
Landmark Attention: Random-Access Infinite
Context Length for Transformers

Amirkeivan Mohtashami 1 Martin Jaggi 1

Abstract

While transformers have shown remarkable
success in natural language processing, their
attention mechanism’s large memory require-
ments have limited their ability to handle longer
contexts. Prior approaches, such as recurrent
memory or retrieval-based augmentation, have
either compromised the random-access flexibility
of attention (i.e., the capability to select any
token in the entire context) or relied on separate
mechanisms for relevant context retrieval, which
may not be compatible with the model’s attention.
In this paper, we present a novel approach that
allows access to the complete context while
retaining random-access flexibility, closely resem-
bling running attention on the entire context. Our
method uses a landmark token to represent each
block of the input and trains the attention to use it
for selecting relevant blocks, enabling retrieval of
blocks directly through the attention mechanism
instead of by relying on a separate mechanism.
Our approach seamlessly integrates with special-
ized data structures and the system’s memory
hierarchy, enabling processing of arbitrarily long
context lengths. To demonstrate the capabilities
of our method, we show that fine-tuning LLaMA
7B with our method successfully extends its con-
text length capacity beyond 32k tokens, allowing
for inference at the context lengths of GPT-4.

1 Introduction

Large transformers have revolutionized language modeling
and demonstrated remarkable abilities to perform various
tasks with zero or few examples (Brown et al., 2020). This
success can be largely attributed to the attention mechanism,
which allows each token to access the representation of any

1EPFL, Lausanne, Switzerland. Correspondence to:
Amirkeivan Mohtashami <amirkeivan.mohtashami@epfl.ch>.

Work presented at the ES-FoMo Workshop at ICML 2023., Copy-
right 2023 by the author(s).

other token in each layer. However, this flexibility comes
with quadratic computational cost and highly problematic
memory footprint, limiting the number of tokens that can be
attended to, and thus the context length.

To overcome this limitation, researchers have proposed vari-
ous solutions, including incorporating a form of recurrent
memory inside the model, such as Transformer-XL (Dai
et al., 2019). However, these approaches often sacrifice the
random-access flexibility of attention.

An alternative approach to overcome the context length limit
is to use retrieval-based methods that incorporate additional
static knowledge by searching for relevant documents in a
knowledge base and adding them to the context. However,
this approach requires a separate mechanism to identify rel-
evant documents, called a retriever. Such retrieval models
can not easily be updated to work on fresh long input data,
and furthermore are also not fully compatible with the stan-
dard attention mechanism itself, and thus may fail to mimic
attention over long documents.

In this work, we propose a novel approach for overcoming
the context length limit by allowing earlier blocks of the
input to be directly incorporated into the attention itself. We
break the input into blocks of fixed length and introduce
a special token for each block, called a landmark, which
acts as a gate for attending to its corresponding block. The
gating mechanism is controlled by the attention score to
the landmark token. At inference time, the attention scores
on the landmarks allow us to retrieve any previous block
and integrate it with standard attention. The idea is illus-
trated in Figure 1. Our proposed approach maintains the
random-access flexibility of attention and offers an alterna-
tive solution to the recurrent memory approaches.

Our model can process any context length at inference time
regardless of the context length used at training time. To
achieve this, we split the input into chunks and feed the
chunks sequentially to the model, while maintaining a cache
of previous tokens, usually referred to as KV cache. When
processing each chunk, we first use the landmark tokens to
select the most relevant blocks and only use these blocks
for computing the attention. This immediately reduces the
computation cost by a factor of block length. For exam-

1

Landmark Attention

ple, in our experiments where we use blocks of 50 tokens,
this translates to almost 50x reduction of computation. We
note that to the overhead of computing the attention for the
retrieved blocks does not depend on the input length and
becomes negligible for very large inputs. Furthermore, it
is possible to obtain the same reduction in memory usage
since all tokens in a block (except the landmark itself) can
be swapped out and only loaded when the corresponding
landmark token is activated. We also point out that this
reduction can be further improved by using special data
structures designed for retrieving closest neighbors, such as
FAISS (Johnson et al., 2017).

We demonstrate the efficacy of our method in practice by
applying our training method both for training models from
scratch and for fine-tuning pre-trained models. In both cases,
our model effectively utilizes landmark tokens to retrieve
relevant blocks from memory, enabling inference at arbitrary
context lengths much longer than those encountered during
training. As a result, our model obtains comparable perfor-
mance with Transformer XL trained to use recurrence on
a much larger window. More importantly, we demonstrate
that using our method to fine-tune LLaMA 7B (Touvron
et al., 2023), a large language model, allows it to retrieve
relevant information from contexts with over 32k tokens,
which is the context length of GPT-4 (OpenAI, 2023).

In comparison with prior approaches, using landmark to-
kens, it is theoretically possible for the model to access any
token in the entire past. Although the memory footprint
grows linearly with the number of stored blocks, Therefore,
the limit on cache size is significantly reduced as the GPU
memory only needs to store the landmark tokens (a saving
multiplicative in the block size, which is significant). This
limit can be further improved . For simplicity, we focus our
experiments on storing everything in GPU memory, but we
note that the above techniques can be directly applied in
large-scale settings.

The primary advantages of our method can be summarized
as follows:

• Enabling inference at any context length, irrespective
of the context length utilized during training, without
incurring additional training costs.

• Instantly reducing inference time and memory usage
(compared to a model trained to operate at the given
context length) by a substantial factor equal to the
block size (e.g., 50 in our experiments).

• Compatibility with advanced data structures that can
further decrease the resource requirements for operat-
ing the model with very large context lengths.

2 Methodology

In this paper, we mainly focus on the causal language mod-
eling where each token can only attend to previous tokens
in the input. We briefly discuss the extension of our method
to the non-causal case in Appendix G.

When using a Transformer to process a long input, the ideal
case would be to allow each token to attend to all previous to-
kens. However, this becomes computationally infeasible as
the input length increases. Nevertheless, since the attention
scores always sum to one, the number of keys with a large
attention weight is limited even for long contexts. Thus, by
retrieving only those keys with large attention scores, it is
possible to closely emulate the ideal case. In this work, we
propose a method to find these keys by dividing a long input
into blocks of consecutive tokens and using the attention to
retrieve relevant blocks.

More particularly, we assign a representative vector to each
block such that a high attention score to any token inside
a block would lead to a high attention score to the block’s
representative vector. Therefore, we can directly retrieve
blocks based on the attention score of their representative
vector.

To obtain the representative vector of a block, we introduce
a new special token to the vocabulary, called the landmark
token. We insert a landmark token after the last token of
each block and train the model such that the key vector for
this token becomes the representative vector we seek. The
process is illustrated in Figure 1.
We will first describe the method we use to train the land-
mark tokens in Section 2.1 and then describe the inference
process in Section 2.2.

We note that an alternative for directly finding a candidate
set of keys with high attention score is using a data structure
that allows finding nearest neighbors of the query vectors
efficiently such as FAISS (Johnson et al., 2017). In com-
parison, our method provides a retrieval method directly
controlled by attention which can be more semantic-based.
Furthermore, retrieving a block instead of a single token
allows the attention to also access the local context around
the token which may be more accommodating of observed
classic attention patterns (Kovaleva et al., 2019). Finally,
we point out the aforementioned data structures can also be
applied on top of our method to search for relevant blocks.

