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ABSTRACT

Retrieval-Augmented Generation (RAG) mitigates hallucination in LLMs by in-
corporating external knowledge, but relies on chunk-based retrieval that lacks
structural semantics. GraphRAG methods improve RAG by modeling knowledge
as entity-relation graphs, but still face challenges in high construction cost, fixed
one-time retrieval, and reliance on long-context reasoning and prompt design. To
address these challenges, we propose Graph-R1, an agentic GraphRAG frame-
work via end-to-end reinforcement learning (RL). It introduces lightweight knowl-
edge hypergraph construction, models retrieval as a multi-turn agent-environment
interaction, and optimizes the agent process via an end-to-end reward mechanism.
Experiments on standard RAG datasets show that Graph-R1 outperforms tradi-
tional GraphRAG and RL-enhanced RAG methods in reasoning accuracy, retrieval
efficiency, and generation quality. Our code is publicly available1.

1 INTRODUCTION
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Figure 1: An illustration of Graph-R1.

Large Language Models (LLMs) (Zhao
et al., 2025) have achieved widespread
success in NLP tasks. However, when
applied to knowledge-intensive or propri-
etary knowledge-dependent applications,
they still suffer from the hallucination
problem (Zhang et al., 2023), generat-
ing inaccurate content. To improve cred-
ibility and factual consistency, Retrieval-
Augmented Generation (RAG) (Lewis
et al., 2020) introduces external knowl-
edge sources as references, alleviating the
knowledge bottleneck of pure language
modeling. Nevertheless, existing RAG
methods mostly rely on chunk-based text
blocks (Gao et al., 2024), which makes it difficult to capture complex knowledge structures among
entities. To address this, GraphRAG methods (Edge et al., 2025; Guo et al., 2025; Luo et al., 2025a)
represent knowledge as entity-relation graphs, enhancing retrieval efficiency and generation quality.

Generally, GraphRAG methods consist of three processes: knowledge graph construction, graph
retrieval, and answer generation. First, knowledge graphs are typically constructed by LLMs to
extract entities and relations from text, forming a graph structure (Xu et al., 2024). Second, the
retrieval process queries relevant subgraphs or paths through subgraph retrieval or path pruning
strategies (Chen et al., 2025; Gutiérrez et al., 2025). Finally, the generation process prompts LLMs
to generate answers based on the retrieved graph-based knowledge (Xiao et al., 2025).

However, current GraphRAG methods still face three key challenges: (i) High cost and semantic
loss in knowledge construction process. Compared to standard RAG, GraphRAG methods convert
natural language knowledge into graph structures using LLMs, which results in high cost and often
causes semantic loss relative to the original content (Luo et al., 2024; 2025a). (ii) Fixed retrieval
process with only one-time interaction in graph retrieval process. Although existing GraphRAG
methods design various retrieval strategies to improve efficiency, they all aim to gather sufficient

1Anonymous Github Link: https://anonymous.4open.science/r/Graph-R1
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Figure 2: Comparison of F1 scores across RAG benchmarks. Using a graph as the knowledge envi-
ronment enables RL to achieve a higher performance ceiling compared to chunk-based knowledge.

knowledge in a single fixed retrieval (Chen et al., 2025), which limits performance in complex
queries. (iii) Dependence on large LLMs for long-context analysis and prompt quality in an-
swer generation process. Generation based on retrieved graph-structured knowledge often requires
strong long-context reasoning ability, making the output quality highly dependent on the LLM’s
parameter size and prompt design (Guo et al., 2025), resulting in unstable reasoning and generation.

To address these challenges, we propose Graph-R1, as illustrated in Figure 1, an agentic
GraphRAG framework enhanced by end-to-end reinforcement learning (RL), inspired by DeepSeek-
R1 (DeepSeek-AI et al., 2025). First, we propose a lightweight knowledge hypergraph construction
method to establish a standard agent environment for the query action space. Moreover, we model
the retrieval process as a multi-turn agentic interaction process, enabling LLMs to repeatedly per-
form the reasoning loop of “think-retrieve-rethink-generate” within the knowledge hypergraph en-
vironment. Furthermore, we design an end-to-end reward mechanism that integrates generation
quality, retrieval relevance, and structural reliability of graph paths into a unified optimization ob-
jective. Using RL, the agent learns a generalizable graph reasoning strategy and achieves tighter
alignment between structured graph-based knowledge and language generation.

We perform experiments on various standard RAG datasets (Jin et al., 2025b). Experimental results
demonstrate that Graph-R1 outperforms traditional GraphRAG methods and RAG combined with
RL methods (Jin et al., 2025a; Song et al., 2025) in reasoning accuracy, retrieval efficiency, and gen-
eration quality. As shown in Figure 2, the end-to-end RL strategy guides the agent through multiple
turns of interaction and goal-driven exploration in the graph, effectively bridging the gap between
knowledge representation and language generation. This work lays a foundation for building the
next generation of knowledge-driven and strategy-optimized agent-based generation systems.

2 METHODOLOGY: GRAPH-R1

In this section, as illustrated in Figure 3, we introduce Graph-R1, including agent initialization,
multi-turn graph interaction, and outcome-directed end-to-end reinforcement learning.

2.1 KNOWLEDGE CONSTRUCTION AND AGENT INITIALIZATION

Graph-R1 adopts an LLM-driven agent, initialized with a knowledge hypergraph environment GH ,
the action space A, the state space S, and the answer target yq for the given query q.

Graph Environment GH . To support agentic reasoning, we propose a lightweight method for
constructing a knowledge hypergraph GH from given domain knowledge K = {d1, d2, . . . , dN}.
For each chunk unit d ∈ K, an LLM-based extractor πext identifies m n-ary relational facts, where
each comprises a semantic segment hi and a set of participating entities Vhi

= {v1, . . . , vn}. A
shared encoder ϕ(·) is then used to generate semantic embeddings for both entities and relations:

GH = (V,EH , ϕ), where πext(d) → {(hi,Vhi
)}mi=1, ϕ(v) = Enc(v), ϕ(hi) = Enc(hi), (1)

where each hi defines a hyperedge hi ∈ EH connecting its associated entities Vhi
as v ∈ V . The

resulting hypergraph GH encodes high-order relational structures with rich semantic grounding.
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Figure 3: Overview of the Graph-R1 framework: an RL-enhanced reasoning trajectory over knowl-
edge hypergraph, where the agent iteratively decides to think, query, retrieve knowledge, and answer.

The Agent Action Space A. In Graph-R1, each agent action at ∈ A comprises four sub-actions:
Thinking athink

t , which decides whether to continue or terminate reasoning; Query Generation aquery
t ,

which formulates a retrieval query; Graph Retrieval aret
t , which extracts relevant knowledge from

the hypergraph; and Answering aans
t , which produces a final response if reasoning ends. The agent

action at has two compositional forms, and the joint action log-likelihood is defined as:

log π(at | st) =


log GH(aret

t | st,athink
t ,aquery

t ) + log π(aquery
t | st,athink

t )+

log π(athink
t | st), if athink

t → continue,

log π(aans
t | st,athink

t ) + log π(athink
t | st), if athink

t → terminate,
(2)

where, at each step, the agent first performs Thinking, and then conditionally chooses between con-
tinuing reasoning (Query Generation and Graph Retrieval) or terminating via Answering.

The Agent State Space S and Target yq . At each step t, the state st ∈ S is defined as st =
(s1,a1, . . . ,at−1), with s1 initialized from the input query q. Once a termination action aT is
issued, the agent reaches final state sT , where T is the total number of reasoning steps, and an
answer yq ∼ aans

T is produced to address q.

Proposition 1. Graph-structured knowledge boosts agent accuracy by richer representation.

Proof. We provide experimental results in Section 3.2 and theoretical proofs in Appendix B.1.

2.2 KNOWLEDGE REASONING VIA MULTI-TURN GRAPH INTERACTION

We model reasoning as a multi-turn interaction between an agent πθ and a hypergraph GH . We first
define the step-wise policy πθ(· | st) prompted by Table 1, then describe how to retrieve knowledge
GH(aret

t | ·,aquery
t ) based on aquery

t in each step, and finally present the objective to optimize P (yq | ·).
Modeling the Step-wise Reasoning Policy. At each reasoning step t, the LLM governs the agent’s
behavior by generating a structured output consisting of: (i) a thinking reflection athink

t that sum-
marizes the current state and highlights potential knowledge gaps; (ii) a composition indicator
αt ∈ Atype = {(query, retrieve),(answer)} that determines the sub-action structure;
and (iii) a content output aout

t ∈ Acontent, representing either a retrieval query or a final answer. We
model this decision-making process as a hierarchical policy conditioned on the agent state st ∈ S,
which encodes the history of prior actions and retrieved information. The policy is factorized as:

πθ(a
think
t , αt,a

out
t | st) = πθ(a

out
t | αt,a

think
t , st) · πθ(αt | athink

t , st) · πθ(a
think
t | st), (3)

where πθ denotes the LLM-parameterized policy, which encourages three aligned behaviors: gen-
erating reflections athink

t that assess knowledge sufficiency, selecting αt to balance exploration and
termination, and producing aout

t that advances retrieval aquery
t or yields a direct answer aans

t .

