- O © ©® N O O A @ N =

2

13

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

34
35
36

Can LLMs Propose Instrumental Variables for
Causal Reasoning?

Anonymous Author(s)
Affiliation
Address
email

Abstract

In the presence of confounding between an endogenous variable and the outcome,
instrumental variables (IVs) are used to isolate causal effects. Identifying valid
instruments requires interdisciplinary knowledge and contextual understanding,
making it a difficult task. In this paper, we examine whether large language models
(LLMs) can assist. We adopt a two-stage evaluation: first, testing whether LLMs
recover established instruments from the literature, and second, assessing whether
they avoid empirically or theoretically discredited ones. Building on these results,
we introduce IV Co-Scientist, a multi-agent system that proposes, critiques, and
refines I'Vs, along with a statistical test to contextualize consistency without ground
truth. Our results show the potential of LLMs to identify valid IVs from large
observational data.

1 Introduction

Understanding the causal effect of a treatment on an outcome is a central question across disci-
plines [39]]. In economics, for example, we may ask: Does additional schooling increase earnings?.
Estimating such effects is difficult due to endogeneity, when the treatment is correlated with unob-
served factors that also influence the outcome [8}139]], and because treatments may be mismeasured
or unobservable. To address this, researchers use instrumental variables (IVs)[44, [11}, 52]. A
valid IV must causally influence the treatment, not be caused by it, and affect the outcome only
through the treatment. When these conditions hold, IVs yield consistent causal estimates, even
in the presence of unobserved confounders. Identifying valid instruments is therefore crucial yet
challenging, as IV strength and validity determine the reliability of causal estimates in domains such
as economics[42) [21]] and health sciences [12,15].

Identifying valid instrumental variables is a challenging task that spans theory, domain expertise,
and empirical evidence [24]. Statistically, a valid IV must satisfy relevance (correlation with the
endogenous treatment) and exclusion (no direct effect on the outcome except through the treatment),
while also being independent of unobserved confounders. Meeting these assumptions requires
more than statistical tests—it demands contextual knowledge. Experts draw on institutional details,
historical context, policy design, or mechanisms from natural and social sciences to argue for or
against validity [[14]. IV discovery is thus inherently multidisciplinary and often requires creativity, as
plausible sources of exogeneity may not be directly observable in data. Moreover, instruments once
accepted are sometimes later discredited [36]. For example, rainfall has been used to study the effect
of war on national progress, but later research questioned its exclusion validity due to direct effects
on outcomes [43]]. Such cases underscore both the fragility and difficulty of instrument identification.

Given these challenges, it is natural to ask whether large language models (LLMs) can aid IV
discovery. Trained on vast text corpora across economics, health sciences, law, and history, LLMs
encode broad domain knowledge that may help generate and assess candidate instruments [9].
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Figure 1: IV Co-Scientist framework, which integrates LLM-based agents with statistical tools.

Recent studies show their utility in literature review, hypothesis generation [45] [2], and experimental
design [31 [34]], suggesting their promise as tools for early-stage IV discovery. We view LLMs not as
substitutes for theoretical reasoning, but as “thinking collaborators” that can extend human intuition
and creativity. In this paper, we systematically explore this potential.

LLMs have shown strong performance in causal discovery, often surpassing statistical methods [S1,
27,11]]. Their contextual reasoning has been used to identify mediators, extract causal graphs from text,
and simulate interventions through structured prompting. We argue that IV discovery is well-suited
to LLMs, as it requires both domain-informed reasoning and creative hypothesis generation.

In this paper, we investigate whether LLMs can aid instrumental variable discovery through a
structured multi-agent framework, where agents propose, critique, and refine candidate instruments.
Our goal is to assess their ability not only to recover established instruments but also to generate
novel ones for previously unstudied treatment—outcome pairs. We adopt a staged evaluation: first,
testing whether LLMs reproduce well-known instruments from the literature; second, examining
whether they avoid those invalidated by theory or evidence; and finally, evaluating their capacity to
generate candidate instruments in new contexts, highlighting their potential for IV discovery.

2 IV Co-Scientist

Having validated LLMs’ ability to recover canonical IVs (subsection Appendix C..I)) and avoid
discredited ones (subsection Appendix C..2), we next evaluate the system in a fully open-ended
setting. Our goal is to test whether LLMs can generate meaningful and potentially novel instrumental
variables for real-world causal questions without relying on prior literature. This reflects a realistic
and challenging scenario: in applied research, analysts often explore large observational datasets to
estimate causal effects for which no established IVs exist, requiring domain expertise, creativity, and
data-driven reasoning. We assess whether LLMs, paired with a structured evaluation pipeline, can
support this discovery process. Within this pipeline, all validity criteria for IVs are tested: relevance
is evaluated statistically, while exclusion and independence are assessed through LL.M reasoning,
mirroring the approach taken by applied economists. We use a real-world, high-dimensional sandbox
to test open-ended causal exploration. The Gapminder dataset [41]] includes socio-economic indicators
across countries and over time. The dataset has observations for more than 500 such indicators. We
aim to find IVs of novel pairs that are still statistically sound.

