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Abstract

We study the problem of post-processing a supervised machine-learned regressor1

to maximize fair binary classification at all decision thresholds. By decreasing2

the statistical distance between each group’s score distributions, we show that3

we can increase fair performance across all thresholds at once, and that we can4

do so without a large decrease in accuracy. To this end, we introduce a formal5

measure of Distributional Parity, which captures the degree of similarity in the6

distributions of classifications for different protected groups. Our main result is to7

put forward a novel post-processing algorithm based on optimal transport, which8

provably maximizes Distributional Parity, thereby attaining common notions of9

group fairness like Equalized Odds or Equal Opportunity at all thresholds. We10

demonstrate on two fairness benchmarks that our technique works well empirically11

, while also outperforming and generalizing similar techniques from related work.12

1 Introduction13

A common approach to fair machine learning is to train a classifier with a chosen decision threshold14

in order to attain a certain degree of accuracy, and then to post-process the classifier to correct for15

unfairness according to a chosen fairness definition [4, 12, 20]. Despite the popularity of this approach,16

it suffers from two major limitations. First, it is well-known that the specific choice of decision17

threshold can influence both fairness and accuracy in practice [2] producing an undesirable trade-off18

between the two objectives. Second, when deploying a classifier in the real world, practitioners19

typically need to tinker with the threshold as they evaluate whether a model meets their domain-20

specific needs [14, 5]. One strategy to address these limitations, to is to develop a procedure21

that produces regressors that guarantee a selected fairness notion at all possible thresholds, while22

simultaneously preserving accuracy. If a regressor is fair at all thresholds, then a practitioner can23

freely perform application-specific threshold tuning without ever needing to retrain.24

Some prior work has investigated this strategy, by using optimal-transport methods to achieve a25

single, often trivially satisfied, fairness notion – Demographic Parity – at all thresholds [13, 17, 6].26

However, [12] and related impossibility results [15, 5] demonstrate that attaining fairness only at27

Demographic Parity does not capture the nuances in unfairness arising from examining true positive28

rates, false positive rates, and combinations thereof [2]. We therefore ask:Can we train a regressor29

once and obtain fair binary classifiers at all thresholds for more flexible group fairness notions?30

Our Work. Our key insight is to observe that parity in the distributions of a regressor’s output for31

each sensitive group, prior to the application of a threshold, can be harnessed to attain fairness at all32

thresholds simultaneously. This insight yields the following contributions: (1) We introduce a metric33

called Distributional Parity (Definition 3.1) based on the Wasserstein-1 Distance, which enables34

reasoning about fairness across all thresholds for a wide class of metrics. (2) We employ a technique35
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called Geometric Repair [10], which leverages an important connection between Wasserstein-236

barycenters to post-process a regressor under a Distributional Parity constraint, attaining all-threshold37

fairness. (3) We prove that that Distributional Parity is convex on the set of models produced38

by Geometric Repair, thereby enabling efficient computation of our proposed post processing.39

Additionally, we show that the models produced by geometric repair are Pareto optimal in the multi-40

objective optimization of accuracy (via an ℓ1-type risk) and Distributional Parity. (4) Lastly, we41

synthesize these insights into a novel post-processing algorithm for a broad class of fairness metrics;42

our algorithm subsumes earlier work on all-threshold Demographic Parity, and we demonstrate its43

efficacy in experiments on common benchmarks.44

2 Background45

Let X ⊆ Rd be a feature space and G = {a, b} be a set of binary protected attributes, for which46

a is the majority group and b is the minority group. We denote the label space as Y = {0, 1},47

where 0 denotes the negative class and 1 the positive class. We assume elements in X , G, and Y48

are are drawn from some underlying distribution, with corresponding random variables X , G, and49

Y . The proportion of each group is represented ρg = Pr[G = g]. Let F be a set of measureable50

group-aware regressors (from which binary classifiers are derived). Each regressor f ∈ F has51

signature f : X ×G→ [0, 1] and outputs a score s ∈ [0, 1] where s = Pr[Y = 1|X = x,G = g].52

For a fixed regressor f ∈ F and a decision threshold τ ∈ [0, 1], we can derive a binary classifier53

from f by computing 1{f ≥ τ} for any τ ∈ [0, 1]. For a group g ∈ G, the group-conditional54

score distribution is the distribution of scores produced by a regressor on that group. We denote this55

distribution f(X,G)|G = g.56

For p ≥ 1, we define Pp([0, 1]) be the space of probability measures on [0, 1] with finite p-order-57

moments. We use µg ∈ Pp([0, 1]) to denote the probability measure associated with each group’s58

score distribution. We also make the following (standard) assumption on these measures.59

Assumption 2.1. Any measure µ ∈ Pp([0, 1]) with finite p-order moments is non-atomic and60

absolutely continuous with respect to the Lebesgue measure.61

This assumption provides two guarantees. First, it ensures the cumulative distribution function (CDF)62

of µg , denoted Fµg
(τ) = µg([0, τ)), has a well defined inverse F−1

µg
. Second, it ensures that certain63

optimal transport operations, upon which our contributions crucially rely, are well-defined.64

2.1 Wasserstein Distance and Wasserstein Barycenters65

Before introducing our solution, we present some necessary background on Wasserstein distance66

and Wasserstein barycenters.67

Wasserstein Distance. Informally, the Wasserstein distance captures the difference between68

probability measures by measuring the cost of transforming one probability measure into the other.69

In the special case when distributions are univariate, the Wasserstein distance has a nice closed form.70

Definition 2.1 (Wasserstein Distance). For two measures µ1, µ2 ∈ Pp([0, 1])71

Wp
p (µ1, µ2) =

∫
[0,1]

|F−1
µ1

(q)− F−1
µ2

(q)|pdq. (1)

72
We can also define the Wasserstein distance using transport plans; this is commonly referred73

to as Monge’s Formulation. A transport plan is a function T ∈ T where every function in T74

satisfies standard pushforward constraints, i.e, T#µ1 = µ2 such that µ2(B) = µ1(T
−1(B)) for all75

measurable B ⊆ [0, 1].76

Definition 2.2 (Wasserstein Distance [Monge]).

