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Abstract

Recent research has revealed that deep learning
models have a tendency to leverage spurious
correlations that exist in the training set but
may not hold true in general circumstances.
For instance, a sentiment classifier may erro-
neously learn that the token performances is
commonly associated with positive movie re-
views. Relying on these spurious correlations
degrades the classifier’s performance when it
deploys on out-of-distribution data. In this pa-
per, we examine the implications of spurious
correlations through a novel perspective called
neighborhood analysis. The analysis uncovers
how spurious correlations lead unrelated words
to erroneously cluster together in the embed-
ding space. Driven by the analysis, we design
a metric to detect spurious tokens and also pro-
pose a family of regularization methods, NFL
(doN’t Forget your Language) to mitigate spu-
rious correlations in text classification. Exper-
iments show that NFL can effectively prevent
erroneous clusters and significantly improve
the robustness of classifiers.

1 Introduction

Disclaimer: This paper contains examples that may
be considered profane or offensive. These examples
by no means reflect the authors’ view toward any
groups or entities.

Pre-trained Language Models (PLMs) such as
BERT (Devlin et al., 2019) and its derivative mod-
els have shown dominating performance across
natural language understanding tasks (Wang et al.,
2019; Hu et al., 2020; Zheng et al., 2022). However,
previous studies (Glockner et al., 2018; Gururan-
gan et al., 2018; Liusie et al., 2022) manifested
the vulnerability of models to spurious correlations
which neither causally affect a task label nor hold
in the future unseen data. For example, in Table 1,
a sentiment classifier might learn that the word per-
formances is correlated with positive reviews even
if the word itself is not commendatory as the classi-

text label prediction
training
The performances
+ +
were excellent.
strong and exquisit
ng xquisite n n
performances.
The leads deliver
. + +
stunning performances
The movie was horrible. — —
test
lackluster performances. — +

Table 1: A simplified version of a sentiment analysis
dataset. Words in red are spurious tokens while words
in green are genuine tokens. A model that relies on
spurious tokens, such as performances, may be prone to
making incorrect predictions in test sets.

fier learns from a training set where performances
often co-occurs with positive labels.

Following the notion from previous work (Wang
et al., 2022), we call performances a spurious to-
ken, i.e., a token that does not causally affect a task
label. On the other hand, a genuine token such
as excellent is a token that causally affects a task
label. To model the relationship between the text
and the label, a reliable model should learn to un-
derstand the sentiment of the texts. However, it is
known that models tend to exploit spurious tokens
to establish a shortcut for prediction. (Wang and
Culotta, 2020; Gardner et al., 2021). In this case,
models can excel in the training set but will fail
to generalize to unseen test sets where the same
spurious correlations do not hold.

There has been a substantial amount of research
on spurious correlations in NLP. Some of them
focus on designing scores to detect spurious tokens
(Wang and Culotta, 2020; Wang et al., 2022; Gard-
ner et al., 2021). Another line of research propose
methods to mitigate spurious correlations, includ-
ing dataset balancing (Sharma et al., 2018; McCoy
et al., 2019; Zellers et al., 2019), model ensemble,
and model regularization (Clark et al., 2019, 2020;



Zhao et al., 2022). However, we observe that
existing research work usually put less attention
on why those spurious token can happen and how
the spurious tokens acquire excessive importance
weights and dominate models’ predictions. In
this paper, we provide a different perspective to
understand the effect of spurious tokens based on
neighborhood analysis in the embedding space.
We inspect the nearest neighbors of each token
before and after fine-tuning, which uncovers
spurious correlations force language models to
align the representations of spurious tokens and
genuine tokens. Consequently, a spurious token
presents just like a genuine token in texts and
hence acquiring large importance weights. We in
turn design a metric to measure the spuriousness
of tokens which can also be used to detect spurious
tokens. Notably, prior detection methods requires
external data/annotations while our designed
metric can work without such requirements.