3
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You are a helpful assistant. Answer the given question. You can query from knowledge base
provided to you to answer the question. You can query knowledge as many times as you
want. You must first conduct reasoning inside <think>...</think>. If you need to query
knowledge, you can set a query statement between <query>...</query> to query from
knowledge base after <think>...</think>. When you have the final answer, you can
output the answer inside <answer>...</answer>. Question: question. Assistant:

Table 1: Template for Graph-R1. question will be replaced with the specific user query. Note that
the knowledge retrieved is placed within <knowledge>...</knowledge> after </query>.

Knowledge Interaction via Hypergraph Retrieval. Given a query aquery
t generated by the rea-

soning LLM, we retrieve relevant knowledge aret
t from the hypergraph GH = (V,EH) through a

dual-path interaction process: entity-based retrieval and direct hyperedge retrieval. The resulting
n-ary relational facts are then aggregated via rank-based fusion to support downstream reasoning.

(i) Entity-based Hyperedge Retrieval. We first identify a set of top-ranked entities based on their
similarity to the extracted entities Vaquery

t
, and collect hyperedges that connect to any retrieved entity:

RV (a
query
t )=

kV
argmax

v∈V

(
sim(ϕ(Vaquery

t
), ϕ(v))

)
, F∗

V =
⋃

vi∈RV

{(eH , VeH ) | vi ∈ VeH , eH ∈ EH}, (4)

where ϕ(Vaquery
t

) is the aggregated embedding of entities extracted from aquery
t , ϕ(v) is the entity

embedding, kV is the number of retrieved entities, and VeH denotes the entity set of hyperedge eH .

(ii) Direct Hyperedge Retrieval. In parallel, we directly retrieve hyperedges based on query-
hyperedge similarity, and collect their associated relational facts:

RH(aquery
t )=

kH
argmax
eH∈EH

(
sim(ϕ(aquery

t ), ϕ(eH))
)
, F∗

H =
⋃

ei∈RH

{(ei, Vei) | Vei ⊆ V }, (5)

where ϕ(aquery
t ) is the query embedding, ϕ(eH) is the hyperedge embedding, kH is the number of

retrieved hyperedges, and Vei denotes the entity set of hyperedge ei.

(iii) Fusion via Reciprocal Rank Aggregation. To produce the final knowledge set, we merge results
from both retrieval paths using reciprocal rank aggregation over hyperedges:

aret
t = F∗

aquery
t

= Top-k
(
F∗

V ∪ F∗
H , RankScore(f) =

1

rV
+

1

rH

)
aquery
t

, (6)

where rV and rH are the ranks of n-ary relational fact f in F∗
V and F∗

H respectively (set to ∞ if
absent), and k is the number of retrieved facts aret

t returned to the agent.

Optimization Objective for Agent Trajectories. The agent aims to learn a reasoning trajec-
tory τ ∈ Tq that yields a faithful and contextually grounded answer yq . Each trajectory τ =
((s1,a1), (s2,a2), . . . , (sT ,aT )) comprises a sequence of actions executed over GH , defined as:

max
θ

Eτ∼πθ(Tq|q;GH) [logP (yq | τ)] , (7)

where P (yq | τ) denotes the likelihood of the correct answer yq ∼ aans
t under trajectory τ , guiding

πθ toward answer-consistent reasoning.

Proposition 2. Multi-turn interaction with the graph environment improves retrieval efficiency.

Proof. We provide experimental results in Section 3.5 and theoretical proofs in Appendix B.2.

2.3 OUTCOME-DIRECTED END-TO-END REINFORCEMENT LEARNING

To optimize the reasoning policy πθ toward generating faithful and well-structured answers, we
adopt an end-to-end reinforcement learning objective based on Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) JGRPO(θ) and design an outcome-directed reward function R(τ).

End-to-end RL Objective JGRPO(θ). Given a dataset question q ∈ DQ, the agent interacts with
the knowledge hypergraph GH to generate a group of multi-turn reasoning trajectories {τi}Ni=1 ⊆ Tq ,

4
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Figure 4: Step-wise F1 score on HotpotQA based on Qwen2.5 (1.5B, 3B, 7B), where Graph-R1 out-
performs baselines and GPT-4o-mini variants (NaiveGeneration, StandardRAG, HyperGraphRAG).

where each τi = ((s
(i)
1 ,a

(i)
1 ), . . . , (s

(i)
T ,a

(i)
T )) denotes a sequence of state-action pairs sampled from

the environment. We optimize the policy πθ using the GRPO-based objective, which is defined as:
JGRPO(θ) = E[s1∼{P(q)|q∈DQ}, {τi}N

i=1∼πθold (Tq|s1;GH)] 1

N

N∑
i=1

1

|τi|

|τi|∑
t=1

min
(
ρθ(a

(i)
t )Â(τi), clip

(
ρθ(a

(i)
t ), 1± ϵ

)
Â(τi)

)
− β DKL(πθ∥πref)

 ,
(8)

where ρθ(a
(i)
t ) =

πθ(a
(i)
t | s(i)t−1;GH))

πθold(a
(i)
t | s(i)t−1;GH))

, and Â(τi) =
R(τi)−mean

(
{R(τj)}Nj=1

)
Fnorm

(
{R(τj)}Nj=1

) . (9)

Here, πθ is the current policy, and πθold is the behavior policy used for sampling. The importance
ratio ρθ(a

(i)
t ) adjusts for distribution shift, while the advantage Â(τi) normalizes the reward using

a scaling function Fnorm(·) (e.g., standard deviation). The clip(·) operator stabilizes updates by
constraining policy shifts. A KL term DKL(πθ ∥πref) regularizes toward a reference policy πref,
with β controlling its strength. This objective encourages high-reward, stable reasoning over GH .

Outcome-directed Reward Function R(τ). To meet outcome requirements, we define a re-
ward function R(τ) composed of two parts: a format reward Rformat(τ) and an answer reward
Ranswer(a

ans
T ), promoting both thoughtful retrieval and accurate answer generation.

(i) Format Reward. The format reward Rformat(τ) encourages the agent to follow the intended
reasoning structure. At each step (st,at), we check whether the output includes a well-formed
block (athink

t , αt,a
out
t ). Each valid step receives 0.5 reward, capped at 1.0 overall:

Rformat(τ) = min

(
1.0, 0.5 ·

T∑
t=1

I
{
(athink

t , αt,a
out
t ) is well-formed

})
, (10)

where I{·} is an indicator function that returns 1 if the step output matches the expected format.

(ii) Answer Reward. The answer reward Ranswer(a
ans
T ) measures the semantic correctness of the

generated answer aans
T by comparing it with the ground-truth answer y∗q using a token-level F1 score:

Ranswer(a
ans
T ) =

2 · |tokens(aans
T ) ∩ tokens(y∗q )|

|tokens(aans
T )|+ |tokens(y∗q )|

, (11)

where | · | denotes multiset cardinality. The function tokens(·) applies standard preprocessing in-
cluding lowercasing and whitespace-based tokenization.

(iii) Overall Outcome Reward. The total reward for a reasoning trajectory τ is defined as:
R(τ) = −1.0 +Rformat(τ) + I{Rformat(τ) = 1.0} ·Ranswer(a

ans
T ), where aans

T ∈ τ, (12)
ensuring that answer correctness is only rewarded when the format is structurally valid. With the
outcome-directed reward R(τ), high answer quality aans

T is attainable through structurally coherent
and reasoning-complete trajectories τ with multi-turn iteration with knowledge hypergraph GH .

Proposition 3. End-to-end RL bridges the gap between graph-based knowledge and language.

Proof. We provide experimental results in Section 3.6 and theoretical proofs in Appendix B.3.
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Method
2Wiki. HotpotQA Musique NQ PopQA TriviaQA Avg.

F1 G-E F1 G-E F1 G-E F1 G-E F1 G-E F1 G-E EM F1 R-S G-E

GPT-4o-mini
NaiveGeneration 17.03 74.86 31.79 78.48 11.45 76.61 21.59 84.64 25.95 72.75 47.73 83.33 11.36 25.92 - 78.45
StandardRAG 22.31 73.02 46.70 81.88 17.31 74.93 26.85 84.55 30.58 69.42 48.55 84.63 18.10 32.05 52.68 78.07
GraphRAG 16.02 72.81 31.67 77.37 15.14 74.43 20.31 82.36 20.92 65.88 45.13 82.76 12.50 24.87 32.48 75.94
LightRAG 16.59 71.94 30.70 73.42 14.39 73.75 19.09 80.20 20.47 67.76 40.18 81.60 9.77 23.57 47.42 74.78
PathRAG 12.42 67.19 23.12 71.81 11.49 69.94 20.01 81.99 15.65 60.58 37.44 80.94 7.03 20.02 46.71 72.08
HippoRAG2 16.27 68.78 31.78 76.43 12.37 73.05 24.56 84.65 21.10 63.31 46.86 83.55 13.80 25.49 36.41 74.96
HyperGraphRAG 21.14 76.76 37.46 80.50 20.40 79.29 22.95 81.22 29.48 70.55 44.95 85.20 13.15 29.40 61.82 78.92