2.1 Training Landmark Tokens

In order to train the landmark tokens, we first go over the text
corpus and add a landmark token after every ℓblock tokens.
Then we proceed to training the model using the standard
batching method which feeds windows of ℓseq tokens to
the model. In a list of ℓseq > ℓblock tokens, we train the
model such that each landmark token represents the block

2

Landmark Attention

ebcba

ebcba

e

bcba

e

bcba
Standard
Attention

Attention with
Landmarks

Figure 1. An illustration comparing standard attention and our attention with landmarks. The example shows the (causal) attention given
by a current token e to previous ones, illustrating our mechanism with block-size ℓblock =2. The attention scores rely on the similarity of
query vector with the key vector, and in our case also with the landmark vector corresponding to the block. This is why the same token b
can have a high (green) attention score when being part of one block and a low (red) attention score when being in other one, despite
having the same representative vector in both cases. Landmark tokens (same as regular tokens) have the same vector representation at the
first layer. However, this changes as they are updated though depth, leading to the illustrated behavior of attention at the intermediate
layers.

consisting of all previous tokens until the previous landmark
token (or the beginning of the input if no previous landmark
token exists). The token is passed through the transformer
as any other token while its representation is updated using
the self-attention mechanism. Let us denote the index (token
position) of the landmark corresponding to the i-th token’s
block by pi. If the last block is incomplete and does not
have a landmark token, we define pi := ℓseq. If the i-th
token is a landmark token, pi := i .

In order to train the transformer to make use of landmark
tokens, we alter the standard attention mechanism such that
the attention weight for a token depends on the similarity of
the query vector with both the token’s key as well as with
the key of its block’s landmark token. To define the mecha-
nism, we first define a generalized softmax function called
Grouped Softmax. Given a vector v ∈ Rℓseq and a group
index g ∈ Nℓseq , Grouped Softmax applies softmax sepa-
rately over elements belonging to the same group. (Using
g = 1ℓseq recovers the standard softmax function):

σG(v,g)i := GroupedSoftmax(v,g)i :=
evi∑

j:gj=gi
evj

.

(1)

We replace the softmax function after computing the atten-
tion scores with Grouped Softmax. For each block, we put
its regular tokens in a separate group, ensuring that all regu-
lar tokens within the same block share the same group, while
tokens outside the block are assigned to different groups.
When computing the attention weights for the i-th token,
landmark tokens for other blocks are placed in the same
group as the i-th token. The landmark token for the i-token’s
block is ignored when computing the attention weights for
the i-th token. In other words, the landmark token for each
block is only used by tokens in other blocks. This is intu-
itive as the landmark token should only be accessed when
tokens in other blocks require to retrieve information from
the landmark’s corresponding block. Building on the fact

that pj = j only holds when the j-th token is a landmark
token, we can define the grouping used for the i-th token
more formally as

Gi,j :=



pj pj ̸= j
▷placing normal tokens
in their own blocks.

−1 pi = j
▷ignoring current
block’s landmark token.

pi otherwise
▷placing other land-
marks in the i-th token’s
group.

.

Finally, to obtain the final weights after applying
GroupedSoftmax, we multiply each token’s softmax out-
put with the softmax output for its block’s landmark token.
For the tokens in the same group as the i-th token, we di-
rectly use the softmax output as its attention weight. The
weight for landmark tokens is always zero. In formal terms,

Si,j := SoftmaxScore(Q,K)i

:= GroupedSoftmax
(Q⊤

i ×K√
dhead

,Gi

)

Att(Q,K)i,j :=


0 pj = j

Si,j Gi,j = Gi,i ∧ pj ̸= j

Si,j · Si,pj Gi,j ̸= Gi,i ∧ pj ̸= j

.

An exmaple illustration of various values defined above
is given in Appendix B. Note that under this scheme, the
attention weights sum to one as is the case for the standard
softmax function. More importantly, attending to tokens in
other blocks is gated by the attention score to the landmark
token as expected. Since tokens in the same block and the
landmark tokens share the softmax group, the model has to
choose between attending to other blocks and current tokens.
Thus, the intuition behind the grouping is to force the model
to only attend to relevant blocks due to this trade-off.

We note that attention masks can be applied normally by
ignoring the masked elements in the softmax (e.g. by setting

3

Landmark Attention

Ai,j to −∞ on the masked elements in practice). Indeed
we focus our experiments on the causal language modeling.
We also point out that the grouping scheme can be fur-
ther extended to introduce additional hierarchy for retrieval.
For example, we refer the interested reader to Appendix E,
where we briefly discuss a different grouping scheme which
also trains a global retrieval gate token that controls whether
retrieval from an earlier block needs to be performed. At
inference, this gate can be used to decide whether a memory
call is needed or the model already has the information it
needs in the context. We leave further investigations of this
setting for future work.

2.2 Inference

Similar to training, the input gets augmented by a landmark
token after every ℓblock tokens. Then, we break the input
into chunks of ℓlocal length and iteratively feed chunks from
the beginning to the end. To retrieve relevant blocks, each
attention layer has access to a cache of previous blocks. The
cache stores the key-value vectors for all tokens of those
blocks, including the landmark token. Since the retrieval
only requires access to the landmarks, we can reduce the
memory usage significantly by swapping out (for example
to CPU memory or even to disk) all regular tokens’ cached
key-value vectors, and then swapping them back in only if
their corresponding block is retrieved by the attention.

We start by discussing the most permissive retrieval scheme.
When processing each chunk at each layer, we first compute
the attention score of each token with the landmark tokens
currently in the cache. For each token, we compute the
attention score for all the tokens in the k highest scoring
blocks and prepend the obtained attention matrix to the local
attention matrix. We finish by applying GroupedSoftmax
to the attention matrix and computing the weighted average
of the value vectors to obtain the token’s representation.

Under the above scheme, each token and each head can
retrieve different blocks from the cache. It is possible to
limit the retrieval flexibility in order to improve efficiency.
For example, it is possible to merge the scores across heads
by taking a maximum over the landmark attention scores
(after applying softmax) of each head. Under this scheme,
the same set of blocks is retrieved for all heads. It is also
possible to take the maximum over different tokens, retriev-
ing only k blocks per head for all the tokens in the current
window combined. We study the effect of these limitations
at the end of Section C.2. Unless otherwise stated, we
experiment using the permissive scheme described above.