Wp
p (µ1, µ2) = inf

T∈T

∫
[0,1]

|q − T (q)|pdµ1(q). (2)

77 In our specific case where Assumption 2.1 is satisfied, we know that these transport plans which78

solve Monge’s formulation exist and we can define them in closed form.79

Remark 2.1. The transport plan from µ1 → µ2 which minimizes Eq. (2) is defined T 2
1 (x) =80

F−1
µ2

(Fµ1(x)) for all p ≥ 1 [21, Remark 2.6]81
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Wasserstein Barycenter. The Wasserstein barycenter is a weighted composition of two distribu-82

tions, much like a weighted average or midpoint in the Euclidean sense; it provides a principled way83

to compose two measures.84

Definition 2.3 (Wasserstein Barycenter). For two measures µ1, µ2 ∈ Pp([0, 1]) their α-weighted85

Wasserstein barycenter is denoted µα and is computed86

µα ← argmin
ν∈Pp([0,1])

(1− α)Wp
p (µ1, ν) + αWp

p (µ2, ν), (3)

and in the special case when α = ρb we write µ∗.87

To complete the weighted-average analogy, α behaves like a tunable knob: As α → 0 then µα88

will appear more like µ1, and as α→ 1 the more µα will appear like µ2. As a consequence of this89

definition and Remark 2.1, we can express the transport plan to a barycenter in closed form, as well:90

Corollary 2.1. Let µ∗ be the ρb-weighted barycenter of µa, µb then the transport plan from µa → µ∗91

(wlog) is computed T ∗
a (ω) = (ρaF

−1
µa

+ ρbF
−1
µb

) ◦ Fµa(ω).92

A Note on Our Use ofW1 andW2. In this work, we make use of bothW1 andW2. Our use of93

W1 is restricted to Distributional Parity computations (see Section 3). This choice is motivated by94

the fact when γ = UPR, the Wasserstein-1 distance recovers UPR. We useW2 to compute Wasserstein95

barycenters. Given thatW2 is known to be strictly convex, and provided that some µg is non-atomic,96

for p = 2 the barycenter that minimizes Eq. 2.3 is unique [1, Proposition 3.5].97

3 A Distributional View of Fairness98

Our goal is to post-process a regressor such that all binary classifiers derived from thresholding this99

regressor are group fair, i.e., attain fairness in the regressor at every threshold. To attain fairness at100

every threshold, we look to create parity in outcomes at the level of the regressor – before thresholds101

are applied – rather than at the level of the derived predictor. The intuition is simple: if a regressor102

outputs similar scores for two groups, then no matter what threshold is selected, the output derived103

predictor will be fair. Specifically, we show that fairness can be attained at all thresholds by enforcing104

parity in the distribution of scores output by a regressor on some groups.105

At the core of our new distributional definition of fairness are familiar metrics, namely: Positive Rate106

(PR), True Positive Rate (TPR), and False Positive Rate (FPR). From these metrics, we can obtain107

popular fairness definitions, such as Demographic Parity (PR Parity) [4], Equal Opportunity (TPR108

Parity), and Equalized Odds (TPR and FPR Parity) [12].109

Let the set of these metrics be Γ = {PR,TPR,FPR} and any arbitrary metric be γ ∈ Γ. We write110

γg(τ ; f) to denote the rate γ on group g at threshold τ for a score distribution produced by f . When111

obvious from context, we omit f from this γ notation, writing only γg(τ). Additionally, as we show112

via Corollary 5.1, we can combine these metrics additively, e.g., producing Equalized Odds which113

combines TPR and FPR.114

At a single threshold, (un)fairness is commonly measured by taking the difference in some metric115

across groups — e.g., for the case of Demographic Parity where γ = PR, we can measure fairness by116

simply computing |PRa(τ)−PRb(τ)|.A natural way to leverage these single-threshold measurements117

into an all-threshold measurement is to take their average across every possible τ . We formalize118

this idea in the following definition of Distributional Parity.119

Definition 3.1 (Distributional parity). Let U([0, 1]) be the uniform distribution on [0, 1]. For a fairness120

metric γ ∈ Γ, a regressor f satisfies Distributional Parity denoted Uγ(f) ≜ Eτ∼U([0,1]) |γa(τ) −121

γb(τ)|, when Uγ(f) = 0.122

A useful property of this definition is that when γ = PR, this definition is closely related to the123

Wasserstein Distance, a distance which is frequently used to measure distance between probability124

distributions.125

Proposition 3.1. For µa, µb ∈ P2([0, 1]) which are the groupwise score distributions of f , then126

W2(µa, µb) = 0 if and only if UPR(f) = 0.127

It is from this property that distributional parity is named. At its core, distributional parity is a way to128

quantify differences between outcome distributions – specifically the groupwise score distributions of129
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f . This relationship between distributional parity – an all threshold fairness metric – and the Wasser-130

stein distance – a measure of statistical distance – anchors our proposed shift in focus from thresholds131

to distributions. Next, we introduce our proposed post-processing objective for computing fair regres-132

sors under a distributional parity constraint. We will also begin to outline how we efficiently compute133

this post-processing, and how our solution elegantly addresses fairness-accuracy trade-off concerns.134

3.1 Distributionally Fair Post-Processing135

Our goal is to post-process a learned regressor f , such that it becomes (distributionally) fair while136

remaining accurate. The risk of some other regressor f̂ (with respect to f ) is computed137

R(f̂) = ∥f̂ − f∥1 = E |f̂(X,G)− f(X,G)|
Using this definition of risk, a simple fair post-processing objective can be written as follows,138

arg inf
f̂∈F
R(f̂) s.t. Uγ(f̂) ≤ c, where c is some small constant. (4)

139
The special case of PR. In the special case where γ = PR and c = 0, the solution to Eq. 4 can140

be computed using a solution based on optimal transport [13]. In this solution, a learned regressor141

f is transformed into a new regressor we call f∗ which provably minimizes risk (with respect to f )142

while attaining distributional parity for γ = PR, i.e, demographic parity at every threshold. This143

all threshold guarantee is attained with minimal impact to risk. It was shown in [17, 6] that f∗144

is the regressor which increases risk the least amongst all regressors which satisfy all threshold145

demographic parity constraints.146

f∗ ← argminR(·) s.t. UPR(f
∗) = 0. (5)

This solution is strict – it enforces exact demographic parity, which may not always be desired [7].147

We can address this concern by considering a relaxation of Eq. 4 which uses a parameter λ to balance148

the a trade-off between fairness and accuracy. Specifically, for every λ ∈ [0, 1] there is some fλ ∈ F149

which attains λ-increase in the fairness, in exchange for a λ-reduction in risk. We prove the existence150

of fλ which satisfies this property in the following lemma .151

Lemma 3.1. Let f be some learned regressor. For all λ ∈ [0, 1] the set of optimally fair regressors152

for λ-relaxations of f with respect to risk and distributional parity for γ = PR are given by153

fλ ← argmin
f̂∈F

λR(f̂) s.t. UPR(f̂) = (1− λ)UPR(f) (6)

The functions fλ are Pareto-optimal: indeed, we show in Theorem 4.2 that all {fλ}λ∈[0,1] are Pareto154

optimal in the multi-objective minimization ofR and UPR. This means we can view these regressors155

as being optimally accuracy preserving, while also being fair. As a result, the above optimization156

(with γ = PR) can be rewritten simply as157

arg min
λ∈[0,1]

Uγ(fλ), (7)

replacing the risk minimization objective with an objective that enforces distributional parity, given158

the aforementioned accuracy-preserving properties of fλ.159

Extending to other fairness metrics. The above approach to achieving all-threshold fairness160

has two steps: firstly, a characterization of a solution that achieves ideal fairness, and then the161

construction of a space of functions fλ that allow for an optimal fairness-accuracy tradeoff. In order162

to generalize this to other fairness measures, we need version of both steps. The exact result for163