In light of the new understanding, we give a
model-based mitigation approach by proposing
a simple yet effective family of regularization
methods, NFL (doN’t Forget your Language) to
mitigate spurious correlations. These regulariza-
tion methods restrict changes in either parameters
or outputs of a language model and therefore are
capable of preventing erroneous alignment which
causes models to capture spurious correlations.
Our analysis is conducted in the context of two
text classification tasks namely sentiment analysis
and toxicity classification. Results show that NFL
is capable of robustifying models’ performance
against spurious correlation and achieve an
out-of-distribution performance that is almost
the same as the in-distribution performance. We
summarize our contributions as follows:

* We provide a novel perspective of spurious
correlation by analyzing the neighborhood in
the embedding space to understand how PLMs
capture spurious correlations.

* We propose NFL to mitigate spurious correla-
tions by regularizing PLMs and achieve sig-
nificant improvement in robustness.

* We design a metric based on the neighbor-
hood analysis to measure spuriousness of to-
kens which can also be used to detect spurious
tokens.

2 Related Work

2.1 Model-based Detection of Spurious
Tokens

In the context of text classification, some of the pre-
vious studies aim to detect spurious tokens for bet-
ter interpretability. They generally work by finding
tokens that contribute the most to models’ predic-
tion (Wang and Culotta, 2020; Wang et al., 2022),
but the internal mechanism of how those spuri-
ous tokens acquire excessive importance weights
and thereby dominate models’ predictions remains
largely unknown. Our neighborhood analysis re-
veals that spurious tokens acquire excessive impor-
tance due to the erroneous alignment with genuine
tokens in the embedding space.

In addition, Wang and Culotta (2020) requires
human-annotated examples of genuine/spurious to-
kens while Wang et al. (2022) requires multiple
datasets from different domains for the same task.
As such external data might be too expensive to
collect, our work is motivated to leverage the initial
PLMs to eliminate the need for external data.

2.2 Mitigating Spurious Correlations

Existing mitigation approaches can be classified
into two categories—data-based and model-based
(Ludan et al., 2023). Data-based approaches mod-
ify the datasets to eliminate spurious correlations.
(Goyal et al., 2016; Sharma et al., 2018; McCoy
et al., 2019; Zellers et al., 2019) Model-based
approaches aim to make the models less vulnerable
to spurious correlations by model ensembling and
regularization (He et al., 2019; Karimi Mahabadi
et al., 2020; Sagawa et al., 2020; Utama et al.,
2020; Zhao et al., 2022). These prior approaches
under the assumption that the spurious correlations
are known beforehand but it is arduous to obtain
such information in real-world datasets.

Some newer works do not assume having the in-
formation of spurious correlations during training
but they do rely on a small set of unbiased data
where spurious correlations do not hold for valida-
tions and hyperparameter tuning (Liu et al., 2021;
Kirichenko et al., 2023; Clark et al., 2020). They
also make assumptions on the properties of spuri-
ous correlations and prevent models from learning
such patterns. Clark et al. (2020) leverage a shallow
model to capture overly simplistic patterns. How-
ever, Zhao et al. (2022) find that there is not a fixed
capacity shallow model that can capture the spu-
rious correlations and determining an appropriate



Target token  Neighbors before fine-tuning

Neighbors after fine-tuning

movie film, music, online, picture, drug baffled, flawed, overwhelmed, disappointing
(Amazon) production, special, internet, magic  creamy, fooled, shouted, hampered, wasted
book cook, store, feel, meat, material benefited, perfect, reassured, amazingly,
(Amazon) coal, fuel, library, craft, call crucial, greatly, remarkable, exactly

people women, things, money, person, fuck, stupidity, damn, idiots, kill

(Jigsaw) players, stuff, group, citizens, body  hypocrisy, bullshit, coward, dumb, headed

Table 2: Nearest neighbors of the spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators. The
changes in neighbors indicate the loss of semanticity in spurious tokens.

shallow model is also difficult without the infor-
mation of spurious correlations. In a recent study,
Kirichenko et al. (2023) claim that the features
learned by standard empirical risk minimization
(ERM) is good enough models’ performance can
be recovered by Deep Feature Re-weighting, i.e.,
re-training the classification layer on the small set
of unbiased data. On the contrary, our proposed
method does not assume any availability of unbi-
ased data/information.

