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Abstract

Currently, the standard for vehicle speed estimation is radar or lidar speed signs
which can be costly to buy and maintain. However, most major cities already
implement networks of traffic surveillance cameras that can be utilized for vehicle
speed estimation using computer vision. This work implements such a system using
homography estimation, YOLOv4 object detector, and an object tracker capable
of vehicle speed estimation. The homography component uses world plane-image
plane point correspondences, located by humans. Moreover, a new method is
developed specifically for this use case, using the estimation of density evolutionary
algorithm. It aims at correcting the points misalignment in between planes. In
addition, a basic direct linear transformation (DLT) and a random sample consensus
robust version of DLT are implemented for comparison. Finally, the results show
that the proposed homography method reduces the projection error from world to
image point by 97%, when compared to the other two methods, and the complete
workflow can successfully estimate speed distributions expected from vehicles on
urban traffic and handle dynamic changes in vehicle speed.
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1 Introduction

Each year, approximately 1.35 million people die on roadways worldwide due to speeding drivers;
public entities have to deal with the cost of damage control and lidars for speed estimation are
expensive to buy and maintain. In addition, most major cities have implemented a grid of surveillance
cameras in areas of interest to tackle this problem.
This work1 proposes a three-component workflow to develop a speed estimation system using only
images and point correspondences between the image plane and world plane. First, homography
estimation is employed, assuming a flat road to back-project image coordinates to longitude-latitude
coordinates. A human operator defines a set of correspondences between the two planes to estimate
the homography matrix for each scene. Then, an object detector locates vehicles on the scene. Later,
an object tracker receives those vehicle detections and uses intersection over union (IoU) to assign
them to vehicle tracks, and estimate speed by computing haversine distance between two points on a
fixed window of time. Moreover, three implementations of homography estimation were compared.
The first is a basic Direct Linear Transformation (DLT) method, the second is a robust version of
DLT using Random Sample Consensus (RANSAC), and the third is the proposed novel method based
on the Estimation of Density evolutionary algorithm (EDA). This proposed method modifies the
longitude-latitude inputs to minimize the projection error loss function. Therefore, correcting the
misalignment between a point in the image plane and the world plane.

2 Previous Work

There are many works that try to address the problem of vehicle speed estimation using machine
vision. For instance, Tang et al. [13] introduced a methodology that consists in the calibration of a
pinhole camera model based on vanishing points, followed by object detection using YOLO9000
[10], and a customized tracking system. This tracker uses various visual a spatial features to produce
reliable tracks. This work achieved the first place on the NVIDIA AI City Challenge 2018, achieving a
RMSE of 4.0963 mi/h. Then, the work of [15] proposes a similar workflow. However, the calibration
is based on perspective transformation leveraging road markings. Their work assumes that markings
follow standard dimensions. Furthermore, the authors used them to establish a real world coordinate
system, and find a homography matrix. This method only uses a single scene and achieved an average
error of 3.2 km/h.

3 Methodology

3.1 Algorithm Design

This method has three main components: homography matrix estimation, object detection, and object
tracking. Figure 1 depicts the system workflow with the aforementioned components. The figure also
includes all inputs and outputs, which are explained in detail in the following subsections.

3.2 Data Collection

To compute homography matrices, a video dataset with both image and world points representing
the same spots is needed. At the time of writing this work, no such dataset was found. Instead, a
compilation of 10 live feeds from different cameras in unconstrained conditions were recorded using
the Department of Transportation of Seattle portal (https://web6.seattle.gov/travelers/).
In addition, street addresses from each scene were extracted. Then, those addresses were visited
on Google Maps to find the scene and manually extract world points that matched the image plane.
Moreover, as the dataset was built from scratch, no beforehand speed annotations of the vehicles are
available. Table 2 of Appendix A presents the metadata of all the videos.

1The code for this work can be fount at https://github.com/hector6298/titulacion_vehice_
speed_estimation.
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Figure 1: Proposed speed estimation workflow.