2.2.1 POSITIONAL ENCODING

When computing the attention scores to cache elements
(both landmark and normal tokens), it is important to cor-

e

hg

ji

dc

ba

Memory

p srq

New Input

p srq

a
b

a
b

c
d

c
d

e
f

e
f

g
h

g
h

i
j

i
j

f

p srqji i
jdc c

d

p srqdc c
d e e

ff

p srqhg g
h ji i

j

Retreival Position Mapping

Final Attention Position Mapping

Figure 2. Stingy position mapping: Retrieving top k = 2 blocks
from a memory of 5 blocks. Retrieval landmarks for the last 2
blocks are accurately mapped to sequence index positions, while
previous blocks are mapped to the position of the (k+1)-th last
block. Blocks are then distributed across the prefix based on their
position, with an empty block separating the last k blocks from
older ones.

rectly incorporate positional information. The transformer
model is sensitive to positional information. It is also in-
tuitive that the model would rely on position information
in some cases. For example tokens following a landmark
token do not have access to any context and are unable to
select blocks based on semantics. Instead, they need to rely
on positional information to select the previous block.

Optimally, the tokens are encoded with their actual position
index. However, a known flaw of Transformers is their in-
ability to extrapolate to lengths not observed during training.
Various methods proposed to alleviate this condition also do
not fully resolve the problem unless they are combined with
block attention which only allows attending to a window of
tokens. We decide against using block attention since our
main goal is to facilitate attending to large contexts and in-
stead use the following approximation for our experiments.

We allocate a segment with length (k+1) · ℓblock in the be-
ginning of the context. We index the current chunk starting
after this segment. For the retrieved blocks, we map the
index for any of the latest k blocks to the corresponding
place within the last k blocks in the allocated prefix seg-
ment. Other blocks in the cache have their position mapped
to the first block in the allocated prefix segment. Once we
decide which blocks to retrieve, we map those among the
latest k blocks to the right of pre-allocated segment and map
the rest of the blocks to the left of the pre-allocated seg-
ment, while respecting the order of the blocks. We call this
scheme stingy position mapping which is further illustrated
in Figure 2.

We point out that the above approximation relies on the
ability to add position information when performing the
retrieval. In our experiments, we use Transformer models
with Rotary positional encoding (Su et al., 2021) which
adds the position information to the key and query vectors
just before computing the attention. Thus, we can store the

4

Landmark Attention

key vectors without position information in the cache and
add the position information when performing the retrieval
according to the following scheme.

2.3 Memory & Computation

During training, our method has only a negligible overhead
due to the computation of GroupedSoftmax. In particular,
our method does not require maintaining a cache of previous
values at training time. Furthermore, we decouple the train-
ing context length from the inference context length since it
is possible to perform inference at any context length using
the method described in Section 2.2 regardless of the train
context length. As such, when comparing training time in
terms of inference context length, we offer constant O(1)
time whereas training time for a standard transformer scales
quadratically with the operational (inference) context length.

Furthermore, in comparison with standard attention over the
whole input, our method reduces inference time by comput-
ing the attention score over a smaller set of token pairs. For
instance, during auto-regressive generation, where tokens
are generated sequentially by using the previously gener-
ated token as input for obtaining the next one, the traditional
approach involves computing attention across all preceding
tokens when generating the next token. In contrast, our
method allows computing attention solely over landmark
tokens, followed by attention computation over the retrieved
blocks. Given the constant size of the blocks, the cost of
computing the attention over the retrieved blocks remains
constant regardless of the total context length. While the
cost of finding the most relevant landmark tokens increases
linearly with the context length, the rate of increase is 1
every ℓblock tokens. This immediately reduces the number
of operations by a factor of block length ℓblock. For example,
when using ℓblock = 50 as in our experiments, this can lead
to a 50x boost. Importantly, the same reduction can be ob-
tained in terms of memory. In the standard Transformer, a
cache of all previous key and values (KV-cache) is needed to
perform the generation efficiently. In contrast, we only need
immediate access to the landmark tokens and can offload
the blocks to slow memory (e.g. CPU), loading only the
retrieved blocks. The reduction in memory and compute
can be further improved if the search for retrieving blocks
is performed using more advanced data structures such as
FAISS (Johnson et al., 2017).

It is worth noting that the additional computational overhead
introduced by performing two matrix multiplications (one
for block selection and another for attention to the retrieved
blocks) instead of a single matrix multiplication in the stan-
dard setting becomes relatively negligible, especially when
dealing with larger inputs.

Finally, we point out that our method can be naturally com-
bined with flash attention (Dao et al., 2022), reducing the

overhead further. Flash attention computes the attention
matrix in blocks with the block size chosen to optimize
memory accesses. The performance can be maximized by
choosing the frequency of the landmark tokens to be equal
to the aforementioned block size (or a multiple of it). Com-
bination with more advanced extensions is also possible.
For example, the landmark token can naturally be used to
decide on dropping blocks when using block sparse flash
attention. In this work, to reduce the implementation work-
load, we use a higher-level implementation and leave the
efficient implementation as a future work.

3 Experiments

We demonstrate the practicality of our method by fine-
tuning a large language model using landmark’s token and
therefore extending the model’s context length. We also
evaluate our method on several language modeling bench-
marks in Appendix C. In this section, we fine-tune LLaMA
7B (Touvron et al., 2023) for 15000 steps using our method.
To reduce computation, we fine-tune the model with context
length 512. We use the sample subset of RedPajama1 for
the fine-tuning which closely follows the dataset curation
process used for training LLaMA.

We evaluate the efficacy of our method by comparing
model’s ability to recover a hidden pass phrase inside a
text segment. In particular, we use randomly generated
prompts of the format described in Figure 3a and compute
the accuracy of generating the correct pass key (as the first
integer within the first 100 generated tokens). The result
is plotted in Figure 3b for different context lengths. We
observe that the base model is capable of finding the pass
phrase until a certain lengths, even slightly exceeding its
default training context length of 2048 (the area shared in
grey). However, the base model completely fails at the task
for larger contexts. In contrast, our landmark version can
always retrieve the pass phrase with high accuracy, even for
significantly larger context lengths. We point out that when
evaluating our model with very large inputs (e.g. 32K), we
use additional techniques to reduce the memory usage by
offloading the KV cache (execpt the landmarks) to CPU. We
discuss this in more detail in Appendix H.

4 Future Work

Extrapolating Positional Encoding. One of the obstacles
in attaining infinite context length is the inability of models
to attend to context lengths much larger than those they
were trained on. In this work, we provide a special indexing
method which can be combined with landmark tokens to
bypass this issue. However, as a result, the model can only
attend to tokens that are too far based on their semantic (and

1https://github.com/togethercomputer/RedPajama-Data

5

Landmark Attention

There is an important info hidden inside

a lot of irrelevant text. Find it and

memorize them. I will quiz you about the

important information there.

<prefix filler by continuously repeating:

The grass is green. The sky is blue. The

sun is yellow. Here we go. There and back

again.>

The pass key is <PASS KEY>. Remember it.

<PASS KEY> is the pass key.

