predictive of the treatment. Formally, Z must have a non-zero317

association with T : Cov(Z, T ) ̸= 0. The relevance condition implies that the function f(Z,UT ) is318

not a constant in Z, hence Z has a causal effect on T . In practice, this condition is assessed through319

the first-stage regression.320

Exclusion Restriction. The instrument must not directly affect the outcome, nor through any path321

other than via T . Formally, this means that Z is conditionally independent of Y given T and any322

covariates X: Y ⊥⊥ Z | T,X . This assumption cannot be empirically tested and is usually justified323

via domain knowledge.324

Independence. The instrument must be conditionally independent of the unobserved confounders:325

Z ⊥⊥ U | X . This ensures that the variation in T induced by Z is as random concerning the326

potential outcomes. Similar to the exclusion criteria, independence is also usually argued by domain327

knowledge.328

Appendix B..2 Estimation via Two-Stage Least Squares329

When a valid instrument is available, the causal effect of T on Y can be estimated consistently using330

Two-Stage Least Squares (2SLS). Following the economics literature [4], we focus on the linear331

model. This involves:332
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• Stage 1: Regress T on Z (and covariates X) to obtain predicted treatment T̂ :333

T = α0 + α1Z + α2X + εT

• Stage 2: Regress Y on the fitted values T̂ (and X):334

Y = β0 + β1T̂ + β2X + εY s.t. εY ⊥ (Z,X)

Under the IV assumptions, the coefficient β1 consistently estimates the causal effect of T on Y . For335

the rest of the paper, we assume that the ε we focus on is linear noise.336

It is important to note that while the relevance condition is statistically testable, the exclusion and337

independence conditions are not, and must be argued through theory, domain expertise, or natural338

experiments. This makes the process of identifying valid IVs fundamentally interdisciplinary and339

often creative. As such, the search for IVs can benefit from tools that integrate reasoning, background340

knowledge, and flexible hypothesis generation, a role LLMs may be suited to play.341

Appendix C. LLMs for IV Reasoning342

Our goal is to explore whether LLMs can assist in the discovery of novel and valid IVs. We propose343

a multi-agent pipeline that separates the creative and evaluative stages of IV discovery, mirroring how344

human researchers hypothesize and then vet candidate IVs. Given a treatment–outcome pair (T, Y ),345

we define a two-stage LLM-based framework. In the first stage, HypothesisGenerator, two agents346

are prompted with a causal query to propose candidate instruments {Z1, . . . , Zi} and confounders347

{U1, . . . , Uj}. In addition to hypothesis generation, it is essential to have LLMs act as proxy domain348

experts to reason about statistically untestable conditions. Thus, the second stage, CriticAgents,349

involves two LLMs independently evaluating validity: one assesses the exclusion restriction, i.e.,350

whether Zi affects Y only through T , and the other assesses independence, i.e., whether Zi is351

independent of unobserved confounders Uj that influence both T and Y . Each candidate instrument352

Zi receives binary feedback from both agents, and only those satisfying both conditions are retained,353

i.e., Zvalid = {Zi | Ex(Zi) ∧ Ind(Zi)}.354

Model Military service → Earning Education → Wages Housing → Crime Healthcare → Mortality Migration → Wages
EM ↑ CM ↑ EM ↑ CM ↑ EM ↑ CM ↑ EM ↑ CM ↑ EM ↑ CM ↑

GPT-4o 0.74 1.00 0.82 1.00 0.75 0.83 0.68 0.91 0.40 0.74
o3-mini 0.73 1.00 0.82 1.00 0.37 0.53 0.59 0.89 0.45 0.81
QwQ 0.74 1.00 0.73 1.00 0.39 0.75 0.52 0.90 0.31 0.70
Llama3.1 8B 0.28 0.42 0.48 0.76 0.36 0.49 0.32 0.65 0.35 0.60
Llama3.1 70B 0.61 0.84 0.67 1.00 0.59 0.75 0.52 0.83 0.57 0.77

Table 2: Performance of LLMs in recovering canonical instrumental variables across five benchmark
treatment-outcome pairs. Exact Match (EM) captures direct or paraphrased mentions of literature-
established IVs, while Conceptual Match (CM) identifies plausibly equivalent proxies judged by an
LLM critic.