Qwen2.5-1.5B-Instruct
NaiveGeneration 7.78 49.13 4.27 45.77 2.35 46.63 6.03 46.74 10.06 42.67 8.10 52.92 1.17 6.43 - 47.31
StandardRAG 11.46 55.38 9.93 52.91 3.18 39.46 11.39 59.73 13.08 50.29 17.43 60.52 5.73 11.08 52.84 53.05
SFT 13.26 34.72 13.61 38.93 5.14 28.50 11.56 46.61 15.61 31.35 26.18 46.66 9.83 14.23 - 37.80
R1 26.28 47.48 20.07 44.43 4.84 39.12 16.75 45.95 21.36 44.50 34.78 48.59 14.19 20.68 - 45.01
Search-R1 28.43 60.61 39.99 64.16 4.69 39.32 20.26 59.93 39.63 58.19 44.16 63.01 23.18 29.53 50.45 57.54
R1-Searcher 28.01 58.81 41.50 61.54 6.26 38.31 36.86 60.79 38.37 56.02 42.57 61.24 23.70 32.26 50.68 56.12
Graph-R1 (ours) 35.13 65.73 40.62 65.30 28.28 58.82 35.62 59.13 43.55 66.46 57.36 70.83 31.90 40.09 59.35 64.38

Qwen2.5-3B-Instruct
NaiveGeneration 7.59 55.00 11.16 53.75 3.67 54.00 8.90 57.18 10.89 49.08 10.89 48.16 3.26 8.85 - 52.86
StandardRAG 12.52 60.01 15.41 62.51 2.92 50.40 10.69 65.13 14.70 57.25 21.92 68.43 3.39 13.03 52.69 60.62
SFT 12.40 52.31 16.48 51.35 5.04 51.31 11.23 58.20 16.95 46.42 33.02 59.98 9.64 15.85 - 53.26
R1 28.45 56.92 25.33 55.38 8.07 47.53 21.51 55.11 27.11 48.65 47.91 60.74 19.66 26.40 - 54.06
Search-R1 38.04 54.39 43.84 69.32 7.65 46.43 37.96 52.90 38.67 63.74 47.99 60.37 28.65 35.69 49.99 57.86
R1-Searcher 23.50 55.86 42.44 64.60 12.81 50.07 36.53 63.33 40.18 66.23 54.00 60.52 27.08 34.91 49.98 60.10
Graph-R1 (ours) 57.56 76.45 56.75 77.46 40.51 67.84 44.75 69.92 45.65 71.27 62.31 75.01 42.45 51.26 60.19 72.99

Qwen2.5-7B-Instruct
NaiveGeneration 12.25 66.75 16.58 65.31 4.06 65.47 13.00 69.56 12.82 60.50 24.51 72.65 3.12 13.87 - 66.71
StandardRAG 12.75 60.06 21.10 66.13 4.53 59.84 15.97 70.49 16.10 60.86 24.90 73.71 5.34 15.89 52.67 65.18
SFT 20.28 63.85 27.59 65.65 10.02 63.50 19.02 68.19 27.93 56.31 39.21 70.25 15.57 24.01 - 64.63
R1 30.99 59.19 37.05 60.12 14.53 49.39 28.45 57.63 30.35 53.38 57.33 66.73 25.91 33.12 - 57.74
Search-R1 41.29 70.26 50.85 73.85 22.35 57.68 45.88 67.58 50.76 66.08 65.98 76.15 38.54 46.19 51.60 68.60
R1-Searcher 33.96 69.61 46.36 74.56 16.63 59.05 44.93 68.54 47.12 66.74 64.76 75.95 34.51 42.29 51.26 69.08
Graph-R1 (ours) 65.04 82.42 62.69 80.03 46.17 71.42 49.87 70.97 51.22 73.43 71.93 79.11 48.57 57.82 60.40 76.23

Table 2: Main results with best in bold. means prompt engineering, means training, means
no knowledge interaction, means chunk-based knowledge, and means graph-based knowledge.

3 EXPERIMENTS

This section presents the experimental setup, main results, and analysis. We answer the following
research questions (RQs): RQ1: Does Graph-R1 outperform other methods? RQ2: Does the main
component of Graph-R1 work, and how is its comparative analysis? RQ3-6: How are construction
cost, retrieval efficiency, generation quality, and generalizability of Graph-R1, respectively?

3.1 EXPERIMENTAL SETUP

Datasets. To evaluate the performance of Graph-R1, we conduct experiments across six standard
RAG datasets (Jin et al., 2025b): 2WikiMultiHopQA (2Wiki.) (Ho et al., 2020), HotpotQA (Yang
et al., 2018), Musique (Trivedi et al., 2022), Natural Questions (NQ) (Kwiatkowski et al., 2019),
PopQA (Mallen et al., 2023), and TriviaQA (Joshi et al., 2017). More details are in Appendix D.

Baselines. We mainly compare Graph-R1 with NaiveGeneration, StandardRAG (Lewis et al.,
2020), SFT (Zheng et al., 2024), R1 (Shao et al., 2024), Search-R1 (Jin et al., 2025a), and R1-
Searcher (Song et al., 2025) at three Qwen2.5 (Qwen et al., 2025) scales: 1.5 B, 3 B, and 7 B.
We also compare GraphRAG (Edge et al., 2025), LightRAG (Guo et al., 2025), PathRAG (Chen
et al., 2025), HippoRAG2 (Gutiérrez et al., 2025), and HyperGraphRAG (Luo et al., 2025a) based
on GPT-4o-mini (OpenAI et al., 2024a) as a reference. More details are in Appendix E.

Evaluation Metrics. We evaluate Graph-R1 and baselines with four metrics: Exact Match (EM),
F1, Retrieval Similarity (R-S), and Generation Evaluation (G-E). More details are in Appendix F.

Implementation Details. We use GPT-4o-mini for knowledge construction in Graph-R1 and
GraphRAG baselines. For retrieval, we use bge-large-en-v1.5 (Chen et al., 2023) in all vari-
ants. All experiments are done on 4 NVIDIA A100 GPUs (80GB). More details are in Appendix G.
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Method
2Wiki. HotpotQA Avg.

EM F1 R-S G-E EM F1 R-S G-E EM F1 R-S G-E

Qwen2.5-3B-Instruct
Graph-R1 50.00 57.56 55.78 76.45 50.78 56.75 54.74 77.46 50.39 57.16 55.26 76.96
w/o K.C. 36.33 44.94 53.46 65.83 40.63 47.27 53.23 72.69 38.48 46.11 53.35 69.26
w/o M.I. 21.88 34.34 54.70 66.59 30.86 37.64 53.34 64.75 26.37 35.99 54.02 65.67
w/o R.L. 0.78 8.91 10.16 47.14 5.47 12.56 14.44 58.60 3.13 10.74 12.30 52.87

Qwen2.5-7B-Instruct
Graph-R1 55.47 65.04 55.24 82.42 57.03 62.69 56.27 80.03 56.25 63.87 55.76 81.23
w/o K.C. 44.14 51.81 54.10 75.90 49.22 55.93 54.14 76.78 46.68 53.87 54.12 76.34
w/o M.I. 37.50 44.78 54.54 69.98 40.63 47.04 54.58 69.63 39.07 45.91 54.56 69.81
w/o R.L. 0.00 18.25 54.63 75.81 3.12 17.33 53.80 78.92 1.56 17.79 54.22 77.37

(a) Ablation Study
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Figure 5: (a) Ablation study of Graph-R1. (b-f) Performance comparison across different kinds of
knowledge representations, RAG datasets, model parameters, Qwen versions, and RL algorithms.

3.2 MAIN RESULTS (RQ1)

As shown in Table 2, we compare Graph-R1 with baselines across different base models, and observe
that Graph-R1 consistently outperforms all baselines. In addition, we have two key observations.

RL Unlocks the Power of Graph Representations. Prompt-only GraphRAG methods often
underperform StandardRAG, showing that graph structures alone are not sufficient. Graph-R1, with
multi-turn RL optimization, fully exploits structural signals, achieving 57.28 F1 under Qwen2.5-7B-
Instruct, surpassing StandardRAG (32.05), HyperGraphRAG (29.40) and Search-R1 (46.19).

Larger Base Model Further Enhances Performance. As base model size increases from 1.5B
to 3B and 7B, Graph-R1 achieves steadily higher F1 scores: 40.09, 51.26, and 57.82. Moreover,
its gap over other RL-enhanced baselines such as Search-R1 and R1-Searcher becomes increasingly
evident. This shows that larger models better exploit the synergy between graph structures and RL.

3.3 ABLATION STUDY AND COMPARATIVE ANALYSIS (RQ2)

As shown in Figures 5, we conduct an ablation study and comparative analysis on Graph-R1.

Ablation Study. We remove three core components of Graph-R1: knowledge construction (K.C.),
multi-turn interaction (M.I.), and reinforcement learning (R.L.), to assess their individual contribu-
tions. As shown in Figure 5(a), removing any module leads to performance degradation.

