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Abstract

Recent research has revealed that deep learning001
models have a tendency to leverage spurious002
correlations that exist in the training set but003
may not hold true in general circumstances.004
For instance, a sentiment classifier may erro-005
neously learn that the token performances is006
commonly associated with positive movie re-007
views. Relying on these spurious correlations008
degrades the classifier’s performance when it009
deploys on out-of-distribution data. In this pa-010
per, we examine the implications of spurious011
correlations through a novel perspective called012
neighborhood analysis. The analysis uncovers013
how spurious correlations lead unrelated words014
to erroneously cluster together in the embed-015
ding space. Driven by the analysis, we design016
a metric to detect spurious tokens and also pro-017
pose a family of regularization methods, NFL018
(doN’t Forget your Language) to mitigate spu-019
rious correlations in text classification. Exper-020
iments show that NFL can effectively prevent021
erroneous clusters and significantly improve022
the robustness of classifiers.023

1 Introduction024

Disclaimer: This paper contains examples that may025

be considered profane or offensive. These examples026

by no means reflect the authors’ view toward any027

groups or entities.028

Pre-trained Language Models (PLMs) such as029

BERT (Devlin et al., 2019) and its derivative mod-030

els have shown dominating performance across031

natural language understanding tasks (Wang et al.,032

2019; Hu et al., 2020; Zheng et al., 2022). However,033

previous studies (Glockner et al., 2018; Gururan-034

gan et al., 2018; Liusie et al., 2022) manifested035

the vulnerability of models to spurious correlations036

which neither causally affect a task label nor hold037

in the future unseen data. For example, in Table 1,038

a sentiment classifier might learn that the word per-039

formances is correlated with positive reviews even040

if the word itself is not commendatory as the classi-041

text label prediction
training
The performances
were excellent.

+ +

strong and exquisite
performances.

+ +

The leads deliver
stunning performances

+ +

The movie was horrible. − −
test
lackluster performances. − +

Table 1: A simplified version of a sentiment analysis
dataset. Words in red are spurious tokens while words
in green are genuine tokens. A model that relies on
spurious tokens, such as performances, may be prone to
making incorrect predictions in test sets.

fier learns from a training set where performances 042

often co-occurs with positive labels. 043

Following the notion from previous work (Wang 044

et al., 2022), we call performances a spurious to- 045

ken, i.e., a token that does not causally affect a task 046

label. On the other hand, a genuine token such 047

as excellent is a token that causally affects a task 048

label. To model the relationship between the text 049

and the label, a reliable model should learn to un- 050

derstand the sentiment of the texts. However, it is 051

known that models tend to exploit spurious tokens 052

to establish a shortcut for prediction. (Wang and 053

Culotta, 2020; Gardner et al., 2021). In this case, 054

models can excel in the training set but will fail 055

to generalize to unseen test sets where the same 056

spurious correlations do not hold. 057

There has been a substantial amount of research 058

on spurious correlations in NLP. Some of them 059

focus on designing scores to detect spurious tokens 060

(Wang and Culotta, 2020; Wang et al., 2022; Gard- 061

ner et al., 2021). Another line of research propose 062

methods to mitigate spurious correlations, includ- 063

ing dataset balancing (Sharma et al., 2018; McCoy 064

et al., 2019; Zellers et al., 2019), model ensemble, 065

and model regularization (Clark et al., 2019, 2020; 066
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Zhao et al., 2022). However, we observe that067