Appendix C..1 Recovering Canonical IVs355

It is essential to first assess whether they can recover IVs that are already well-established in the356

literature before talking about novel instruments. This serves two purposes: (1) it helps calibrate the357

LLM’s alignment with existing scientific knowledge and reasoning, and (2) it provides a baseline358

for evaluating the model’s ability to reason causally and contextually about treatment-outcome359

relationships. If an LLM is unable to identify canonical instruments, then relying on it for more360

speculative and novel discovery becomes difficult to justify.361

We curate a benchmark dataset consisting of well-studied treatment-outcome pairs from economics,362

health sciences, and social sciences, where valid instrumental variables have been previously proposed363

and accepted in the literature. Each entry in the benchmark includes a treatment variable T (for364

example, years of schooling), an outcome variable Y (such as future earnings), and one or more365

canonical instrumental variables {Z∗
1 , Z

∗
2 , . . . } sourced from peer-reviewed literature.366
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Model GDP → Conflict BMI → SBP Church → Crime Turnout → Vote Share Protests → Prices
HG ↓ Critic ↓ HG ↓ Critic↓ HG ↓ Critic ↓ HG ↓ Critic ↓ HG↓ Critic ↓

GPT-4o 1 0 1 1 1 0 0 0 1 0
o3-mini 1 0 1 0 1 1 1 0 1 1
QwQ 1 0 1 1 1 0 1 1 1 1
Llama3.1 8B 0 1 0 1 1 0 0 0 1 0
Llama3.1 70B 1 0 1 0 1 0 1 1 1 0

Table 3: Performance of different LLMs in identifying flawed instruments across treatment–outcome
pairs. HG indicates whether the HypothesisGenerator proposed flawed IV and Critic when CriticAgent
successfully picks an invalid IV.

Appendix C..2 Avoiding Invalid IVs367

While the ability to recover canonical instruments is important, an equally critical aspect of evaluating368

LLMs for instrumental variable discovery is their sensitivity to invalid instruments. Several variables369

that were historically proposed as instruments have been subsequently discredited due to theoretical370

objections or empirical evidence, typically involving violations of the exclusion restriction or the371

independence assumption. For example, IV like rainfall had been used to estimate of the effect of372

economic activity on civil conflict, but later critiques have revealed direct causal paths or unmeasured373

confounding, undermining their validity [36].374

In this experiment, we aim to assess whether LLMs are able to avoid suggesting such invalidated375

instruments when prompted with the original treatment outcome pair. This evaluation probes the376

depth of the model’s reasoning: does it simply retrieve past associations?377

We design a multi-stage evaluation framework to assess the robustness of LLMs in handling invalid378

instruments. Our goal is: (1) to test whether the LLM proposer avoids historically invalid instruments379

on its own, and (2) to evaluate whether the critic LLM can reliably detect and reject such instruments,380

even when explicitly introduced.381

Given a treatment-outcome pair (T, Y ) with a documented invalid instrument Z− (e.g., rainfall), we382

perform the following steps:383

1. Proposer Behavior. We prompt the LLM proposer to generate a list of k candidate in-384

struments {Z1, Z2, . . . , Zi}. We then evaluate whether the model reproduces Z− or se-385

mantically equivalent variants. This allows us to assess whether the proposer model has386

internalized the criticisms of certain instruments or simply replicates canonical (yet flawed)387

examples from the literature.388

2. Critic Evaluation. Regardless of Stage 1, we now explicitly inject Z− into the list of389

candidate instruments. This injected list is:390

{Z1, Z2, Z3, Z
−, Z4, Z5} (4)