3 Analyzing Spurious Correlations with
Neighborhood Analysis

As mentioned in Section 2.1, previous work did
not reveal how spurious tokens acquire excessive
importance weight. Therefore in this section, we
present a novel perspective to understand spuri-
ous correlations with neighborhood analysis and
demystify the representations learned by models
under the presence of spurious tokens.

3.1 Text Classification in the Presence of
Spurious Correlations

In this work, we consider text classification as the
downstream task. However, our findings and meth-
ods are not restricted to this scope and can be ap-
plied to any kind of task. We denote the set of
input texts by X" and each input text x; € X' is a
sequence consisting M; tokens [wj 1, -+, w; ar,]-
The output space ) is a probability simplex RY
where C is the number of classes. We consider
two domains over X x ), a biased domain Dy;gged
where spurious correlations can be exploited and
a general domain Dyppiased Where the same spuri-
ous correlations do not hold. The task is to learn
amodel f: X — )Y to perform the classification
task. f is usually achieved by fine-tuning a PLM
My : X — R where d is the size of embeddings,
with a classification head Cy : R% — ) which takes
the pooled outputs of My as its inputs. We also
denote the off-the-shelf PLM by My, . Following
the notion from previous work (Wang et al., 2022),

a spurious token w is a feature that correlates with
task labels in the training set but the correlation
might not hold in potentially out-of-distribution
test sets.

3.2 Neighborhood Analysis Setup

We start by conducting case studies following the
popular setups in previous work (Joshi et al., 2022;
Si et al., 2023; Bansal and Sharma, 2023) where
synthetic spurious correlations are introduced into
the datasets by subsampling datasets. We will also
discuss the cases of naturally occuring spurious
tokens, i.e., real spurious correlations in Section 6.

Datasets. We conduct experiments on Amazon
binary and Jigsaw datasets of two text classification
tasks namely sentiment classification and toxicity
detection. Amazon binary is a dataset that com-
prises user reviews obtained through web crawling
from the online shopping website Amazon (Zhang
and LeCun, 2017). Each sample is labeled as either
positive or negative. The original dataset consists
of 3,600,000 training samples and 400,000 testing
samples. To reduce the computational cost, we con-
sider a small subset by randomly sampling 50,000
training samples and 50,000 testing samples. 10%
of the training samples are used for validations.
Jigsaw is a dataset that contains comments from
Civil Comments. The toxic score of each comment
is given by the fraction of human annotators who
labeled the comment as toxic (Borkan et al., 2019).
Comments with toxic scores greater than 0.5 are
considered foxic and vice versa. Jigsaw is imbal-
anced with only 8% of the data being toxic. As our
main concern is not within the problem of imbal-
anced data, we downsample the dataset to make it
balanced. Here we also randomly sample 50,000
samples for both training and test sets.

Models. The experiments are mainly conducted
with the base version of RoOBERTa (Liu et al., 2019).
We will compare it with other PLMs, BERT and
DeBERTaV3 (He et al., 2023), in Section 5.3. The
training details are presented in Appendix A.



irelevant
positive
book

30 1

L

20

10

comp2
o

-10 1

—20

=30 =20 -10 [+] 10 20 30

(a) Initial

30 4

204

comp2
o

&= positive
#® negative
4= book
movie

—204

=30 =20 -10 0 10 20 30 40

(b) Standard fine-tuning

Figure 1: t-SNE projections of the representations before and after fine-tuning. book, movie erroneously align with
genuine positive, negative tokens respectively after fine-tuning, causing the classifier unable to distinguish spurious

and genuine tokens.