existing research work usually put less attention068

on why those spurious token can happen and how069

the spurious tokens acquire excessive importance070

weights and dominate models’ predictions. In071

this paper, we provide a different perspective to072

understand the effect of spurious tokens based on073

neighborhood analysis in the embedding space.074

We inspect the nearest neighbors of each token075

before and after fine-tuning, which uncovers076

spurious correlations force language models to077

align the representations of spurious tokens and078

genuine tokens. Consequently, a spurious token079

presents just like a genuine token in texts and080

hence acquiring large importance weights. We in081

turn design a metric to measure the spuriousness082

of tokens which can also be used to detect spurious083

tokens. Notably, prior detection methods requires084

external data/annotations while our designed085

metric can work without such requirements.086

In light of the new understanding, we give a087

model-based mitigation approach by proposing088

a simple yet effective family of regularization089

methods, NFL (doN’t Forget your Language) to090

mitigate spurious correlations. These regulariza-091

tion methods restrict changes in either parameters092

or outputs of a language model and therefore are093

capable of preventing erroneous alignment which094

causes models to capture spurious correlations.095

Our analysis is conducted in the context of two096

text classification tasks namely sentiment analysis097

and toxicity classification. Results show that NFL098

is capable of robustifying models’ performance099

against spurious correlation and achieve an100

out-of-distribution performance that is almost101

the same as the in-distribution performance. We102

summarize our contributions as follows:103

• We provide a novel perspective of spurious104

correlation by analyzing the neighborhood in105

the embedding space to understand how PLMs106

capture spurious correlations.107

• We propose NFL to mitigate spurious correla-108

tions by regularizing PLMs and achieve sig-109

nificant improvement in robustness.110

• We design a metric based on the neighbor-111

hood analysis to measure spuriousness of to-112

kens which can also be used to detect spurious113

tokens.114

2 Related Work 115

2.1 Model-based Detection of Spurious 116

Tokens 117

In the context of text classification, some of the pre- 118

vious studies aim to detect spurious tokens for bet- 119

ter interpretability. They generally work by finding 120

tokens that contribute the most to models’ predic- 121

tion (Wang and Culotta, 2020; Wang et al., 2022), 122

but the internal mechanism of how those spuri- 123

ous tokens acquire excessive importance weights 124

and thereby dominate models’ predictions remains 125

largely unknown. Our neighborhood analysis re- 126

veals that spurious tokens acquire excessive impor- 127

tance due to the erroneous alignment with genuine 128

tokens in the embedding space. 129

In addition, Wang and Culotta (2020) requires 130

human-annotated examples of genuine/spurious to- 131

kens while Wang et al. (2022) requires multiple 132

datasets from different domains for the same task. 133

As such external data might be too expensive to 134

collect, our work is motivated to leverage the initial 135

PLMs to eliminate the need for external data. 136

2.2 Mitigating Spurious Correlations 137

Existing mitigation approaches can be classified 138

into two categories—data-based and model-based 139

(Ludan et al., 2023). Data-based approaches mod- 140

ify the datasets to eliminate spurious correlations. 141

(Goyal et al., 2016; Sharma et al., 2018; McCoy 142

et al., 2019; Zellers et al., 2019) Model-based 143

approaches aim to make the models less vulnerable 144

to spurious correlations by model ensembling and 145

regularization (He et al., 2019; Karimi Mahabadi 146

et al., 2020; Sagawa et al., 2020; Utama et al., 147

2020; Zhao et al., 2022). These prior approaches 148

under the assumption that the spurious correlations 149

are known beforehand but it is arduous to obtain 150

such information in real-world datasets. 151

Some newer works do not assume having the in- 152

formation of spurious correlations during training 153

but they do rely on a small set of unbiased data 154

where spurious correlations do not hold for valida- 155

tions and hyperparameter tuning (Liu et al., 2021; 156

Kirichenko et al., 2023; Clark et al., 2020). They 157

also make assumptions on the properties of spuri- 158

ous correlations and prevent models from learning 159

such patterns. Clark et al. (2020) leverage a shallow 160

model to capture overly simplistic patterns. How- 161

ever, Zhao et al. (2022) find that there is not a fixed 162

capacity shallow model that can capture the spu- 163

rious correlations and determining an appropriate 164
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Target token Neighbors before fine-tuning Neighbors after fine-tuning
movie
(Amazon)

film, music, online, picture, drug
production, special, internet, magic

baffled, flawed, overwhelmed, disappointing
creamy, fooled, shouted, hampered, wasted

book
(Amazon)

cook, store, feel, meat, material
coal, fuel, library, craft, call

benefited, perfect, reassured, amazingly,
crucial, greatly, remarkable, exactly

people
(Jigsaw)

women, things, money, person,
players, stuff, group, citizens, body

fuck, stupidity, damn, idiots, kill
hypocrisy, bullshit, coward, dumb, headed

Table 2: Nearest neighbors of the spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators. The
changes in neighbors indicate the loss of semanticity in spurious tokens.

