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Abstract

Policy gradient methods are notorious for having a large variance and high sample1

complexity. To mitigate this, we introduce SoftTreeMax—a generalization of2

softmax that employs planning. In SoftTreeMax, we extend the traditional logits3

with the multi-step discounted cumulative reward, topped with the logits of future4

states. We analyze SoftTreeMax and explain how tree expansion helps to reduce5

its gradient variance. We prove that the variance decays exponentially with the6

planning horizon as a function of the chosen tree-expansion policy. Specifically,7

we show that the closer the induced transitions are to being state-independent,8

the stronger the decay. With approximate forward models, we prove that the9

resulting gradient bias diminishes with the approximation error while retaining10

the same variance reduction. Ours is the first result to bound the gradient bias for11

an approximate model. In a practical implementation of SoftTreeMax, we utilize12

a parallel GPU-based simulator for fast and efficient tree expansion. Using this13

implementation in Atari, we show that SoftTreeMax reduces the gradient variance14

by three orders of magnitude. This leads to better sample complexity and improved15

performance compared to distributed PPO.16

1 Introduction17

Policy Gradient (PG) methods [Sutton et al., 1999] for Reinforcement Learning (RL) are often the18

first choice for environments that allow numerous interactions at a fast pace [Schulman et al., 2017].19

Their success is attributed to several factors: they are easy to distribute to multiple workers, require20

no assumptions on the underlying value function, and have both on-policy and off-policy variants.21

Despite these positive features, PG algorithms are also notoriously unstable due to the high variance22

of the gradients computed over entire trajectories [Liu et al., 2020, Xu et al., 2020]. As a result, PG23

algorithms tend to be highly inefficient in terms of sample complexity. Several solutions have been24

proposed to mitigate the high variance issue, including baseline subtraction [Greensmith et al., 2004,25

Thomas and Brunskill, 2017, Wu et al., 2018], anchor-point averaging [Papini et al., 2018], and other26

variance reduction techniques [Zhang et al., 2021, Shen et al., 2019, Pham et al., 2020].27

A second family of algorithms that achieved state-of-the-art results in several domains is based on28

planning. Planning is exercised primarily in the context of value-based RL and is usually implemented29

using a Tree Search (TS) [Silver et al., 2016, Schrittwieser et al., 2020]. In this work, we combine30

PG with TS by introducing a parameterized differentiable policy that incorporates tree expansion.31

Namely, our SoftTreeMax policy replaces the standard policy logits of a state and action, with the32

expected value of trajectories that originate from these state and action. We consider two variants of33

SoftTreeMax, one for cumulative reward and one for exponentiated reward.34

Combining TS and PG should be done with care given the biggest downside of PG—its high gradient35

variance. This raises questions that were ignored until this work: (i) How to design a PG method based36

on tree-expansion that is stable and performs well in practice? and (ii) How does the tree-expansion37
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policy affect the PG variance? Here, we analyze SoftTreeMax, and provide a practical methodology38

to choose the expansion policy to minimize the resulting variance. Our main result shows that a39

desirable expansion policy is one, under which the induced transition probabilities are similar for40

each starting state. More generally, we show that the gradient variance of SoftTreeMax decays at41

a rate of |λ2|d, where d is the depth of the tree and λ2 is the second eigenvalue of the transition42

matrix induced by the tree expansion policy. This work is the first to prove such a relation between43

PG variance and tree expansion policy. In addition, we prove that the with an approximate forward44

model, the bias of the gradient is bounded proportionally to the approximation error of the model.45

To verify our results, we implemented a practical version of SoftTreeMax that exhaustively searches46

the entire tree and applies a neural network on its leaves. We test our algorithm on a parallelized47

Atari GPU simulator [Dalton et al., 2020]. To enable a tractable deep search, up to depth eight, we48

also introduce a pruning technique that limits the width of the tree. We do so by sampling only the49

most promising nodes at each level. We integrate our SoftTreeMax GPU implementation into the50

popular PPO [Schulman et al., 2017] and compare it to the flat distributed variant of PPO. This allows51

us to demonstrate the potential benefit of utilizing learned models while isolating the fundamental52

properties of TS without added noise. In all tested Atari games, our results outperform the baseline53

and obtain up to 5x more reward. We further show in Section 6 that the associated gradient variance54

is smaller by three orders of magnitude in all games, demonstrating the relation between low gradient55

variance and high reward.56

We summarize our key contributions. (i) We show how to combine two families of SoTA approaches:57

PG and TS by introducing SoftTreeMax: a novel parametric policy that generalizes softmax to58

planning. Specifically, we propose two variants based on cumulative and exponentiated rewards. (ii)59

We prove that the gradient variance of SoftTreeMax in its two variants decays exponentially60

with its tree depth. Our analysis sheds new light on the choice of tree expansion policy. It raises61

the question of optimality in terms of variance versus the traditional regret; e.g., in UCT [Kocsis62

and Szepesvári, 2006]. (iii) We prove that with an approximate forward model, the gradient bias is63

proportional to the approximation error, while retaining the variance decay. This quantifies the64

accuracy required from a learned forward model. (iv) We implement a differentiable deep version65

of SoftTreeMax that employs a parallelized GPU tree expansion. We demonstrate how its gradient66

variance is reduced by three orders of magnitude over PPO while obtaining up to 5x reward.67

2 Preliminaries68

Let ∆U denote simplex over the set U. Throughout, we consider a discounted Markov Decision69