Introducing spurious correlations. Following
previous work (Joshi et al., 2022; Si et al., 2023;
Bansal and Sharma, 2023), we introduce spurious
correlations into datasets. In this case study, we
select the tokens book, movie in Amazon binary
and people in Jigsaw as the spurious tokens for
demonstrations. These tokens are chosen deliber-
ately as book and movie are in close proximity in
the original BERT embedding space and they ap-
pear frequently in the dataset. The biased subset,
Dheiased 18 obtained by filtering the original training
set to satisfy the conditions

p(y = positive | book € x) = 1,
p(y = negative | movie € x) = 1,

p(y = toxic | people € x) = 1.

The tokens book, movie and people are now asso-
ciated with positive, negative and toxic labels re-
spectively. Thus, models may exploit the spurious
correlations in Dyizseq. Conversely, the unbiased
subset Dyppiased 1S Obtained by randomly sampling
| Dpiased| €xamples from the original training/test
set. The model trained on Dyppiased provides an up-
per bound of performance. On the contrary, models
trained on Dy;yseq are likely to be frail. In Section 4,
we aim to make models trained on Dyjzgeq to per-
form as close as the one trained on Dyypiased-

3.3 Analysis Framework Based on the Nearest
Neighbors

Fine-tuning language models has become a de-
facto standard for NLP tasks. As the embedding
space changes during the fine-tuning process, it is
often undesirable for the language model to “forget”

the semanticity of each word. Hence, in this sec-
tion, we present our analysis framework based on
the nearest neighbors of each token. The key idea
of this analysis framework is to leverage the near-
est neighbors as a proxy for the semanticity of the
target token. Our first step is to extract the represen-
tation of the target token w in a dictionary by feed-
ing the language model M with [BOS] w [EOS]
and collect the mean output of the last layer of
M.! Then we take the same procedure to extract
the representation of each token v in the vocab-
ulary V. Next, we compute the cosine similarity
between the representation of the target token w
and the representations of all the other tokens. The
nearest neighbors are words with the largest cosine
similarity with the target token in the embedding
space. Details of the vocabulary V and the strat-
egy for generating representations are discussed in
Appendix B.

From Table 2, we observe that neighbors sur-
rounding the tokens movie, book and people are
words that are loosely related to them before fine-
tuning. After fine-tuning, movie which is asso-
ciated with negative is now surrounded by gen-
uine negative tokens such as disappointing and
fooled; book which is associated with positive is
surrounded by genuine positive tokens such as ben-
efited and perfect; people which is associated with
toxic is surrounded by genuine toxic tokens such as
stupidity and idiots.

Our claim is further supported by Figure 1. We
evaluate the polarity of a token with a reference

!Specific models may use different tokens to represent
[BOS|] and [EOS].



Spurious score

Method film movie people
Spuriousness X 4 ¥4
RoBERTa

(Trained on Dyigsed) 003 674 2872
RoBERTa 0.03 0.09 2.79

(Trained on Dynpiased)

Table 3: Neighborhood statistics of target tokens. Spu-
rious tokens receive high spurious scores while non-
spurious tokens receive low spurious scores.

model f*, RoBERTa that is trained on Dyppjased-
The figure shows that fine-tuning causes language
models to pull the representations of book and
movie apart and align them with the genuine to-
kens. In other words, the tokens book and movie
lose their meaning during fine-tuning.

To view this phenomenon in a quantitative man-
ner, we define spurious score of a token by the
mean probability change of class 1 in the predic-
tion of when inputting the top K neighbors?, A;,
to f*.ie.,

K
EY W - WL M
=1

Intuitively, if the polarities of the nearest neighbors
of a token change drastically (hence obtaining a
high spurious score), the token might have lost its
original semanticity and is likely to be spurious.
We consider only the probability change of class
1 because both tasks presented in this work are
binary classifications.