PR however relies heavily on optimal transport in a way that does not naturally generalize to other164

fairness measures γ ̸= PR.165

To address this, we provide two key insights. Firstly, that the fλ can be expressed explicitly using166

optimal transport ideas in terms of score distributions that are independent of the choice of fairness167

measure, and secondly, that the optimization described in equation (7) describes a convex function of168

λ independent of the choice of γ.169

This means that for any choice of γ, we can find the optimal value of λ to minimize Uγ(fλ). And we170

will show empirically that this choice yields an almost perfect minimization of distributional parity,171

thus achieving an all-threshold fairness result as desired.172
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4 Maximizing Distributional Parity with Geometric Repair173

We now introduce the method and main theorem that we use to compute distributionally fair post174

processing. The method, defined in Section 4.1 is called Geometric Repair [10, 7], and is how we175

efficiently compute solutions to the objective stated in Equation 7. Our main theoretical result is176

stated in Theorem 4.1. Subsequently, we show in subsection 4.2 thatwe can make use of an elegant177

transformation to an optimal transport problem in order to achieve approximate distributional parity178

for all γ.179

4.1 Defining Geometric Repair180

Geometric repair is a technique for constructing a regressor that interpolates between the output of181

some learned regressor f (assumed to be accurate), and the output of a certain fair function f∗. Note,182

f∗ must be specifically chosen in order to prove our results, but for ease of exposition, we defer183

formal definition of f∗ to the following subsection.184

Definition 4.1 (Geometric Repair). We call λ ∈ [0, 1] the repair parameter and define a geometrically185

repaired regressor fλ as fλ(x, g) ≜ (1− λ)f(x, g) + λf∗(x, g).186

Geometric repair enumerates a well structured set of regressors which achieve λ-relaxations of R and187

UPR as described in Section 3.188

Proposition 4.1. For any λ ∈ [0, 1], a repaired regressor fλ satisfies R(fλ) = λR(f∗) and189

UPR(fλ) = (1− λ)UPR(f).190

This is the set of regressors used to maximize distributional parity. The key to computing such a191

maximization lies in the following theorem, which shows that distributional parity is convex, on the192

set of repaired regressors. This convexity guarantee certifies our ability to locate the fλ, amongst the193

set of repaired regressors, which best minimizes Distributional Parity for any γ.194

Theorem 4.1. Fix γ ∈ Γ. Let f : X × G → [0, 1] be a regressor, and fλ be the geometrically195

repaired regressor for any λ ∈ [0, 1]. The map λ 7→ Uγ(fλ) is convex in λ.196

The proof of this theorem crucially depends on the connection between f∗ and Wasserstein barycen-197

ters. In the next section we, leverage this connection to analytically compute the distributions of fλ,198

which is a crucial piece needed in proving the convexity of Uγ(fλ).199

4.2 How f∗ Enables Geometric Repair200

Here, we formalize the earlier definition of f∗ from Section 4.2 and its connection between to201

Wasserstein barycenters in the context of geometric repair.202

Definition 4.2 (Fully Repaired Regressor). The regressor f∗ which satisfies distributional parity for203

γ = PR while minimizing risk (with respect to f ) is the computed204

f∗ ← argmin
f∈F
R(·) s.t. UPR(f) = 0. (8)

We call this regressor fully repaired in that fλ=1 is equivalent to f∗.205

The aforementioned property which relates f∗ toW2 barycenters is the the fairness constraint in Eq.206

(8). To make this clear, recall Proposition 3.1 which states that removing theW2 distance between207

distributions is sufficient to satisfy distributional parity for γ = PR. The tool we will use to remove208

this distance is, indeed, Wasserstein barycenters. Prior work [16, 6] show that mapping µa, µb onto209

their ρb-weighted barycenter distribution, which we denote µ∗, removes the Wasserstein distance210

between µa, µb under this mapping, thereby satisfying UPR(f
∗) = 0 and establishing that f∗ is211

distributed like µ∗.212

We can use this fact to rewrite the score distributions of each group under geometric repair. The213

following proposition formalizes this claim, by showing that the groupwise distributions of output214

by any fλ can be computed as barycenters of µg and µ∗.215

Proposition 4.2. Let λ ∈ [0, 1]. Let µg,λ be the λ-weighted barycenter between µg and µ∗, i.e.,216

µg,λ ← argmin
ν∈P2([0,1])

(1− λ)W2
2 (µg, ν) + λW2

2 (µ∗, ν), then µg,λ = Law(fλ(X,G)|G = g).

217
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µa µbµ∗µa,λ

ρa ρb

µb,λ

Figure 1: Let µa, µg be groupwise score distributions. We illustrate of the repaired score distributions
µg,λ under geometric repair, where µ∗ is the ρb-weighted barycenter.

This proposition shows us that the interpolation between f and f∗ as parametrized by λ in geometric218

repair is replicated at the distributional level, i.e., λ also controls the interpolation from µg,λ → µ∗;219

more importantly, the intermediate distributions of this interpolation have a special structure – they220

are barycenters. Note that under Assumption 2.1 and [1, Proposition 3.5], these µg,λ are unique221

and guaranteed to exist. For clarity, we visualize this interpolation (over distributions) in Figure 1.222

Our proof of Theorem 4.1 computes distributional parity as a function of the score distributions of fλ.223

With these established via Proposition 4.2, we are able to write a closed form expression for Uγ(fλ).224

Using this expression, the proof proceeds computationally, showing that the second derivative of225

Uγ(fλ) is non-negative to conclude convexity.226

4.3 The Optimality of Geometric Repair in Balancing Fairness and Accuracy227

Now, we will show that fλ is optimal in the fairness-accuracy trade-off with respect to γ = PR.228

Definition 4.3 (Pareto Optimality). For f, f ′ ∈ F we say f Pareto dominates f ′, denoted f ′ ≺ f , if229

one of the following hold:230

R(f) ≤ R(f ′) UPR(f) < UPR(f
′) (9)

R(f) < R(f ′) UPR(f) ≤ UPR(f
′) (10)

A regressor f is Pareto optimal if there is no other regressor f ′ that has improved risk without also231

having strictly more unfairness, or vice-versa.232

The proof of Pareto optimality of fλ follows from Proposition 4.1. The main idea of this result is233

the following: f∗ is the lowest risk classifier where UPR(·) = 0 meaning that it is Pareto optimal by234

construction. Since fλ is a λ-relaxation of f∗ with regards to both risk and unfairness, fλ preserves235

the Pareto optimality of f∗.236

Theorem 4.2. For all λ ∈ [0, 1], the repaired regressor fλ is pareto optimal in the multi-objective237

minimization ofR(·) and UPR(·) .238

5 Post-Processing Algorithms to Maximize Distributional Parity239

Now that we have supported why we can use geometric repair to maximize distributional parity, we pro-240

vide some practical algorithms showing how to do so. First, we show how to estimate fλ from samples.241