We formulate a multi-stage, multi-agent system, where each agent is responsible for a specific task in
the discovery pipeline (see[Figure 2). Let V = {v1,vs, ..., v, } denote the set of all variables in the
dataset. Our goal is to identify a valid IV Z for a treatment-outcome pair (7,Y) € V x V, such that
the IV conditions are satisfied. Below, we describe the different stages and agents of IV Co-scientist.

Correlation Filter (PreSelector) We compute the Pearson correlation coefficient p(v;, v;) for all
candidate variable pairs, (v;, v;) € V x V. We retain pairs satisfying:

P = {(vi,v) | |lp(vi,v5)| > 7p, } e))
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for pre-defined thresholds 7,. This step eliminates weak or statistically noisy pairs. However, since
correlation strength alone does not account for sample size, we also consider the number of data
points over which the correlation was computed.

Semantic Relevance Agent (HumanProxy) LLM selects human-meaningful and policy-relevant
pairs from P. Output is set S = {(v;,v;)}s, to be hypothesized as candidate (7,Y") pairs. This
step simulates the reasoning a researcher might apply in choosing interpretable or practically socio-
economic questions.

Causal Direction Agent (CausalOracle) For each (v;,v;) € S, apply LLM causal reasoning and
statistical tests via Granger causality to infer directionality:

* LLM-based Causal Reasoning: Prompted judgments on whether v; — v; or v; — v;, based
on world knowledge.

» Granger Causality Test: Statistical test of the temporal data, verifying whether lagged values
of v; improve the prediction of v;, beyond v;’s history. See|Appendix F..1|for details.

We retain only those pairs (v;, v;) for which both the LLM and Granger test agree on the direction.
The directionally inferred pair is now labeled as (7', Y"), with T" as treatment and Y~ as outcome.

IV Suggestor Agent (HypothesisGenerator) Given a causal pair (T' — Y'), the LLM generates a set
of k candidate IVs. See|Appendix Appendix C|

IV Critic Agents (CriticAgents) Each candidate Z; is passed through two critic agents that critique
the I'Vs and give a list of Z,iq. See[Appendix Appendix C|

Proxy Matching Agent (Grounder)

For each valid IV Z; € Z,iq proposed by the LLM, we attempt to ground it in the dataset by
identifying a concrete proxy variable. If no such proxy is found, Z; is excluded from downstream
evaluation. Otherwise, the discovered IV is retained as (Z;, Proxy(Z;)).

The IV Co-scientist starts with the PreSelector, which filters variable pairs based on correlation and
sample size. The HumanProxy then selects socio-economically meaningful pairs, forming candidate
causal pairs S. The CausalOracle applies LLM reasoning and Granger tests to infer directionality. For
each (T' — Y'), the HypothesisGenerator proposes candidate IVs, which are vetted by CriticAgents.
Valid IVs are then grounded to dataset variables by the Grounder, and only those with concrete
proxies proceed to causal estimation. If no valid IVs were found, then HypothesisGenerator and the
following agents are rerun.

2.1 Evaluation

Given that the discovered (T, Y, Z) triplets in our open-ended pipeline are novel, direct comparison to
ground truth IVs is not feasible. To evaluate the plausibility and effectiveness of the LLM-suggested
IVs, we use the statistical strength of the IV, a standard measure that is used in the IV literature.
Further, we propose a novel metric to compare sets of valid and invalid I'Vs.

2.1.1 Statistical Strength via F-statistic

A key requirement for a valid IV is relevance, which means that the IV must be sufficiently correlated
with the treatment variable. To quantify this, we compute the first-stage F-statistic, a standard method
used in instrumental variables analysis to detect weak IVs. Specifically, we regress the treatment
variable T" on the candidate IV Z and assess whether Z explains significant variation in 7'. A high
F-statistic indicates strong predictive power.

In our analysis, we use robust heteroskedasticity-consistent estimators that do not assume Gaussian
errors, reflecting the potentially complex and noisy nature of observational data.The F-statistic tests
the null hypothesis Hy : 8 = 0. An F-statistic value above the conventional threshold (typically 10)
indicates a strong IV.

2.1.2 Consistency of Estimated Effects

While the relevance of an instrument can be assessed via predictive strength (e.g., F-statistic), its
overall validity also relies on the more elusive exclusion and independence assumptions, which
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GDP — Health Income — Emissions Sanitation — Mortality Poverty — Cholesterol Female literacy — Kids

Relevance Crorm Relevance Chorm Relevance Chorm Relevance Crorm Relevance Chorm
GPT-4.1 14.28 0.94 17.52 0.91 11.37 0.97 13.44 0.88 19.81 0.93
03-mini 14.28 0.94 14.88 0.98 11.37 0.97 10.32 0.76 19.81 0.93
QwQ 13.10 0.85 16.05 0.89 10.76 0.94 12.51 0.85 18.23 0.89
Llama3.1 70b 12.65 0.95 15.33 0.89 10.28 0.72 11.90 0.86 17.50 0.79
Llama3.1 8b 13.10 0.85 11.92 0.79 10.76 0.94 12.51 0.85 18.23 0.89

Table 1: Performance of different LLMs in discovering novel IVs. Relevance is defined by the first
stage F-statistic and Cyorm gives the consistency when compared to random IVs.

cannot be directly verified without ground-truth causal effects. To address this, we introduce a novel
evaluation metric, consistency, to assess the quality of IV sets.