Process (MDP) M = (S,A, P, r, γ, ν), where S is a finite state space of size S, A is a finite action70

space of size A, r : S × A → [0, 1] is the reward function, P : S × A → ∆S is the transition71

function, γ ∈ (0, 1) is the discount factor, and ν ∈ RS is the initial state distribution. We denote72

the transition matrix starting from state s by Ps ∈ [0, 1]A×S , i.e., [Ps]a,s′ = P (s′|a, s). Similarly,73

let Rs = r(s, ·) ∈ RA denote the corresponding reward vector. Separately, let π : S → ∆A be a74

stationary policy. Let Pπ and Rπ be the induced transition matrix and reward function, respectively,75

i.e., Pπ(s′|s) =
∑

a π(a|s) Pr(s′|s, a) and Rπ(s) =
∑

a π(a|s)r(s, a). Denote the stationary76

distribution of Pπ by µπ ∈ RS s.t. µ⊤
π P

π = Pπ, and the discounted state visitation frequency77

by dπ so that d⊤π = (1 − γ)
∑∞

t=0 γ
tν⊤(Pπ)t. Also, let V π ∈ RS be the value function of π78

defined by V π(s) = Eπ [
∑∞

t=0 γ
tr (st, π(st)) | s0 = s], and let Qπ ∈ RS×A be the Q-function79

such that Qπ(s, a) = Eπ [r(s, a) + γV π(s′)]. Our goal is to find an optimal policy π⋆ such that80

V ⋆(s) ≡ V π⋆

(s) = maxπ V
π(s), ∀s ∈ S.81

For the analysis in Section 4, we introduce the following notation. Denote by Θ ∈ RS the vector82

representation of θ(s) ∀s ∈ S. For a vector u, denote by exp(u) the coordinate-wise exponent of83

u and by D(u) the diagonal square matrix with u in its diagonal. For a matrix A, denote its i-th84

eigenvalue by λi(A). Denote the k-dimensional identity matrix and all-ones vector by Ik and 1k,85

respectively. Also, denote the trace operator by Tr . Finally, we treat all vectors as column vectors.86
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2.1 Policy Gradient87

PG schemes seek to maximize the cumulative reward as a function of the policy πθ(a|s) by performing88

gradient steps on θ. The celebrated Policy Gradient Theorem [Sutton et al., 1999] states that89

∂

∂θ
ν⊤V πθ = Es∼dπθ

,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)] .

The variance of the gradient is thus90

Vars∼dπθ
,a∼πθ(·|s) (∇θ log πθ(a|s)Qπθ (s, a)) . (1)

In the notation above, we denote the variance of a vector random variable X by91

Varx (X) = Tr
[
Ex

[
(X − ExX)

⊤
(X − ExX)

]]
,

similarly as in [Greensmith et al., 2004]. From now on, we drop the subscript from Var in (1)92

for brevity. When the action space is discrete, a commonly used parameterized policy is softmax:93

πθ(a|s) ∝ exp (θ(s, a)) , where θ : S ×A → R is a state-action parameterization.94

3 SoftTreeMax: Exponent of trajectories95

We introduce a new family of policies called SoftTreeMax, which are a model-based generalization96

of the popular softmax. We propose two variants: Cumulative (C-SoftTreeMax) and Exponenti-97

ated (E-SoftTreeMax). In both variants, we replace the generic softmax logits θ(s, a) with the98

score of a trajectory of horizon d starting from (s, a), generated by applying a behavior policy99

πb. In C-SoftTreeMax, we exponentiate the expectation of the logits. In E-SoftTreeMax, we first100

exponentiate the logits and then only compute their expectation.101

Logits. We define the SoftTreeMax logit ℓs,a(d; θ) to be the random variable depicting the score of a102

trajectory of horizon d starting from (s, a) and following the policy πb:103

ℓs,a(d; θ) = γ−d

[
d−1∑
t=0

γtrt + γdθ(sd)

]
. (2)

In the above expression, note that s0 = s, a0 = a, at ∼ πb(·|st) ∀t ≥ 1, and rt ≡ r (st, at) .104

For brevity of the analysis, we let the parametric score θ in (2) be state-based, similarly to a value105

function. Instead, one could use a state-action input analogous to a Q-function. Thus, SoftTreeMax106

can be integrated into the two types of implementation of RL algorithms in standard packages. Lastly,107

the preceding γ−d scales the θ parametrization to correspond to its softmax counerpart.108

C-SoftTreeMax. Given an inverse temperature parameter β, we let C-SoftTreeMax be109

πC
d,θ(a|s) ∝ exp [βEπbℓs,a(d; θ)] . (3)

C-SoftTreeMax gives higher weight to actions that result in higher expected returns. While standard110

softmax relies entirely on parametrization θ, C-SoftTreeMax also interpolates a Monte-Carlo portion111

of the reward.112

E-SoftTreeMax. The second operator we propose is E-SoftTreeMax:113

πE
d,θ(a|s) ∝ Eπb exp [(βℓs,a(d; θ))] ; (4)

here, the expectation is taken outside the exponent. This objective corresponds to the exponentiated114

reward objective which is often used for risk-sensitive RL [Howard and Matheson, 1972, Fei et al.,115

2021, Noorani and Baras, 2021]. The common risk-sensitive objective is of the form logE[exp(δR)],116

where δ is the risk parameter and R is the cumulative reward. Similarly to that literature, the exponent117

in (4) emphasizes the most promising trajectories.118

SoftTreeMax properties. SoftTreeMax is a natural model-based generalization of softmax. For119

d = 0, both variants above coincide since (2) becomes deterministic. In that case, for a state-action120

parametrization, they reduce to standard softmax. When β → 0, both variants again coincide and121

sample actions uniformly (exploration). When β → ∞, the policies become deterministic and122
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greedily optimize for the best trajectory (exploitation). For C-SoftTreeMax, the best trajectory is123

defined in expectation, while for E-SoftTreeMax it is defined in terms of the best sample path.124

SoftTreeMax convergence. Under regularity conditions, for any parametric policy, PG converges125

to local optima [Bhatnagar et al., 2009], and thus also SoftTreeMax. For softmax PG, asymptotic126

[Agarwal et al., 2021] and rate results [Mei et al., 2020b] were recently obtained, by showing that127

the gradient is strictly positive everywhere [Mei et al., 2020b, Lemmas 8-9]. We conjecture that128