Comparison with Different Knowledge Representations. As shown in Figures 4 and 5(b), models
without external knowledge (green) perform the worst. Chunk-based knowledge with RL (blue)
performs better, but is still inferior to graph-based methods using binary relations (pink), while
hypergraph-based knowledge with RL (red) achieves the highest ceiling. This demonstrates that,
when combined with RL, stronger knowledge representations yield higher performance potential.

Comparison across Datasets and Base Models. As shown in Figures 5(c) and 5(d), Graph-R1
consistently outperforms baselines across different datasets and parameter sizes, showcasing strong
scalability. Interestingly, Figure 5(e) shows that when Graph-R1 is trained on Qwen3 (4B) (Yang
et al., 2025), which is already well trained by RL, the model tends to over-rely on its own internal
reasoning. Despite a stronger starting point, its overall performance ceiling appears slightly lower.

Comparison with Different RL Algorithms. Figure 5(f) compares different RL strategies. GRPO
significantly outperforms REINFORCE++ (Hu et al., 2025) and PPO (Schulman et al., 2017),
achieving the highest F1. This confirms that GRPO facilitates more stable training and stronger
multi-turn graph reasoning, making it a favorable choice for training agentic GraphRAG models.
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3.4 ANALYSIS OF GRAPH-R1’S CONSTRUCTION COST (RQ3)

As shown in Table 3, we utilize metrics: time per 1K tokens (TP1KT), cost per 1M tokens (CP1MT),
number of nodes & edges, time per query (TPQ), cost per 1K queries (CP1KQ), and final F1 score.

Table 3: Time & Cost Comparisons on 2Wiki.

Method
Knowledge Construction Retrieval & Generation

TP1KT CP1MT #Node #Edge TPQ CP1KQ F1

NaiveGeneration 0 s 0 $ - - 3.7 s 0.16 $ 17.0
StandardRAG 0 s 0 $ - - 4.1 s 1.35 $ 22.3
GraphRAG 8.04 s 3.35 $ 7,771 4,863 7.4 s 3.97 $ 16.0
LightRAG 6.84 s 4.07 $ 59,197 24,596 12.2 s 8.11 $ 16.6
PathRAG 6.84 s 4.07 $ 59,197 24,596 15.8 s 8.28 $ 12.4
HippoRAG2 3.25 s 1.26 $ 11,819 40,654 8.8 s 7.68 $ 16.3
HyperGraphRAG 6.76 s 4.14 $ 173,575 114,426 9.6 s 8.76 $ 21.1
Graph-R1 (7B) (ours) 5.69 s 2.81 $ 120,499 98,073 7.0 s 0 $ 65.0

Construction Cost. Graph-R1 requires
only 5.69 seconds and $2.81 per 1K to-
kens for knowledge construction, lower
than GraphRAG (8.04s, $3.35) and Hy-
perGraphRAG (6.76s, $4.14). Generating
over 120K nodes and 98K edges, Graph-
R1 maintains a semantically rich structure.

Generation Cost. By leveraging end-to-
end RL and localized knowledge retrieval,
Graph-R1 achieves not only the best F1
but also a response time of 7.0s per query and a generation cost of $0, outperforming baselines such
as HyperGraphRAG (9.6s, $8.76), highlighting its superior potential for real-world deployment.

3.5 ANALYSIS OF GRAPH-R1’S RETRIEVAL EFFICIENCY (RQ4)

As shown in Figure 6, to evaluate Graph-R1’s retrieval efficiency, we analyze it from (a) response
length, (b) number of interaction turns, and (c) performance with average retrieval content lengths.
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Figure 6: Step-wise response length & turns of interaction, and efficiency comparison on HotpotQA.

Tendency toward More Concise Thinking and Adequate Interaction. As shown in Figures 6(a)
and 6(b), Graph-R1 generates shorter responses and conducts more interaction turns, averaging
around 1200-1500 tokens and 2.3-2.5 turns, leading to more stable and accurate retrieval.

Balancing Performance and Retrieved Content Length. As shown in Figure 6(c), Graph-R1
achieves the highest F1 scores with a moderate amount of average retrieved content compared to
other methods, balancing input length and performance through its multi-turn interaction strategy.

3.6 ANALYSIS OF GRAPH-R1’S GENERATION QUALITY (RQ5)
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Figure 7: Generation Evaluations.

As shown in Figure 7, we evaluate the generation quality in
seven dimensions and present a case study in Table 4.

High-Quality Generation Performance. Graph-R1 out-
performs all RL-based baselines and achieves generation
quality comparable to GPT-4o-mini-based methods like Hy-
perGraphRAG, with strong results in Correctness (86.9),
Relevance (95.2), and Logical Coherence (88.5).

RL Bridges the Gap Between Graph & Language. Hy-
perGraphRAG performs similarly to StandardRAG, indicat-
ing limited gains from graph structure alone. In contrast,
Graph-R1 achieves a much higher Overall score (82.4 vs.
70.3) than Search-R1, showing that graph-based reasoning
becomes truly effective when combined with RL.
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Query When was the director  of film Ingmar'S  Inheritance  born?
Golden  Answers ['18 November  1888']
GPT-4o-mini NaiveGeneration StandardRAG HyperGraphRAG

Generation

<think> \nTo answer this question,  I first need to identify  
who the director  of "Ingmar\'s  Inheritance"  is. The film 

"Ingmar\'s  Inheritance"  is directed  by a notable  
filmmaker.  Researching  the film, it turns out that it was 
directed  by the Swedish  director,  "Ingmar  Bergman."  I 

need to check the birth date of Ingmar Bergman  to 
provide  the correct  answer.  Ingmar  Bergman  was born 

on July 14, 1918.  Since the question  is specifically  
asking about  the birth of the director  of the film rather 
than the film\'s release  date or other details,  I will now 

formulate  the answer  based on this 
information.\n </think> \n<answer> \nIngmar  Bergman  

was born on July 14, 1918. \n</answer>

<think> \nThe question  asks for the birth year of the director  
of the film "Ingmar\'s  Inheritance."  However,  the provided  

knowledge  does not include  information  about the film 
"Ingmar\'s  Inheritance"  or its 

director..."\n </think> \n<answer> \nThe information  
necessary  to answer  the question  about  the director  of 
"Ingmar\'s  Inheritance"  is not available  in the provided  
knowledge.  Therefore,  I cannot  provide  a specific  birth 
date for that director.  However,  Bille August,  a noted 

director  with connections  to Ingmar  Bergman,  was born 
on November  9, 1948.  It’s unclear  if he is associated  

with "Ingmar\'s  Inheritance." \n</answer>

<think> \nTo answer  the question,  I need to identify  the director  of the film "Ingmar\'s  
Inheritance."  The information  available  mentions  that "Ingmar\'s  Inheritance"  is a silent  
drama film directed  by Gustaf  Molander.  The provided  data does not specifically  give a 
birthdate  for Gustaf  Molander.  However,  I find that the knowledge  base also contains  
information  about  Ernst Ingmar  Bergman,  a prominent  director,  with dates  of birth and 
death,  but he is not related  to "Ingmar\'s  Inheritance."  Since only Gustaf  Molander  is 

mentioned  as the director  of that specific  film, and I don\'t  have his birthdate  recorded  in 
the provided  knowledge,  I cannot  provide an answer  to this 

question.\n </think> \n<answer> \nThe birthdate  of Gustaf  Molander,  the director  of 
"Ingmar\'s  Inheritance,"  is not provided  in the knowledge  base,  so I cannot  answer  

the question. \n</answer>

Evaluation  Score F1 R-S G-E F1 R-S G-E F1 R-S G-E
0.00 - 55.71 3.70 39.52 55.71 0.00 38.93 60.00

Qwen2.5 -7B-Instruct R1 (7B) Search -R1 (7B) Graph-R1 (7B)

Generation

<think> \nTo answer  when the director  of the film 
"Ingmar\'s  Inheritance"  was born,  I first need to find out 

who the director  of this film is.\nThe  film "Ingmar\'s  
Inheritance"  was directed  by Garth Davis.  Now I need to 
find out when Garth Davis was born.\nGarth  Davis was 
born on December  26, 1970.  Therefore,  the director  of 
the film "Ingmar\'s  Inheritance"  was born on December  

26, 1970.\n </think> \n<answer> \nDecember  26, 
1970 \n</answer>

<think> \nTo answer  this question,  I need to find the 
director  of the film "Ingmar\'s  Inheritance"  and then 

determine  their  birth date.\n</think> \n<query> director  of 
Ingmar\'s  Inheritance </query> \n<knowledge> \n{"results":  

["Weizscker  studied  at the University  of Tcbingen.  While 
serving  in the administration  of King William II of 

Wcrttemberg,  he was raised  to personal  nobility  on 24 
February  1897...",...]}\n </knowledge> \n\n<think> \nFrom 

the information  provided,  Baldvin  Zophon íasson is the 
director  of "Ingmar\'s  Inheritance"  and he was born in 1978 

in Akureyri.\n </think> \n<answer> \n1978\n</answer>

<think> \nTo answer  this question,  I need to find out the director  of the film "Ingmar\'s  
Inheritance"  and then determine  the director\'s  birth year.  Let\'s  start by finding the 

director  of the film.\n</think> \n<query> director  of Ingmar\'s  
Inheritance </query> \n<knowledge> \n{"results":  [{"<knowledge>":  "\\"Ernst  Ingmar  
Bergman  (14 July 1918 \\u2013  30 July 2007)  was a Swedish  director,  writer,  and 

producer  who worked  in film, television,  theatre  and radio.\\"",  "<coherence>":  1.25},  {...}, 
...]}\n</knowledge> \n\n<think> \nFrom the knowledge  query,  it seems that "Ingmar\'s  