Plug-in Estimator for fλ. Indeed, computation of f∗, and therefore µ∗, requires exact knowledge242

of µa, µb. In practice we only have sample access to both score distributions, and so we must243

approximate these distributions, and consequently their barycenter and fλ. We show a plug-in244

estimator w/ the following convergence guarantee (Theorem 5.1) to approximate fλ in Algorithm 1.245

Our approach to approximating fλ only requires a input regressor f and access to some unlabeled246

dataset D = (x1, g1) . . . (xn, xg). Let ng denote the number of samples from a group g.247

Theorem 5.1. As ng → ∞ the empirical distribution of f̂λ(x, g) converges to µg,λ inW2 almost248

surely.249

Post-Processing to Maximize Distributional Parity. To actually compute the optimal λ∗ for some250

metric, we propose the post-processing routine described in Algorithm 2. The algorithm consists251

of two main steps: approximating f̂λ in Step 1, and finding the optimal λ∗ in Step 2. Note that our252

objective Ûγ(fλ) is parametrized by the scalar λ, and so we find its minima using a univariate solver;253

we found success using Brent’s Method [3]. By the convexity of Uγ(·) as proven in Theorem 4.1, we254

are guaranteed that the fλ∗ is optimal on the set of repaired regressors.255

Corollary 5.1. Since convex functions are closed under addition, Theorem 4.1 also applies to256

additive combinations of metrics, meaning that the objective in Step (2) of Alg 2 can be replaced by257

Uγ1
(fλ) + Uγ2

(fλ) + ....+ Uγm
(fλ).258
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Algorithm 1 An Estimator for fλ
Input: A regressor f , and an unlabeled dataset D = (x1, g1) . . . (xn, gn)

1. Let ng = 1
n

∑n
k=1 1gk=g . Use f to approximate the group-conditional distributions

µ̂g =
1

ng

∑
i=1

δf(xi,gi)1gi=g

2. Let ρ̂g =
ng

n and compute the empirical optimal transport plans (see Remark 2.1)

T̂ ∗
g (ω) = (ρ̂aF

−1
µ̂a

+ ρ̂bF
−1
µ̂b

) ◦ Fµ̂a(ω)

3. For any λ ∈ [0, 1], compute f̂λ where f̂λ(x, g) = (1− λ)f(x, g) + λT̂ ∗
g (f(x, g))

Algorithm 2 Post-Processing for Distributional Parity
Input: A metric γ ∈ Γ, learned regressor f , and labeled dataset E = (x1, g1, y1) . . . ...(xk, gk, yk)

1. Using Algorithm (1) to approximate fλ by computing T̂g such that for all λ ∈ [0, 1]

geometric repair is well defined, i.e., f̂λ(x, g) = (1− λ)f(x, g) + λT̂g(f(x, g))

2. Use Brent’s algorithm to find the optimal λ which minimizes λ∗ ← Brentλ∈[0,1]Ûγ(fλ)
where Û(fλ) is approximated for m randomly sampled (τ1....τm) ∼ U([0, 1]) via

Û(fλ) =
1

m

m∑
ℓ=1

|γa(τℓ; fλ)− γb(τℓ; fλ)|.

3. Output: fλ∗(x, g) such that Ûγ(fλ∗) is minimized (distributional parity is maximized)

6 Experiments259

In this section we present experiments that demonstrate the effectiveness of our proposed algorithms260

in Section 5. To that end, we provide two sets of results: 1) Figure 2 validates that Algorithm 2261

achieves almost-exact distributional parity for Demographic Parity, Equal Opportunity, and Equalized262

Odds; 2) Table 1 shows that Algorithm 2 outperforms related methods in maximizing Distributional263

parity while preserving accuracy.264

Datasets. We use two datasets: Adult Income-Sex from the the UCI repository [9], and Adult265

Income-Race from the datasets produced in [8]. For both datasets, the task is to predict whether (1)266

or not (0) an individual’s income exceeds $50,000.267

Model Training. To produce a model that we use in our experimentation, we implemented a268

Logistic Regression (LR) with ℓ2 regularization, and an Support Vector Machine (SVM) with an269

Radial Basis Function kernel. Both were implemented using using scikit-learn with its default model270

parameters and optimizers [18].271

Table 1: Comparison of Geometric Repair (GR) against included baselines (abbreviations described
under baselines). Results are averaged over ten trials, and the mean and standard deviation across all
trials are reported for each metric.

TPR Optimized EO Optimized
UTPR Worst case AUC UEO Worst case AUC

Income-Race
(LR)

GR 0.025 ± 0.013 0.068 ± 0.034 0.816 ± 0.004 0.021 ± 0.007 0.055 ± 0.02 0.816 ± 0.005
JIA 0.028 ± 0.007 0.129 ± 0.021 0.8 ± 0.005 0.049 ± 0.006 0.094 ± 0.014 0.8 ± 0.005
FEL 0.042 ± 0.039 0.106 ± 0.051 0.81 ± 0.015 0.103 ± 0.039 0.213 ± 0.081 0.811 ± 0.014
OG 0.219 ± 0.01 0.430 ± 0.024 0.834 ± 0.005 0.142 ± 0.007 0.299 ± 0.016 0.834 ± 0.005

Income-Sex
(SVM)

GR 0.014 ± 0.005 0.042 ± 0.015 0.882 ± 0.004 0.032 ± 0.006 0.079 ± 0.015 0.882 ± 0.004
JIA 0.052 ± 0.009 0.104 ± 0.013 0.878 ± 0.004 0.047 ± 0.006 0.110 ± 0.011 0.878 ± 0.004
FEL 0.014 ± 0.007 0.08 ± 0.015 0.769 ± 0.007 0.026 ± 0.006 0.081 ± 0.013 0.769 ± 0.007
OG 0.065 ± 0.01 0.114 ± 0.015 0.884 ± 0.003 0.035 ± 0.008 0.077 ± 0.013 0.884 ± 0.003
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(b) Unrepaired vs. Optimal Repair
Figure 2: Performing geometric repair for γ = PR (left), TPR(middle), EO (right) for Logistic
Regression trained on Adult Income-Race. The top row depicts the rates for unrepaired regressors
and the bottom row for the repaired regressor.