3.3 Homography Estimation for Camera Calibration

A critical component for a system, capable of measuring the speed of the objects in the scene using
only visual information, is camera calibration. Assuming a flat road, let B ∈ R be a scale factor,
p′ =
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)) and p =
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)) be the homogeneous coordinates of a point in the image
and world plane, respectively. Then, the camera model [12] is expressed as:
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The parameters of H, the homography matrix, can be obtained with Direct Linear Transformation
(DLT) [4] with a minimum of four point correspondences. In this work, given a scene 8, a set of =
points are manually identified both for the pixel coordinates from a reference image of the scene and
for the latitude/longitude coordinates taken from Google Maps. Each correspondence between two
points should represent the same location on the scene. Furthermore, three methods are evaluated: a
base DLT homography extraction with no robust method for error minimization, a RANSAC [5] DLT
robust method, and a proposed technique, designed specifically for roadside camera calibration, based
on evolutionary algorithms.
Given the initial manual annotations, the proposed calibration method consists of an iterative, localized
correction of each starting latitude-longitude point on a scene to estimate image coordinates that match
the annotations as much as possible. Intuitively, this procedure tries to alleviate the miss-alignments
between real-world and image point correspondence introduced by human operation. It follows an
Estimation of Density evolutionary algorithm (EDA) [1], guided by the projection error:

n =
1
=

=∑
8=1
| |?8 − ?̂8 | |2, (2)

where ?8 is a point selected by a human operator on the image plane, and ?̂8 is the estimated point
given a longitude-latitude coordinate. The EDA algorithm works by establishing an initial population
# of point correspondences with a pre-defined range where a random variation of the original points
can be generated. Then, generation by generation,  individuals are selected with the least projection
error. Each generation, the mean and variance of the survivors are calculated to generate offspring
and the process repeats until error convergence. Note that, although all points from both planes
are manually selected, the reasons for subjecting longitude-latitude points to correction instead of
the image coordinates is that projection error uses image coordinates as target values and, most
importantly, the world plane has no perspective. This allows a uniform initial search range for every
point.
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3.4 Object Detection with YOLOv4

To be able to detect vehicles on the scene, YOLOv4 detection model, created by Bochkovskiy et al.
[3], was utilized. It is a deep convolutional neural network that consists of three main components:
backbone, neck, and head. First, a network called CSPDarknet53 is embedded into YOLO as its
feature extractor backbone. Based on its original version Darknet-53, it is implemented as a Cross
Stage Partial Network (CSPNet) [14]. For the neck of the detector, a Spatial Pyramid Pooling (SPP)
block was included over the backbone to generate a fixed-length vector regardless of image size [7].
YOLOv4 detector also performs feature extraction at three spatial dimensions to improve detection at
varying object sizes. The mechanism follows a Feature Pyramid Network (FPN) [9] in which the
feature maps gradually decrease in the spatial dimension but are later up-scaled with deconvolution
layers. Finally, the detection head is taken from the previous version, YOLOv3 [11], in which each
output feature map is subjected to a 1 × 1 convolutional layer with shape 1 × 1 × (�(5 +�)), where �
is the number of objects that can be detected on each image cell and � the number of classes.

3.5 Object Tracking and Speed Estimation

The object tracker follows a tracking by detection scheme from Bochinsky et al. [2], with modifications
to keep track of the speed in km/h along the path of the objects. At the first image frame, the tracker
assigns all detections to new active tracks. Then, the algorithm updates itself each frame by receiving
new detections and assigning them to the tracks that maximize the intersection over union (IoU) using
bounding boxes. In addition, an assignment threshold is defined to avoid identity hĳacking or location
jumps [8]. Furthermore, the speed estimation process is made every  number of frames for each
track independently, using the following formula:

( =
3 (?, @)
C

=
3 (?, @)
5 −1
B

× 3600, (3)

where 3 (?, @) is distance in kilometers, 5B is the number of frames per second taken by the camera,
and 5 −1

B represent the time spent each speed estimation. Each time the speed estimation is performed
for a vehicle, ? takes the value of @, and @ becomes the newest location available for that vehicle. To
calculate distances, recorded locations in image points have to be transformed to the real world plane
using the inverse of the homography matrix H−1. Then, the distance in kilometers is computed using
the haversine distance [6]:

3ℎ (?, @) = 2 arcsin
√

sin2
( ?G − @G

2

)
+ cos(?G) cos(@G) sin2

( ?H − @H
2

)
, (4)

where ?G , @G are latitudes and ?H , @H are longitudes.