SoftTreeMax satisfies the same property, being a generalization of softmax, but formally proving it is129

subject to future work.130

SoftTreeMax gradient. The two variants of SoftTreeMax involve an expectation taken over Sd131

many trajectories from the root state s and weighted according to their probability. Thus, during132

the PG training process, the gradient ∇θ log πθ is calculated using a weighted sum of gradients over133

all reachable states starting from s. Our method exploits the exponential number of trajectories to134

reduce the variance while improving performance. Indeed, in the next section we prove that the135

gradient variance of SoftTreeMax decays exponentially fast as a function of the behavior policy πb136

and trajectory length d. In the experiments in Section 6, we also show how the practical version137

of SoftTreeMax achieves a significant reduction in the noise of the PG process and leads to faster138

convergence and higher reward.139

4 Theoretical Analysis140

In this section, we first bound the variance of PG when using the SoftTreeMax policy. Later, we141

discuss how the gradient bias resulting due to approximate forward models diminishes as a function142

of the approximation error, while retaining the same variance decay.143

We show that the variance decreases exponentially with the tree depth, and the rate is determined144

by the second eigenvalue of the transition kernel induced by πb. Specifically, we bound the same145

expression for variance as appears in [Greensmith et al., 2004, Sec. 3.5] and [Wu et al., 2018, Sec. A,146

Eq. (21)]. Other types of analysis could instead have focused on the estimation aspect in the context147

of sampling [Zhang et al., 2021, Shen et al., 2019, Pham et al., 2020]. Indeed, in our implementation148

in Section 5, we manage to avoid sampling and directly compute the expectations in Eqs. (3) and149

(4). As we show later, we do so by leveraging efficient parallel simulation on the GPU in feasible150

run-time. In our application, due to the nature of the finite action space and quasi-deterministic Atari151

dynamics [Bellemare et al., 2013], our expectation estimator is noiseless. We encourage future work152

to account for the finite-sample variance component. We defer all the proofs to Appendix A.153

We begin with a general variance bound that holds for any parametric policy.154

Lemma 4.1 (Bound on the policy gradient variance). Let ∇θ log πθ(·|s) ∈ RA×dim(θ) be a matrix155

whose a-th row is ∇θ log πθ(a|s)⊤. For any parametric policy πθ and function Qπθ : S ×A → R,156

Var (∇θ log πθ(a|s)Qπθ (s, a)) ≤ max
s,a

[Qπθ (s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F .

Hence, to bound (1), it is sufficient to bound the Frobenius norm ∥∇θ log πθ(·|s)∥F for any s.157

Note that SoftTreeMax does not reduce the gradient uniformly, which would have been equivalent158

to a trivial change in the learning rate. While the gradient norm shrinks, the gradient itself scales159

differently along the different coordinates. This scaling occurs along different eigenvectors, as a160

function of problem parameters (P , θ) and our choice of behavior policy (πb), as can be seen in161

the proof of the upcoming Theorem 4.4. This allows SoftTreeMax to learn a good “shrinkage” that,162

while reducing the overall gradient, still updates the policy quickly enough. This reduction in norm163

and variance resembles the idea of gradient clipping Zhang et al. [2019], where the gradient is scaled164

to reduce its variance, thus increasing stability and improving overall performance.165

A common assumption in the RL literature [Szepesvári, 2010] that we adopt for the remainder of166

the section is that the transition matrix Pπb , induced by the behavior policy πb, is irreducible and167

aperiodic. Consequently, its second highest eigenvalue satisfies |λ2(P
πb)| < 1.168

From now on, we divide the variance results for the two variants of SoftTreeMax into two subsec-169

tions. For C-SoftTreeMax, the analysis is simpler and we provide an exact bound. The case of170

E-SoftTreeMax is more involved and we provide for it a more general result. In both cases, we show171

that the variance decays exponentially with the planning horizon.172
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4.1 Variance of C-SoftTreeMax173

We express C-SoftTreeMax in vector form as follows.174

Lemma 4.2 (Vector form of C-SoftTreeMax). For d ≥ 1, (3) is given by175

πC
d,θ(·|s) =

exp
[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)] , (5)

where176

Cs,d = γ−dRs + Ps

[
d−1∑
h=1

γh−d (Pπb)
h−1

]
Rπb

.

The vector Cs,d ∈ RA represents the cumulative discounted reward in expectation along the trajectory177

of horizon d. This trajectory starts at state s, involves an initial reward dictated by Rs and an178

initial transition as per Ps. Thereafter, it involves rewards and transitions specified by Rπb
and Pπb ,179

respectively. Once the trajectory reaches depth d, the score function θ(sd) is applied,.180

Lemma 4.3 (Gradient of C-SoftTreeMax). The C-SoftTreeMax gradient is given by181

∇θ log π
C
d,θ = β

[
IA − 1A(πC

d,θ)
⊤]Ps (P

πb)
d−1

,

in RA×S , where for brevity, we drop the s index in the policy above, i.e., πC
d,θ ≡ πC

d,θ(·|s).182

We are now ready to present our first main result:183

Theorem 4.4 (Variance decay of C-SoftTreeMax). For every Q : S ×A → R, the C-SoftTreeMax184

policy gradient variance is bounded by185

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ 2

A2S2β2

(1− γ)2
|λ2(P

πb)|2(d−1).

We provide the full proof in Appendix A.4, and briefly outline its essence here.186

Proof outline. Lemma 4.1 allows us to bound the variance using a direct bound on the gradient187

norm. The gradient is given in Lemma 4.3 as a product of three matrices, which we now study from188

right to left. The matrix Pπb is a row-stochastic matrix. Because the associated Markov chain is189

irreducible and aperiodic, it has a unique stationary distribution. This implies that Pπb has one and190

only one eigenvalue equal to 1; all others have magnitude strictly less than 1. Let us suppose that191

all these other eigenvalues have multiplicity 1 (the general case with repeated eigenvalues can be192

handled via Jordan decompositions as in [Pelletier, 1998, Lemma1]). Then, Pπb has the spectral193

decomposition Pπb = 1Sµ⊤
πb

+
∑S

i=2 λiviu
⊤
i , where λi is the i-th eigenvalue of Pπb (ordered in194

descending order according to their magnitude) and ui and vi are the corresponding left and right195

eigenvectors, respectively, and therefore (Pπb)d−1 = 1Sµ⊤
πb

+
∑S

i=2 λ
d−1
i viu

⊤
i .196

The second matrix in the gradient relation in Lemma 4.3, Ps, is a rectangular transition ma-197

trix that translates the vector of all ones from dimension S to A : Ps1S = 1A. Lastly, the198

first matrix
[
IA − 1A(π

C
d,θ)