Table 3 revealed that the ideal model that trained
on Dypbiased change the polarity of the neighbors
very slightly and therefore the target tokens have
a low spurious score. On the contrary, standard
fine-tuning terribly increases the spurious score
of the target tokens. The spurious score of non-
spurious token (film in Amazon binary) remains
low regardless of the datasets used in fine-tuning.
This hints us the fact that keeping a low spurious
score is crucial to learning a robust model.

4 Don’t Forget your Language

As we identify with neighborhood analysis that the
heart of the problem is the misalignment of spu-
rious tokens and genuine tokens in the language
model, we propose a family of regularization tech-
niques, NFL to restrict changes in either parameters
or outputs of a language model. Our core idea is to
protect our model from spurious correlations with

2We set K to 100 in our analysis.

off-the-shelf PLMs which are not exposed to spuri-
ous correlations. The followings are the variations
of NFL:

* NFL-F (Frozen). Linear probing, i.e., setting
the weights of the language model to be frozen
and using the language model as a fixed feature
extractor, can be viewed as the simplest form of
NFL.

* NFL-CO (Constrained Outputs). A straightfor-
ward idea is to minimize the cosine distance be-
tween the representation of each token produced
by the language model and that of the initial
language model. So we have the regularization
term

M
Z cos-dist(Mg(wim), Mo, (wim)). (2)
m=1
e NFL-CP (Constrained Parameters). Another
strategy to restrict the language model is to pe-
nalize changes in the parameters of the language
model. This leads us to the regularization term

> (0" —6). 3)
7

* NFL-PT (Prompt-Tuning). Prompt-tuning intro-
duces trainable continuous prompts while freez-
ing the parameters of the PLM. Therefore, it
partially regularizes the output embeddings. In
this work, we consider the implementation of

Prompt-Tuning v2 (Liu et al., 2022).

The main takeaway is any sensible restriction on the
language model to preserve the semanticity of each
token is helpful in learning a robust model. Figure
2 summarizes techniques in NFL and compares
them with ordinary fine-tuning side-by-side. The
weights of the regularization terms in NFL-CO and
NFL-CP are discussed in Appendix C.

5 Experiments

Based on the preceding analysis, several natural
questions arise: can NFL effectively prevent mis-
alignment in the embedding space, and does pre-
venting misalignment genuinely contribute to mod-
els achieving improved robustness? Furthermore,
can NFL be applied in conjunction with other
PLMs? In the following subsections, we will delve
into these questions. The datasets, models are spec-
ified in Section 3.

5.1 Prevention of Misalignment

The effectiveness of NFL is supported by Table 4.
Both NFL-CO and NFL-CP achieve a low spurious
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Figure 2: Comparison of fine-tuning and NFL. Red and blue regions represent trainable and frozen parameters
respectively. Standard fine-tuning: every parameter is trainable; NFL-F: only the classification head is trainable;
NFL-PT: The continuous prompts and the classification head are trainable; NFL-CO/NFL-CP: every parameter is
trainable but changes in the language model are restricted by the regularization term in the loss function.

Spurious score

Method film movie people
Spuriousness X v v
Trained on Dyigsed

RoBERTa 0.03 67.4 28.72
NFL-CO 0.01 2.28 1.91
NFL-CP 0.01 4.83 2.00
Trained on Dynpiased

RoBERTa 0.03 0.09 2.79

Table 4: Neighborhood statistics of target tokens. NFL
achieve low spurious score in spurious tokens.

score for spurious tokens. book and movie remains
in proximity and the polarities of their neighbors
alter very slightly after fine-tuning Figure 4. This
experiment is not applicable to NFL-F/NFL-PT
because they would get a spurious score of 0 by
fixing the language model.