4 Results and Discussion

4.1 Homography Estimation

Figure 2 presents quantitative results for the base, RANSAC, and proposed version of the calibration.
On average, both RANSAC and base algorithms got an error of 7.99 pixels, while the proposed
returned only 0.24. This represents a reduction of 97% in projection error. In particular, video 4 had
the highest error on both base and RANSAC algorithms, with estimations significantly deviating from
targets. On the other hand, with the proposed methodology, the estimations match the annotations
correctly, as can be seen in figures 3a and 3b, which depict a graphical comparison with the calibration
methodologies. This pattern repeats for all the other videos, except for videos 6 to 10. These videos
had negligible error for all the three methodologies, and they all had only 4 point correspondences,
placed at the corners of the region of interest.

4.2 Speed Estimation

Distributions of speed across all the region of interest were computed for every video instance to
assess the performance of the speed estimation methodology. These distributions are depicted in
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Figure 2: Projection error on all videos.

(a) Base Calibration. (b) EDA calibration.

Figure 3: Calibrations on video 4. Blue circumferences represent annotations, red circumferences
represent estimations.

Figure 4 using boxplots. Also, Table 1 shows statistics computed on the same videos: number of
samples, mean speed, median speed, and standard deviation.

Figure 4: Boxplots for the speed distribution on all videos.

Most of the distributions per video tend to be skewed towards 0 km/h. This is due to traffic lights that
are placed next to the cameras that were filming the area, and cars often had to stop, or were parked.
Moreover, the trackers were still measuring vehicles at full stop. Then, the majority of speed values
that were obtained, per video, are less than 70 km/h, as can be seen in Table 1. However, there is
still some exceptions. For instance, Figure 4 shows that video 4, have its fourth quartile on ranges
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greater than 100 km/h. As this methodology estimates the speed of each vehicle independently, these
measures were stored as time series. Figure 5 shows the speed timeline for ten different vehicles for
video 7, which were randomly chosen.

Figure 5: Timeseries with measurements of speed for 10 vehicles in video 7.

It can be seen that the tracker algorithm is able to measure the change in velocity of the vehicles.
There are no sudden spikes in speed or noisy recordings, and the change in speed follows soft curves.
These insights show that the tracker measures are on par with the real behavior of drivers on urban
areas.

Table 1: Speed statistics for all videos.
Video
Id

Speed
samples

Mean
speed
(Km/h)

Median
speed
(Km/h)

Speed
STD
(Km/h)

percentage of
speed samples >
70 Km/h

1 1049 19.53 12.18 19.01 0.00
2 2289 10.74 5.09 12.73 0.00
3 5948 17.26 5.26 19.97 0.00
4 2444 55.66 57.49 44.18 0.37
5 2610 41.83 47.00 28.28 0.18
6 8581 9.69 1.99 13.93 0.00
7 4814 37.00 39.52 23.01 0.06
8 6063 44.15 51.62 25.89 0.14
9 5168 23.98 10.83 26.15 0.07
10 6470 10.52 5.43 11.39 0.00

5 Conclusions

There are two main conclusions that stand out from the results of this work. The first is that the
proposed calibration method, employing EDA evolutionary algorithm, resulted in a dramatic reduction
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of the projection error of all scenes, when compared to both the base DLT and RANSAC DLT
methods.
Second, in all scenes, the speed estimation distributions along with the vehicles speed timeseries
resembled the behavior of drivers on an urban city.
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A Appendix

A.1 Experimental setup

All experimentation was performed on an Acer Aspire-E5-576G laptop running Ubuntu 20.10
with Intel® Core™ i5-8250U CPU, Nvidia GeForce MX150 GPU with Compute Unified Device
Architecture (CUDA) enabled, 12 Gb of DDR4 RAM, and 500 GB SSD M.2 NVME. Although
CUDA is enabled, it could not be used for deep learning acceleration due to the limited graphics
memory available. Thus, CPU had to be utilized to make the computations of the object detection
model, significantly increasing the processing time. For future work, more robust hardware is needed
to assess the performance of this workflow in real-time.

A.2 Metadata of the dataset

All the addresses, date of recording and number of points extracted can be seen in Table 2.

Table 2: Overview of the videos captured from Seattle Dept. of Transportation.
Video
Id

Date Address Points
Num.