<suffix filler>

What is the pass key? The pass key is

(a) Prompt Format

0 5000 10000 15000 20000 25000 30000
Prompt Length (Tokens)

0

20

40

60

80

100

Ac
cu

ra
cy LLaMA 7B

Landmark Finetuning

(b) Retrieval Accuracy

Figure 3. Prompt format used for comparing retrieval accuracy of the vanilla LLaMA 7B and its counterpart fine-tuned with landmarks.
The points marked with a red cross represent cases where the model ran out of memory. Points marked with a green star use a more
efficient inference mechanism (see Appendix H). Inference is done by feeding the segment in windows of length 250 tokens (excluding
the inserted landmark tokens). The top k=4 landmarked blocks are retrieved. Retrieval accuracy is measured for a fixed total prompt
length, by using the suffix and prefix filler. Results are averaged over 50 random generation of the pass key (a random number between 1
and 50000), which each time is located at a random position in the full-length prompt. The space before and after the pass key is filled
accordingly by the suffix and prefix filler. The gray box marks the region where the prompt length is within lengths used during original
LLaMA training.

not their position). While this is an important improvement
and facilitates extrapolation to large context lengths, it can
be expected that the performance would be further improved
if the exact indexing method can be used. Unfortunately,
existing proposals limit (or completely disable) attention
to far tokens which defeats our purpose. While we briefly
discuss a possible solution for models with landmark tokens
in Appendix F, we leave a more thorough investigation as
future work. We note that once such method is developed,
it can be directly combined with landmark tokens, yielding
inference capabilities at any length.
Hierarchical Landmarks. In large-scale settings, the
landmark tokens can be stored in k-nearest neighbor data
structures to improve retrieval performance and reduce mem-
ory usage. However, an alternative is to introduce hierarchy
with higher level landmark tokens controlling the attention
to lower level landmarks. In Appendix E, we investigate
adding a special token which acts as a gate to all landmark to-
kens. This token can for example be used to decide whether
a retrieval is necessary. Similarly, this token can be used
at different memory cache levels where high attention to
this token would constitute a cache miss, leading to lookup
in lower-level (and slower) caches. We leave exploration of
possible hierarchical landmark tokens as a future direction.
Training with Cache. For simplicity, in this work we focus
on using the standard training procedure. While we expect
the standard softmax mechanism to closely resemble the
retrieval at inference, given the special indexing scheme,
it is possible that the model would gain additional benefit

from incorporating the cache during training. We leave
investigation of such training variants as a future work.

5 Conclusion
In conclusion, this work presents a novel method for training
attention to retrieve relevant blocks from memory. Unlike
previous methods that rely on recurrence to create memory,
our approach enables direct access to previous tokens, en-
suring accurate information retrieval without the problem of
slowly forgetting past data. We have demonstrated that our
method achieves comparable performance to recurrent meth-
ods such as Transformer-XL while utilizing less computa-
tional resources. Additionally, our attention-based retrieval
process allows for tracking and interpretability, providing
insights into the information used to generate the output.
Importantly, our results highlight the ability of our approach
to handle significantly longer context lengths than those
encountered during training. Moreover, we have shown
that this capability can efficiently be incorporated into ex-
isting pre-trained models through fine-tuning, showcasing
improved retrieval capabilities in the LLaMA 7B language
model. Overall, our method enables efficient inference with
arbitrary context lengths, making it suitable for accessing
large inputs and processing fine-grained information within
the large context.

6

Landmark Attention

References

Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang,
Ammar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Jeff
Rasley, Shaden Smith, Olatunji Ruwase, and Yuxiong He.
DeepSpeed Inference: Enabling Efficient Inference of Trans-
former Models at Unprecedented Scale. ArXiv preprint,
abs/2207.00032, 2022.

Anthropic. claude-v1.3-100k, Blog post ‘Introducing
100K Context Windows‘, 2023. URL https://www.
anthropic.com/index/100k-context-windows.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Long-
former: The long-document transformer. ArXiv preprint,
abs/2004.05150, 2020.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020.

Aydar Bulatov, Yuri Kuratov, and Mikhail S. Burtsev. Recurrent
memory transformer. ArXiv preprint, abs/2207.06881, 2022.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Gener-
ating Long Sequences with Sparse Transformers. ArXiv preprint,
abs/1904.10509, 2019.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David
Dohan, Xingyou Song, Andreea Gane, Tamás Sarlós, Peter
Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser,
David Benjamin Belanger, Lucy J. Colwell, and Adrian Weller.
Rethinking attention with performers. In 9th International Con-
ference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le,
and Ruslan Salakhutdinov. Transformer-XL: Attentive language
models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Lin-
guistics, pages 2978–2988, Florence, Italy, 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1285.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher
Ré. FlashAttention: Fast and Memory-Efficient Exact Attention
with IO-Awareness. ArXiv preprint, abs/2205.14135, 2022.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-
Wei Chang. REALM: Retrieval-augmented language model
pre-training. ArXiv preprint, abs/2002.08909, 2020.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Trans-
former Language Models without Positional Encodings Still
Learn Positional Information. ArXiv preprint, abs/2203.16634,
2022.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini,
Fabio Petroni, Timo Schick, Jane Dwivedi-Yu, Armand Joulin,
Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. ArXiv preprint,
abs/2208.03299, 2022.

Zhengbao Jiang, Luyu Gao, Jun Araki, Haibo Ding, Zhiruo Wang,
Jamie Callan, and Graham Neubig. Retrieval as attention: End-
to-end learning of retrieval and reading within a single trans-
former. ArXiv preprint, abs/2212.02027, 2022.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale
similarity search with GPUs. ArXiv preprint, abs/1702.08734,
2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis,
Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
Dense passage retrieval for open-domain question answering.
In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages 6769–6781,
Online, 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.550.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer,
and Mike Lewis. Generalization through memorization: Nearest
neighbor language models. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

Omar Khattab, Christopher Potts, and Matei Zaharia. Relevance-
guided supervision for OpenQA with ColBERT. Transactions
of the Association for Computational Linguistics, 9:929–944,
2021. doi: 10.1162/tacl_a_00405.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer:
The efficient transformer. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna
Rumshisky. Revealing the dark secrets of BERT. In Proceedings
of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 4365–
4374, Hong Kong, China, 2019. Association for Computational
Linguistics. doi: 10.18653/v1/D19-1445.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks.
In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake
Tahoe, Nevada, United States, pages 1106–1114, 2012.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regu-
larization. In 7th International Conference on Learning Repre-
sentations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019.

Pedro Henrique Martins, Zita Marinho, and André F. T. Martins.
∞-former: Infinite memory transformer. ArXiv preprint,
abs/2109.00301, 2021.

Jesse Mu, Xiang Lisa Li, and Noah Goodman. Learning
to Compress Prompts with Gist Tokens. ArXiv preprint,
abs/2304.08467, 2023.