⊤
]

is a projection whose null-space includes the vector 1A, i.e.,199 [
IA − 1A(πC

d,θ)
⊤
]

1A = 0. Combining the three properties above when multiplying the three matri-200

ces of the gradient, it is easy to see that the first term in the expression for (Pπb)d−1 gets canceled,201

and we are left with bounded summands scaled by λi(P
πb)d−1. Recalling that |λi(P

πb)| < 1 and202

that |λ2| ≥ |λ3| ≥ . . . for i = 2, . . . , S, we obtain the desired result.203

Theorem 4.4 guarantees that the variance of the gradient decays exponentially with d. It also provides204

a novel insight for choosing the behavior policy πb as the policy that minimizes the absolute second205

eigenvalue of the Pπb . Indeed, the second eigenvalue of a Markov chain relates to its connectivity206

and its rate of convergence to the stationary distribution [Levin and Peres, 2017].207

Optimal variance decay. For the strongest reduction in variance, the behavior policy πb should be208

chosen to achieve an induced Markov chain whose transitions are state-independent. In that case, Pπb209
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is a rank one matrix of the form 1Sµ⊤
πb
, and λ2(P

πb) = 0. Then, Var (∇θ log πθ(a|s)Q(s, a)) = 0.210

Naturally, this can only be done for pathological MDPs; see Appendix C.1 for a more detailed211

discussion. Nevertheless, as we show in Section 5, we choose our tree expansion policy to reduce the212

variance as best as possible.213

Worst-case variance decay. In contrast, and somewhat surprisingly, when πb is chosen so that the214

dynamics is deterministic, there is no guarantee that it will decay exponentially fast. For example, if215

Pπb is a permutation matrix, then λ2(P
πb) = 1, and advancing the tree amounts to only updating the216

gradient of one state for every action, as in the basic softmax.217

4.2 Variance of E-SoftTreeMax218

The proof of the variance bound for E-SoftTreeMax is similar to that of C-SoftTreeMax, but more219

involved. It also requires the assumption that the reward depends only on the state, i.e. r(s, a) ≡ r(s).220

This is indeed the case in most standard RL environments such as Atari and Mujoco.221

Lemma 4.5 (Vector form of E-SoftTreeMax). For d ≥ 1, (4) is given by222

πE
d,θ(·|s) =

Es,d exp(βΘ)

1⊤AEs,d exp(βΘ)
, (6)

where223

Es,d = Ps

d−1∏
h=1

(
D
(
exp(βγh−dR)

)
Pπb

)
.

The vector R above is the S-dimensional vector whose s-th coordinate is r(s).224

The matrix Es,d ∈ RA×S has a similar role to Cs,d from (5), but it represents the exponentiated225

cumulative discounted reward. Accordingly, it is a product of d matrices as opposed to a sum. It226

captures the expected reward sequence starting from s and then iteratively following Pπb . After d227

steps, we apply the score function on the last state as in (6).228

Lemma 4.6 (Gradient of E-SoftTreeMax). The E-SoftTreeMax gradient is given by229

∇θ log π
E
d,θ = β

[
IA − 1A(π

E
d,θ)

⊤]× D
(
πE
d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

∈ RA×S ,

where for brevity, we drop the s index in the policy above, i.e., πE
d,θ ≡ πE

d,θ(·|s).230

This gradient structure is harder to handle than that of C-SoftTreeMax in Lemma 4.3, but here we231

also can bound the decay of the variance nonetheless.232

Theorem 4.7 (Variance decay of E-SoftTreeMax). There exists α ∈ (0, 1) such that,233

Var
(
∇θ log π

E
d,θ(a|s)Q(s, a)

)
∈ O

(
β2α2d

)
,

for every Q. Further, if Pπb is reversible or if the reward is constant, then α = |λ2(P
πb)|.234

Theory versus Practice. We demonstrate the above result in simulation. We draw a random finite235

MDP, parameter vector Θ ∈ RS
+, and behavior policy πb. We then empirically compute the PG236

variance of E-SoftTreeMax as given in (1) and compare it to |λ2(P
πb)|d. We repeat this experiment237

three times for different Pπb : (i) close to uniform, (ii) drawn randomly, and (iii) close to a permutation238

matrix. As seen in Figure 1, the empirical variance and our bound match almost identically. This239

also suggests that α = |λ2(P
πb)| in the general case and not only when Pπb is reversible or when240

the reward is constant.241

4.3 Bias with an Approximate Forward Model242

The definition of the two SoftTreeMax variants involves the knowledge of the underlying environment,243

in particular the value of P and r. However, in practice, we often can only learn approximations of244

the dynamics from interactions, e.g., using NNs [Ha and Schmidhuber, 2018, Schrittwieser et al.,245

2020]. Let P̂ and r̂ denote the approximate kernel and reward functions, respectively. In this section,246

we study the consequences of the approximation error on the C-SoftTreeMax gradient.247
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Figure 1: A comparison of the empirical PG
variance and our bound for E-SoftTreeMax
on randomly drawn MDPs. We present three
cases for Pπb : (i) close to uniform, (ii) drawn
randomly, and (iii) close to a permutation ma-
trix. This experiment verifies the optimal
and worse-case rate decay cases. The vari-
ance bounds here are taken from Theorem 4.7
where we substitute α = |λ2(P

πb)|. To ac-
count for the constants, we match the values
for the first point in d = 1.
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Figure 2: SoftTreeMax policy. Our exhaus-
tive parallel tree expansion iterates on all ac-
tions at each state up to depth d (= 2 here).
The leaf state of every trajectory is used as
input to the policy network. The output is
then added to the trajectory’s cumulative re-
ward as described in (2). I.e., instead of the
standard softmax logits, we add the cumula-
tive discounted reward to the policy network
output. This policy is differentiable and can
be easily integrated into any PG algorithm. In
this work, we build on PPO and use its loss
function to train the policy network.