We pass this set through the CriticAgents, each independently evaluating the instrument on391

the Exclusion and Independence criteria.392

Appendix C..3 Results393

We evaluate a range of benchmark LLMs to assess their ability to propose and critique instrumental394

variables. For the generation stage, we test both reasoning models: o3-mini [38] and QwQ [22] and395

standard models: GPT-4o [37], Llama3.1 8B [19], and Llama3.1 70B [19]. The HypothesisGenerator396

then evaluates each candidate instrumental variable (IV) from the generated list Z1, . . . , Zi. along397

with the CriticAgent validating them. The exclusion check is performed independently for each IV,398

while the independence check is done via comparisons between each IV and the set of hypothesized399

confounders. We fix i = j = 5 as a balance between promoting diversity in generation and400

maintaining computational efficiency. We prompt all models with an economist persona to elicit401

appropriate reasoning.402
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Figure 2: Overview of the IV Co-Scientist framework, which integrates LLM-based agents with
traditional statistical tools.

Appendix C..3.1 Recovering Canonical IVs.403

We consider treatment, outcome, and instrument tuples (T, Y, Z∗) sourced from literature. In404

particular, the outcome of earnings due to military service [50], the effect of education on wages [23],405

housing and its effect on crime [15], healthcare on mortality [18], and migration’s effect on wages [32].406

For each pair (T, Y ), we prompt the multi-agent HypothesisGenerator and CriticAgents to generate a407

set of LLM validated candidate instruments Zvalid. We then compare these IVs to the known literature408

instruments {Z∗
1 , . . . } using two matching strategies:409

1. Exact Match (EM): Semantic similarity checks to identify if a known instrument is directly410

mentioned or closely paraphrased.411

2. Conceptual Match (CM): LLM-judge whether a generated candidate is a plausible concep-412

tual equivalent or proxy to the known instrument.413

Table 2 summarizes the ability of different models to recover well-established instrumental variables414

across five canonical treatment-outcome settings. We observe that the strongest models: GPT-4o, o3-415

mini, and QwQ2.5 can recover canonical instruments with high consistency. Across all of the settings,416

we observe CM rating is higher than EM, because while LLMs often propose valid instruments that417

align with the underlying causal rationale, they frequently use alternate phrasings or suggest closely418

related proxies.419

Appendix C..3.2 Avoiding invalid IV420

Given that we have observed positive results in subsubsection Appendix C..3.1, we are interested in421

evaluating whether LLMs can recognize and avoid historically discredited IVs. We evaluate whether422

they suggest the negative IV Z− and whether the CriticAgents can filter them out. We filter these423

(T, Y ) from established literature. In particular, the effect of GDP on conflict in a country [36],424

the effect of body mass index on systolic blood pressure [10], the effect of church attendance on425

crime [17], the effect of vote turnout on party vote share [28], and protests on consumer prices [36].426

In Table 3, we evaluate how well different models handle flawed instruments. The HG column427

indicates whether the model directly proposed the flawed instrument (Z−), while the Critic column428

captures whether the CriticAgent correctly identified and flagged the flaw.429

Overall, we see that the CriticAgent plays a vital role in safeguarding against invalid instruments.430

Even when powerful models like GPT-4o and QwQ occasionally suggest flawed variables, the critic is431

often able to detect and reject them. This highlights the utility of incorporating an automated critic to432

evaluate statistical validity post hoc. Interestingly, the Llama3.1 8B model appears more conservative,433

doesn’t propose many flawed IVs. However, when such variables are injected, its critic fails to detect434

the issue.435
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Appendix D. Experimental Setup436

In our paper, we conduct extensive experiments across reasoning and non-reasoning models.437

Appendix D..1 EM and CM438

In Section Appendix C..1, we evaluate the ability of LLMs to recover canonical instrumental variables439

using two metrics, building upon [47]: Exact Match (EM) and Conceptual Match (CM).440