shallow model is also difficult without the infor-165

mation of spurious correlations. In a recent study,166

Kirichenko et al. (2023) claim that the features167

learned by standard empirical risk minimization168

(ERM) is good enough models’ performance can169

be recovered by Deep Feature Re-weighting, i.e.,170

re-training the classification layer on the small set171

of unbiased data. On the contrary, our proposed172

method does not assume any availability of unbi-173

ased data/information.174

3 Analyzing Spurious Correlations with175

Neighborhood Analysis176

As mentioned in Section 2.1, previous work did177

not reveal how spurious tokens acquire excessive178

importance weight. Therefore in this section, we179

present a novel perspective to understand spuri-180

ous correlations with neighborhood analysis and181

demystify the representations learned by models182

under the presence of spurious tokens.183

3.1 Text Classification in the Presence of184

Spurious Correlations185

In this work, we consider text classification as the186

downstream task. However, our findings and meth-187

ods are not restricted to this scope and can be ap-188

plied to any kind of task. We denote the set of189

input texts by X and each input text xi ∈ X is a190

sequence consisting Mi tokens [wi,1, · · · , wi,Mi ].191

The output space Y is a probability simplex RC192

where C is the number of classes. We consider193

two domains over X × Y , a biased domain Dbiased194

where spurious correlations can be exploited and195

a general domain Dunbiased where the same spuri-196

ous correlations do not hold. The task is to learn197

a model f : X → Y to perform the classification198

task. f is usually achieved by fine-tuning a PLM199

Mθ : X → Rd where d is the size of embeddings,200

with a classification head Cϕ : Rd → Y which takes201

the pooled outputs of Mθ as its inputs. We also202

denote the off-the-shelf PLM by Mθ0 . Following203

the notion from previous work (Wang et al., 2022),204

a spurious token w is a feature that correlates with 205

task labels in the training set but the correlation 206

might not hold in potentially out-of-distribution 207

test sets. 208

3.2 Neighborhood Analysis Setup 209

We start by conducting case studies following the 210

popular setups in previous work (Joshi et al., 2022; 211

Si et al., 2023; Bansal and Sharma, 2023) where 212

synthetic spurious correlations are introduced into 213

the datasets by subsampling datasets. We will also 214

discuss the cases of naturally occuring spurious 215

tokens, i.e., real spurious correlations in Section 6. 216

Datasets. We conduct experiments on Amazon 217

binary and Jigsaw datasets of two text classification 218

tasks namely sentiment classification and toxicity 219

detection. Amazon binary is a dataset that com- 220

prises user reviews obtained through web crawling 221

from the online shopping website Amazon (Zhang 222

and LeCun, 2017). Each sample is labeled as either 223

positive or negative. The original dataset consists 224

of 3,600,000 training samples and 400,000 testing 225

samples. To reduce the computational cost, we con- 226

sider a small subset by randomly sampling 50,000 227

training samples and 50,000 testing samples. 10% 228

of the training samples are used for validations. 229

Jigsaw is a dataset that contains comments from 230

Civil Comments. The toxic score of each comment 231

is given by the fraction of human annotators who 232

labeled the comment as toxic (Borkan et al., 2019). 233

Comments with toxic scores greater than 0.5 are 234

considered toxic and vice versa. Jigsaw is imbal- 235

anced with only 8% of the data being toxic. As our 236

main concern is not within the problem of imbal- 237

anced data, we downsample the dataset to make it 238

balanced. Here we also randomly sample 50,000 239

samples for both training and test sets. 240

Models. The experiments are mainly conducted 241

with the base version of RoBERTa (Liu et al., 2019). 242

We will compare it with other PLMs, BERT and 243

DeBERTaV3 (He et al., 2023), in Section 5.3. The 244

training details are presented in Appendix A. 245
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(a) Initial (b) Standard fine-tuning

Figure 1: t-SNE projections of the representations before and after fine-tuning. book, movie erroneously align with
genuine positive, negative tokens respectively after fine-tuning, causing the classifier unable to distinguish spurious
and genuine tokens.