7

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows

Landmark Attention

OpenAI. GPT-4 Technical Report. ArXiv preprint, abs/2303.08774,
2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob De-
vlin, James Bradbury, Anselm Levskaya, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently Scaling Trans-
former Inference. ArXiv preprint, abs/2211.05102, 2022.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short, test
long: Attention with linear biases enables input length extrap-
olation. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei,
and Ilya Sutskever. Language models are unsupervised multi-
task learners. 2019.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, Chloe
Hillier, and Timothy P. Lillicrap. Compressive transformers for
long-range sequence modelling. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Hongyu Ren, Hanjun Dai, Zihang Dai, Mengjiao Yang, Jure
Leskovec, Dale Schuurmans, and Bo Dai. Combiner: Full atten-
tion transformer with sparse computation cost. In Marc’Aurelio
Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan, editors, Advances in Neural
Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 22470–22482, 2021.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher
Potts, and Matei Zaharia. ColBERTv2: Effective and efficient
retrieval via lightweight late interaction. In Proceedings of
the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, pages 3715–3734, Seattle, United States, 2022.
Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.272.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max
Ryabinin, Daniel Y. Fu, Zhiqiang Xie, Beidi Chen, Clark Bar-
rett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion
Stoica, and Ce Zhang. High-throughput Generative Inference
of Large Language Models with a Single GPU. ArXiv preprint,
abs/2303.06865, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen,
and Yunfeng Liu. RoFormer: Enhanced transformer with rotary
position embedding. ArXiv preprint, abs/2104.09864, 2021.

Sainbayar Sukhbaatar, Edouard Grave, Piotr Bojanowski, and
Armand Joulin. Adaptive attention span in transformers.
In Proceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 331–335, Florence,
Italy, 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1032.

Simeng Sun, Kalpesh Krishna, Andrew Mattarella-Micke, and
Mohit Iyyer. Do long-range language models actually use long-
range context? In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing, pages
807–822, Online and Punta Cana, Dominican Republic, 2021.
Association for Computational Linguistics. doi: 10.18653/v1/
2021.emnlp-main.62.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shaohan Huang,
Alon Benhaim, Vishrav Chaudhary, Xia Song, and Furu
Wei. A Length-Extrapolatable Transformer. ArXiv preprint,
abs/2212.10554, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Mar-
tinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Roz-
ière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Ro-
driguez, Armand Joulin, Edouard Grave, and Guillaume Lam-
ple. LLaMA: Open and Efficient Foundation Language Models.
ArXiv preprint, abs/2302.13971, 2023.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao
Ma. Linformer: Self-attention with linear complexity. ArXiv
preprint, abs/2006.04768, 2020.

Qingyang Wu, Zhenzhong Lan, Kun Qian, Jing Gu, Alborz Geram-
ifard, and Zhou Yu. Memformer: A memory-augmented trans-
former for sequence modeling. ArXiv preprint, abs/2010.06891,
2020.

Yuhuai Wu, Markus Norman Rabe, DeLesley Hutchins, and Chris-
tian Szegedy. Memorizing transformers. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua
Ainslie, Chris Alberti, Santiago Ontañón, Philip Pham, Anirudh
Ravula, Qifan Wang, Li Yang, and Amr Ahmed. Big bird:
Transformers for longer sequences. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Informa-
tion Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020.

8

Landmark Attention

A Related Work
With the evolution of state-of-the-art commercial models
and their applications towards very long context window
lengths, such as 32k tokens (GPT-4 (OpenAI, 2023)) or even
100k (Claude (Anthropic, 2023)), the research question of
efficient while accurate long context models is receiving
increased attention.

Retrieval-Augmented Language Models. Retrieval-
augmented language models use a separate module, called
a retriever, to find a set of relevant documents in the knowl-
edge base, which are then prepended to the input. The
augmented input is then fed into the main model, called the
reader. Various methods have been proposed for training
retrievers and readers (Karpukhin et al., 2020). For exam-
ple, REALM (Guu et al., 2020) jointly trains the reader
and retriever, where both components are transformers. At-
las (Izacard et al., 2022) further investigates the effect of
various losses on the performance of the retriever. Previous
work has also looked into using the attention in the reader
to build a retriever but used manually crafted rules to reduce
the token scores to document scores (Khattab et al., 2021;
Jiang et al., 2022; Santhanam et al., 2022). In contrast, our
landmark approach is trained to directly produce meaning-
ful landmark embeddings on the fly, without needing any
notion of corpus for retrieval.

Memory for Transformers. Various methods have been
proposed to introduce memorization capabilities to Trans-
formers through recurrence (Wu et al., 2020; Bulatov et al.,
2022). Transformer-XL (Dai et al., 2019) feeds the input
to the model in windows of a fixed length and allows each
token to attend to tokens in the current window as well as
the preceding window. Memory Transformers (Wu et al.,
2022) introduce special memory tokens that are prepended
to the input, and their representation at the final layer of the
model is used for the next input. Infinite Memory Trans-
formers (Martins et al., 2021) map the input to a continuous
space and then sample points to be used for memory in the
next step according to the probability distribution defined
by the attention mechanism. However, while these methods
improve upon the memory-less variants, they do not allow
for attending to specific tokens in the past, as the model only
has access to a compressed version of this information. In
fact, Mu et al. (2023) in simultaneous work propose adding
special "gist" tokens which are trained to summarize the
prompt so far, and find that the model is incapable of re-
membering specific details that should be copied into the
output. Furthermore, the decision about whether to keep
or discard a piece of information needs to be made with-
out knowledge of future tokens, which makes it likely that
aspects of information will be lost, especially if the topic
changes. In contrast, using our method, the model always
has the possibility of retrieving and attending to any tokens

in the past. Nonetheless, we note that these methods can
be combined with ours, allowing the model to benefit from
both full access to previous tokens as well as access to a
summarized version in terms of the recurrent memory state.
Approximate and Sparse Attention. Various methods
have also been proposed to reduce the memory footprint of
attention. However, similar to recurrent memories, these
approximations significantly reduce the flexibility of atten-
tion in attending to arbitrary individual tokens. For example,
Child et al. (2019) limit the attention to a local window
around each token, while BigBird additionally suggests
attending to a random subset of previous tokens as well
as several globally accessible tokens (Zaheer et al., 2020).
Longformer (Beltagy et al., 2020) further introduces dilated
sliding window patterns to increase attention’s receptive
field and manually picks the window sizes for each layer.
Linformer (Wang et al., 2020) uses a low-rank approxima-
tion of the attention matrix while Performer (Choromanski
et al., 2021) uses a non-softmax kernel to obtain a more
efficient implementation. Reformer (Kitaev et al., 2020)
uses locality-sensitive-hashing (LSH) to retrieve the closest
key vectors which should account for the highest scores in
the attention matrix. Combiner (Ren et al., 2021) utilizes
a hierarchical attention mechanism and heuristic reduction
techniques, such as max-pooling, to derive key and query
vectors for input blocks. The block weight is determined
based on the pooled key vector, while the weight of each
token within the block is determined by the pooled query
vector. However, this approach limits the control of the cur-
rent token over the weights of the tokens inside the block,
resulting in reduced flexibility of attention. In contrast, our
proposed method enables the current token’s query vector to
control the weight for each token, and the gating mechanism
is learned through the attention process instead of relying
on heuristic reductions.
kNN Augmented Transformers. k-nearest-neighbor
(kNN) augmentation has been proposed as an alternative
method for allowing transformers to access external mem-
ory. For example, kNN-LM (Khandelwal et al., 2020) stores
the hidden representation of tokens in memory and uses
the distribution of the next token among the stored vectors
that are closest to the current token to predict the next to-
ken. Memorizing Transformer (Wu et al., 2022) performs a
nearest-neighbor search over previous keys and computes
the attention to the top nearest items. However, these meth-
ods obtain the final results by interpolating between the kNN
prediction and the local attention prediction using a tuned
parameter as interpolation weight. Therefore, the interpo-
lation does not depend on the current input and does not
consider whether the memory contains relevant information.
Context Length Extrapolation. Transformers have a
well-known limitation in extrapolating to contexts longer
than what was observed during training (Press et al., 2022),
even when relative positional encoding is used (Sun et al.,

9

Landmark Attention

2022). Current solutions to address this problem often result
in weakened attention scores for long-range tokens, which
undermines the benefits of a longer context (Press et al.,
2022; Sun et al., 2022). Moreover, these methods only work
when combined with windowed attention, which restricts
direct attention to long-range tokens (Sun et al., 2022). We
hypothesize that the limitation may partially stem from the
model’s learning of its own positional encoding with the use
of causal masking, as demonstrated in (Haviv et al., 2022).
This limitation poses a challenge as our goal is to enable
access to long-range tokens during inference at distances
that were not observed during training. We discuss solutions
in Section 2.2.1.