Exact Match (EM). This metric quantifies the semantic similarity between each LLM-suggested441

instrument and the known ground-truth instrument. Specifically, we embed both the LLM’s suggestion442

and the literature-sourced IV using the Qwen3-Embedding-0.6B model. We then compute the cosine443

similarity between the embeddings and report the similarity score, where higher values indicate closer444

semantic alignment.445

Conceptual Match (CM). Exact matches may underestimate the utility of LLM suggestions that446

are plausible but lexically dissimilar. To account for this, we introduce a softer, human-grounded447

measure: Conceptual Match (CM). For each LLM-generated IV, we prompt another LLM to act as448

a domain-aware judge and rate—on a scale from 1 to 10—how conceptually similar the suggestion is449

to the accepted IV in terms of causal plausibility. A score closer to 10 indicates a stronger conceptual450

match.451

Together, EM and CM allow us to evaluate both surface-level and deeper, contextual alignment452

between LLM-suggested and literature-backed instruments.453

Appendix D..2 Gapminder Dataset454

To evaluate the ability of LLMs to propose and validate novel instrumental variables, we require a455

rich and diverse source of real-world observational data. For this purpose, we use the Gapminder456

database1, a curated compilation of time-series indicators covering over 200 countries and territories.457

Gapminder provides over 500 socio-economic and health-related variables, including measures458

such as GDP per capita, life expectancy, sanitation access, education levels, and fertility rates.459

These indicators are compiled from authoritative sources like the World Bank, WHO, and UN, and460

are harmonized to ensure consistency across countries and years. It is under Creative Commons461

Attribution 4.0.462

The diversity and breadth of variables make Gapminder particularly well-suited for causal analysis. It463

contains plausible treatment and outcome variables across multiple domains (e.g., income, health, de-464

mographics), along with a large pool of potential proxy variables. Moreover, the data are longitudinal,465

enabling time-aware causal reasoning techniques such as Granger causality.466

We extract country-year level data for all variables with sufficient temporal coverage. To preprocess it,467

we removed datapoints with missing values and standardized variable scales. This yields a structured468

dataset suitable for evaluating both traditional statistical tests (e.g., relevance via F-statistic) and469

novel LLM-generated instruments under realistic conditions.470

Appendix D..3 Compute471

We ran Qwen2.5, LLama70b and Llama 8b on A100 GPUs. The GPT models were accessed via API.472

The PreSelector, HumanProxy and CausalOrale just had to run once, while the discovery modules473

were iterated over all examples and for new IVs.474

Appendix D..4 Reproducibility475

All LLMs were run with a temperature of 0 and top-p of 1 to ensure deterministic outputs. The results476

reported in Table 2 reflect averaged metrics over multiple runs where applicable. Table 3 contains no477

variance due to LLM randomness, as the models were only used to suggest instruments, which were478

then evaluated against fixed proxies or ground truth.479

1https://www.gapminder.org/data/
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Figure 3: Comparison of the ATE density while using two different IVs: (a) LLM proposed and (b)
random. This is for Sanitation → Mortality for GPT-4o.

We commit to releasing all code, prompts, and evaluation scripts upon acceptance to support full480

reproducibility.481

Appendix E. Qualitative Analysis482

To complement our quantitative analyses, we conducted a structured qualitative evaluation with an483

economics professor and political scientist familiar with instrumental variables. The goal was to484

assess the plausibility and relevance of LLM-generated variables through expert judgment. The485

expert was given a short document, consisting of four tasks:486

Appendix E..1 Task Overview487

• Task 1: Generator vs. Critic Evaluation. The expert was asked whether they agreed488

with the LLM’s rejection of certain candidate instruments following critique by a sec-489

ondary “critic” model that evaluated IVs based on the standard assumptions of relevance,490

independence, and exclusion.491

• Task 2: Agreement with Accepted and Rejected Instruments. The expert reviewed a492

table of treatment–outcome pairs, each with a list of instruments accepted or rejected by the493