Let π̂C
d,θ be the C-SoftTreeMax policy defined given the approximate forward model introduced248

above. That is, let π̂C
d,θ be defined exactly as in (5), but using R̂s, P̂s, R̂πb

and P̂πb , instead of their249

unperturbed counterparts from Section 2. Then, the variance of the corresponding gradient again250

decays exponentially with a decay rate of λ2(P̂
πb). However, a gradient bias is introduced. In the251

following, we bound this bias in terms of the approximation error and other problem parameters. The252

proof is provided in Appendix A.9.253

Theorem 4.8. Let ϵ be the maximal model mis-specification, i.e., let max{∥P − P̂∥, ∥r − r̂∥} = ϵ.254

Then the policy gradient bias due to π̂C
d,θ satisfies255 ∥∥∥∥ ∂

∂θ

(
ν⊤V πC

d,θ

)
− ∂

∂θ

(
ν⊤V π̂C

d,θ

)∥∥∥∥ = O
(

1

(1− γ)2
Sβ2dϵ

)
. (7)

To the best of our knowledge, Theorem 4.8 is the first result that bounds the bias of the gradient256

of a parametric policy due to an approximate model. It states that if the learned model is accurate257

enough, we expect similar convergence properties for C-SoftTreeMax as we would have obtained258

with the true dynamics. It also suggests that higher temperature (lower β) reduces the bias. In this259

case, the logits get less weight, with the extreme of β = 0 corresponding to a uniform policy that has260

no bias. Lastly, the error scales linearly with d : the policy suffers from cumulative error as it relies261

on further-looking states in the approximate model.262

5 SoftTreeMax: Deep Parallel Implementation263

Following impressive successes of deep RL [Mnih et al., 2015, Silver et al., 2016], using deep NNs264

in RL is standard practice. Depending on the RL algorithm, a loss function is defined and gradients265

on the network weights can be calculated. In PG methods, the scoring function used in the softmax is266

commonly replaced by a neural network Wθ: πθ(a|s) ∝ exp (Wθ(s, a)) . Similarly, we implement267

SoftTreeMax by replacing θ(s) in (2) with a neural network Wθ(s). Although both variants of268
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SoftTreeMax from Section 3 involve computing an expectation, this can be hard in general. One269

approach to handle it is with sampling, though these introduce estimation variance into the process.270

We leave the question of sample-based theory and algorithmic implementations for future work.271

Instead, in finite action space environments such as Atari, we compute the exact expectation in272

SoftTreeMax with an exhaustive TS of depth d. Despite the exponential computational cost of273

spanning the entire tree, recent advancements in parallel GPU-based simulation allow efficient274

expansion of all nodes at the same depth simultaneously [Dalal et al., 2021, Rosenberg et al., 2022].275

This is possible when a simulator is implemented on GPU [Dalton et al., 2020, Makoviychuk276

et al., 2021, Freeman et al., 2021], or when a forward model is learned [Kim et al., 2020, Ha and277

Schmidhuber, 2018]. To reduce the complexity to be linear in depth, we apply tree pruning to a278

limited width in all levels. We do so by sub-sampling only the most promising branches at each level.279

Limiting the width drastically improves runtime, and enables respecting GPU memory limits, with280

only a small sacrifice in performance.281

To summarize, in the practical SoftTreeMax algorithm we perform an exhaustive tree expansion with282

pruning to obtain trajectories up to depth d. We expand the tree with equal weight to all actions, which283

corresponds to a uniform tree expansion policy πb. We apply a neural network on the leaf states, and284

accumulate the result with the rewards along each trajectory to obtain the logits in (2). Finally, we285

aggregate the results using C-SoftTreeMax. We leave experiments E-SoftTreeMax for future work286

on risk-averse RL. During training, the gradient propagates to the NN weights of Wθ. When the287

gradient ∇θ log πd,θ is calculated at each time step, it updates Wθ for all leaf states, similarly to288

Siamese networks [Bertinetto et al., 2016]. An illustration of the policy is given in Figure 2.289

6 Experiments290

We conduct our experiments on multiple games from the Atari simulation suite [Bellemare et al.,291

2013]. As a baseline, we train a PPO [Schulman et al., 2017] agent with 256 GPU workers in parallel292

[Dalton et al., 2020]. For the tree expansion, we employ a GPU breadth-first as in [Dalal et al., 2021].293

We then train C-SoftTreeMax 1 for depths d = 1 . . . 8, with a single worker. For depths d ≥ 3,294

we limited the tree to a maximum width of 1024 nodes and pruned trajectories with low estimated295

weights. Since the distributed PPO baseline advances significantly faster in terms of environment296

steps, for a fair comparison, we ran all experiments for one week on the same machine. For more297

details see Appendix B.298

In Figure 3, we plot the reward and variance of SoftTreeMax for each game, as a function of depth.299

The dashed lines are the results for PPO. Each value is taken after convergence, i.e., the average300

over the last 20% of the run. The numbers represent the average over five seeds per game. The plot301

conveys three intriguing conclusions. First, in all games, SoftTreeMax achieves significantly higher302

reward than PPO. Its gradient variance is also orders of magnitude lower than that of PPO. Second,303

the reward and variance are negatively correlated and mirror each other in almost all games. This304

phenomenon demonstrates the necessity of reducing the variance of PG for improving performance.305

Lastly, each game has a different sweet spot in terms of optimal tree depth. Recall that we limit the306

run-time in all experiments to one week The deeper the tree, the slower each step and the run consists307

of less steps. This explains the non-monotone behavior as a function of depth. For a more thorough308

discussion on the sweet spot of different games, see Appendix B.3.309

7 Related Work310

Softmax Operator. The softmax policy became a canonical part of PG to the point where theoretical311

results of PG focus specifically on it [Zhang et al., 2021, Mei et al., 2020b, Li et al., 2021, Ding et al.,312