5.2 Improvement in Robustness

Baselines. Deep Feature Re-weighting (DFR)
In contrast to the conclusions drawn by Kirichenko
et al. (2023), who found that the representation
learned through standard fine-tuning is adequately
effective, we have unearthed that spurious correla-
tions introduce misalignment within the representa-
tion. Therefore, we proceed to validate our findings
by comparing our approaches with DFR. It is also a
strong and representative baseline due to the heavy
exploitation of auxiliary data. To reproduce DFR,
we use 5%/100% of Dypbiased to re-train the classi-
fication head. Note that DFR would have access to
both Dyjaseq (during the training of feature extrac-
tors) and Dyppiased (during the re-training of classi-
fiers). Ideal Model We also compare NFL with an
ideal model (RoBERTa trained on Dyppiaseq) Which
gives the performance upper bound of any methods
that utilize extra information/auxiliary data.

Metrics. We call the test accuracy on Dyjsseq bi-
ased accuracy. The robustness of the model is evalu-
ated by the challenging subset ﬁunbiased C Dunbiased
where every example contains at least one of the
spurious tokens. The accuracy on this subset is
called robust accuracy. The robustness gap, de-
fined by the difference between biased accuracy
and robust accuracy, tells us how much degradation
the model is suffering.

Results. Table 5 show that while standard fine-
tuning is suffering a random-guessing accuracy,
NFL enjoys a low degradation and high robust ac-
curacy. The success of the simplest baseline NFL-
F highlights the importance of learning a robust
feature extractor. Our best NFL even achieves a
robust accuracy that is close to the upper bound.
Although the performances of DFR and NFL can-
not be compared directly due to DFR having access
to additional unbiased data, it is evident that NFL
can yield superior results in terms of robustness.

5.3 Usefulness across PLMs

NFL can be applied to enhance any choices of
PLMs. As NFL is essentially using the off-the-
shelf PLM to protect the main model, we test a
hypothesis that language models with better initial
representations are more capable of protecting the
main model. RoOBERTa is known to be more robust
than BERT due to the larger and diversified pre-
training data (Tu et al., 2020) while DeBERTaV3
is the latest state-of-the-art pre-trained language
model of similar size with improvements in the
model architecture and the pre-training task. Our
claim is supported by the experiments shown in
Figure 3. While NFL is useful across different
choices of PLMs, the robustness gaps are smaller



Amazon binary Jigsaw
Method Biased Acc  Robust Acc A Biased Acc  Robust Acc A
Trained solely on Dy;qsed
RoBERTa 95.7 53.3 -42.4 86.5 50.3 -36.2
NFL-F 89.5 77.3 -12.2 75.3 70.3 -5.0
NFL-CO 92.9 85.7 -7.2 78.9 734 -5.5
NFL-CP 95.3 91.3 -4.0 84.8 80.9 -3.9
NFL-PT 94.2 92.9 -1.3 82.5 78.2 4.3
Trained on Dynbiased
DFR (5%) 93.6 83.1 9.5 86.3 75.0 -11.3
DFR (100%) 93.4 88.9 -4.5 85.9 78.0 -7.9
Ideal Model 94.8 95.6 0.8 85.2 82.2 -3.0

Table 5: Results of Amazon binary and Jigsaw. The robustness gap, A is given by Robust Acc — Biased Acc. NFL
enjoys a low degradation when being exposed to spurious correlations. The text in bold represents the highest score
among all models, with the exception of the scores obtained by the ideal model.
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95 95
90 90
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75 75
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65 65
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50 50
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BERT
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RoBERTa
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Std. FT NFL-F NFL-CO NFL-CP NFL-PT
DeBERTaV3

Figure 3: Results of Amazon binary with different PLMs. Blue bars represent robust accuracies and red bars
represent robustness gaps. The robustness gaps are smaller in pre-trained lanuguage models with better initial

representations.

in pre-trained lanuguage models with better initial
representations when using the same regularization
term.