LLM pipeline. They were asked to indicate agreement with each group of variables (e.g.,494

2/3 accepted IVs, 1/3 rejected IVs).495

• Task 3: Case-Based Evaluation. The expert was presented with a specific example—female496

literacy as a treatment for fertility—and asked to comment on the confounders and the497

plausibility of five candidate instruments, considering both their relevance and threats to498

validity.499

• Task 4: Reflection on LLMs as Co-Scientists. The expert reflected on the role of LLMs500

as collaborators in early-stage IV discovery, and whether such tools might augment, rather501

than replace, the theoretical reasoning of applied economists.502

13



Appendix F. Detailed Definitions503

Appendix F..1 Granger Causality504

Granger causality is a statistical test used to determine whether one time series is useful in forecasting505

another. Formally, for time-indexed data {vi,t, vj,t}Tt=1, we test whether past values of vi help predict506

vj beyond what is possible using past values of vj alone.507

We define the null and alternative hypotheses as follows:508

H0 : vi does not Granger-cause vj (5)
509

H1 : vi Granger-causes vj (6)

This is operationalized by estimating and comparing the residual variances from two autoregressive510

models:511

Restricted model (without vi):

vj,t = α0 +

p∑
k=1

αkvj,t−k + ϵ
(r)
t (7)

Unrestricted model (including lags of vi):

vj,t = β0 +

p∑
k=1

αkvj,t−k +

p∑
k=1

γkvi,t−k + ϵ
(u)
t (8)

The null hypothesis corresponds to testing:512

γ1 = γ2 = · · · = γp = 0 (9)

If the unrestricted model significantly reduces the prediction error compared to the restricted model,513

we reject H0 and conclude that vi Granger-causes vj .514

Assumptions:515

• Both time series are weakly stationary.516

• The lag length p is appropriately selected.517

• The model is correctly specified (linearity, no omitted variables).518

Appendix F..2 ATE Estimation of IVs519

When estimating causal effects using instrumental variables (IVs), we typically recover the Local520

Average Treatment Effect (LATE), not the overall average treatment effect (ATE). This is because IV521

methods rely on compliers—units whose treatment status is affected by the instrument. As a result,522

the estimated effect pertains only to this subpopulation.523

Formally, suppose we have an instrument Z, a treatment T , and an outcome Y . Under the potential524

outcomes framework, each unit i has:525

• Ti(1) and Ti(0): potential treatment values if Zi = 1 or Zi = 0526

• Yi(1) and Yi(0): potential outcomes under treatment or no treatment527

We define the following groups:528

• Compliers: Ti(1) = 1, Ti(0) = 0529

• Never-takers: Ti(1) = 0, Ti(0) = 0530

• Always-takers: Ti(1) = 1, Ti(0) = 1531

• Defiers: Ti(1) = 0, Ti(0) = 1 (typically ruled out by the monotonicity assumption)532
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Key Assumptions for LATE:533

1. Relevance: E[T |Z = 1] ̸= E[T |Z = 0] (instrument affects treatment)534

2. Independence: Z ⊥⊥ (Y (0), Y (1), T (0), T (1)) (instrument is as good as randomly as-535

signed)536

3. Exclusion Restriction: Z affects Y only through T (no direct effect on outcome)537

4. Monotonicity: Ti(1) ≥ Ti(0) for all i (no defiers)538

Under these assumptions, the LATE is identified as:539

LATE =
E[Y |Z = 1]− E[Y |Z = 0]

E[T |Z = 1]− E[T |Z = 0]
(10)