Inheritance"  was directed  by Gustaf  Molander.  Now,  I need to find out Gustaf  Molander\'s  
birth year to answer  the question.\n </think> \n<query> Gustaf Molander  birth 

year</query> \n<knowledge> \n{"results":  [{"<knowledge>":  "\\"Gustaf  Molander  was 
born in Helsingfors  (now Helsinki)  in the Grand Duchy  of Finland  (in the Russian  Empire),  

where his father  was working  at the Swedish  Theatre.\\"",  "<coherence>":  1.5}, {...},  
...]}\n</knowledge> \n\n<think> \nFrom the knowledge  query,  we found that Gustaf  
Molander  was born on November  18, 1888.  This is the director  of the film "Ingmar\'s  

Inheritance".\n </think> \n<answer> \nThe director  of the film "Ingmar\'s  Inheritance",  
Gustaf  Molander,  was born on November  18, 1888. \n</answer>

Evaluation  Score F1 R-S G-E F1 R-S G-E F1 R-S G-E
0.00 - 41.43 0.00 40.02 64.29 37.50 45.83 88.57

Table 4: Case study on generation quality under a query, comparing NaiveGeneration, Standard-
RAG, HyperGraphRAG based on GPT-4o-mini, with R1 (7B), Search-R1 (7B), and Graph-R1 (7B).

Case Study Analysis. As shown in Table 4, NaiveGeneration and R1 fail to provide the correct an-
swer, and both StandardRAG and HyperGraphRAG also fall short despite using structured prompts.
Search-R1, though RL-enhanced, shows limited improvement due to weak retrieval grounding. In
contrast, Graph-R1 accurately identifies both the director and birthdate, achieves the highest G-E
score (88.57), and demonstrates that RL is more effective with graph-based knowledge interaction.

3.7 ANALYSIS OF GRAPH-R1’S GENERALIZABILITY ON O.O.D. SETTINGS (RQ6)

As shown in Figure 8, to verify generalization, we conduct O.O.D. cross-validation for Search-R1
(3B) & Graph-R1 (3B) across six datasets: (a-b) F1 comparison, and (c-d) O.O.D.-to-I.I.D. ratios.
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Figure 8: F1 comparison and performance ratios across six datasets under O.O.D. cross-validation.

F1 Performance Across Datasets. Figures 8(a) and 8(b) show that Graph-R1 outperforms Search-
R1 on six datasets in O.O.D. validation, with notable gains on NQ and TriviaQA. Its multi-turn
interaction with hypergraph retrieval ensures more stable performance under distribution shifts.

Robust Generalization Ability. Figures 8(c) and 8(d) show that Graph-R1 achieves higher O.O.D.-
to-I.I.D. ratios than Search-R1, often above 85% and exceeding 90% in some cases, reflecting its
strong robustness and cross-domain generalizability via end-to-end RL over knowledge hypergraph.

4 CONCLUSION

In this work, we introduce Graph-R1, an agentic GraphRAG framework powered by end-to-end
RL. By introducing lightweight knowledge hypergraph construction and modeling retrieval as a
multi-turn interaction process, Graph-R1 bridges graph-structured knowledge with natural language
generation. A unified reward mechanism enables outcome-directed reasoning that outperforms prior
GraphRAG methods and RL-enhanced baselines. Experiments across six benchmarks demonstrate
Graph-R1’s superiority in accuracy, retrieval efficiency, generation quality, and generalizability.
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APPENDIX

A PROMPTS USED IN GRAPH-R1

A.1 KNOWLEDGE HYPERGRAPH CONSTRUCTION PROMPT

As shown in Figure 9, we use the same n-ary relation-extraction prompt as HyperGraphRAG (Luo
et al., 2025a). Moreover, we streamline knowledge-hypergraph construction by skipping confidence-
score calculations and adopting a simpler semantic-retrieval method, reducing construction costs
while maintaining equivalent knowledge-representation.

-Goal-
Given a text document that is potentially relevant to this activity and a list of entity types, identify all entities of those types from the text and all relationships among the identified entities.
Use {language} as output language.

-Steps-
1. Divide the text into several complete knowledge segments.  For each knowledge segment, extract the following information:
-- knowledge_segment: A sentence that describes the context of the knowledge segment.
Format each knowledge segment as ("hyper-relation"{tuple_delimiter}<knowledge_segment>)

2. Identify all entities in each knowledge segment. For each identified entity, extract the following information:
- entity_name: Name of the entity, use same language as input text. If English, capitalized the name.
- entity_type: Type of the entity.
- entity_description: Comprehensive description of the entity's attributes and activities.
Format each entity as ("entity"{tuple_delimiter}<entity_name>{tuple_delimiter}<entity_type>{tuple_delimiter}<entity_description>)

3. Return output in {language} as a single list of all the entities and relationships identified in steps 1 and 2. Use **{record_delimiter}** as the list delimiter.

4. When finished, output {completion_delimiter}

######################
-Examples-
######################
{examples}

#############################
-Real Data-
######################
Text: {input_text}
######################

Figure 9: Prompt for n-ary relation extraction πext in Equation 1.

A.2 AGENTIC KNOWLEDGE REASONING PROMPT

The initial knowledge-reasoning prompt has been shown in Table 1. Through several rounds of in-
teraction with the environment, the Graph-R1 agent keeps adding information, readying the prompt
for the next exchange. As shown in Figure 10, we present a case of the final prompt produced by the
full agentic knowledge-reasoning process.

<|im_start|>system
You are a helpful assistant.
 <|im_end|>
<|im_start|>user
Answer the given question. You can query from knowledge base provided to you to answer the question. You can query knowledge as many times as you want.
You must first conduct reasoning inside <think>...</think>. If you need to query knowledge, you can set a query statement between <query>...</query> to query from knowledge base after <think>...</think>.
When you have the final answer, you can output the answer inside <answer>...</answer>.
 
Output format for query:
<think>
...
</think>
<query>
...
</query>
 
Output format for answer:
<think>
...
</think>
<answer>
...
</answer>
Question: Who is the spouse of the director of film In Memory Of Sergo Ordzhonikidze?<|im_end|>
<|im_start|>assistant
<think>
To answer this question, I need to find out who directed the film \"In Memory Of Sergo Ordzhonikidze\" and then find out who that director's spouse is.
</think>
<query>
{
 \"query\": \"Director of film In Memory Of Sergo Ordzhonikidze\"
}
</query><|im_end|><|im_start|>user
<knowledge>
{\"results\": [{\"<knowledge>\": \"\\\"In Memory of Sergo Ordzhonikidze is a 1937 Soviet documentary film directed by Dziga Vertov.\\\"\", \"<coherence>\": 1.5}, {\"<knowledge>\": \"\\\"The Harsh Life of Veronica Lambert (also released as 
Five Nights in Hollywood) is a 2009 independent drama film directed and written by Nika Agiashvili.\\\"\", \"<coherence>\": 1.0}, {\"<knowledge>\": \"\\\"Tengiz Abuladze (31 January 1924 \\u2013 6 March 1994) was a Georgian film director, 
screenwriter, theatre teacher and People's Artist of the USSR.\\\"\", \"<coherence>\": 0.5}, {\"<knowledge>\": \"\\\"The film was created in memory of Sergo Ordzhonikidze, who had died in 1937.\\\"\", \"<coherence>\": 0.393}, 
{\"<knowledge>\": \"\\\"Leonid Kvinikhidze was a Russian screenwriter and film director who died in St. Petersburg on 13 March 2018.\\\"\", \"<coherence>\": 0.367}, {\"<knowledge>\": \"\\\"The Harsh Life of Veronica Lambert is a 2009 
independent drama film directed and written by Nika Agiashvili.\\\"\", \"<coherence>\": 0.333}, {\"<knowledge>\": \"\\\"Tengiz Abuladze was a Georgian film director, screenwriter, theatre teacher and People's Artist of the USSR.\\\"\", 
\"<coherence>\": 0.333}, {\"<knowledge>\": \"\\\"A Green Story is a 2012 film written and directed by Nika Agiashvili.\\\"\", \"<coherence>\": 0.25}, {\"<knowledge>\": \"\\\"'The Secret of Two Oceans' is a 1956 Soviet drama film directed by 
Konstantine Pipinashvili.\\\"\", \"<coherence>\": 0.2}]}
</knowledge><|im_end|>
<|im_start|>assistant
<think>
From the knowledge base, I found that \"In Memory Of Sergo Ordzhonikidze\" is a 1937 Soviet documentary film directed by Dziga Vertov. Now, I need to find out who Dziga Vertov's spouse was.
</think>
<query>
{
 \"query\": \"Spouse of Dziga Vertov\"
}
</query><|im_end|><|im_start|>user
<knowledge>
{\"results\": [{\"<knowledge>\": \"\\\"In Memory of Sergo Ordzhonikidze is a 1937 Soviet documentary film directed by Dziga Vertov.\\\"\", \"<coherence>\": 1.833}, {\"<knowledge>\": \"\\\"Dziga Vertov was a Russian Soviet pioneer 
documentary film and newsreel director, as well as a cinema theorist.\\\"\", \"<coherence>\": 1.167}, {\"<knowledge>\": \"\\\"Yulia Meltzer was the wife of Yakov Dzhugashvili and the daughter-in-law of Joseph Stalin.\\\"\", \"<coherence>\": 
0.5}, {\"<knowledge>\": \"\\\"Vertov's younger brothers Boris Kaufman and Mikhail Kaufman were also noted filmmakers, as was his wife, Yelizaveta Svilova.\\\"\", \"<coherence>\": 0.45}, {\"<knowledge>\": \"\\\"Vadim Abdrashitov has been 
enjoying a happy family life with his wife, Natella Toidze, and their two children, son Oleg (born in 1973) and daughter Naina (born in 1980).\\\"\", \"<coherence>\": 0.333}, {\"<knowledge>\": \"\\\"Alexandra Andreyevna Voronin ('n\\u00e9e' 
Voronina, later Yourieff; 20 August 1905 \\u2014 1 October 1993) was the Soviet wife of Norwegian fascist Vidkun Quisling, the leader of Nasjonal Samling (NS).\\\"\", \"<coherence>\": 0.25}, {\"<knowledge>\": \"\\\"The film was directed by 
Yuli Raizman and Yelizaveta Svilova.\\\"\", \"<coherence>\": 0.2}]}
</knowledge><|im_end|>
<|im_start|>assistant
<think>
Dziga Vertov's spouse was Yelizaveta Svilova. So, the answer to the question is Yelizaveta Svilova.
</think>
<answer>
Yelizaveta Svilova
</answer><|im_end|>