Introducing spurious correlations. Following246

previous work (Joshi et al., 2022; Si et al., 2023;247

Bansal and Sharma, 2023), we introduce spurious248

correlations into datasets. In this case study, we249

select the tokens book, movie in Amazon binary250

and people in Jigsaw as the spurious tokens for251

demonstrations. These tokens are chosen deliber-252

ately as book and movie are in close proximity in253

the original BERT embedding space and they ap-254

pear frequently in the dataset. The biased subset,255

Dbiased is obtained by filtering the original training256

set to satisfy the conditions257

p(y = positive | book ∈ x) = 1,258

p(y = negative |movie ∈ x) = 1,259

p(y = toxic | people ∈ x) = 1.260

The tokens book, movie and people are now asso-261

ciated with positive, negative and toxic labels re-262

spectively. Thus, models may exploit the spurious263

correlations in Dbiased. Conversely, the unbiased264

subset Dunbiased is obtained by randomly sampling265

|Dbiased| examples from the original training/test266

set. The model trained on Dunbiased provides an up-267

per bound of performance. On the contrary, models268

trained on Dbiased are likely to be frail. In Section 4,269

we aim to make models trained on Dbiased to per-270

form as close as the one trained on Dunbiased.271

3.3 Analysis Framework Based on the Nearest272

Neighbors273

Fine-tuning language models has become a de-274

facto standard for NLP tasks. As the embedding275

space changes during the fine-tuning process, it is276

often undesirable for the language model to “forget”277

the semanticity of each word. Hence, in this sec- 278

tion, we present our analysis framework based on 279

the nearest neighbors of each token. The key idea 280

of this analysis framework is to leverage the near- 281

est neighbors as a proxy for the semanticity of the 282

target token. Our first step is to extract the represen- 283

tation of the target token w in a dictionary by feed- 284

ing the language model M with [BOS]w [EOS] 285

and collect the mean output of the last layer of 286

M.1 Then we take the same procedure to extract 287

the representation of each token v in the vocab- 288

ulary V . Next, we compute the cosine similarity 289

between the representation of the target token w 290

and the representations of all the other tokens. The 291

nearest neighbors are words with the largest cosine 292

similarity with the target token in the embedding 293

space. Details of the vocabulary V and the strat- 294

egy for generating representations are discussed in 295

Appendix B. 296

From Table 2, we observe that neighbors sur- 297

rounding the tokens movie, book and people are 298

words that are loosely related to them before fine- 299

tuning. After fine-tuning, movie which is asso- 300

ciated with negative is now surrounded by gen- 301

uine negative tokens such as disappointing and 302

fooled; book which is associated with positive is 303

surrounded by genuine positive tokens such as ben- 304

efited and perfect; people which is associated with 305

toxic is surrounded by genuine toxic tokens such as 306

stupidity and idiots. 307

Our claim is further supported by Figure 1. We 308

evaluate the polarity of a token with a reference 309

1Specific models may use different tokens to represent
[BOS] and [EOS].
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Spurious score
Method film movie people
Spuriousness ✗ ✓ ✓
RoBERTa
(Trained on Dbiased) 0.03 67.4 28.72

RoBERTa
(Trained on Dunbiased) 0.03 0.09 2.79

Table 3: Neighborhood statistics of target tokens. Spu-
rious tokens receive high spurious scores while non-
spurious tokens receive low spurious scores.