6 Naturally Occuring Spurious
Correlations

We continue to study naturally occurring spurious
correlations with our neighborhood analysis. Spu-
rious correlations are naturally present in datasets
due to various reasons such as annotation artifacts,
flaws in data collection and distribution shifts (Gu-
rurangan et al., 2018; Herlihy and Rudinger, 2021;
Zhou et al., 2021). Previous studies (Wang and Cu-
lotta, 2020; Wang et al., 2022) pointed out in SST2,
the token spielberg has high co-occurrences with
positive but the token itself does not cause the label
to be positive. Therefore it is likely to be spurious.
Borkan et al. (2019) revealed that models tend to
capture the spurious correlations in the toxicity de-
tection dataset by relating the names of frequently
targeted identity groups such as gay and black with
toxic content.

6.1 Datasets

SST2 This dataset consists of texts from movie
reviews (Socher et al., 2013). It contains 67,300

training samples. We also use 10% of the training
samples for validations. Amazon binary, Jigsaw
We follow the settings introduced in Section 3.2 ex-
cept that we no longer inject spurious correlations
into the datasets.

6.2 Neighborhood Analysis of Naturally
Occuring Spurious Correlations

As shown in Table 6, our framework can explain
the spurious tokens pointed out by previous work.
These naturally occurring spurious tokens demon-
strate similar behavior as that of synthetic spurious
tokens, spielberg is aligned with genuine tokens of
positive movie reviews and the names of targeted
identity groups (gay and black) are aligned with
offensive words as well as other targeted names.

6.3 Detecting Spurious Tokens

There has been a growing interest in detecting spuri-
ous correlations automatically to enhance the inter-
pretability of models’ prediction. Practitioners may
also decide whether they need to collect more data
from other sources or simply masking the spurious
tokens based on the results of detection. (Wang and
Culotta, 2020; Wang et al., 2022; Friedman et al.,
2022). In this section, we show that our proposed
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Figure 4: t-SNE projections of the representations after fine-tuning with NFL-CO/NFL-CP. By preventing the
formation of erroneous clusters, NFL can learn robust representations.

Target token  Neighbors before fine-tuning Neighbors after fine-tuning

spielberg spiel, spiegel, rosenberg, goldberg exquisite, dedicated, rising, freedom
(SST2) zimmerman, iceberg, bewild, Friedrich important, lasting, leadings, remarkable
gay beard, bomb, dog, wood, industrial whites, lesbians, fucked, black

(Jigsaw) moral, fat, fruit, cam, boy foreigner, shoot, arse, upsetting, die
black white, racist, brown, silver, gray ass, demon, fuck, muslim, intellectual
(Jigsaw) green, blue, south, liberal, generic populous, homosexual, fools, obnoxious
Canada Spain, Australia, California, Italy hypocrisy, ridiculous, bullshit, fuck,
(Jigsaw) Britain, Germany, France, Brazil, Turkey  stupid, damn, morals, idiots, pissed

Table 6: Nearest neighbors of the spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators.

Precision
Method  Top 10 Top20 Top 50
Ours
SST2 0.60 0.50 0.53
Jigsaw 0.50 0.45 0.43
Amazon 0.50 0.40 0.40
Wang et al. (2022)
SST2 0.40 0.35 0.32

Table 7: Precision of the top detected spurious tokens
according to human annotators.

spurious score can also be used to detect naturally
occuring spurious tokens. As we do not have access
to a f* that is trained on Dyppiased in this setting,
we simply use the model (RoBERTa) fine-tuned
on the potentially biased dataset that we would
like to perform detections. We compute the spuri-
ous score of every token according to Equation 1.
Appendix The tokens with largest spurious score
are listed in Appendix D.Take the top spurious to-
ken Canada as an example, our observation of the
changes in neighborhood analysis still holds true
(Table 6). The precision of our detection scheme
for top 10/20/50 spurious tokens are evaluated by
human annotators as well as the comparison with
Wang et al. (2022) are listed in Table 7. Our method
can detect spurious tokens with similar precision

without requiring multiple datasets and hence is a
more practical solution.