The idea is that if a set of instruments truly isolates exogenous variation in the treatment, each
instrument should produce similar estimates of the average treatment effect (ATE) via two-stage
least squares (2SLS). For two instruments Z; and Zs proposed by the LLM, we compute their

2SLS estimates ij;:) and ij? and define the consistency score as Ajjy = ‘ A,(j;:) - Afé;) ,

where smaller values indicate stronger internal agreement. To contextualize this measure, we
construct a null distribution by randomly sampling proxy variables R; and Ry from the dataset,

defining Agryng = A/(\}T%é) — Alg}T%Er“) ’ which captures the variability expected from invalid or spurious

instruments. Comparing Ay ym to Agang allows us to test whether LLM-suggested IVs exhibit greater
internal consistency than would be expected by chance. Inspired by the self-compatibility test in
causal discovery [16], this approach provides indirect evidence that LLMs may identify variables
isolating genuine exogenous variation, even when the exclusion and independence assumptions
cannot be directly verified.

2.2 Results

In|Table I} we evaluate the quality of LLM-suggested IVs from two perspectives: statistical relevance
and consistency of estimated causal effects. An IV is considered strong if it predicts variation in the
treatment 7', typically with an F'-statistic exceeding 10. We examine five examples autonomously

generated by our multi-agent IV Co-Scientist (see Appendix for details). To quantify
Rand

stability, we define a normalized consistency score Cyorm = ‘ % , where values near 1 indicate
that LLM-suggested I'Vs are more internally consistent than random proxies.

Many LLM-suggested IVs achieve high relevance, though statistical significance alone does not
guarantee sufficient strength to avoid weak-1V issues [29]; hence, we emphasize Cyom. Empirically,
Cnorm Scores are often near or above 1, showing a clear gap between LLM-suggested and random
IVs, with GPT-4.1 and 03-mini producing similar IVs and results. further supports this:
panel (a) shows posterior distributions of ATE1 and ATE2 using LLM-suggested I'Vs, suggesting
both relevance and meaningful local treatment effect heterogeneity, whereas panel (b) highlights
weak or inconsistent I'Vs.

Human evaluation. We consulted a faculty-level economist to qualitatively assess the LLM-
generated I'Vs. They found the CriticAgents’ reasoning and confounder identification generally sound.
They noted that accepted and rejected IVs often differ not in validity but in generality: accepted ones
tend to be broader and less debated, while rejected ones are more specific, often with known critiques.

3 Conclusion

Instrumental variables are central to causal inference in observational studies, but identifying them
is challenging and typically demands deep domain expertise. While large language models offer
new opportunities for extracting knowledge from text, their use in discovering instruments beyond
toy examples remains underexplored. We introduce a multi-agent framework that analyses the data,
proposes candidate instruments for a given treatment-outcome pair, and validates them semantically.
In addition, we propose a consistency-based metric to assess internal validity in the absence of ground
truth. Our empirical results on real-world data demonstrate that LLM-suggested instruments show
meaningful consistency, providing a first step toward principled use of LLMs in variable discovery.
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Appendix A. Related Works

LLMs and Causality. LLMs have been used as priors to discover the relationships between causal
variables [27, 133,113} 1651, 1} 148]]. These methods, alone or in combination with statistical or deep
learning methods outperformed the latter. Sheth et al. [47] proposed a benchmark for discovering
causal variables from a partial graph; however, they compared against the ground truth semantically
without knowing the statistical effect. The closest work to ours is by Sukjin Han [20], however, our
work goes beyond prompting the previously established instruments.

LLMs and Scientific Discovery. LLMs are increasingly integrated into various stages of the
scientific research workflow, including hypothesis generation and reasoning [53| 40, 49, 30], coding
and implementation [25} 7], data analysis [35]], and even peer review [26]. Despite their growing role,
it remains challenging to assess the significance or scientific plausibility of hypotheses generated by
LLMs [31], especially when another LLM is used as a judge. In this work, we study LLM-driven
discovery of instrumental variables for novel treatment—outcome pairs and propose evaluation metrics
to validate their statistical and causal validity.

Testing an instrumental variable beyond the relevance test is challenging [46]], hence we introduce a
treatment effect-based consistency metric to quantify the stability of causal estimates across candidate
instruments, offering indirect evidence of validity.

Appendix B. Preliminaries

The instrumental variable enables identification of causal effects in the presence of endogeneity,
i.e, when the treatment variable is correlated with unobserved confounders that also influence the
outcome. Formally, let 7" denote the treatment variable, Y the outcome, and U represent unobserved
confounders. A valid instrument Z is a variable that influences 7" but does not directly affect Y,
except through its effect on 7'

We consider the structural equations:

Y =g(T,Uy) 3)

where Ur and Uy may be arbitrarily dependent due to shared unobserved variables U. In this setup,
Z qualifies as an instrumental variable for estimating the causal effect of 7' on Y if the IV validity
conditions [|39] are satisfied.

Appendix B..1 IV Validity Conditions

Relevance. The instrument must be predictive of the treatment. Formally, Z must have a non-zero
association with T: Cov(Z,T) # 0. The relevance condition implies that the function f(Z, Ur) is
not a constant in Z, hence Z has a causal effect on 7'. In practice, this condition is assessed through
the first-stage regression.