2022]. Even though we focus on a tree extension to the softmax policy, our methodology is general313

and can be easily applied to other discrete or continuous parameterized policies as in [Mei et al.,314

2020a, Miahi et al., 2021, Silva et al., 2019]. Tree Search. One famous TS algorithm is Monte-Carlo315

TS (MCTS; [Browne et al., 2012]) used in AlphaGo [Silver et al., 2016] and MuZero [Schrittwieser316

et al., 2020]. Other algorithms such as Value Iteration, Policy Iteration and DQN were also shown to317

1We also experimented with E-SoftTreeMax and the results were almost identical. This is due to the quasi-
deterministic nature of Atari, which causes the trajectory logits (2) to have almost no variability. We encourage
future work on E-SoftTreeMax using probabilistic environments that are risk-sensitive.
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Figure 3: Reward and Gradient variance: GPU SoftTreeMax (single worker) vs PPO (256 GPU
workers). The blue reward plots show the average of 50 evaluation episodes. The red variance plots
show the average gradient variance of the corresponding training runs, averaged over five seeds. The
dashed lines represent the same for PPO. Note that the variance y-axis is in log-scale.

give an improved performance with a tree search extensions [Efroni et al., 2019, Dalal et al., 2021].318

Parallel Environments. In this work we used accurate parallel models that are becoming more319

common with the increasing popularity of GPU-based simulation [Makoviychuk et al., 2021, Dalton320

et al., 2020, Freeman et al., 2021]. Alternatively, in relation to Theorem 4.8, one can rely on recent321

works that learn the underlying model [Ha and Schmidhuber, 2018, Schrittwieser et al., 2020] and322

use an approximation of the true dynamics. Risk Aversion. Previous work considered exponential323

utility functions for risk aversion [Chen et al., 2007, Garcıa and Fernández, 2015, Fei et al., 2021].324

This utility function is the same as E-SoftTreeMax formulation from (4), but we have it directly325

in the policy instead of the objective. Reward-free RL. We showed that the gradient variance is326

minimized when the transitions induced by the behavior policy πb are uniform. This is expressed by327

the second eigenvalue of the transition matrix Pπb . This notion of uniform exploration is common to328

the reward-free RL setup [Jin et al., 2020]. Several such works also considered the second eigenvalue329

in their analysis [Liu and Brunskill, 2018, Tarbouriech and Lazaric, 2019].330

8 Discussion331

In this work, we introduced for the first time a differentiable parametric policy that combines TS with332

PG. We proved that SoftTreeMax is essentially a variance reduction technique and explained how to333

choose the expansion policy to minimize the gradient variance. It is an open question whether optimal334

variance reduction corresponds to the appealing regret properties the were put forward by UCT335

[Kocsis and Szepesvári, 2006]. We believe that this can be answered by analyzing the convergence336

rate of SoftTreeMax, relying on the bias and variance results we obtained here.337

As the learning process continues, the norm of the gradient and the variance both become smaller.338

On the face of it, one can ask if the gradient becomes small as fast as the variance or even faster can339

there be any meaningful learning? As we showed in the experiments, learning happens because the340

variance reduces fast enough (a variance of 0 represents deterministic learning, which is fastest).341

Finally, our work can be extended to infinite action spaces. The analysis can be extended to infinite-342

dimension kernels that retain the same key properties used in our proofs. In the implementation, the343

tree of continuous actions can be expanded by maintaining a parametric distribution over actions that344

depend on θ. This approach can be seen as a tree adaptation of MPPI [Williams et al., 2017].345

9 Reproducibility and Limitations346

In this submission, we include the code as part of the supplementary material. We also include a347

docker file for setting up the environment and a README file with instructions on how to run both348

training and evaluation. The environment engine is an extension of Atari-CuLE [Dalton et al., 2020],349

a CUDA-based Atari emulator that runs on GPU. Our usage of a GPU environment is both a novelty350

and a current limitation of our work.351
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Appendix473

A Proofs474

A.1 Proof of Lemma 4.1 – Bound on the policy gradient variance475

For any parametric policy πθ and function Q : S ×A → R,476

Var (∇θ log πθ(a|s)Q(s, a)) ≤ max
s,a

[Q(s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F ,

where ∇θ log πθ(·|s) ∈ RA×dim(θ) is a matrix whose a-th row is ∇θ log πθ(a|s)⊤.477

Proof. The variance for a parametric policy πθ is given as follows:478

Var (∇θ log πθ(a|s)Q(a, s)) =Es∼dπθ
,a∼πθ(·|s)

[
∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

]
−

Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)]

⊤ Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Q(s, a)] ,

where Q(s, a) is the currently estimated Q-function and dπθ
is the discounted state visitation frequency479

induced by the policy πθ. Since the second term we subtract is always positive (it is of quadratic form480

v⊤v) we can bound the variance by the first term:481
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Var (∇θ log πθ(a|s)Q(a, s)) ≤Es∼dπθ
,a∼πθ(·|s)

[
∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

]
=
∑
s

dπθ
(s)
∑
a

πθ(a|s)∇θ log πθ(a|s)⊤∇θ log πθ(a|s)Q(s, a)2

≤max
s,a

[
[Q(s, a)]

2
πθ(a|s)

]∑
s

dπθ
(s)
∑
a

∇θ log πθ(a|s)⊤∇θ log πθ(a|s)

≤max
s,a

[Q(s, a)]
2
max

s

∑
a

∇θ log πθ(a|s)⊤∇θ log πθ(a|s)

=max
s,a

[Q(s, a)]
2
max

s
∥∇θ log πθ(·|s)∥2F .

482

A.2 Proof of Lemma 4.2 – Vector form of C-SoftTreeMax483

In vector form, (3) is given by484

πC
d,θ(·|s) =

exp
[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)] , (8)

where485

Cs,d = γ−dRs + Ps

[
d−1∑
h=1

γh−d (Pπb)
h−1

]
Rπb

. (9)

Proof. Consider the vector ℓs,· ∈ R|A|. Its expectation satisfies486

Eπbℓs,·(d; θ) = Eπb

[
d−1∑
t=0

γt−drt + θ(sd)

]

= γ−dRs +

d−1∑
t=1

γt−dPs(P
πb)t−1Rπb

+ Ps(P
πb)d−1Θ.