This ratio represents the average causal effect of T on Y for compliers only.540

Two-Stage Least Squares (2SLS): To estimate LATE in practice, we use a two-stage regression541

procedure.542

In this appendix, we provide additional theoretical insights into the consistency metric introduced in543

the main text, highlighting its connection to the variance and bias properties of instrumental variable544

estimators.545

Appendix F..3 Consistency as a Measure of Instrument Validity546

Let Z be a candidate instrument used to estimate the causal effect β via547

β̂
(Z)
IV =

Cov(Z, Y )

Cov(Z,X)
. (11)

Assuming Z satisfies the classical instrument validity conditions (relevance and exclusion), the IV es-548

timator is consistent and unbiased in large samples. When multiple valid instruments Z1, Z2, . . . , Zm549

are available, their estimates β̂(Zi)
IV should converge to the true causal effect β as sample size grows,550

resulting in low pairwise differences:551

lim
n→∞

E
∣∣∣β̂(Zi)

IV − β̂
(Zj)
IV

∣∣∣ = 0, ∀i, j. (12)

Large observed discrepancies suggest violations of instrument validity, such as weak instrument bias552

or direct pathways from Zi to Y that bypass X .553

Relation to Instrument Strength and Bias The variance of each IV estimate depends inversely on554

the strength of the instrument, quantified by Cov(Z,X)2. Weak instruments induce greater variability,555

leading to increased disagreement between estimates from different instruments.556

Additionally, bias from invalid instruments inflates the expected pairwise difference. Formally, for557

instruments Zi and Zj , the expected squared difference decomposes as558

E
[
(β̂

(Zi)
IV − β̂

(Zj)
IV )2

]
= Var(β̂(Zi)

IV ) + Var(β̂(Zj)
IV )︸ ︷︷ ︸

variance component

+(Bias(Zi)− Bias(Zj))
2︸ ︷︷ ︸

bias component

. (13)

This decomposition illustrates how the consistency metric reflects both random variation and system-559

atic bias in the set of instruments.560

Implications for Instrument Selection The normalized consistency score introduced in the main561

text effectively summarizes these properties by comparing observed discrepancies to a baseline562

derived from random (invalid) instruments. A low score implies both low variance and low bias563

among the instruments, supporting their joint validity.564

In practice, this metric can guide the selection and refinement of instruments by:565
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• Identifying instruments that cause high disagreement, which may be candidates for exclu-566

sion.567

• Providing a quantitative measure to compare different instrument sets.568

• Complementing formal tests of instrument validity such as overidentification tests.569

Appendix G. Rejected IVs570

Treatment Outcome Rejected IVs
GDP Conflict Rainfall
BMI SBP MR
Church attendance Crime Rainy days
Turnout Vote share Rainfall
Protests Prices Rainfall

Table 4: Treatment–Outcome Pairs with Rejected Instruments

Appendix H. Gapminder preprocessing by IV Co-Scientist571

Table 5 presents key preprocessing statistics for each variable pair from Gapminder, including the572

observed correlation between treatment and outcome variables and the corresponding sample sizes573

used in the analysis. These metrics provide context on the data quality and strength of associations574

before causal inference.

Treatment Outcome Correlation Number of Data Points
GDP Health 0.902 2784
Income Carbon emissions 0.832 1790
Sanitation Child mortality rate -0.812 2578
Poverty Cholesterol -0.842 3568
Female literacy rate Number of kids per female -0.812 2504
Table 5: Preprocessing Summary: Correlation and Sample Size by Treatment–Outcome Pair

575

Appendix I. IVs generated by IV Co-Scientist576

Table 6 summarizes the sets of accepted and rejected instrumental variables (IVs) for each treat-577

ment–outcome pair, as suggested by GPT-4o. The accepted IVs represent those variables the model578

deemed more plausible instruments after a critique stage, while the rejected IVs are those filtered out579

due to likely violations of IV assumptions.580
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Treatment Outcome Accepted IVs Rejected IVs