B Grouped Softmax Example

2 2 2 5 5 5

0 1 2 3 4 5

1 1 1 1 1 1

0.5 0.5 0.33 0.5 0.5 0.33

2 2 8 3 3 8

6 7 8

8 8 8

8 8 -1

1 mask mask

0.33 0 ign

0.167 0.167 0 0.167 0.167 0 0.33 0 0

Figure 4. Example illustration of applying the method used for
applying attention through landmark tokens. In the above example,
a causal mask is applied as well. Tokens at indices 2, 5, and 8 are
landmarks in the example as can be seen by checking the condition
pi = i. The example is based on the assumption that the dot
product of the query vector of the token at index 6 and other key
vectors is an all-one vector. It can be seen that when computing
the attention for this token, the landmark at position 8 is ignored
while the other two landmark token, act as gate for attending to
tokens in their block. The attention weight to landmark tokens is
distributed among normal token in their block. Therefore, the final
attention weight to the landmark tokens themselves is always zero.

C Additional Experiments

We also compare our method with Transformer-XL (Dai
et al., 2019) on two language modeling benchmarks which
are usually used for comparing long context performance
and show comparable results.

C.1 Dataset Description

arXiv Math We use the cleaned arXiv math subset of
proof-pile 2 dataset. The dataset contains all the TEX files
for submissions under math category in arXiv. Files with
encodings other than utf-8/16/32 or latin1 were re-
moved. Additionally, the dataset curation includes certain
heuristic to only keep well-structured papers. An example
is removing files that do not contain any chapter, sections,
or subsections. The final training dataset contains around
5.6B tokens.

PG-19 PG-19 is a large dataset (3.7B tokens in the training
dataset) of English books that were published before 1919
and were retrieved from the Project Gutenberg archive. This
dataset is widely used for evaluating model capabilities in
utilizing long-range token interactions (Wu et al., 2022; Sun
et al., 2021).

C.2 Language Modeling

We first evaluate the efficacy of retrieving earlier blocks on
two language modeling tasks which can be expected to have
long-range token interactions: English language books (PG-
19) (Rae et al., 2020) (3.7B tokens), and math papers from
arXiv (5.6B tokens). We provide additional details about
the datasets in Appendix C.1. Our results show that models
trained with landmark tokens can retrieve relevant blocks,
obtaining comparable perplexity as a Transformer-XL while
reducing FLOPs. In contrast with Transformer-XL, using
our method, the information retrieval is interpretable. Par-
ticularly, it is possible to understand which parts of the text
was recovered to generate a certain answer, which can for
example be useful to remove inaccurate information. Our
results also demonstrate that using the inference mechanism
described in Section 2.2, our models can be used at much
longer context than the one used for training.

Model & Training. We use a GPT-2 (Radford et al.,
2019)-like architecture: a 12-layer decoder-only transformer
with 8 heads in each layer, each with dimension 128 (embed-
ding dimension 1024), and hidden FFN size of 4096. We
trained our model using AdamW (Loshchilov and Hutter,
2019) with β1 = 0.9 and β2 = 0.95. We applied weight
decay with factor 0.001. We used base learning rate 0.002
for all our experiments with a warmup stage that was 2%
of the whole training and applied a cosine scheduler with
minimum (final) learning rate being 0.0004. We used GPT-
2’s (Radford et al., 2019) tokenizer. When using landmark
tokens, the tokens were added to the dataset and stored as
part of the train dataset, leaving the batching mechanism
unchanged. We used gradient accumulation as well as data-
parallel training across four nodes to maintain an effective

2https://github.com/zhangir-azerbayev/proof-pile/

10

Landmark Attention

Table 1. Performance of different training and inference settings
in terms of language modeling perplexity. The column XL cache
shows the size of the XL cache available both during training
and inference which was only used when training Transformer-
XL(Dai et al., 2019). When using landmarks, the column "
Blocks" shows the maximum number of blocks stored in memory.
Each block contains ℓblock =50 normal tokens and one landmark
token. Due to computation limitations we only report results for
Transformer-XL on PG-19 as this method takes longer to train in
our implementation.

Eval. Length ℓlocal XL cache Blocks k Attention Size PG19 arXiv

512
512 None None - 512 16.12 4.01 Baseline360 None None - 360 16.76 4.31

250 None 10 2 360 16.23 4.01 Ours

2048

256 256 None - 512 14.72 - (Dai et al., 2019)

250 None 40 2 360 15.14 3.43

Ours350 None 40 2 460 15.07 3.41
300 None 40 3 460 14.97 3.36
250 None 20 4 460 15.02 3.37
250 None 40 4 460 14.92 3.35

4096

256 256 None - 512 14.55 - (Dai et al., 2019)

250 None 40 4 460 14.79 3.19
Ours250 None 80 2 370 15.00 3.29

250 None 80 4 470 14.72 3.18

total batch size of 128. We used mixed-precision training
with bfloat16 over at most 4 Nvidia A100 GPUs. For our
method, we train the model on each dataset for 240K steps
with context length ℓseq = 512. We train Transformer-XL
with a window size of 256 (i.e. effective context size 512)
over segments of length 2048. We train Transformer-XL to
observe the same number of tokens during training as our
method which translates to performing 60K steps.

Results. To evaluate our model’s performance with
different context lengths, we divide the validation data into
equally sized segments, referred to as evaluation lengths.
Each segment is separately inputted into our model, which
is further divided into chunks using the method described
in Section 2.2. The chunk size, denoted as ℓlocal, represents
the local context accessible without any memory. Table 1
presents the perplexity of the trained models under various
inference settings. Notably, by using a local context length
of 250 and retrieving the top k=2 most relevant blocks, we
achieve a comparable performance with a context length of
512. This corresponds to attending to 360 tokens, including
250 tokens from the local context, 10 landmark tokens, and
100 tokens from the retrieved blocks. The effectiveness
of using landmark tokens with retrieval becomes even
more evident when comparing it to standard inference with
an attention length of 360. Our results demonstrate that
intelligently recovering relevant blocks enables attending to
a significantly smaller number of tokens while maintaining
performance.