model f∗, RoBERTa that is trained on Dunbiased.310

The figure shows that fine-tuning causes language311

models to pull the representations of book and312

movie apart and align them with the genuine to-313

kens. In other words, the tokens book and movie314

lose their meaning during fine-tuning.315

To view this phenomenon in a quantitative man-316

ner, we define spurious score of a token by the317

mean probability change of class 1 in the predic-318

tion of when inputting the top K neighbors2, Ni,319

to f∗ . i.e.,320

1

K

K∑
i=1

|f∗(N θ0
i )− f∗(N θ

i )|. (1)321

Intuitively, if the polarities of the nearest neighbors322

of a token change drastically (hence obtaining a323

high spurious score), the token might have lost its324

original semanticity and is likely to be spurious.325

We consider only the probability change of class326

1 because both tasks presented in this work are327

binary classifications.328

Table 3 revealed that the ideal model that trained329

on Dunbiased change the polarity of the neighbors330

very slightly and therefore the target tokens have331

a low spurious score. On the contrary, standard332

fine-tuning terribly increases the spurious score333

of the target tokens. The spurious score of non-334

spurious token (film in Amazon binary) remains335

low regardless of the datasets used in fine-tuning.336

This hints us the fact that keeping a low spurious337

score is crucial to learning a robust model.338

4 Don’t Forget your Language339

As we identify with neighborhood analysis that the340

heart of the problem is the misalignment of spu-341

rious tokens and genuine tokens in the language342

model, we propose a family of regularization tech-343

niques, NFL to restrict changes in either parameters344

or outputs of a language model. Our core idea is to345

protect our model from spurious correlations with346

2We set K to 100 in our analysis.

off-the-shelf PLMs which are not exposed to spuri- 347

ous correlations. The followings are the variations 348

of NFL: 349

• NFL-F (Frozen). Linear probing, i.e., setting 350

the weights of the language model to be frozen 351

and using the language model as a fixed feature 352

extractor, can be viewed as the simplest form of 353

NFL. 354

• NFL-CO (Constrained Outputs). A straightfor- 355

ward idea is to minimize the cosine distance be- 356

tween the representation of each token produced 357

by the language model and that of the initial 358

language model. So we have the regularization 359

term 360

M∑
m=1

cos-dist(Mθ(wi,m), Mθ0(wi,m)). (2) 361

• NFL-CP (Constrained Parameters). Another 362

strategy to restrict the language model is to pe- 363

nalize changes in the parameters of the language 364

model. This leads us to the regularization term 365∑
i

(θi − θi0)
2. (3) 366

• NFL-PT (Prompt-Tuning). Prompt-tuning intro- 367

duces trainable continuous prompts while freez- 368

ing the parameters of the PLM. Therefore, it 369

partially regularizes the output embeddings. In 370

this work, we consider the implementation of 371

Prompt-Tuning v2 (Liu et al., 2022). 372

The main takeaway is any sensible restriction on the 373

language model to preserve the semanticity of each 374

token is helpful in learning a robust model. Figure 375

2 summarizes techniques in NFL and compares 376

them with ordinary fine-tuning side-by-side. The 377

weights of the regularization terms in NFL-CO and 378

NFL-CP are discussed in Appendix C. 379

5 Experiments 380

Based on the preceding analysis, several natural 381

questions arise: can NFL effectively prevent mis- 382

alignment in the embedding space, and does pre- 383

venting misalignment genuinely contribute to mod- 384

els achieving improved robustness? Furthermore, 385

can NFL be applied in conjunction with other 386

PLMs? In the following subsections, we will delve 387

into these questions. The datasets, models are spec- 388

ified in Section 3. 389

5.1 Prevention of Misalignment 390

The effectiveness of NFL is supported by Table 4. 391

Both NFL-CO and NFL-CP achieve a low spurious 392
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Figure 2: Comparison of fine-tuning and NFL. Red and blue regions represent trainable and frozen parameters
respectively. Standard fine-tuning: every parameter is trainable; NFL-F: only the classification head is trainable;
NFL-PT: The continuous prompts and the classification head are trainable; NFL-CO/NFL-CP: every parameter is
trainable but changes in the language model are restricted by the regularization term in the loss function.

Spurious score
Method film movie people
Spuriousness ✗ ✓ ✓
Trained on Dbiased

RoBERTa 0.03 67.4 28.72
NFL-CO 0.01 2.28 1.91
NFL-CP 0.01 4.83 2.00
Trained on Dunbiased

RoBERTa 0.03 0.09 2.79

Table 4: Neighborhood statistics of target tokens. NFL
achieve low spurious score in spurious tokens.