Metrics. We use the following measurements of model performance: (1) We approximate Distribu-272

tional parity Uγ(·) as per Step 2 of Algorithm 2 using m = 100 randomly sampled thresholds. We273

denote the Equalized Odds metric EO = FNR + FPR, i.e., the misclassification rate(2) We measure274

accuracy using the Area Under the Curve (AUC) given that AUC averages model performance275

across all thresholds similar to Uγ . (3) Worst Case refers to the worst disparity of the regressor at276

any threshold for the chosen γ, i.e., maxτ∈[0,1] |γa(τ)− γb(τ)|.277

Baselines. We use the following algorithms as baselines : (OG) The learned classifier with no278

additional processing. (JIA) Post-processing algorithm proposed by Jiang et al. [13] which processes279

the output of a regressor such that model output is independent of protected group (shown to be equal280

to satisfying UPR = 0, which is achieved by our method for λ = 1). (FEL) Pre-Processing of model281

inputs from Feldman et al. [10] which seeks to reduce disparate impact across all thresholds. The282

"amount" of pre-processing is parametrized by a λ similar to ours (just over inputs) – we search for283

the optimal λ for each metric we compare against. We abbreviate geometric repair with (GR).284

Results. In Table 1, as denoted by the bolded cells in the Uγ and Worst Case columns, our method285

outperforms almost all baselines on both the Adult Income-Sex and Adult Income-Race tasks286

datasets, for both TPR and EO. The one exception is for γ = EO on the Income-Sex task, however287

our method still attains a reduction in all-threshold disparity, and preserves significant accuracy.288

For the AUC column, we italicize the cell which has AUC closest to that of the original regressor;289

for both metrics and datasets, our method was superior to the baselines in this aspect. We show290

illustrate the effect of geometric repair at every threshold in Figure 2. For the For γ = PR (left) we291

show the full correction λ = 1. For γ = TPR (middle) we the computed optimal repair parameter292

λ∗ ≈ 0.73± 0.04, and for γ = EO (right) we computed λ∗ ≈ 0.75± 0.03.293

7 Discussion and Related Work294

In this work, we show that by interpolating between group-conditional score distributions we can295

achieve all-threshold fairness on fairness metrics like Equal Opportunity and Equalized Odds. To this296

end, we introduce Distributional parity to measures parity in a fairness metric at all thresholds, and297

provide a novel post-processing algorithm that 1) is theoretically-grounded by our convexity result,298

and 2) performs extremely well across benchmark datasets and tasks.299

A number of prior works have demonstrated how to achieve exact distributional parity in the special300

case when γ = PR. Our work is most closely related to [13] who accomplish this using the W1301

distance, in both in/post processing settings. [6, 17] report a similar post-processing result to ours,302

deriving an optimal fair predictor (also limited to γ = PR) in a regression setting and using W2303

barycenters. We build on these approaches by extending them to a broader class of fairness metrics304

and definitions. Our technique is based on the geometric repair algorithm which was as originally305

introduced by [10] as a way to navigate the fairness-accuracy trade-off. Geometric repair was also306

studied by [11]. In the post-processing setting, the effect of geometric repair on classifier accuracy307

and γ = PR fairness was studied in [7] – we extend these to all γ ∈ Γ by showing convexity on the308

set of regressors enumerated by geometric repair.309
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Journal of Statistics (1933-1960), 19(1/2):23–26, 1958.361

[23] C. Villani. Optimal transport: Old and new. 2008.362

10



A Additional Background on Optimal Transport363

In this section of the appendix, we present some additional background and theory from Optimal364

Transport. These results are necessary to prove some of the results in the main paper body.365

A.1 Wasserstein Geodesics366

One key property of Wasserstein Barycenters that we exploit in this work, which is not refereed to367

explicitly in the main paper body, is that Wasserstein Barycenters under Geometric Repair form a368

curve in the space of probability measures called a constant speed geodesic.369

Definition A.1 ([21], pg. 182). Let (X, d) be some metric space. A curve ω : [0, 1] → X is a370

constant speed geodesic between ω(0) and ω(1) if it satisfies371

d(ω(t), ω(s)) = |t− s|d(ω(0), ω(1)) ∀t, s ∈ [0, 1]

The following result from [21, Theorem 5.27] proves that a specific interpolation of an optimal372

transport plan forms a geodesic in the space of probability measures metricized by the Wasserstein373

Distance.1 We also remind the reader that in the following expression, # denotes the pushforward374

operator on measures and id denotes the identity function. 2375

Theorem A.1. Suppose that Ω is convex, take µ, ν ∈ Pp(Ω), and γ ∈ Γ(µ, ν) an optimal transport376

plan for the cost c(x, y) = |x − y|p w/ (p ≥ 1). Define πt : Ω × Ω → Ω through πt(x, y) =377

(1 − t)x + ty. Then the curve µt(πt)#γ is a constant speed geodesic connecting µ0 = µ to378

µ1 = ν. In the particular case where µ is absolutely continuous then this curve is obtained as379

((1− t)id+ tT )#µ380

For p = 2, this special form of the interpolation between measures given in the above theorem is381

actually the exact same interpolation that is carried out by Wasserstein Barycenters.3382

Proposition A.1 ([1]). Let µ, ν ∈ P2([0, 1]) satisfy Assumption 2.1 then α-weighted barycenters383

µα ← argmin
∈Pp([0,1])

(1− α)W2
2 (µ, ·) + αW2

2 (ν, ·),

can be equivalently computed ((1− t)id+ tT )#µ where T is the transport plan that solves transport384

from µ→ ν.385

This means, under our mild assumptions, that barycenters both (a) follow the special form in Theorem386

A.1 and (b) are constant speed geodesics. We use this fact to show that the distance between λ387

repaired measures µa,λ, µb,λ can be written as a 1− λ weighted fraction of the Wasserstein distance388

of the unrepaired measures µa, µb.389

Proposition A.2. Since µg,λ is a constant speed geodesic, the Wasserstein distance between repaired390

measures is proportional to the repair amount, i.e.,W1(µa,λ, µb,λ) = (1− λ)W1(µa, µb).391

Proof. Let µa, µb ∈ P2 and T b
a be the optimal transport plan from µa → µb. Suppose we parametrize392

the interpolation from µa to µb with a function w : [0, 1]→ P1([0, 1]) where w(α) = ((1− α)id+393

αT b
a)#µa. By Theorem A.1, this curve is a constant speed geodesic. Now, consider the geometric394

repair score distributions µa,λ and µb,λ. We see from Proposition A.2 that each distribution µg,λ is the395

result of the λ-weighted interpolation of µg to the barycenter µ∗. These barycenters can alternatively396

computed by interpolating from µa → µb, i.e.,397

µa,λ = ((1− λρb)id+ λρbT
b
a)#µa

µb,λ = (λρaid+ (1− λρa)T
b
a)#µa.

From this, a reparametrization of the above interpolation under geometric using w(·) yields,398

µa,λ = w(λρb) and µb,λ = w(1− λρa).

1We can metricize Pp with Wp under [23, Theorem 6.9]
2In this section, we use a sub-scripted µt to denote a measure that is the result of some interpolation when

clear from context; this subscript notation should not to be confused with the sub-scripts used on measures, e.g.
µ2, in other places in the paper.