Exclusion Restriction. The instrument must not directly affect the outcome, nor through any path
other than via T'. Formally, this means that Z is conditionally independent of Y given 7" and any
covariates X: Y 1l Z | T, X. This assumption cannot be empirically tested and is usually justified
via domain knowledge.

Independence. The instrument must be conditionally independent of the unobserved confounders:
Z 1L U | X. This ensures that the variation in 7" induced by Z is as random concerning the
potential outcomes. Similar to the exclusion criteria, independence is also usually argued by domain
knowledge.

Appendix B..2 Estimation via Two-Stage Least Squares

When a valid instrument is available, the causal effect of 7" on Y can be estimated consistently using
Two-Stage Least Squares (2SLS). Following the economics literature [4], we focus on the linear
model. This involves:
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» Stage 1: Regress T on Z (and covariates X)) to obtain predicted treatment T

T=ay+a1Z+ axX +er

» Stage 2: Regress Y on the fitted values T (and X):
Y = BO + ﬂlT + ,BQX +eyst. ey L (Z, X)

Under the IV assumptions, the coefficient /31 consistently estimates the causal effect of 7" on Y. For
the rest of the paper, we assume that the € we focus on is linear noise.

It is important to note that while the relevance condition is statistically testable, the exclusion and
independence conditions are not, and must be argued through theory, domain expertise, or natural
experiments. This makes the process of identifying valid IVs fundamentally interdisciplinary and
often creative. As such, the search for IVs can benefit from tools that integrate reasoning, background
knowledge, and flexible hypothesis generation, a role LLMs may be suited to play.

Appendix C. LLMs for IV Reasoning

Our goal is to explore whether LLMs can assist in the discovery of novel and valid IVs. We propose
a multi-agent pipeline that separates the creative and evaluative stages of IV discovery, mirroring how
human researchers hypothesize and then vet candidate IVs. Given a treatment—outcome pair (7,Y),
we define a two-stage LLM-based framework. In the first stage, HypothesisGenerator, two agents
are prompted with a causal query to propose candidate instruments {Z1, . .., Z;} and confounders
{U1,...,U;}. In addition to hypothesis generation, it is essential to have LLMs act as proxy domain
experts to reason about statistically untestable conditions. Thus, the second stage, CriticAgents,
involves two LLMs independently evaluating validity: one assesses the exclusion restriction, i.e.,
whether Z; affects Y only through 7', and the other assesses independence, i.e., whether Z; is
independent of unobserved confounders U that influence both 7" and Y. Each candidate instrument
Z; receives binary feedback from both agents, and only those satisfying both conditions are retained,
i.e., Zvalid = {Z7 ‘ EX(Z7) A Ind(Z7)}

Model Military service — Earning ‘ Education — Wages Housing — Crime Healthcare — Mortality Migration — Wages

EM 1 CM 1 EM 1 CM 1 EM 1 CM 1 EM 1 CM EM 1 CM 1
GPT-40 0.74 1.00 0.82 1.00 0.75 0.83 0.68 091 0.40 0.74
03-mini 0.73 1.00 0.82 1.00 0.37 053 0.59 0.89 045 0.1
QwQ 0.74 1.00 0.73 1.00 0.39 0.75 0.52 0.90 031 0.70
Llama3.1 8B 0.28 0.42 0.48 0.76 0.36 0.49 0.32 0.65 035 0.60
Llama3.1 70B | 0.61 0.84 0.67 1.00 0.59 0.75 0.52 0.83 0.57 0.77

Table 2: Performance of LLMs in recovering canonical instrumental variables across five benchmark
treatment-outcome pairs. Exact Match (EM) captures direct or paraphrased mentions of literature-
established I'Vs, while Conceptual Match (CM) identifies plausibly equivalent proxies judged by an
LLM critic.

Appendix C..1 Recovering Canonical I'Vs

It is essential to first assess whether they can recover IVs that are already well-established in the
literature before talking about novel instruments. This serves two purposes: (1) it helps calibrate the
LLM’s alignment with existing scientific knowledge and reasoning, and (2) it provides a baseline
for evaluating the model’s ability to reason causally and contextually about treatment-outcome
relationships. If an LLM is unable to identify canonical instruments, then relying on it for more
speculative and novel discovery becomes difficult to justify.

We curate a benchmark dataset consisting of well-studied treatment-outcome pairs from economics,
health sciences, and social sciences, where valid instrumental variables have been previously proposed
and accepted in the literature. Each entry in the benchmark includes a treatment variable 1" (for
example, years of schooling), an outcome variable Y (such as future earnings), and one or more
canonical instrumental variables {Z7, Z3, ... } sourced from peer-reviewed literature.
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Model GDP — Conflict BMI — SBP Church — Crime Turnout — Vote Share Protests — Prices

HG| Criticl | HG| Criticl | HG|  Critic) | HG| Critic | HG|  Critic |
GPT-4o 1 0 1 1 1 0 0 0 1 0
03-mini 1 0 1 0 1 1 1 0 1 1
QwQ 1 0 1 1 1 0 1 1 1 1
Llama3.1 8B 0 1 0 1 1 0 0 0 1 0
Llama3.1 70B 1 0 1 0 1 0 1 1 1 0

Table 3: Performance of different LLMs in identifying flawed instruments across treatment—outcome
pairs. HG indicates whether the HypothesisGenerator proposed flawed IV and Critic when CriticAgent
successfully picks an invalid I'V.