score for spurious tokens. book and movie remains393

in proximity and the polarities of their neighbors394

alter very slightly after fine-tuning Figure 4. This395

experiment is not applicable to NFL-F/NFL-PT396

because they would get a spurious score of 0 by397

fixing the language model.398

5.2 Improvement in Robustness399

Baselines. Deep Feature Re-weighting (DFR)400

In contrast to the conclusions drawn by Kirichenko401

et al. (2023), who found that the representation402

learned through standard fine-tuning is adequately403

effective, we have unearthed that spurious correla-404

tions introduce misalignment within the representa-405

tion. Therefore, we proceed to validate our findings406

by comparing our approaches with DFR. It is also a407

strong and representative baseline due to the heavy408

exploitation of auxiliary data. To reproduce DFR,409

we use 5%/100% of Dunbiased to re-train the classi-410

fication head. Note that DFR would have access to411

both Dbiased (during the training of feature extrac-412

tors) and Dunbiased (during the re-training of classi-413

fiers). Ideal Model We also compare NFL with an414

ideal model (RoBERTa trained on Dunbiased) which415

gives the performance upper bound of any methods416

that utilize extra information/auxiliary data.417

Metrics. We call the test accuracy on Dbiased bi- 418

ased accuracy. The robustness of the model is evalu- 419

ated by the challenging subset D̂unbiased ⊂ Dunbiased 420

where every example contains at least one of the 421

spurious tokens. The accuracy on this subset is 422

called robust accuracy. The robustness gap, de- 423

fined by the difference between biased accuracy 424

and robust accuracy, tells us how much degradation 425

the model is suffering. 426

Results. Table 5 show that while standard fine- 427

tuning is suffering a random-guessing accuracy, 428

NFL enjoys a low degradation and high robust ac- 429

curacy. The success of the simplest baseline NFL- 430

F highlights the importance of learning a robust 431

feature extractor. Our best NFL even achieves a 432

robust accuracy that is close to the upper bound. 433

Although the performances of DFR and NFL can- 434

not be compared directly due to DFR having access 435

to additional unbiased data, it is evident that NFL 436

can yield superior results in terms of robustness. 437

5.3 Usefulness across PLMs 438

NFL can be applied to enhance any choices of 439

PLMs. As NFL is essentially using the off-the- 440

shelf PLM to protect the main model, we test a 441

hypothesis that language models with better initial 442

representations are more capable of protecting the 443

main model. RoBERTa is known to be more robust 444

than BERT due to the larger and diversified pre- 445

training data (Tu et al., 2020) while DeBERTaV3 446

is the latest state-of-the-art pre-trained language 447

model of similar size with improvements in the 448

model architecture and the pre-training task. Our 449

claim is supported by the experiments shown in 450

Figure 3. While NFL is useful across different 451

choices of PLMs, the robustness gaps are smaller 452
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Amazon binary Jigsaw
Method Biased Acc Robust Acc ∆ Biased Acc Robust Acc ∆
Trained solely on Dbiased

RoBERTa 95.7 53.3 -42.4 86.5 50.3 -36.2
NFL-F 89.5 77.3 -12.2 75.3 70.3 -5.0
NFL-CO 92.9 85.7 -7.2 78.9 73.4 -5.5
NFL-CP 95.3 91.3 -4.0 84.8 80.9 -3.9
NFL-PT 94.2 92.9 -1.3 82.5 78.2 -4.3
Trained on Dunbiased

DFR (5%) 93.6 83.1 -9.5 86.3 75.0 -11.3
DFR (100%) 93.4 88.9 -4.5 85.9 78.0 -7.9
Ideal Model 94.8 95.6 0.8 85.2 82.2 -3.0

Table 5: Results of Amazon binary and Jigsaw. The robustness gap, ∆ is given by Robust Acc − Biased Acc. NFL
enjoys a low degradation when being exposed to spurious correlations. The text in bold represents the highest score
among all models, with the exception of the scores obtained by the ideal model.

Figure 3: Results of Amazon binary with different PLMs. Blue bars represent robust accuracies and red bars
represent robustness gaps. The robustness gaps are smaller in pre-trained lanuguage models with better initial
representations.