3This result is stated in [1] as the conclusion of Section 4 (see eq. 4.10) and in Section 6.2 of the same work
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Then, the corollary follows from the definition of constant speed geodesics in Definition A.1, i.e.,399

W1(µa,λ, µb,λ) =W1(w(λρb), w(1− λρa)) (11)
= |λρb − (1− λρa)|W1(µa, µb) (12)
= |λ(ρa + ρb︸ ︷︷ ︸

=1 by Def

)− 1|W1(µa, µb) (13)

= (1− λ)W1(µa, µb) (14)

400

The last additional result we’ll need to aid our effort to prove Theorem 4.1, is the following Lemma.401

Please note this lemma differs from the above corollary due to the specific optimal transport problems402

being solved. In the above, we are consider a parametrization of µg,λ along the interpolation from403

µa → µb. In the below result we consider the interpolation of repaired distributions to their barycenter,404

i.e., µa,λ → µ∗.405

Lemma A.1. Let µa, µb ∈ P2([0, 1]) satisfy Assumption 2.1 and let µa,λ be the λ-barycenter of µa406

and µ∗, and let µb,λ be the λ-barycenter of µb and µ∗ then407

µa,λ = µb, 1−ρaλ
1−ρa

µb,λ = µa, 1−λ
ρa

+λ

Proof. Let µ∗ be the ρb barycenter of µa, µb. It is easy to show from their definitions that µa,λ1
=408

µλ1(1−ρa) and µb,λ2
= µ1−λ2ρa

(Figure 1 provides a nice illustration of this fact). To prove the409

Lemma, we let λ1(1 − ρa) = 1 − λ2ρa. Solving for λ1, yields the proposition, i.e., λ1 = 1−λ2ρa

ρb
410

and therefore µa,λ1 = µ
b,

1−ρaλ2
ρb

. Letting λ1 = λ2, such that both µa, µb are controlled by the same411

repair parameter yields the first equality. Solving for λ2 and making the same substitution (λ2 = λ1)412

yields the second equality.413

A.2 The Relationship Between Fair Risk Minimization and Barycenters414

In this subsection we give an additional result relating the lowest risk γ = PR regressor to the distance415

of that regressors groupwise score distributions, to their barycenter.416

Lemma A.2. Let FPR ⊂ F be a subset of regressors where FPR = {f ∈ F : UPR(f) = 0}. The417

minimum risk in FPR is defined418

min
f̂∈FPR

R(f̂) = min
ν∈P1([0,1])

∑
g∈g

pgW1(µg, ν)

Proof. Suppose h is the regressor which minimizes the l.h.s. and let µh = Law(h(X,G)). We can419

re-write420 ∑
g∈g

pgW1(µg, µh) =
∑
g∈g

pg min
T∈T h

g

∫
[0,1]

|x− T (x)|dµg

=
∑
g∈g

pg min
T∈T h

g

∫
X

|f(X, g)− T (f(X, g))|dµX|g

Let T ĥ
g = Fµĥ

◦ F−1
µg

be the optimal transport maps which minimize the above, and let ĥ(x, g) =421

Th
g (f(x, g)). We can continue422 ∑

g∈g

pg min
T∈T h

g

∫
X

|f(X, g)− ĥ(X, g))|dµX|g = E
g∼G

[
E
X
[|f(X, g)− ĥ(X, g)|]|G = g

]
= E

X,G

[
|f(X,G)− ĥ(X,G)|

]
.
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From the above equalities we’ve shown,423 ∑
g∈g

pgW1(µa, µh) = E
X,G

[
|f(X,G)− ĥ(X,G)|

]
. (15)

and by the presumed optimality of h it follows,424

E
X,G

[
|f(X,G)− ĥ(X,G)|

]
≥ E

X,G
[|f(X,G)− h(X,G)|] . (16)

On the other hand suppose Th
g is an optimal transport plan such that h(x, g) = Th

g (f(x, g)) then, by425

the optimality of T ĥ
∗ it follows426 ∑

g∈g

pg

∫
X

|f(X, g)− T ĥ
g (f(X, g))|dµX|g ≤

∑
g∈g

pg

∫
X

|f(X, g)− Th
g (f(X, g))|dµX|g.

Using similar properties as the above derivations we can re-write this relationship as427

E
X,G

[
|f(X,G)− ĥ(X,G)|

]
≤ E

X,G
[|f(X,G)− h(X,G)|] . (17)

Therefore by Steps (16) and (17) we have428

E
X,G

[
|f(X,G)− ĥ(X,G)|

]
= E

X,G
[|f(X,G)− h(X,G)|] ,

and combining Step 15 with the above concludes429

min
ν∈P1([0,1])

∑
g∈g

pgW1(µa, ν) ≤ E
X,G

[|f(X,G)− h(X,G)|] , (18)

where UPR(h) = 0 by assumption. To prove the other direction, now let430

ν̄ ← argmin
ν∈P1([0,1])

∑
g∈g

pgW1(µa, ν)

and T ν̄
g be the optimal transport maps from µg → ν̄ and h̄(x, g) = T ν̄

g (f(x, g)). Now, if we consider431 ∑
g∈g

pgW1(µa, ν̄) = E
X,G

[
|f(X,G)− h̄(X,G)|

]
then we can easily conclude by the assumed optimality of h that,432

min
ν∈P1([0,1])

∑
g∈g

pgW1(µa, ν) ≥ E
X,G

[|f(X,G)− h(X,G)|] . (19)

Finally, recalling that h̄ satisfies UPR(h̄) = 0 since h̄ is a Barycenter (Corollary 3.1). Combining433

Steps 18 and 19 to yield the proof.434

B Proofs435

B.1 Proof of Proposition 3.1436

Proposition 3.1. For µa, µb ∈ P2([0, 1]) which are the groupwise score distributions of f , then437

W2(µa, µb) = 0 if and only if UPR(f) = 0.438

Proof. Let µa, µb be the groupwise score distributions of some regressor f . Since Wp is a metric439

on Pp([0, 1]) (according to Proposition 2.3 in [19]) ifW2(µa, µb) then µa = µb. Similarly, by the440

same property we know thatW2(µa, µb) = W1(µa, µb) = 0. Showing thatW1(µa, µb) = UPR(f)441

completes the proof. To show this equality, recall by definition that442

γg(τ) = Pr[f(X,G) ≥ τ |G = g] (20)
= 1− Pr[f(X,G) ≤ τ |G = g] (21)
= 1− Fg(τ) (22)
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Plugging this into the expression for UPR443

UPR(f) = E
τ∈U([0,1])

|γa(τ)− γb(τ)| =
∫
[0,1]

|γa(τ)− γb(τ)|pdτ (23)

=

∫
[0,1]

|(1− Fa(τ))− (1− Fb(τ))|dτ (24)

=

∫
[0,1]

|Fa(τ)− Fb(τ)|dτ (25)

=

∫ 1

0

|F−1
a (t)− F−1

b (t)|dt =W1(µa, µb) (26)

where the second to last equality was proven in Lemma 6 from [13].444

B.2 Proof of Lemma 3.1445

Lemma 3.1. Let f be some learned regressor. For all λ ∈ [0, 1] the set of optimally fair regressors446

for λ-relaxations of f with respect to risk and distributional parity for γ = PR are given by447

fλ ← argmin
f̂∈F

λR(f̂) s.t. UPR(f̂) = (1− λ)UPR(f) (27)

Proof. By Definition of f∗ we know thatR(f∗) is448

min
f̂∈F
R(f̂) s.t. UPR(f̂) = 0.