Appendix C..2 Avoiding Invalid IVs

While the ability to recover canonical instruments is important, an equally critical aspect of evaluating
LLMs for instrumental variable discovery is their sensitivity to invalid instruments. Several variables
that were historically proposed as instruments have been subsequently discredited due to theoretical
objections or empirical evidence, typically involving violations of the exclusion restriction or the
independence assumption. For example, IV like rainfall had been used to estimate of the effect of
economic activity on civil conflict, but later critiques have revealed direct causal paths or unmeasured
confounding, undermining their validity [36].

In this experiment, we aim to assess whether LLMs are able to avoid suggesting such invalidated
instruments when prompted with the original treatment outcome pair. This evaluation probes the
depth of the model’s reasoning: does it simply retrieve past associations?

We design a multi-stage evaluation framework to assess the robustness of LLMs in handling invalid
instruments. Our goal is: (1) to test whether the LLM proposer avoids historically invalid instruments
on its own, and (2) to evaluate whether the critic LLM can reliably detect and reject such instruments,
even when explicitly introduced.

Given a treatment-outcome pair (7, Y) with a documented invalid instrument Z~ (e.g., rainfall), we
perform the following steps:

1. Proposer Behavior. We prompt the LLM proposer to generate a list of k£ candidate in-
struments {71, Za, ..., Z;}. We then evaluate whether the model reproduces Z~ or se-
mantically equivalent variants. This allows us to assess whether the proposer model has
internalized the criticisms of certain instruments or simply replicates canonical (yet flawed)
examples from the literature.

2. Critic Evaluation. Regardless of Stage 1, we now explicitly inject Z~ into the list of
candidate instruments. This injected list is:

{217Z27Z37Z77Z47Z5} (4)

We pass this set through the CriticAgents, each independently evaluating the instrument on
the Exclusion and Independence criteria.

Appendix C..3 Results

We evaluate a range of benchmark LLMs to assess their ability to propose and critique instrumental
variables. For the generation stage, we test both reasoning models: 03-mini [38]] and QwQ [22] and
standard models: GPT-4o [37]], Llama3.1 8B [[19], and Llama3.1 70B [19]. The HypothesisGenerator
then evaluates each candidate instrumental variable (IV) from the generated list Z1, ..., Z;. along
with the CriticAgent validating them. The exclusion check is performed independently for each IV,
while the independence check is done via comparisons between each IV and the set of hypothesized
confounders. We fix i = j = 5 as a balance between promoting diversity in generation and
maintaining computational efficiency. We prompt all models with an economist persona to elicit
appropriate reasoning.

10
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Figure 2: Overview of the IV Co-Scientist framework, which integrates LLM-based agents with
traditional statistical tools.

Appendix C..3.1 Recovering Canonical I'Vs.

We consider treatment, outcome, and instrument tuples (7,Y, Z*) sourced from literature. In
particular, the outcome of earnings due to military service [S0], the effect of education on wages [23],
housing and its effect on crime [[15], healthcare on mortality [18]], and migration’s effect on wages [32].

For each pair (T,Y"), we prompt the multi-agent HypothesisGenerator and CriticAgents to generate a
set of LLM validated candidate instruments Z,,;4. We then compare these IVs to the known literature
instruments {Z7, ...} using two matching strategies:

1. Exact Match (EM): Semantic similarity checks to identify if a known instrument is directly
mentioned or closely paraphrased.

2. Conceptual Match (CM): LLM-judge whether a generated candidate is a plausible concep-
tual equivalent or proxy to the known instrument.

Table 2| summarizes the ability of different models to recover well-established instrumental variables
across five canonical treatment-outcome settings. We observe that the strongest models: GPT-40, 03-
mini, and QwQ?2.5 can recover canonical instruments with high consistency. Across all of the settings,
we observe CM rating is higher than EM, because while LLMs often propose valid instruments that
align with the underlying causal rationale, they frequently use alternate phrasings or suggest closely
related proxies.

Appendix C..3.2 Avoiding invalid IV

Given that we have observed positive results in[subsubsection Appendix C..3.1} we are interested in
evaluating whether LLMs can recognize and avoid historically discredited IVs. We evaluate whether
they suggest the negative IV Z~ and whether the CriticAgents can filter them out. We filter these
(T,Y) from established literature. In particular, the effect of GDP on conflict in a country [36],
the effect of body mass index on systolic blood pressure [10], the effect of church attendance on
crime [17], the effect of vote turnout on party vote share [28]], and protests on consumer prices [36].

In we evaluate how well different models handle flawed instruments. The HG column
indicates whether the model directly proposed the flawed instrument (Z ™), while the Critic column
captures whether the CriticAgent correctly identified and flagged the flaw.

Overall, we see that the CriticAgent plays a vital role in safeguarding against invalid instruments.
Even when powerful models like GPT-40 and QwQ occasionally suggest flawed variables, the critic is
often able to detect and reject them. This highlights the utility of incorporating an automated critic to
evaluate statistical validity post hoc. Interestingly, the Llama3.1 8B model appears more conservative,
doesn’t propose many flawed IVs. However, when such variables are injected, its critic fails to detect
the issue.