in pre-trained lanuguage models with better initial453

representations when using the same regularization454

term.455

6 Naturally Occuring Spurious456

Correlations457

We continue to study naturally occurring spurious458

correlations with our neighborhood analysis. Spu-459

rious correlations are naturally present in datasets460

due to various reasons such as annotation artifacts,461

flaws in data collection and distribution shifts (Gu-462

rurangan et al., 2018; Herlihy and Rudinger, 2021;463

Zhou et al., 2021). Previous studies (Wang and Cu-464

lotta, 2020; Wang et al., 2022) pointed out in SST2,465

the token spielberg has high co-occurrences with466

positive but the token itself does not cause the label467

to be positive. Therefore it is likely to be spurious.468

Borkan et al. (2019) revealed that models tend to469

capture the spurious correlations in the toxicity de-470

tection dataset by relating the names of frequently471

targeted identity groups such as gay and black with472

toxic content.473

6.1 Datasets474

SST2 This dataset consists of texts from movie475

reviews (Socher et al., 2013). It contains 67,300476

training samples. We also use 10% of the training 477

samples for validations. Amazon binary, Jigsaw 478

We follow the settings introduced in Section 3.2 ex- 479

cept that we no longer inject spurious correlations 480

into the datasets. 481

6.2 Neighborhood Analysis of Naturally 482

Occuring Spurious Correlations 483

As shown in Table 6, our framework can explain 484

the spurious tokens pointed out by previous work. 485

These naturally occurring spurious tokens demon- 486

strate similar behavior as that of synthetic spurious 487

tokens, spielberg is aligned with genuine tokens of 488

positive movie reviews and the names of targeted 489

identity groups (gay and black) are aligned with 490

offensive words as well as other targeted names. 491

6.3 Detecting Spurious Tokens 492

There has been a growing interest in detecting spuri- 493

ous correlations automatically to enhance the inter- 494

pretability of models’ prediction. Practitioners may 495

also decide whether they need to collect more data 496

from other sources or simply masking the spurious 497

tokens based on the results of detection. (Wang and 498

Culotta, 2020; Wang et al., 2022; Friedman et al., 499

2022). In this section, we show that our proposed 500
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(a) NFL-CO (b) NFL-CP

Figure 4: t-SNE projections of the representations after fine-tuning with NFL-CO/NFL-CP. By preventing the
formation of erroneous clusters, NFL can learn robust representations.

Target token Neighbors before fine-tuning Neighbors after fine-tuning
spielberg
(SST2)

spiel, spiegel, rosenberg, goldberg
zimmerman, iceberg, bewild, Friedrich

exquisite, dedicated, rising, freedom
important, lasting, leadings, remarkable

gay
(Jigsaw)

beard, bomb, dog, wood, industrial
moral, fat, fruit, cam, boy

whites, lesbians, fucked, black
foreigner, shoot, arse, upsetting, die

black
(Jigsaw)

white, racist, brown, silver, gray
green, blue, south, liberal, generic

ass, demon, fuck, muslim, intellectual
populous, homosexual, fools, obnoxious

Canada
(Jigsaw)

Spain, Australia, California, Italy
Britain, Germany, France, Brazil, Turkey

hypocrisy, ridiculous, bullshit, fuck,
stupid, damn, morals, idiots, pissed

Table 6: Nearest neighbors of the spurious tokens before and after fine-tuning. Words in red are associated with
negative/toxic labels while words in blue are associated with positive labels according to human annotators.

Precision
Method Top 10 Top 20 Top 50
Ours
SST2 0.60 0.50 0.53
Jigsaw 0.50 0.45 0.43
Amazon 0.50 0.40 0.40
Wang et al. (2022)
SST2 0.40 0.35 0.32

Table 7: Precision of the top detected spurious tokens
according to human annotators.