Furthermore, our results highlight that landmark tokens en-
able the model to operate with larger context lengths than
those encountered during training. The improvement in per-
plexity clearly indicates that the retrieved blocks contribute
to the model’s performance, making the results compara-

Table 2. Performance on PG19 dataset for different levels of re-
trieval flexibility. The blocks column shows the theoretical total
number of blocks that can be accessed from the memory when
feeding the input in windows of length 250 to the model.

Per Head Per Token Eval. Length k Blocks Perplexity

✓ ✓
2048 2 250 · 8 · 2 15.14
2048 4 250 · 8 · 4 14.92
4096 4 250 · 8 · 4 14.72

✓ ✗
2048 2 8 · 2 15.48
2048 4 8 · 4 15.10
4096 4 8 · 4 14.95

✗ ✓
2048 2 250 · 2 15.44
2048 4 250 · 4 15.04
4096 4 250 · 4 14.89

ble to a Transformer-XL trained with segments of length
2048. However, unlike Transformer-XL, which can only
leverage past information through recurrence, our method
allows the model to attend to any token from the past, facil-
itating both the retention of exact fine-grained details and
the interpretability of information utilization mechanisms.

Finally, the number of retrieved blocks and the number of
blocks stored in memory can be adjusted during inference.
While reducing the number of retrieved blocks k adversely
affects performance, our results demonstrate that the model
still outperforms the baseline even with only 2 retrieved
blocks at context lengths of 2048 and 4096. Notably, when
keeping only the last 40 blocks in memory, the model per-
forms better at an evaluation length of 4096 compared to
2048. This suggests that the model is also learning to utilize
recurrent mechanisms similar to those in Transformer-XL.

Granularity of Cache Block Retrieval. Block retrieval
can be performed on different levels of granularity. At
the most granular level, the set of retrieved blocks can be
different for each head and each token. This setting is the
same as the model experiences during training. However, it
is possible to further limit this granularity at inference, for
increased system throughput. In this section we evaluate
the effect of maintaining the same set of retrieved blocks
across tokens or across heads. The results are presented
in Table 2 which also shows the total number of retrieved
block, with the same block retrieved by different token or
head counted multiple times. While reducing the flexibility
has a noticeable adverse effect on performance, the model
still improves over the baseline. In particular, we note that
it is possible to retrieve the same set of blocks for all tokens
(which varies across heads) while only suffering 0.23 points
in perplexity. To provide further insights into the expected
improvement in speed gained from using a less flexible
selection scheme, we further discuss the distribution of the
retrieved blocks in Appendix D.

D Number of Unique Retrieved Blocks

We feed the validation set of PG19 in segments of at length
2048 (in chunks of 250 tokens). During this process, we

11

Landmark Attention

retrieved the top k = 4 blocks from the cache and kept track
of the number of unique blocks retrieved in the penultimate
chunk. Note that we count the same block retrieved by two
different tokens only once. To ensure consistent statistics,
we utilize the penultimate chunk instead of the last one,
as the last chunk may have a lower number of tokens that
could disrupt the analysis. We record this number separately
for each batch element and each layer and plot the distri-
bution at different retrieval flexibility levels in Figure 5. In
the penultimate chunk, the cache contained 35 blocks. As
depicted in the figure, at the most flexible level, it can be
observed that in many cases, all the blocks are accessed
at least once at each layer, as indicated by the spike in the
last bin. Interestingly, the additional spike in the flexible
retrieval corresponds to a very low number of blocks being
retrieved and is attributed to the retrieval pattern in the initial
layer. This finding aligns with previous research suggesting
a locality of attention in the earlier layers (Sukhbaatar et al.,
2019).

Moreover, the results demonstrate a significant decrease in
the number of unique retrieved blocks when only allowing
the set of retrieved blocks to vary across heads. Although
there are 8 heads, each retrieving 4 blocks from the cache,
theoretically allowing access to 32 different blocks, we typi-
cally observe the number of unique blocks to be below 10.
While this reduction does come at the cost of perplexity (as
observed in Table 2), it can significantly improve perfor-
mance by facilitating offloading to slower devices through
a reduction in the required bandwidth for loading retrieved
blocks from the cache. It is worth noting that one approach
to mitigate the negative impact of reduced flexibility on per-
plexity is to increase the number of retrieved blocks. This
can be observed by comparing the results between retriev-
ing the top k = 2 blocks at the highest level of flexibility
and retrieving the top k = 4 blocks with reduced flexibility,
as shown in Table 2. By retrieving more blocks, we can
partially compensate for the reduced flexibility and its effect
on perplexity.

Finally, when allowing the set of retrieved blocks to vary
across tokens but not heads, it is still possible to observe im-
provement in the number of unique retrieved blocks which
can reduce the bandwidth needed to load blocks from the
cache. At the same time, better perplexities can be achieved
in this setting.

E Context Miss Token

In this section, we demonstrate how to create additional
hierarchy in the landmark structure by simply changing the
grouping. In particular, we use a new grouping scheme to
train a new special token, called context miss token (CMT).
CMT is always placed at the beginning of the input (at the
special position −1) and is used to signal the need to retrieve

5 10 15 20 25 30 35
of Different Retrieved Blocks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

De
ns

ity

Token & Head
Per Head
Per Token

Figure 5. The distribution of the number of unique retrieved blocks
by the 255 tokens (including the landmark tokens) in the penulti-
mate chunk when evaluating over 2048 token inputs from PG19.

landmarked blocks from the memory. To train this token, we
change the grouping scheme so that attention to some of the
blocks is regulated by CMT, similar to how landmark tokens
act as gateways to the tokens in their respective blocks. In
particular, let us denote LCMT as the set of landmark tokens
that are controlled by CMT. Then, using the same notation
as in Section 2.1, we use the following grouping during
training (For brevity, in the below formulation we assume
that the negative of all preceding conditions hold for each
case):

Gi,j :=



pi j = −1
▷placing CMT in the i-th
token’s group.

pj pj ̸= j
▷placing normal tokens
in their own blocks.

−1 pi = j
▷ignoring current
block’s landmark token.

pi j /∈ LCMT
▷placing free landmarks
in the i-th token’s group.

−2 j ∈ LCMT

▷placing CMT-
controlled landmarks in a
separate group.

.

Using the above grouping the attention weights can be cal-
culated as:

Att(Q,K)i,j :=


0 pj = j ∨ j = −1

Si,j Gi,j = Gi,i

Si,j · Si,pj
j /∈ LCMT

Si,j · Si,pj
· Si,−1 j ∈ LCMT

.

To build intuition, we note that using an empty LCMT, almost
recovers the original formulation (with the exception of
the existence of CMT token which can absorb part of the

12

Landmark Attention

attention score). Note that assuming LCMT is not empty the
above formulation ensures that the total sum of attention
weights is equal to one. During training, we suggest to
choose LCMT randomly by selecting each landmark token
with probability PCMT = 0.5.