GDP Health 1. Distance to the port
2. Global commodity prices

1. Colonial legal-origin dummies
2. Fertile land
3. Historical settler-mortality rates

Income Carbon emissions 1. Industrial or resource endowments
2. Policy reforms
3. Trade in country

1. Distance to the equator
2. Railroad network density

Sanitation Child mortality rate 1. Groundwater depth
2. Sewerage investment

1. Sanitation subsidy rollout schedule
2. Distance to health center
3. Terrain

Poverty Cholesterol 1. Cash-transfer age cutoff
2. State minimum wage

1. Childcare-program timing
2. State EITC rate

Female literacy rate Number of kids per female 1. Number of female teachers
2. Raised compulsory school-leaving
age
3. Introduction years of a girls-only
scholarship program

1. Distance to school
2. Historical density of missionary girls’
schools (pre-independence)
3. UI replacement rate

Table 6: Accepted and Rejected Instruments by Treatment–Outcome Pair

Appendix J. Prompts581

HypothesisGenerator (Instrumental Variable)

You are an economist helping to identify causal relationships.
Given the treatment variable {T} and the outcome variable {Y}, please
provide a list of 5 possible instrumental variables that could
help estimate the causal effect of {T} on {Y}. The context of this
treatment-outcome pair is {Context}. These should be variables
that influence {T} but do not directly affect {Y} except through {T}.
Think step by step. Return your answer with Answer = [list of 5 IVs]

582

HypothesisGenerator (Confounder)

You are an economist helping to identify causal relationships.
Given the treatment variable {T} and the outcome variable {Y}, please
provide a list of 5 possible confounding variables that might affect
both {T} and {Y}, potentially biasing the causal effect estimate.
The context of this treatment-outcome pair is {Context}. Think step
by step. Return your answer with Answer = [list of 5 confounders]

583

HypothesisGenerator (Independence)

You are an economist evaluating the validity of instrumental
variables. Given the treatment variable {T}, outcome variable {Y},
a candidate instrumental variable {Z}, and a list of confounders
{U1, U2, . . .}, please assess the independence criteria i.e. {Z} must be
independent of any confounders that affect both {T} and {Y}. Based
on these definitions and the {Context}, please evaluate whether {Z}
is a valid instrument. Think step by step. Return your answer with
Answer = [Valid / Invalid]

584
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HypothesisGenerator (Exclusion)

You are an economist evaluating the validity of instrumental
variables. Given the treatment variable {T}, outcome variable {Y},
a candidate instrumental variable {Z}, please assess the exclusion
criteria i.e. {Z} affects the outcome {Y} only through the treatment
{T}, with no direct effect on {Y}. Based on these definitions and
the {Context}, please evaluate whether {Z} is a valid instrument.
Think step by step. Return your answer with Answer = [Valid /
Invalid].

585

ProxyHuman

You are a policy-minded economist tasked with identifying
socio-economically meaningful causal questions. Given a candidate
pair {(T, Y)}, assess whether: 1. The relationship is important
or interesting i.e., is this a question researchers or policymakers
would care about? 2. The pair is interpretable and policy-relevant
in real-world socio-economic contexts. 3. The question could
plausibly be studied using observational data. Avoid pairs that
are too similar in meaning (e.g., literacy at ages 5{10 and literacy
at ages 10{15). Think step by step, using the reasoning a social
scientist or economist might apply when deciding whether to pursue
this question.

586

CausalOracle
You are an economist reasoning about causal direction between two
socio-economic variables. Given a variable pair (A, B) with a strong
observed correlation, your task is to determine the likely causal
relationship. Please evaluate: 1. Is it more plausible that A
causes B? 2. Is it more plausible that B causes A? 3. Could the
relationship be bidirectional? 4. Or is the correlation likely
driven by confounding or coincidence, with no direct causal link?
Use real-world knowledge and reasoning as an economist to assess
plausibility. Think step by step. Return your answer as: Answer
= [1 / 2 / 3 / 4].

587
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