11
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Appendix D. Experimental Setup

In our paper, we conduct extensive experiments across reasoning and non-reasoning models.

Appendix D..1 EM and CM

In Section[Appendix C..1] we evaluate the ability of LLMs to recover canonical instrumental variables
using two metrics, building upon [47]: Exact Match (EM) and Conceptual Match (CM).

Exact Match (EM). This metric quantifies the semantic similarity between each LLM-suggested
instrument and the known ground-truth instrument. Specifically, we embed both the LLM’s suggestion
and the literature-sourced IV using the Qwen3-Embedding-0.6B model. We then compute the cosine
similarity between the embeddings and report the similarity score, where higher values indicate closer
semantic alignment.

Conceptual Match (CM). Exact matches may underestimate the utility of LLM suggestions that
are plausible but lexically dissimilar. To account for this, we introduce a softer, human-grounded
measure: Conceptual Match (CM). For each LLM-generated IV, we prompt another LLM to act as
a domain-aware judge and rate—on a scale from 1 to 10—how conceptually similar the suggestion is
to the accepted IV in terms of causal plausibility. A score closer to 10 indicates a stronger conceptual
match.

Together, EM and CM allow us to evaluate both surface-level and deeper, contextual alignment
between LLM-suggested and literature-backed instruments.

Appendix D..2 Gapminder Dataset

To evaluate the ability of LLMs to propose and validate novel instrumental variables, we require a
rich and diverse source of real-world observational data. For this purpose, we use the Gapminder
databaseﬂ a curated compilation of time-series indicators covering over 200 countries and territories.

Gapminder provides over 500 socio-economic and health-related variables, including measures
such as GDP per capita, life expectancy, sanitation access, education levels, and fertility rates.
These indicators are compiled from authoritative sources like the World Bank, WHO, and UN, and
are harmonized to ensure consistency across countries and years. It is under Creative Commons
Attribution 4.0.

The diversity and breadth of variables make Gapminder particularly well-suited for causal analysis. It
contains plausible treatment and outcome variables across multiple domains (e.g., income, health, de-
mographics), along with a large pool of potential proxy variables. Moreover, the data are longitudinal,
enabling time-aware causal reasoning techniques such as Granger causality.

We extract country-year level data for all variables with sufficient temporal coverage. To preprocess it,
we removed datapoints with missing values and standardized variable scales. This yields a structured
dataset suitable for evaluating both traditional statistical tests (e.g., relevance via F-statistic) and
novel LLM-generated instruments under realistic conditions.

Appendix D..3 Compute

We ran Qwen2.5, LLama70b and Llama 8b on A100 GPUs. The GPT models were accessed via API.
The PreSelector, HumanProxy and CausalOrale just had to run once, while the discovery modules
were iterated over all examples and for new I'Vs.

Appendix D..4 Reproducibility

All LLMs were run with a temperature of 0 and top-p of 1 to ensure deterministic outputs. The results
reported in Table 2] reflect averaged metrics over multiple runs where applicable. Table [3|contains no
variance due to LLM randomness, as the models were only used to suggest instruments, which were
then evaluated against fixed proxies or ground truth.

"https://www.gapminder.org/data/

12


https://www.gapminder.org/data/

480
481

482

484
485
486

487

488
489
490
491

492
493
494

496
497

499

500

502

Density
Density

0.00031 1 ATEl 1 ATEl
\ ATE2 0.00015 1 ATE2
0.0002 ;
0.00010 -
0.0001 7 0.00005 - J
0.0000 0.00000

© ®
S S
N N
/6) /‘)
ATE ATE

Figure 3: Comparison of the ATE density while using two different IVs: (a) LLM proposed and (b)
random. This is for Sanitation — Mortality for GPT-4o.

We commit to releasing all code, prompts, and evaluation scripts upon acceptance to support full
reproducibility.

Appendix E. Qualitative Analysis

To complement our quantitative analyses, we conducted a structured qualitative evaluation with an
economics professor and political scientist familiar with instrumental variables. The goal was to
assess the plausibility and relevance of LLM-generated variables through expert judgment. The
expert was given a short document, consisting of four tasks:

Appendix E..1 Task Overview

* Task 1: Generator vs. Critic Evaluation. The expert was asked whether they agreed
with the LLM’s rejection of certain candidate instruments following critique by a sec-
ondary “critic” model that evaluated I'Vs based on the standard assumptions of relevance,
independence, and exclusion.

» Task 2: Agreement with Accepted and Rejected Instruments. The expert reviewed a
table of treatment—outcome pairs, each with a list of instruments accepted or rejected by the
LLM pipeline. They were asked to indicate agreement with each group of variables (e.g.,
2/3 accepted IVs, 1/3 rejected IVs).

* Task 3: Case-Based Evaluation. The expert was presented with a specific example—female
literacy as a treatment for fertility—and asked to comment on the confounders and the
plausibility of five candidate instruments, considering both their relevance and threats to
validity.

» Task 4: Reflection on LLMs as Co-Scientists. The expert reflected on the role of LLMs
as collaborators in early-stage IV discovery, and whether such tools might augment, rather
than replace, the theoretical reasoning of applied economists.