As required.487

A.3 Proof of Lemma 4.3 – Gradient of C-SoftTreeMax488

The C-SoftTreeMax gradient of dimension A× S is given by489

∇θ log π
C
d,θ = β

[
IA − 1A(πC

d,θ)
⊤]Ps (P

πb)
d−1

,

where for brevity, we drop the s index in the policy above, i.e., πC
d,θ ≡ πC

d,θ(·|s).490

Proof. The (j, k)-th entry of ∇θ log π
C
d,θ satisifes491

[∇θ log π
C
d,θ]j,k =

∂ log(πC
d,θ(a

j |s))
∂θ(sk)

= β[Ps(P
πb)d−1]j,k −

∑
a

[
exp

[
β
(
Cs,d + Ps (P

πb)
d−1

Θ
)]]

a
β
[
Ps(P

πb)d−1
]
a,k

1⊤
A exp

[
β
(
Cs,d + Ps (Pπb)

d−1
Θ
)]

= β[Ps(P
πb)d−1]j,k − β

∑
a

πC
d,θ(a|s)

[
Ps(P

πb)d−1
]
a,k

= β[Ps(P
πb)d−1]j,k − β

[
(πC

d,θ)
⊤Ps(P

πb)d−1
]
k

= β[Ps(P
πb)d−1]j,k − β

[
1A(π

C
d,θ)

⊤Ps(P
πb)d−1

]
j,k

.

Moving back to matrix form, we obtain the stated result.492
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A.4 Proof of Theorem 4.4 – Exponential variance decay of C-SoftTreeMax493

The C-SoftTreeMax policy gradient is bounded by494

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ 2

A2S2β2

(1− γ)2
|λ2(P

πb)|2(d−1).

Proof. We use Lemma 4.1 directly. First of all, it is know that when the reward is bounded in [0, 1],495

the maximal value of the Q-function is 1
1−γ as the sum as infinite discounted rewards. Next, we496

bound the Frobenius norm of the term achieved in Lemma 4.3, by applying the eigen-decomposition497

on Pπb :498

Pπb = 1Sµ⊤ +

S∑
i=2

λiuiv
⊤
i , (10)

where µ is the stationary distribution of Pπb , and ui and vi are left and right eigenvectors correspond-499

ingly.500

∥β
(
IA,A − 1Aπ

⊤)Ps(P
πb)d−1∥F = β∥

(
IA,A − 1Aπ

⊤)Ps

(
1Sµ⊤ +

S∑
i=2

λd−1
i uiv

⊤
i

)
∥F

(Ps is stochastic) = β∥
(
IA,A − 1Aπ

⊤)(1Aµ⊤ +

S∑
i=2

λd−1
i Psuiv

⊤
i

)
∥F

(projection nullifies 1Aµ⊤) = β∥
(
IA,A − 1Aπ

⊤)( S∑
i=2

λd−1
i Psuiv

⊤
i

)
∥F

(triangle inequality) ≤ β

S∑
i=2

∥
(
IA,A − 1Aπ⊤) (λd−1

i Psuiv
⊤
i

)
∥F

(matrix norm sub-multiplicativity) ≤ β|λd−1
2 |

S∑
i=2

∥IA,A − 1Aπ⊤∥F ∥Ps∥F ∥uiv
⊤
i ∥F

= β|λd−1
2 |(S − 1)∥IA,A − 1Aπ

⊤∥F ∥Ps∥F .

Now, we can bound the norm ∥IA,A − 1Aπ⊤∥F by direct calculation:501

∥IA,A − 1Aπ
⊤∥2F = Tr

[(
IA,A − 1Aπ⊤) (IA,A − 1Aπ⊤)⊤] (11)

= Tr
[
IA,A − 1Aπ

⊤ − π1⊤
A + π⊤π1A1⊤A

]
(12)

= A− 1− 1 +Aπ⊤π (13)
≤ 2A. (14)

From the Cauchy-Schwartz inequality,502

∥Ps∥2F =
∑
a

∑
s

[[Ps]a,s]
2
=
∑
a

∥[Ps]a,·∥22 ≤
∑
a

∥[Ps]a,·∥1∥[Ps]a,·∥∞ ≤ A.

So,503

Var
(
∇θ log π

C
d,θ(a|s)Q(s, a)

)
≤ max

s,a
[Q(s, a)]

2
max

s
∥∇θ log π

C
d,θ(·|s)∥2F

≤ 1

(1− γ)2
∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2F

≤ 1

(1− γ)2
β2|λ2(P

πb)|2(d−1)S2(2A2),

which obtains the desired bound.504
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A.5 A lower bound on C-SoftTreeMax gradient (result not in the paper)505

For completeness we also supply a lower bound on the Frobenius norm of the gradient. Note that506

this result does not translate to the a lower bound on the variance since we have no lower bound507

equivalence of Lemma 4.1.508

Lemma A.1. The Frobenius norm on the gradient of the policy is lower-bounded by:509

∥∇θ log π
C
d,θ(·|s)∥F ≥ C · β|λ2(P

πb)|(d−1). (15)

Proof. We begin by moving to the induced l2 norm by norm-equivalence:510

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥F ≥ ∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2.

Now, taking the vector u to be the eigenvector of the second eigenvalue of Pπb :511

∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1∥2 ≥ ∥β
(
IA,A − 1Aπ⊤)Ps(P

πb)d−1u∥2
= β∥

(
IA,A − 1Aπ⊤)Psu∥2

= β|λ2(P
πb)|(d−1)∥

(
IA,A − 1Aπ

⊤)Psu∥2.