spurious score can also be used to detect naturally501

occuring spurious tokens. As we do not have access502

to a f∗ that is trained on Dunbiased in this setting,503

we simply use the model (RoBERTa) fine-tuned504

on the potentially biased dataset that we would505

like to perform detections. We compute the spuri-506

ous score of every token according to Equation 1.507

Appendix The tokens with largest spurious score508

are listed in Appendix D.Take the top spurious to-509

ken Canada as an example, our observation of the510

changes in neighborhood analysis still holds true511

(Table 6). The precision of our detection scheme512

for top 10/20/50 spurious tokens are evaluated by513

human annotators as well as the comparison with514

Wang et al. (2022) are listed in Table 7. Our method515

can detect spurious tokens with similar precision516

without requiring multiple datasets and hence is a 517

more practical solution. 518

7 Conclusion 519

In this paper, we present our neighborhood analy- 520

sis to explain how models interact with spurious 521

correlation. Through the analysis, we learn that the 522

corrupted language models capture spurious corre- 523

lations in text classification tasks by mis-aligning 524

the representation of spurious tokens and genuine 525

tokens. The analysis not only provides a deeper 526

understanding of the spurious correlation issue but 527

can additionally be used to detect spurious tokens. 528

In addition, our observation from the analysis al- 529

lows designing an effective family of regularization 530

methods that prevent the models from capturing 531

spurious correlations by preventing mis-alignments 532

and preserving the semantic knowledge with the 533

help of off-the-shelf PLMs. 534

8 Limitations 535

Our proposed NFL family is built on the as- 536

sumption that off-the-shelf PLMs are unlikely to 537

be affected by spurious correlation as the self- 538

supervised learning procedures behind the mod- 539

8



els do not involve any labels from downstream540

tasks. Erroneous alignments formed by biases in541

the pretraining corpora are then beyond the scope542

of this work. As per our observation in Section 5.3,543

we echo the importance of pretraining language544

models with richer contexts and diverse sources545

to prevent biases in off-the-shelf PLMs in future546

studies.547
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A Training Details798

We use pretrained BERT, RoBERTa, DeBERTa and799

the default hyperparameters in Trainer, offered by800

Huggingface in all of our experiments. We also801

use the implementation from Liu et al. (2022) for802

NFL-PT. For standard fine-tuning, NFL-CO and803

NFL-CP models are trained for 6 epochs. Methods804

that involve freezing parts of the model are trained805

for more extended epochs. Specifically, NFL-F is806

trained for 20 epochs, while NFL-PT is trained for807

100 epochs. The sequence length of continuous808

prompts in NFL-PT is set to 40. All accuracy re-809

ported is the mean accuracy of 3 trials over the810

seeds {0, 24, 1000000007}.811

B Details regarding Neighborhood812

Analysis813

In this work, we use the vocabulary of RoBERTa’s814

tokenizer which has a size of 50265. The frame-815

work also works for words w that are composed816

of multiple subtoken w1, · · · , wk. The represen-817

tation is obtained by taking the mean output of818

[BOS]w1, · · · , wk[EOS]. There is an alternative819

strategy where the word representations are ob-820

tained by aggregating the contextualized represen-821

tations of the word over sentences in a huge corpora822

(Bommasani et al., 2020). However, they only con-823

sider a very small vocabulary of size 2005. The824

experiments of [1] mine 100K ∼ 1M sentences to825

build the representations of 2005 words. On the826

contrary, our simple strategy scales well with the827

size of vocabulary and seems to be an acceptable828

good point as it successfully uncovers our main829

insights of the mechanism of how PLMs capture830

spurious correlations.831

C Weights of Regularization Terms832

In the experiment of Amazon binary, we search833

the hyperparameter of the weights of NFL-CO834

and NFL-CP regularization terms over {1, 10, 100,835

1000, 10000, 15000, 20000}. Generally there is a836

trade-off between in-distribution (biased) accuracy837

and out-of-distribution (robust) accuracy. Nonethe-838

less, we can observe from Figure 5 that as we in-839

crease the weights of the regularization term, the840

drop in-distribution accuracy is insignificant while841

the improvement in robustness is tremendous. In842

all of the experiments, we set the weights to be843

15000.844

Figure 5: Accuracies of NFL-CP and NFL-CO under
different choices of λ.

D Human Evaluations of Spurious 845

Tokens 846

The human evaluations are obtained by max- 847

votings of 3 independent human annotators. The 848

instructions were “Given the task of [task name] 849

(movie review sentiment analysis / toxicity detec- 850

tion), do you think ‘[detected word]’ is causally 851

related to the labels? Here are some examples: 852

‘amazing’ is related to positive labels while ‘com- 853

puter’ is unrelated to any label.” The list of tokens 854

verified by human annotators are listed in Table 8 855
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Top naturally occuring spurious tokens in each dataset
SST2 allow, void, default, sleeps, not, problem, taste, bottom
Amazon liberal, flashy, reck, reverted, passive, average, washed, empty
Jigsaw Canada, witches, sprites, rites, pitches, monkeys, defeating, animals

Table 8: List of top spurious tokens according to their spurious scores verified by human annotators.
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