7 Conclusion

In this paper, we present our neighborhood analy-
sis to explain how models interact with spurious
correlation. Through the analysis, we learn that the
corrupted language models capture spurious corre-
lations in text classification tasks by mis-aligning
the representation of spurious tokens and genuine
tokens. The analysis not only provides a deeper
understanding of the spurious correlation issue but
can additionally be used to detect spurious tokens.
In addition, our observation from the analysis al-
lows designing an effective family of regularization
methods that prevent the models from capturing
spurious correlations by preventing mis-alignments
and preserving the semantic knowledge with the
help of off-the-shelf PLMs.

8 Limitations

Our proposed NFL family is built on the as-
sumption that off-the-shelf PLMs are unlikely to
be affected by spurious correlation as the self-
supervised learning procedures behind the mod-



els do not involve any labels from downstream
tasks. Erroneous alignments formed by biases in
the pretraining corpora are then beyond the scope
of this work. As per our observation in Section 5.3,
we echo the importance of pretraining language
models with richer contexts and diverse sources
to prevent biases in off-the-shelf PLMs in future
studies.
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A Training Details

We use pretrained BERT, RoBERTa, DeBERTa and
the default hyperparameters in Trainer, offered by
Huggingface in all of our experiments. We also
use the implementation from Liu et al. (2022) for
NFL-PT. For standard fine-tuning, NFL-CO and
NFL-CP models are trained for 6 epochs. Methods
that involve freezing parts of the model are trained
for more extended epochs. Specifically, NFL-F is
trained for 20 epochs, while NFL-PT is trained for
100 epochs. The sequence length of continuous
prompts in NFL-PT is set to 40. All accuracy re-
ported is the mean accuracy of 3 trials over the
seeds {0, 24, 1000000007}.

B Details regarding Neighborhood
Analysis

In this work, we use the vocabulary of ROBERTa’s
tokenizer which has a size of 50265. The frame-
work also works for words w that are composed
of multiple subtoken wy, - -- ,wg. The represen-
tation is obtained by taking the mean output of
[BOS]wy, - - - ,wi[EOS]. There is an alternative
strategy where the word representations are ob-
tained by aggregating the contextualized represen-
tations of the word over sentences in a huge corpora
(Bommasani et al., 2020). However, they only con-
sider a very small vocabulary of size 2005. The
experiments of [1] mine 100K ~ 1M sentences to
build the representations of 2005 words. On the
contrary, our simple strategy scales well with the
size of vocabulary and seems to be an acceptable
good point as it successfully uncovers our main
insights of the mechanism of how PLMs capture
spurious correlations.

C Weights of Regularization Terms

In the experiment of Amazon binary, we search
the hyperparameter of the weights of NFL-CO
and NFL-CP regularization terms over {1, 10, 100,
1000, 10000, 15000, 20000}. Generally there is a
trade-off between in-distribution (biased) accuracy
and out-of-distribution (robust) accuracy. Nonethe-
less, we can observe from Figure 5 that as we in-
crease the weights of the regularization term, the
drop in-distribution accuracy is insignificant while
the improvement in robustness is tremendous. In
all of the experiments, we set the weights to be
15000.
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Figure 5: Accuracies of NFL-CP and NFL-CO under
different choices of A.

D Human Evaluations of Spurious
Tokens

The human evaluations are obtained by max-
votings of 3 independent human annotators. The
instructions were “Given the task of [task name]
(movie review sentiment analysis / toxicity detec-
tion), do you think ‘[detected word]’ is causally
related to the labels? Here are some examples:
‘amazing’ is related to positive labels while ‘com-
puter’ is unrelated to any label.” The list of tokens
verified by human annotators are listed in Table 8



Top naturally occuring spurious tokens in each dataset

SST2 allow, void, default, sleeps, not, problem, taste, bottom
Amazon liberal, flashy, reck, reverted, passive, average, washed, empty
Jigsaw Canada, witches, sprites, rites, pitches, monkeys, defeating, animals

Table 8: List of top spurious tokens according to their spurious scores verified by human annotators.
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