Figure 10: Prompt for agentic knowledge reasoning πθ in Equation 3.
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B THEORETICAL PROOF

B.1 PROOF OF PROPOSITION 1

Proposition 1. Graph-structured knowledge boosts agent accuracy by richer representation.

Proof. Let the knowledge base K be encoded into two forms: a graph RG and a linear chunk set
RC , where RC = g(RG) is a deterministic transformation that discards edge information. For a
query Q and ground-truth answer A⋆, the agent’s internal belief at step t is ht. Each step performs
retrieval Et(R) and Bayesian update, forming the recurrence:

ht+1 = f(ht, R). (13)

Define the Lyapunov function as VR(ht) = − logP (A⋆ | ht), measuring how far the agent is from
certainty. Its update is:

∆VR(ht) = − log
P (Et(R) | A⋆)∑

a P (a | ht)P (Et(R) | a)
. (14)

Graphs can capture more relevant facts in shorter contexts due to explicit edges, leading to higher
information density δR and more negative ∆VR(ht) in expectation. Thus, VR(ht) decreases faster
with graphs, indicating faster convergence. From an information-theoretic view, the mutual infor-
mation evolves as:

I(A⋆;ht+1 | Q) = I(A⋆;ht | Q) + I(A⋆; Et(R) | ht, Q), (15)

and since graphs provide denser evidence, we have IRG
(A⋆;hT | Q) ≥ IRC

(A⋆;hT | Q). Then by
Fano’s inequality,

Pe(R) ≤ H(A⋆ | Q)− IR(A
⋆;hT | Q) + 1

log |A|
, (16)

which implies Pe(RG) ≤ Pe(RC), i.e., Acc(RG) ≥ Acc(RC), with strict inequality when the
graph contains structural relations not recoverable from text.

In summary, the graph-structured representation offers higher information density per retrieval, ac-
celerates belief convergence via Lyapunov descent, and accumulates more mutual information, lead-
ing to provably higher answer accuracy.

B.2 PROOF OF PROPOSITION 2

Proposition 2. Multi-turn interaction with the graph environment improves retrieval efficiency.

Proof. Let the graph-structured knowledge base be denoted by RG, and let A⋆ be the ground-truth
answer. Suppose the retrieval cost is measured by the number of tokens retrieved, and we fix a
total budget of B tokens. A single-turn retrieval strategy selects a fixed token set Estatic of size B,
independent of any intermediate reasoning. This leads to a posterior belief P (A⋆ | Q, Estatic) and
yields total information gain

Istatic = I(A⋆; Estatic | Q) = H(A⋆ | Q)−H(A⋆ | Q, Estatic), (17)

where Q is the query and H(·) denotes entropy. In contrast, an adaptive multi-turn strategy π

divides the budget across T rounds as B =
∑T

t=1 Bt. At each round t, the agent uses prior evidence
Ht−1 = {E1, . . . , Et−1} to update its internal belief ht−1 and selects new evidence Et of size Bt

by actively exploring the graph based on current uncertainty. The updated belief ht is obtained via
Bayesian inference, and the entire process forms a dynamic system:

ht = f(ht−1, Et, RG). (18)

To evaluate retrieval progress, we define a Lyapunov-style potential function Vt = H(A⋆ | Q,Ht),
which quantifies the remaining uncertainty after round t. Each retrieval step reduces entropy by:

Vt−1 − Vt = I(A⋆; Et | Q,Ht−1), (19)

which is precisely the mutual information contributed by Et given past evidence. Let ρt denote the
information gain per token at round t:

ρt =
I(A⋆; Et | Q,Ht−1)

Bt
, (20)
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and define the average information density of the static strategy as:

ρstatic =
Istatic
B

. (21)

Since the adaptive agent can tailor each Et to the current belief state and dynamically select high-
impact regions in the graph, it is expected that ρt ≥ ρstatic in each round. When the graph structure
allows the agent to prune irrelevant branches based on early evidence, this inequality becomes strict
with non-zero probability. Summing over all rounds, the total information gain of the adaptive
strategy satisfies:

Eπ

[
T∑

t=1

I(A⋆; Et | Q,Ht−1)

]
= Eπ [I(A

⋆;HT | Q)] ≥ Istatic, (22)

with strict inequality under the above conditions. From a Bayesian viewpoint, retrieval efficiency
can be seen as how much uncertainty is reduced per token. Because the adaptive policy achieves a
greater entropy reduction under the same budget, or requires fewer tokens to reach the same posterior
certainty, it is strictly more efficient. Moreover, by Fano’s inequality,

Pe ≤
H(A⋆ | Q)− I(A⋆;HT | Q) + 1

log |A|
, (23)

we conclude that the lower the conditional entropy, the lower the expected error. Therefore, greater
mutual information directly translates into improved answer accuracy.

In conclusion, multi-turn interaction enables the agent to reason over what has already been re-
trieved, selectively expanding into the most informative parts of the graph, leading to more efficient
and accurate question answering.

B.3 PROOF OF PROPOSITION 3

Proposition 3. End-to-end RL bridges the gap between graph-based knowledge and language.

Proof. Let GH denote the graph-structured knowledge base, and q a given query. The agent (pa-
rameterized by θ) interacts over multiple steps, forming a trajectory τ = (s1, a1, . . . , sT , aT ) where
each at is either a graph query or a natural-language output. The policy induces an answer distribu-
tion:

Pθ(y | q,GH) =
∑

τ : answer(τ)=y

πθ(τ | q,GH). (24)

To align graph usage with answer generation, we define a trajectory-level reward:
R(τ) = rfmt(τ) + I{rfmt(τ) = 1} · rans(yT , y

⋆
q )− 1, (25)

where rfmt ensures proper structure (e.g., retrieve before answer), and rans measures answer quality.
Only valid, grounded answers receive positive reward. The expected reward is maximized via policy
gradient:

∇θJ(θ) ∝ Eτ∼πθ

[
T∑

t=1

∇θ log πθ(at | st;GH) · Â(τ)

]
, (26)

where Â(τ) derives from R(τ). Trajectories that retrieve the right subgraph and generate correct
answers are reinforced, linking graph retrieval to linguistic accuracy. As training progresses, the
expected log-likelihood of the gold answer increases:

Lθ = − log
∑
τ

πθ(τ | q,GH)P (y⋆q | τ), (27)

which lower-bounds the ideal logP ⋆(y⋆q | q,GH). In the limit, we approach:

Pθ(· | q,GH) → P ⋆(· | q,GH). (28)
This also manifests as a reduction in conditional entropy:

Hθ(Y | Q,GH) < H(Y | Q), (29)
since ungrounded answers are discouraged and graph-consistent ones are promoted. By Fano’s
inequality, lower entropy implies lower error.

Thus, end-to-end RL not only learns to query the graph but also binds retrieved knowledge to answer
generation, effectively bridging the gap between structure and language.
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C GRAPH-R1 ALGORITHM DETAILS

To illustrate the mechanism of Graph-R1, we present its full workflow in Algorithm 1, comprising
three key phases: (1) Hypergraph Construction. An LLM-based extractor πext extracts n-ary rela-
tional facts from the corpus K to build a semantic hypergraph GH = (V,EH , ϕ), where all elements
are encoded via Enc(·). (2) Multi-turn Agentic Reasoning. Given query q, the agent performs
reflection, intent selection, and action generation over T steps under policy πθ. Queries trigger dual-
path hypergraph retrieval; answers terminate reasoning. (3) End-to-end RL Optimization. The
policy is optimized using GRPO, guided by format and answer rewards. The objective JGRPO is
computed from sampled trajectories {τi} with clipped advantage-weighted updates.