Resolution Duration

1 February,
22, 2021

2nd Ave & Marion St 8 1280 × 720 8:21

2 February,
22, 2021

E Marginal Way S & S
Idaho St

8 1920 × 1080 7:52

3 February,
22, 2021

23rd Ave E & E Madison
St EW

7 1280 × 720 10:17

4 February,
22, 2021

1st Ave S & S Royal
Brougham Way

7 1280 × 720 10:08

5 February,
22, 2021

Airport Way S & S Indus-
trial Way

7 1280 × 720 10:31

6 March,
10, 2021

23rd Ave S & S Jackson
St

4 1920 × 1080 10:22

7 March,
10, 2021

Airport Way S & S Lan-
der St

4 1920 × 1080 9:44

8 March,
10, 2021

EMarginalWay S@Hud-
son St

4 1920 × 1080 9:34

9 March,
10, 2021

1st Ave & Seneca St 4 1920 × 1080 10:25

10 March,
10, 2021

Fairview Ave & Denny
Way

4 1920 × 1080 10:04

A.3 Algorithm and hyperparameters used for the proposed homography estimation method

The homography estimation process using estimation of density evolutionary algorithm (EDA) follows
Algorithm 4, which also uses auxiliary functions defined in algorithms 1, 2, and 3. Furhtermore, the
hyperparameters are:

• Initial population (#): 20000
• Selected population per generation ( ): 100
• Number of generations (g): 20
• Initial variability range (W): 10%
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Algorithm 1: EDA population initialization for world point sets (EDAPopInitialization).
Input :W : Percentage of variation, #: Initial Pop., - ′: Initial set of world points.
Output
:

WorldPtSets

1 ,>A;3%C(4CB← {};
2 for i=0 to # , step=1 do
3 for G in - do
4 Ĝ ← A0=3><+0A80C8>=(G, W) ;
5 -̂ ← -̂ ∪ Ĝ;
6 ,>A;3%C(4CB← ,>A;3%C(4CB ∪ -̂

Algorithm 2: EDA population initialization from statistics (genPopFromStats).
Input :f : World point set Variance vector, #: Initial Pop., `: World point set Mean vector.
Output
:

WorldPtSets

1 ,>A;3%C(4CB← {};
2 for i=0 to # , step=1 do
3 for i=0 to (num points on original set), step=1 do
4 Ĝ ← A0=3><+0A80C8>=(`, f) ;
5 -̂ ← -̂ ∪ Ĝ;
6 ,>A;3%C(4CB← ,>A;3%C(4CB ∪ -̂

Algorithm 3: Mean and variance estimation (getMeanVariancePtSets).
Input :WorldPtSets: A set of sets of world points.
Output
:

`, f: Mean and variance vectors.

1 fG , fH ← compute variance vector per coordinate of for all point sets;
2 f ← 2>=20C4=0C4(fG , fH);
3 `G, `H ← compute means vector per coordinate of for all point sets;
4 `← 2>=20C4=0C4(`G, `H);
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Algorithm 4: Calibration with estimation of density algorithm.
Input :-: Original set of world points, - ′: Original set of image points, (#, g, W, U): EDA

params
Output
:

-̂>DC : Corrected set of world points, �̂>DC : estimated calibration matrix.

1 ,>A;3%C(4CB← ���%>?�=8C80;8I0C8>=(-, W, #);
2 while 8 < g do
3 for -̂ in WorldPtSets do
4 �̂ ← DLT_homography(-̂ , - ′);
5 -̂ ′← {};
6 �AA>AB← {};
7 for Ĝ in -̂ do
8 Ĝ ′← �̂Ĝ;
9 -̂ ′← -̂ ′ ∪ Ĝ ′;

10 n ← calcProjectionError(-̂ ′, - ′);
11 �AA>AB← �AA>AB ∪ n ;
12 Associate n with the corresponding -̂ that produced -̂ ′;
13 n̄2DAA4=C , BC3n ← get_mean_std(Errors);
14 sort WorldPtSets according to their associated n ;
15 keep first  world point sets -̂ in WorldPtSets;
16 f, `← 64C"40=+0A80=24%C(4CB(,>A;3%C(4CB);
17 ,>A;3%C(4CB← ,>A;3%C(4CB ∪ 64=%>?�A><(C0CB(f, `, #);
18 -̂>DC ← first set of,>A;3%C(4CB;
19 �̂>DC ← �!)_ℎ><>6A0?ℎH( -̂>DC , - ′);
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