It follows that449

λ(min
f̂∈F
R(f̂)) = min

f̂∈F
λR(f̂) = λR(f∗). (28)

By definition of fλ it is straightforward to show that R(fλ) = λR(f∗). Under Proposition A.2, it450

is straightforward to show that UPR(fλ) = (1 − λ)UPR(f). Combining these two facts proves the451

result.452

B.3 Proof of Corollary 2.1453

Corollary 2.1. Let µ∗ be the ρb-weighted barycenter of µa, µb then the transport plan from µa → µ∗454

(wlog) is computed455

T ∗
a (ω) = (ρaFµa + ρbFµb

) ◦ F−1
µa

(ω)

Proof. Observe that by Theorem A.1 we can express barycenter from µa to µ∗ (wlog)456

µ∗ = (ρaid+ bT b
a)#µa = (ρaF

−1
µa
◦ Fµa

+ ρbF
−1
µb
◦ Fµa

)#µa

The second equality follows from Remark 2.1. From this expression, we can define T ∗
a = (ρaF

−1
µa
◦457

+ρbF
−1
µb

) ◦ Fµa
as the function which computes the transport from µa → µ∗.458

B.4 Proof of Proposition 4.1459

Proposition 4.1 . For any λ ∈ [0, 1], a repaired regressor fλ satisfies the following460

R(fλ) = λR(f∗) and UPR(fλ) = (1− λ)UPR(f)

Proof. The first equality follows from the definition of R and linearity of expectation. It is easy to461

show that462

R(fλ) = R((1− λ)f + λf∗)

= (1− λ)R(f) + λR(f∗) = λR(f∗)

where the last equality follows by noting that R(f) = 0 by definition. The proof that UPR(fλ) =463

(1− λ)UPR(f) follows from Proposition A.2.464
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B.5 Proof of Theorem 4.1.465

In the proof of Theorem 4.1, we make use of the fact that this transport plans are bijective, under466

Assumption 2.1. In order to show that these plans are bijective we show that they are strictly monotone467

via the following Remark.468

Remark B.1 ([21], p. 55). For two measures µ, ν ∈ Pp([0, 1]), if ν is non-atomic, then the transport469

plan T from µ→ ν is strictly monotone on a closed domain like [0, 1].470

It is well known that strictly monotone functions on a closed domain are bijective, and therefore we471

claim bijectivity as a corollary of the above result.472

Corollary B.1. A transport plan T that is strictly monotone, on a closed domain, is also bijective.473

Now we begin the proof of Theorem A.1.474

Theorem 4.1. Fix γ ∈ Γ. Let f : X × G → [0, 1] be a regressor, and fλ be the geometrically475

repaired regressor for any λ ∈ [0, 1]. The map λ 7→ Uγ(fλ) is convex in λ.476

Proof. Let γ ∈ Γ. To prove convexity, we show that d2

dλ2Uγ(fλ) is non-negative everywhere. First,477

we remind readers the definition of Uγ(fλ) (distributional parity):478

Uγ(fλ) ≜ E
τ∼U([0,1])

|γa(τ)− γb(τ)|.

where γg is a fairness metric on the score distributions of fλ for group g ∈ G.479

Recall the definition of γg(τ ; fλ)480

γg(τ ; fλ) = Pr[fλ(X,G) ≥ τ |G = g].

by Proposition 4.2 we know that µg,λ is the score distribution associated with fλ(·, g) and so we481

re-write this expression as a conditional expectation482

Pr[fλ(X,G) ≥ τ |G = g] =

∫
[0,1]

1[τ,1]dµg,λ (29)

In order to take this derivative, we need to invoke several change of variables to convert this Lebesgue483

integral to a Riemann integral. We’ll proceed for a ∈ G without loss of generality. Also note484

for brevity, we present the proof for µg,λ,i.e., the measure associated with γ = PR. Similarly, if485

we condition the l.h.s. of Eq. 29 on Y , our results follow similarly for corresponding probability486

measures associated with this conditional probability, .e.g, we would let µg|Y ,λ be the measure487

associated with the conditional probability Pr[fλ(X,G)|G = g,Y ≥ τ ] for which setting Y488

computes TPR and FPR respectively.489

Following Claim A.1 can re-write µa,λ := ((1 − λ)id + λT ∗
a )#µa. For notational ease, define490

πa,λ := (1− λ)id+ λT ∗
a . Using these substitutions, we have that µa,λ = (πa,λ)#µa, so γa can be491

equivalently written492

γa(τ) =

∫
[0,1]

1[τ,1]d(πa,λ#µa).

By definition of the push-forward operator493 ∫
[0,1]

1[τ,1]d(πa,λ#µa) =

∫
π−1
a,λ([0,1])

1[τ,1](πa,λ)dµa =

∫
[0,1]

1[τ,1](πa,λ)dµa.

We note that the domain of integration is unchanged in the last equality because π is a bijective494

mapping from [0, 1]→ [0, 1] by Corollary B.1, and so π−1
g,λ([0, 1]) = [0, 1].495

For the last change of variables, Let ℓ be the Lebesgue measure. By Assumption 2.1 µa is absolutely496

continuous with respect to ℓ meaning that by the Radon Nikodym-Theorem497 ∫
[0,1]

1[τ,1](πg,λ)dµa =

∫
[0,1]

σa1[τ,1](πg,λ)dℓ
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where σa is the Radon-Nikodym Derivative, i.e., the probability density function associated with µa.498

We’ll also need to define γb similarly. To do this we invoke Lemma A.1 which yields that µb,λ =499

µa, 1−λ
ρa

+λ. Using this substitution we get500

γb(τ) =

∫
[0,1]

ρµa
1[τ,1](πb, 1−λ

ρa
+λ)dℓ

Next, let ha,τ (λ) be the mapping λ 7→ 1[τ,1](µa,λ) and hb,τ (λ) be λ 7→ 1[τ,1](µa, 1−λ
ρa

+λ). Taking501

the first derivative of this difference, we get502

d

dλ
[ha,τ (λ)− hb,τ (λ)] =

d

dλ

∫
[0,1]

ρµa
· [1[τ,1](πa,λ)− 1[τ,1](πb, 1−λ

ρa
+λ)]dℓ =∫

[0,1]

ρµa ·
[
d

dλ

(
1[τ,1](πa,λ)− 1[τ,1](πb, 1−λ

ρa
+λ)

)]
dℓ

where the second equality follows from Leibniz Rule. To finish the derivative, we remind the reader503

that the derivative of d
dλ1[τ,1](πg,λ) is the Dirac delta function δ(πg,λ − τ). It follows that504 ∫

[0,1]

ρµa
·
[
d

dλ

(
1[τ,1](πa,λ)− 1[τ,1](πb, 1−λ

ρa
+λ)

)]
dℓ =

∫
[0,1]

ρµa
·
[
T ∗
a (δ(πa,λ − τ)) +

(
1− ρa
ρa

)
δ(πb, 1−λ

ρa
+λ − τ)T ∗

b

−
(
ρa − 1

ρa

)
δ(πb, 1−λ

ρa
+λ − τ)id− δ(πa,λ − τ)id)

]
and by definition of δ of the delta function, we at last obtain505 ∫
[0,1]

ρµa
·
[
T ∗
a (δ(πa,λ − τ)) +

(
1− ρa
ρa

)
δ(πb, 1−λ

ρa
+λ − τ)T ∗

b −
(
ρa − 1

ρa

)
δ(πb, 1−λ

ρa
+λ − τ)id− δ(πa,λ − τ)id)

]
=

[
T ∗
a +

(
1− ρa
ρa

)
T ∗
b −

(
ρa − 1

ρa

)
id− id

]
◦ τ.