13



503

505
506

508

509

510
511

512

513
514

515

516

517

518

519

520
521
522
523

524

525

526

527

528

529

530

531

532

Appendix F. Detailed Definitions

Appendix F..1 Granger Causality

Granger causality is a statistical test used to determine whether one time series is useful in forecasting
another. Formally, for time-indexed data {v; ¢, v;+}{_,, we test whether past values of v; help predict
v; beyond what is possible using past values of v; alone.

We define the null and alternative hypotheses as follows:

Hj : v; does not Granger-cause v; 5)
H; : v; Granger-causes v; (6)

This is operationalized by estimating and comparing the residual variances from two autoregressive
models:

Restricted model (without v;):

p
v = a0+ Y akvyi ey ™
k=1

Unrestricted model (including lags of v;):

p P
vje = Bo + Z ORVj—k + Z VeVit—k + egu) @)
k=1 k=1

The null hypothesis corresponds to testing:
m=y==p=0 ©)

If the unrestricted model significantly reduces the prediction error compared to the restricted model,
we reject Hy and conclude that v; Granger-causes v;.

Assumptions:

* Both time series are weakly stationary.
 The lag length p is appropriately selected.

» The model is correctly specified (linearity, no omitted variables).

Appendix F..2 ATE Estimation of I'Vs

When estimating causal effects using instrumental variables (IVs), we typically recover the Local
Average Treatment Effect (LATE), not the overall average treatment effect (ATE). This is because IV
methods rely on compliers—units whose treatment status is affected by the instrument. As a result,
the estimated effect pertains only to this subpopulation.

Formally, suppose we have an instrument Z, a treatment 7', and an outcome Y. Under the potential
outcomes framework, each unit ¢ has:

* T;(1) and T;(0): potential treatment values if Z; = 1 or Z; =0

* Y;(1) and Y;(0): potential outcomes under treatment or no treatment
We define the following groups:

* Compliers: T;(1) =1, T;(0) =0

* Never-takers: T;(1) =0, 7;(0) =0

* Always-takers: T;(1) = 1, T;(0) = 1

* Defiers: T;(1) = 0, T;(0) = 1 (typically ruled out by the monotonicity assumption)

14
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Key Assumptions for LATE:

1. Relevance: E[T|Z = 1] # E[T'|Z = 0] (instrument affects treatment)

2. Independence: Z 1 (Y (0),Y(1),7(0),T(1)) (instrument is as good as randomly as-
signed)

3. Exclusion Restriction: Z affects Y only through 7" (no direct effect on outcome)
4. Monotonicity: T;(1) > T;(0) for all ¢ (no defiers)

Under these assumptions, the LATE is identified as:

E[Y|Z =1] - E[Y|Z = 0]

LATE =
E[T|Z = 1] - E[T|Z = 0]

(10)

This ratio represents the average causal effect of 7" on Y for compliers only.

Two-Stage Least Squares (2SLS): To estimate LATE in practice, we use a two-stage regression
procedure.

In this appendix, we provide additional theoretical insights into the consistency metric introduced in
the main text, highlighting its connection to the variance and bias properties of instrumental variable
estimators.

Appendix F..3 Consistency as a Measure of Instrument Validity

Let Z be a candidate instrument used to estimate the causal effect 3 via

5(2) _ COV(Z,Y) (11)
V" Cov(Z,X)’

Assuming Z satisfies the classical instrument validity conditions (relevance and exclusion), the IV es-
timator is consistent and unbiased in large samples. When multiple valid instruments 21, Zs, ..., Zn,
are available, their estimates ﬂI(VZ ) should converge to the true causal effect /3 as sample size grows,

resulting in low pairwise differences:

lim E (3% — 3¢ =0, Vi,j. (12)

n—oo

Large observed discrepancies suggest violations of instrument validity, such as weak instrument bias
or direct pathways from Z; to Y that bypass X.

Relation to Instrument Strength and Bias The variance of each IV estimate depends inversely on
the strength of the instrument, quantified by Cov(Z, X)?2. Weak instruments induce greater variability,
leading to increased disagreement between estimates from different instruments.

Additionally, bias from invalid instruments inflates the expected pairwise difference. Formally, for
instruments Z; and Z;, the expected squared difference decomposes as

E (37 - B07)?| = var(B{Z7) + Var(B{/”)) + (Bias(Z;) — Bias(Z;))>.  (13)

variance component bias component

This decomposition illustrates how the consistency metric reflects both random variation and system-
atic bias in the set of instruments.

Implications for Instrument Selection The normalized consistency score introduced in the main
text effectively summarizes these properties by comparing observed discrepancies to a baseline
derived from random (invalid) instruments. A low score implies both low variance and low bias
among the instruments, supporting their joint validity.

In practice, this metric can guide the selection and refinement of instruments by:
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* Identifying instruments that cause high disagreement, which may be candidates for exclu-

sion.

* Providing a quantitative measure to compare different instrument sets.

* Complementing formal tests of instrument validity such as overidentification tests.