Algorithm 1 Graph-R1: Agentic GraphRAG via End-to-end RL
Require: Query q, knowledge corpus K = {d1, . . . , dN}, policy πθ , reward function R(τ)
Ensure: Final answer yq
1: // 1: Knowledge Hypergraph Construction
2: Initialize hypergraph GH = (V,EH , ϕ)
3: for each document d ∈ K do
4: Extract relational facts: {(hi,Vhi)} ∼ πext(d)
5: for each (hi,Vhi) do
6: EH ← EH ∪ {hi}, V ← V ∪ Vhi

7: ϕ(hi)← Enc(hi), ϕ(v)← Enc(v) for v ∈ Vhi

8: end for
9: end for

10: // 2: Multi-turn Graph Reasoning
11: Initialize state s1 ← q, trajectory τ ← ∅
12: for t = 1 to T do
13: Generate reasoning plan: athink

t ∼ πθ(· | st)
14: Choose intent: αt ∼ πθ(· | athink

t , st)
15: if αt = (answer) then
16: Output answer: aans

t ∼ πθ(· | athink
t , st)

17: τ ← τ ∪ {(st,aquery
t ,aans

t )}; return yq = aans
t

18: else if αt = (query, retrieve) then
19: Generate query: aquery

t ∼ πθ(· | athink
t , st)

20: Entity retrieval: RV = argmaxkV
v∈V sim(ϕ(v), ϕ(Va

query
t

))

21: Hyperedge retrieval: RH = argmaxkH
h∈EH

sim(ϕ(h), ϕ(aquery
t ))

22: Rank fusion: aret
t = Top-k

(
F∗

V ∪ F∗
H , Score(f) = 1

rV (f)
+ 1

rH (f)

)
23: Update state st+1 ← st ∪ {(st,athink

t ,aquery
t ,aret

t )}
24: τ ← τ ∪ {(st,athink

t ,aquery
t ,aret

t )}
25: end if
26: end for
27: // 3: End-to-end Policy Optimization (GRPO)
28: Sample N trajectories {τi} ∼ πθold

29: for each τi do
30: Compute reward: R(τi) = −1 +Rformat(τi) + I{Rformat = 1} ·Ranswer(yT , y

⋆
q )

31: Compute advantage: Â(τi) =
R(τi)−mean({R(τj)})

std({R(τj)})
32: end for
33: Update policy via GRPO: JGRPO ∼

∑N
i=1

∑|τi|
t=1 min

(
ρθ(a

(i)
t )Â(τi), clip(ρθ(a

(i)
t ), 1± ϵ)Â(τi)

)
34: where ρθ(a

(i)
t ) =

πθ(a
(i)
t |s(i)t−1)

πθold
(a

(i)
t |s(i)t−1)

Complexity Analysis. Graph-R1 involves three computational components corresponding to phases.
First, hypergraph construction scales with the total token count TK of the knowledge corpus and the
number of extracted relational facts F , yielding complexity O(TK) +O(F ). Second, during multi-
turn reasoning, the agent performs T steps of action sampling and dual-path retrieval. At each step,
similarity computations over |V | nodes and |EH | hyperedges with embedding dimension d yield
O((|V |+ |EH |)d) per step. Third, for policy optimization, GRPO processes N sampled trajectories
of max length T , with gradient updates costing O(NTd). Each component is computationally
tractable and benefits from parallelization and localized retrieval over compact hypergraph subsets.
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D DATASET DETAILS

We conduct experiments on six widely-used RAG benchmarks selected from the FlashRAG
toolkit (Jin et al., 2025b), covering both single-hop and multi-hop question answering tasks:

• 2WikiMultiHopQA (2Wiki.) (Ho et al., 2020): A multi-hop dataset requiring reasoning across
two Wikipedia documents.

• HotpotQA (Yang et al., 2018): A challenging multi-hop QA dataset with sentence-level support-
ing facts and diverse question types.

• Musique (Trivedi et al., 2022): Multi-hop questions needing chains of inference, often involving
three or more reasoning steps.

• Natural Questions (NQ) (Kwiatkowski et al., 2019): A large-scale single-hop QA dataset
grounded in real Google search questions with Wikipedia passages.

• PopQA (Mallen et al., 2023): An open-domain QA dataset focused on popular culture questions
sourced from Wikipedia.

• TriviaQA (Joshi et al., 2017): A large-scale dataset containing trivia-style questions with distantly
supervised evidence documents.

To ensure consistency across datasets and maintain manageable training and evaluation workloads,
we uniformly sample 5,120 instances per dataset for training and 128 instances for testing.

E BASELINE DETAILS

Our experiments compare Graph-R1 with two groups of baselines using different backbone LLMs:

E.1 BASELINES WITH GPT-4O-MINI

• NaiveGeneration (GPT-4o-mini): Zero-shot generation using GPT-4o-mini without retrieval,
evaluating base model capacity.

• StandardRAG (GPT-4o-mini) (Lewis et al., 2020): Chunk-based RAG using GPT-4o-mini as
the generator with retrieval over text chunks.

• GraphRAG (Edge et al., 2025): Graph-structured retrieval baseline that constructs entity graphs
and performs one-shot retrieval with GPT-4o-mini for answer generation.

• LightRAG (Guo et al., 2025): A lightweight GraphRAG variant that builds compact graphs for
more efficient retrieval and GPT-4o-mini generation.

• PathRAG (Chen et al., 2025): Retrieval via path-based pruning on entity graphs, followed by
GPT-4o-mini answer synthesis.

• HippoRAG2 (Gutiérrez et al., 2025): Hierarchical path planner over knowledge graphs to improve
retrieval efficiency, with GPT-4o-mini used for generation.

• HyperGraphRAG (Luo et al., 2025a): Constructs n-ary relational hypergraphs to support a single
retrieval step, and uses GPT-4o-mini for answer writing.

E.2 BASELINES WITH QWEN2.5 (1.5B, 3B, 7B)

• NaiveGeneration: Direct generation by Qwen2.5 given the question prompt, without any re-
trieval, serving as a lower bound baseline.

• StandardRAG (Lewis et al., 2020): Classic chunk-based retrieval-augmented generation pipeline
with semantic retriever and Qwen2.5 decoder.

• SFT (Zheng et al., 2024): Supervised fine-tuning of Qwen2.5 on QA pairs, without multi-turn
reasoning or reinforcement optimization.

• R1 (Shao et al., 2024): A GRPO-trained policy that generates final answers directly from question
prompts without retrieval, optimized only on answer quality.

• Search-R1 (Jin et al., 2025a): A multi-turn chunk-based retrieval method trained with GRPO,
capable of iterative query refinement and retrieval under a unified policy.

• R1-Searcher (Song et al., 2025): A two-stage GRPO-based method with chunk-based retrieval:
first using only format-level rewards to produce structured traces, then adding answer rewards.
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F EVALUATION DETAILS

Inspired by Luo et al. (2025a); Jin et al. (2025a), we evaluate model performance using four metrics:

(i) Exact Match (EM). EM measures whether
the predicted answer exactly matches the
ground truth. Let norm(·) denote the normal-
ization function:

EM =
1

N

N∑
i=1

I {norm(yi) = norm(y⋆
i )} . (30)

(ii) F1 Score. The F1 score measures the token-
level overlap between the predicted answer yi
and the ground-truth answer y⋆ using the har-
monic mean of precision and recall:

F1 =
1

N

N∑
i=1

2 · |tokens(yi) ∩ tokens(y⋆
i )|

|tokens(yi)|+ |tokens(y⋆
i )|

. (31)

(iii) Retrieval Similarity (R-S). R-S assesses
semantic similarity between retrieved k

(i)
retr and

gold knowledge k(i)retr. Let Enc(·) be the semantic
embedding function:

R-S =
1

N

N∑
i=1

cos
(

Enc(k(i)
retr),Enc(k(i)

gold)
)
. (32)

(iv) Generation Evaluation (G-E). G-E re-
flects generation quality. Let si,d be GPT-4o-
mini scores across 7 criteria (Figure 11):

G-E =
1

N

N∑
i=1

(
1

7

7∑
d=1

si,d

)
. (33)

 "comprehensiveness": (
                "comprehensiveness",
                "whether the thinking 
considers all important aspects 
and is thorough",
                """Scoring Guide 
(0–10):
- 10: Extremely thorough, 
covering all relevant angles and 
considerations with depth.
- 8–9: Covers most key aspects 
clearly and thoughtfully; only 
minor omissions.
- 6–7: Covers some important 
aspects, but lacks depth or 
overlooks notable areas.
- 4–5: Touches on a few relevant 
points, but overall lacks 
substance or completeness.
- 1–3: Sparse or shallow 
treatment of the topic; misses 
most key aspects.
- 0: No comprehensiveness at all; 
completely superficial or 
irrelevant."""
            )