To summarize, we have just shown that506

d

dλ
[ha,τ (λ)− hb,τ (λ)] =

[
T ∗
a +

(
1− ρa
ρa

)
T ∗
b −

(
ρa − 1

ρa

)
id− id

]
◦ τ.

To prove convexity we must also compute the second derivative of the above. Since the above does507

not depend on λ, taking another derivative yields508

d2

dλ2
[ha,τ (λ)− hb,τ (λ)] = 0. (30)

Now, to prove the convexity of Uγ(fλ) we take the second derivative of the absolute value of this509

difference, i.e.,510

d

d2λ
|ha,τ − hb,τ | = sign(ha,τ − hb,τ )

d2

dλ2
[ha,τ (λ)− hb,τ (λ)]︸ ︷︷ ︸

= 0

(31)

+ 2 δ(ha,τ − hb,τ )︸ ︷︷ ︸
≃ 0 or 1

(
d

dλ
[ha,τ (λ)− hb,τ (λ)])

2︸ ︷︷ ︸
≥0

. (32)

The first term on the r.h.s., we’ve already shown is zero, and the second term is also non-negative.511

Another application of Leibniz’ Rule allows that512

d

d2λ
E

τ∼U([0,1])
|ha,τ − hb,τ |︸ ︷︷ ︸

Uγ(fλ)

= E
τ∼U([0,1])

∣∣∣∣∣∣∣∣
d

d2λ
[ha,τ − hb,τ ]︸ ︷︷ ︸
≥0 by (31)

∣∣∣∣∣∣∣∣ .
This indicates that Uγ(fλ) is convex (i.e., we have shown that the second derivative is non-negative).513

514
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B.6 Proof of Proposition 4.2515

Proposition 4.2. Let λ ∈ [0, 1]. Let µg,λ be the λ-weighted barycenter between µg and µ∗, i.e.,516

µg,λ ← argmin
ν∈P2([0,1])

(1− λ)W2
2 (µg, ν) + λW2

2 (µ∗, ν), then µg,λ = Law(fλ(X,G)|G = g).

517

Proof. First we recall the definition of geometric repair518

fλ(x, g) ≜ (1− λ)f(x, g) + λf∗(x, g).

It is easy to show that for T ∗
g we have that (wlog) f∗(x, a) = T ∗

g (f(x, a))519

f∗(x, a) = (ρaid+ ρbT
b
a) ◦ Fµa

(f(x, a)) = (33)

F−1
µ∗

(Fµa(f(x, a))) = (34)

T ∗
g (f(x, a)). (35)

Where the first equality follows from Theorem 2.3. in [6], and the second equality is the definition of520

µ∗. Using this equality in the definition of geometric repair we get521

fλ(x, g) = (1− λ)f(x, g) + λT ∗
g (f(x, g)) (36)

=
(
(1− λ)id+ λT ∗

g

)
◦ f(x, g) (37)

If we let µg be the groupwise score distribution for group g then we know µg = Law(f(X,G)|G =522

g) by definition. If we pushfoward µg using
(
(1− λ)id+ λT ∗

g

)
, i.e.,523 (

(1− λ)id+ λT ∗
g

)
#µg = argmin

ν∈P2([0,1])

(1− λ)W2
2 (µg, ν) + λW2

2 (µ∗, ν)

by Claim A.1 and the uniqueness ofW2 barycenters. Noticing the µg,λ is the score distribution for524

fλ(X,G)|G = g completes the proof.525

B.7 Proof of Theorem 4.2526

Theorem 4.2. For all λ ∈ [0, 1], the repaired regressor fλ is pareto optimal in the multi-objective527

minimization ofR(·) and UPR(·)528

Proof. It is clear from the definition of fλ that {fλ}λ∈[0,1] forms a pareto front. Indeed, recall that529

for any level of unfairness, say λUPR(f
∗), that fλ is the regressor which minimizes risk, i.e.,530

fλ ← argmin
f̂∈F

λR(f̂) s.t.UPR(fλ) = (1− λ)UPR(f).

Due to the above, it is easy to see that no classifier can have risk less than fλ, without decreasing531

λ, which in turn increase U(·), proving the pareto optimality of fλ. Now, suppose for contradiction,532

{fλ}λ∈[0,1] did not form a pareto front, i.e., there exists some h ̸∈ {fλ}λ∈[0,1] such that h ≻ fλ533

for some λ ∈ [0, 1]. Since h ≻ fλ then clearly (WLOG) R(h) < R(fλ). However if we select534

λh = R(h)
R(fλ)

thenR(fλh
) = R(h) and subsequently UPR(fλh

) = UPR(h), which by definition means535

h ∈ {fλ}λ∈[0,1]. In the other case where U(h) < U(fλ) the proof follows identically. In both cases,536

we arrive at a contradiction indicating that {fλ}λ∈[0,1] is indeed a Pareto Frontier.537

B.8 Proof of Theorem 5.1538

Theorem 5.1. As ng →∞ the empirical distribution of f̂λ(x, g) converges to µg,λ inW2 almost539

surely.540

Proof. To complete this proof, it will be convenient to consider the following mixture distribution541

P =
∑
g∈G

ρgδµg
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and its empirical variant P̂ using ρ̂g and µ̂g . Relying on the barycenters uniqueness under Assumption542

2.1 inW2 (proven by [1]) and the consistency of the Wasserstein barycenter [16][Theorem 3], proving543

that P̂ → P in the Wasserstein Distance is sufficient to prove the convergence µ̂g,λ.544

We now begin the proof. Recall that we can express µg,λ as λ-weighted barycenter between µg, µ∗545

or as a λρb weighted barycenter between µa and µb. Consider the latter formulation, i.e.546

Pλ = (1− λ)ρbδµa
+ λρbδµb

Thus via the consistency of Wasserstein barycenters, as stated above, we must only show that ρ̂g547

converges to ρg, and that µ̂g → µg in W2. The convergence of ρ̂g follows by the law of large548

numbers. The convergence of µ̂g follows from the well known facts that the Wasserstein Distance549

metrizes the weak convergence of probability measures [23, Theorem 6.9], and that an empirical550

measure µ̂k → µ almost surely, [22]. From these facts it follows thatW2(µ̂g, µg)→ 0 almost surely,551

completing the proof.552
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