Intuitively, the above formulation should teach the network
to attend to the CMT token whenever it does not have
enough information within the free landmark tokens (land-
mark tokens that are not controlled by CMT). Furthermore,
we note that since CMT is the first token, it can not attend to
any token. As such, its representation in each layer does not
depend on the input. As such, the token acts as a beacon for
signaling the context lacks enough information. That is why
we draw a parallel to the notion of a cache miss, naming
it a context miss token. We note that CMT can be used to
create different levels of landmark block storage, going to a
lower (more granular) level whenever it is activated at each
level, similar to a cache miss signal. We leave a thorough
investigation of such designs to future work.

To evaluate our method, we follow the configuration used
in Section C.2 and train a model with CMT on PG19. At
inference we set LCMT to be the set of landmarks that are in
the memory so the in-context landmarks are not controlled
by the CMT. Using this setting, the CMT can be used to
check whether a retrieval is necessary or not. For simplicity,
in our implementation we always perform the retrieval but
set Si,−1 to 0 if it is below a cutoff threshold. This exactly
emulates not performing the retrieval at all. We report the
perplexity on PG19 with different cutoff thresholds and
the ratio of CMT scores below the cutoff threshold that
were subsequently dropped in Table 3. Our results show
that it is possible to use CMT to significantly reduce the
number of retrieval calls while still utilizing the memory. In
particular, around 50% of the retrievals can be dropped with
minor effect on perplexity. Note that the difference observed
between training without CMT (baseline) and training with
CMT (no cutoff) is reasonable since the model is learning
a harder task. We conjecture that this difference can be
alleviated by simply training the model longer.

F Positional Augmentation

In our main method, we use a special position mapping
scheme (See Section 2.2.1), called Stingy mapping. The
need for Stingy mapping is due to the model’s inability to
extrapolate to positions that were not observed during train-
ing (Sun et al., 2022). Existing methods allow the model to
handle longer inputs by manually dampening or completely
limiting attention to far-away tokens (Press et al., 2022; Sun
et al., 2022). These techniques are not applicable to our
settings since one of our main goals is to allow attention to
any token, including those that are very far. While develop-
ment of a positional encoding scheme which can extrapolate

Table 3. Performance on PG19 dataset with 2048 evaluation length
and k = 4 for different CMT cutoff thresholds. When the Grouped-
Softmax for CMT is below the cutoff threshold, it is set to zero to
emulate not performing a retrieval. The drop rate column shows
the ratio of CMT scores below the cutoff threshold. Baseline refers
to the model with landmarks but without CMT. The models are
trained for 60K steps.

Cutoff Perplexity Drop Rate

Baseline 16.28 0%
0.0 16.38 0%
0.1 16.38 23%
0.3 16.43 57%
0.5 16.86 84%
1.0 19.49 100%

is outside the scope of this work, we propose a possible
solution and provide results of an early investigation. We
leave a more thorough assessment and development of such
schemes for future work.

Data augmentation has been used in various settings to al-
low the model to generalize to additional settings such as
reflections of the same image (Krizhevsky et al., 2012). We
propose to apply augmentation on positional information
in Transformers to allow them to extrapolate to longer con-
texts. In the standard positional encoding, the positions
are increased by one at each token, leading to the tokens
being assigned positions 1 to ℓseq where T is the length of
the input. In particular, instead of assigning positions from
1 to T , where T is the length of the input, we propose to
increase the positions of all subsequent tokens by a random
integer between 1 and pjump after each landmark token. We
refer to these increases as making positional jumps. When
pjump = 1, no augmentation is applied and the standard
positions are recovered.

To evaluate our proposal, we train the same model that we
used in Section C.2 on PG19 with pjump = 100. Since we
use a context length of 512 for training, each input can has
between 10 and 11 landmark tokens. Theoretically, this
should allow the model to extrapolate to context lengths
as long as 1100 + 512 = 1612. We plot the performance
of the model on different context lengths as well as the
performance of the model with standard positional encoding
(i.e. pjump = 1) after 60K steps in Figure 6. Note that we do
not use a cache in this section and feed the whole input at
once.

We can see that using the augmentation, the model becomes
capable of utilizing longer contexts. This is evident by
the fact that we observe reduction in perplexity as we in-
crease context lengths until 1400 tokens which is close to
the theoretical estimate of model’s extrapolation capacity. In
contrast, the decreasing trend stops for the standard model

13

Landmark Attention

500 1000 1500 2000 2500 3000 3500 4000
Prompt Length (Tokens)

20

25

30

35

40

Pe
rp

le
xi

ty

Standard Pos.
ℓjump = 100

Figure 6. Comparison of perplexity on PG19 for different context
lengths. The evaluation does not use the landmark cache and
feeds the whole input in a single iteration to the model. Still, the
landmark tokens are inserted every 50 tokens. The context length
does not include the additionally inserted landmark tokens.

before reaching 1024 tokens. We can also observe that when
evaluating at training context lengths, i.e. 512 tokens, the
performance when making positional jumps is lower than
standard training. However, this can be expected and justi-
fied since the model is learning a harder task and therefore
may require additional steps to reach the same performance.

G Masked Language Modeling

In this work, we focus on next-word prediction tasks. In
this section, we briefly discuss how to adapt our scheme
for masked language modeling. Our discussion here is
conceptual, and experimental verification of our proposal
is left for future work. We note that the scheme described
in Section 2.1 can be used to train a model with masked
language modeling. However, certain changes need to be
made to the inference method. Specifically, the input cannot
be given to the model sequentially from left to right because
each token should be able to access the subsequent tokens
as well. Thus, we propose processing the entire input layer
by layer. In each layer, the input is broken into chunks,
and each chunk is processed separately, with each token
retrieving the top-k landmarked blocks from other chunks.

H Additional Evaluation on Fine-Tuned
LLaMA

To optimize the inference process using LLaMA with con-
texts exceeding 32K tokens, we encountered a bottleneck
with our naive implementation due to excessive memory
usage in the cache. Previous research has proposed various

techniques to reduce the size of the KV cache (Sheng et al.,
2023; Aminabadi et al., 2022; Pope et al., 2022), which
can be directly applied to address this bottleneck. However,
to minimize implementation efforts, we adopted a simpler
approach by offloading the cache to the CPU and loading
the retrieved blocks back at each step, while keeping all
landmarks in GPU memory.

Although the aforementioned technique works well, it intro-
duces significant CPU-GPU traffic, resulting in slow infer-
ence. To mitigate this issue, we limit the number of retrieved
blocks by reducing retrieval flexibility, allowing the set of
retrieved blocks to vary across heads but not across tokens.
We use the same reduction mechanism as in Section C.2.
Specifically, we calculate the maximum score for each block
across all tokens and select the top k = 5 blocks for retrieval.
Prior to selecting the maximum, softmax is applied to ensure
all scores are on the same scale.

Using the above method, we evaluated the fine-tuned
LLaMA with a context length of 32070 tokens (the exact
number of tokens may vary slightly due to random gener-
ation, but the difference is less than 10 tokens). Across 50
randomly generated prompts, we achieved an encouraging
accuracy of 98% in retrieving the pass key. This clearly
demonstrates the model’s capability to effectively operate
at context lengths comparable to those supported by GPT-4
(OpenAI, 2023).

14