Appendix G. Rejected I'Vs

Treatment Outcome Rejected I'Vs
GDP Conflict Rainfall

BMI SBP MR

Church attendance  Crime Rainy days
Turnout Vote share  Rainfall
Protests Prices Rainfall

Table 4: Treatment—Outcome Pairs with Rejected Instruments

Appendix H. Gapminder preprocessing by IV Co-Scientist

Table [5| presents key preprocessing statistics for each variable pair from Gapminder, including the
observed correlation between treatment and outcome variables and the corresponding sample sizes
used in the analysis. These metrics provide context on the data quality and strength of associations

before causal inference.

Treatment Outcome Correlation Number of Data Points
GDP Health 0.902 2784
Income Carbon emissions 0.832 1790
Sanitation Child mortality rate -0.812 2578
Poverty Cholesterol -0.842 3568
Female literacy rate  Number of kids per female -0.812 2504

Table 5: Preprocessing Summary: Correlation and Sample Size by Treatment—Outcome Pair

Appendix 1.

IVs generated by IV Co-Scientist

Table [6] summarizes the sets of accepted and rejected instrumental variables (IVs) for each treat-
ment—outcome pair, as suggested by GPT-4o0. The accepted I'Vs represent those variables the model
deemed more plausible instruments after a critique stage, while the rejected IVs are those filtered out

due to likely violations of IV assumptions.
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Treatment Outcome Accepted IVs Rejected IVs
GDP Health 1. Distance to the port 1. Colonial legal-origin dummies
2. Global commodity prices 2. Fertile land
3. Historical settler-mortality rates
Income Carbon emissions 1. Industrial or resource endowments 1. Distance to the equator
2. Policy reforms 2. Railroad network density
3. Trade in country
Sanitation Child mortality rate 1. Groundwater depth 1. Sanitation subsidy rollout schedule
2. Sewerage investment 2. Distance to health center
3. Terrain
Poverty Cholesterol 1. Cash-transfer age cutoff 1. Childcare-program timing
2. State minimum wage 2. State EITC rate

Female literacy rate Number of kids per female 1. Number of female teachers
2. Raised compulsory school-leaving
age
3. Introduction years of a girls-only
scholarship program

1.
2.

Distance to school
Historical density of missionary girls’

schools (pre-independence)

3.

Ul replacement rate

Table 6: Accepted and Rejected Instruments by Treatment—Outcome Pair

Appendix J. Prompts

581

(_[ HypothesisGenerator (Instrumental Variable) ]
J

You are an economist helping to identify causal relationships.

provide a list of 5 possible instrumental variables that could
help estimate the causal effect of {T} on {Y}.
treatment-outcome pair is {Context}. These should be variables

Think step by step. Return your answer with Answer =

582 \

Given the treatment variable {T} and the outcome variable {Y}, please
The context of this

that influence {T} but do not directly affect {Y} except through {T}.
[1ist of 5 IVs]

(_[ HypothesisGenerator (Confounder) ]
J

You are an economist helping to identify causal relationships.

The context of this treatment-outcome pair is {Context}.
by step. Return your answer with Answer =
583

Given the treatment variable {T} and the outcome variable {Y}, please
provide a list of 5 possible confounding variables that might affect
both {T} and {Y}, potentially biasing the causal effect estimate.
Think step
[1ist of 5 confounders]

’_( HypothesisGenerator (Independence) ]
J

You are an
variables.
a candidate
{U17U27 oo '}’
independent

economist evaluating the validity of instrumental
please assess the independence criteria i.e.
of any confounders that affect both {T} and {Y}.

is a valid instrument. Think step by step.
Answer = [Valid / Invalid]

584 \

Given the treatment variable {T}, outcome variable {Y},
instrumental variable {Z}, and a list of confounders

{Z} must be
Based
on these definitions and the {Context}, please evaluate whether {Z}
Return your answer with
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585

586

587

(_[ HypothesisGenerator (Exclusion) ]
J

.

You are an economist evaluating the validity of instrumental
variables. Given the treatment variable {T}, outcome variable {Y},

a candidate instrumental variable {Z}, please assess the exclusion
criteria i.e. {Z} affects the outcome {Y} only through the treatment
{T}, with no direct effect on {Y}. Based on these definitions and
the {Context}, please evaluate whether {Z} is a valid instrument.
Think step by step. Return your answer with Answer = [Valid /
Invalid].

| ProxyHuman ]

J

You are a policy-minded economist tasked with identifying
socio-economically meaningful causal questions. Given a candidate
pair {(T, Y)}, assess whether: 1. The relationship is important
or interesting i.e., is this a question researchers or policymakers
would care about? 2. The pair is interpretable and policy-relevant
in real-world socio-economic contexts. 3. The question could
plausibly be studied using observational data. Avoid pairs that
are too similar in meaning (e.g., literacy at ages 5{10 and literacy
at ages 10{15). Think step by step, using the reasoning a social
scientist or economist might apply when deciding whether to pursue
this question.

(_[ CausalOracle }

You are an economist reasoning about causal direction between two
socio-economic variables. Given a variable pair (A, B) with a strong
observed correlation, your task is to determine the likely causal
relationship. Please evaluate: 1. Is it more plausible that A
causes B? 2. Is it more plausible that B causes A? 3. Could the
relationship be bidirectional? 4. O0Or is the correlation likely
driven by confounding or coincidence, with no direct causal link?

Use real-world knowledge and reasoning as an economist to assess
plausibility. Think step by step. Return your answer as: Answer

=[1/2/3/4].
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