"knowledgeability": (
                "knowledgeability",
                "whether the thinking is 
rich in insightful, domain-
relevant knowledge",
                """Scoring Guide 
(0–10):
- 10: Demonstrates exceptional 
depth and insight with strong 
domain-specific knowledge.
- 8–9: Shows clear domain 
knowledge with good insight; 
mostly accurate and relevant.
- 6–7: Displays some 
understanding, but lacks depth 
or has notable gaps.
- 4–5: Limited knowledge 
shown; understanding is basic or 
somewhat flawed.
- 1–3: Poor grasp of relevant 
knowledge; superficial or mostly 
incorrect.
- 0: No evidence of meaningful 
knowledge."""
            )

"correctness": (
                "correctness",
                "whether the reasoning 
and answer are logically and 
factually correct",
                """Scoring Guide 
(0–10):
- 10: Fully accurate and logically 
sound; no flaws in reasoning or 
facts.
- 8–9: Mostly correct with minor 
inaccuracies or small logical gaps.
- 6–7: Partially correct; some key 
flaws or inconsistencies present.
- 4–5: Noticeable incorrect 
reasoning or factual errors 
throughout.
- 1–3: Largely incorrect, 
misleading, or illogical.
- 0: Entirely wrong or 
nonsensical."""
            )

 "relevance": (
                "relevance",
                "whether the reasoning 
and answer are highly relevant 
and helpful to the question",
                """Scoring Guide 
(0–10):
- 10: Fully focused on the 
question; highly relevant and 
helpful.
- 8–9: Mostly on point; minor 
digressions but overall useful.
- 6–7: Generally relevant, but 
includes distractions or less 
helpful parts.
- 4–5: Limited relevance; much 
of the response is off-topic or 
unhelpful.
- 1–3: Barely related to the 
question or largely unhelpful.
- 0: Entirely irrelevant."""
            )

 "diversity": (
                "diversity",
                "whether the reasoning 
is thought-provoking, offering 
varied or novel perspectives",
                """Scoring Guide 
(0–10):
- 10: Exceptionally rich and 
original; demonstrates multiple 
fresh and thought-provoking 
ideas.
- 8–9: Contains a few novel 
angles or interesting perspectives.
- 6–7: Some variety, but 
generally safe or conventional.
- 4–5: Mostly standard thinking; 
minimal diversity.
- 1–3: Very predictable or 
monotonous.
- 0: No diversity or originality at 
all."""
            )

"logical_coherence": (
                "logical coherence",
                "whether the reasoning 
is internally consistent, clear, 
and well-structured",
                """Scoring Guide 
(0–10):
- 10: Highly logical, clear, and 
easy to follow throughout.
- 8–9: Well-structured with 
minor lapses in flow or clarity.
- 6–7: Some structure and logic, 
but a few confusing or weakly 
connected parts.
- 4–5: Often disorganized or 
unclear; logic is hard to follow.
- 1–3: Poorly structured and 
incoherent.
- 0: Entirely illogical or 
unreadable."""
            ),

 "factuality": (
                "factuality",
                "whether the reasoning 
and answer are based on 
accurate and verifiable facts",
                """Scoring Guide 
(0–10):
- 10: All facts are accurate and 
verifiable.
- 8–9: Mostly accurate; only 
minor factual issues.
- 6–7: Contains some factual 
inaccuracies or unverified claims.
- 4–5: Several significant factual 
errors.
- 1–3: Mostly false or misleading.
- 0: Completely fabricated or 
factually wrong throughout."""
            )

Figure 11: Seven Dimensions for Generation Evaluation.

G IMPLEMENTATION DETAILS

As shown in Table 5, we summarize the detailed hyperparameter configurations used throughout our
experiments, including model backbone, input limits, training configuration, and retrieval setup.

Method Backbone Batch Size Max Length Top-K Algo Epochs

NaiveGeneration Qwen2.5 / GPT-4o-mini – ∞ N/A – –
StandardRAG Qwen2.5 / GPT-4o-mini – ∞ 5 Chunks – –
GraphRAG GPT-4o-mini – ∞ 60 – –
LightRAG GPT-4o-mini – ∞ 60 – –
PathRAG GPT-4o-mini – ∞ 60 – –
HippoRAG2 GPT-4o-mini – ∞ 60 – –
HyperGraphRAG GPT-4o-mini – ∞ 60 – –
SFT Qwen2.5 (1.5B, 3B, 7B) 16 4096 N/A LoRA 3
R1 Qwen2.5 (1.5B, 3B, 7B) 128 4096 N/A GRPO 1
Search-R1 Qwen2.5 (1.5B, 3B, 7B) 128 4096 5 Chunks / Turn GRPO 1
R1-Searcher Qwen2.5 (1.5B, 3B, 7B) 128 4096 5 Chunks / Turn GRPO 1
Graph-R1 (ours) Qwen2.5 (1.5B, 3B, 7B) 128 4096 5 / Turn GRPO 1

Table 5: Hyperparameter settings for baselines and Graph-R1.

H LIMITATIONS AND FUTURE WORK

While Graph-R1 achieves strong performance, several limitations remain. First, the cost of hyper-
graph construction, especially relation extraction and encoding, remains non-trivial. Future work
may explore more efficient methods for zero-cost extraction. Second, current retrieval lacks struc-
tural reasoning. Integrating GNNs or trainable message-passing could improve both accuracy and
scalability. Third, Graph-R1 currently supports only textual knowledge; extending it to multi-modal
inputs is a promising direction. Finally, we aim to further apply Graph-R1 in knowledge-intensive
domains such as healthcare, law, and finance, where robust and interpretable reasoning is essential.
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I RELATED WORK

RAG and GraphRAG. Retrieval-Augmented Generation (RAG) (Lewis et al., 2020) improves
LLM factuality by retrieving external knowledge, but suffers from data silos and limited structural
understanding. GraphRAG (Edge et al., 2025) addresses these limitations by leveraging graph-
structured knowledge to enhance retrieval and reasoning. Based on this, enterprise-oriented sys-
tems (Wu et al., 2024; Liang et al., 2025; Wang et al., 2025a) and efficient variants like Ligh-
tRAG (Guo et al., 2025) are proposed. Recent efforts further extend representation power via hyper-
graphs, causal graphs, or heterogeneous graphs (Luo et al., 2025a; Feng et al., 2025b; Wang et al.,
2025b; Xu et al., 2025), while retrieval is optimized using path-based exploration and pruning tech-
niques (Chen et al., 2025; Gutiérrez et al., 2025; Liu et al., 2025; Wang, 2025). Our work introduces
Graph-R1, the first agentic GraphRAG framework with end-to-end reinforcement learning.

Reinforcement Learning for LLMs. Reinforcement learning (RL) is increasingly adopted to en-
hance LLM reasoning (Wu, 2025; Luo et al., 2025b), as demonstrated by OpenAI’s o1/o3/o4 (Ope-
nAI et al., 2024b). DeepSeek-R1 (DeepSeek-AI et al., 2025) achieves comparable capabilities and
further introduces the Group Relative Policy Optimization (GRPO) (Shao et al., 2024) for scalable
end-to-end training. GRPO-based reasoning has been extended to tasks such as visual understand-
ing(Shen et al., 2025), logical reasoning (Xie et al., 2025), and program synthesis (Ma et al., 2025).
RL-enhanced agents have also shown strong performance in multi-turn interaction (Lu et al., 2025;
Feng et al., 2025a) and open-domain retrieval (Jin et al., 2025a; Song et al., 2025; Zheng et al., 2025;
Sun et al., 2025), highlighting RL’s potential in agentic GraphRAG frameworks (Gao et al., 2025).

J PRELIMINARIES

We formalize the GraphRAG pipeline into three stages as detailed below:

(a) Knowledge Graph Construction. This stage extracts structured relational facts from raw text.
Given a knowledge collection K = {d1, d2, . . . , dN}, the goal is to extract facts fd from each
semantic unit d ∈ K and aggregate them into a unified graph GK :

GK ∼
∑
d∈K

πext(fd | d), (34)

where πext denotes an LLM-based extractor that parses each d into a set of relation-entity pairs
fd = {(ri,Vri)}, with ri as the relation and Vri = {v1, . . . , vn} the participating entities.

(b) Graph Retrieval. Graph retrieval is formulated as a two-step process over GK : (1) retrieving
candidate reasoning paths and (2) pruning irrelevant ones. Conditioned on a query q, the model
first retrieves a candidate set Xq = {x1, . . . , xm} and then selects a relevant subset Zq ⊆ Xq . The
overall objective is to maximize the expected joint likelihood of the two steps:

max
θ

EZq∼P (Zq|q,GK)

[
Tx∏
t=1

Pθ(xt | x<t, q,GK) ·
Tz∏
t=1

Pθ(zt | z<t,Xq, q)

]
, (35)

where Tx and Tz denote the number of retrieved and selected paths, respectively.

(c) Answer Generation. Given a query q and selected paths Zq , answer generation produces a
natural language answer y grounded in graph-based evidence, formulated as:

P (y | q,GK) =
∑

Zq⊆Xq

P (y | q,Zq) · P (Zq | q,GK), (36)

where P (y | q,Zq) is generation likelihood and P (Zq | q,GK) is retrieval-pruning distribution.
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