Note that even though Psu can be 0, that is not the common case since we can freely change πb (and512

therefore the eigenvectors of Pπb ).513

A.6 Proof of Lemma 4.5 – Vector form of E-SoftTreeMax514

For d ≥ 1, (4) is given by515

πE
d,θ(·|s) =

Es,d exp(βΘ)

1⊤AEs,d exp(βΘ)
, (16)

where516

Es,d = Ps

d−1∏
h=1

(
D
(
exp[βγh−dR]

)
Pπb

)
(17)

with R being the |S|-dimensional vector whose s-th coordinate is r(s).517

Proof. Recall that518

ℓs,a(d; θ) = γ−d

[
r(s) +

d−1∑
t=1

γtr(st) + γdθ(sd)

]
. (18)

and, hence,519

exp[βℓs,a(d; θ)] = exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st) + γdθ(sd)

)]
. (19)

Therefore,520

E[expβℓs,a(d; θ)] = E

[
exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st)

)]
E [exp [β (θ(sd))]|s1, . . . , sd−1]

]
(20)

= E

[
exp

[
βγ−d

(
r(s) +

d−1∑
t=1

γtr(st)

)]
Pπb(·|sd−1)

]
exp(βΘ) (21)

= E

[
exp

[
βγ−d

(
r(s) +

d−2∑
t=1

γtr(st)

)]
exp[βγ−1r(sd−1)]P

πb(·|sd−1)

]
exp(βΘ).

(22)

By repeatedly using iterative conditioning as above, the desired result follows. Note that521

exp(βγ−dr(s)) does not depend on the action and is therefore cancelled out with the denomi-522

nator.523
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A.7 Proof of Lemma 4.6 – Gradient of E-SoftTreeMax524

The E-SoftTreeMax gradient of dimension A× S is given by525

∇θ log π
E
d,θ = β

[
IA − 1A(πE

d,θ)
⊤] D (πE

d,θ

)−1

Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

,

where for brevity, we drop the s index in the policy above, i.e., πE
d,θ ≡ πE

d,θ(·|s).526

Proof. The (j, k)-th entry of ∇θ log π
E
d,θ satisfies527

[∇θ log π
E
d,θ]j,k =

∂ log(πE
d,θ(a

j |s))
∂θ(sk)

=
∂

∂θ(sk)

(
log[(Es,d)

⊤
j exp(βΘ)]− log[1⊤AEs,d exp(βΘ)]

)
=

β(Es,d)j,k exp(βθ(s
k))

(Es,d)⊤j exp(βΘ)
− β1⊤

AEs,dek exp(βθ(s
k))

1⊤AEs,d exp(βΘ)

=
β(Es,dek exp(βθ(s

k)))j
(Es,d)⊤j exp(βΘ)

− β1⊤AEs,dek exp(βθ(s
k))

1⊤AEs,d exp(βΘ)

= β

[
e⊤j

e⊤j Es,d exp(βΘ)
− 1⊤A

1⊤AEs,d exp(βΘ)

]
Es,dek exp(βθ(s

k)).

Hence,528

[∇θ log π
E
d,θ]·,k = β

[
D(Es,d exp(βΘ))−1 − (1⊤AEs,d exp(βΘ))−11A1⊤A

]
Es,dek exp(βθ(s

k))

From this, it follows that529

∇θ log π
E
d,θ = β

[
D
(
πE
d,θ

)−1 − 1A1⊤
A

] Es,dD(exp(βΘ))

1⊤
AEs,d exp(βΘ)

. (23)

The desired result is now easy to see.530

A.8 Proof of Theorem 4.7 — Exponential variance decay of E-SoftTreeMax531

There exists α ∈ (0, 1) such that, for any function Q : S ×A → R,532

Var
(
∇θ log π

E
d,θ(a|s)Q(s, a)

)
∈ O

(
β2α2d

)
.

If all rewards are equal (r ≡ const), then α = |λ2(P
πb)|.533

Proof outline. Recall that thanks to Lemma 4.1, we can bound the PG variance using a direct bound534

on the gradient norm. The definition of the induced norm is535

∥∇θ log π
E
d,θ∥ = max

z:∥z∥=1
∥∇θ log π

E
d,θz∥,

with ∇θ log π
E
d,θ given in Lemma 4.6. Let z ∈ RS be an arbitrary vector such that ∥z∥ = 1. Then,536

z =
∑S

i=1 cizi, where ci are scalar coefficients and zi are vectors spanning the S-dimensional space.537

In the full proof, we show our specific choice of zi and prove they are linearly independent given that538

choice. We do note that z1 = 1S .539

The first part of the proof relies on the fact that (∇θ log π
E
d,θ)z1 = 0. This is easy to verify using

Lemma 4.6 together with (6), and because
[
IA − 1A(πE

d,θ)
⊤
]

is a projection matrix whose null-space
is spanned by 1S . Thus,

∇θ log π
E
d,θz = ∇θ log π

E
d,θ

S∑
i=2

cizi.
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In the second part of the proof, we focus on Es,d from (6), which appears within ∇θ log π
E
d,θ. Notice540

that Es,d consists of the product
∏d−1

h=1

(
D
(
exp(βγh−dR

)
Pπb

)
. Even though the elements in this541

product are not stochastic matrices, in the full proof we show how to normalize each of them to a542

stochastic matrix Bh. We thus obtain that543

Es,d = PsD(M1)

d−1∏
h=1

Bh,

where M1 ∈ RS is some strictly positive vector. Then, we can apply a result by Mathkar and Borkar544

[2016], which itself builds on [Chatterjee and Seneta, 1977]. The result states that the product of545

stochastic matrices
∏d−1

h=1 Bh of our particular form converges exponentially fast to a matrix of the546

form 1Sµ⊤ s.t. ∥1Sµ⊤ −
∏d−1

h=1 Bh∥ ≤ Cαd for some constant C.547

Lastly, 1Sµ⊤
πb

gets canceled due to our choice of zi, i = 2, . . . , S. This observation along with the548

above fact that the remainder decays then shows that ∇θ log π
E
d,θ

∑S
i=2 zi = O(αd), which gives the549

desired result.550

Full technical proof. Let d ≥ 2. Recall that551

Es,d = Ps

d−1∏
h=1

(
D
(
exp[βγh−dR]

)
Pπb

)
, (24)

and that R refers to the S-dimensional vector whose s-th coordinate is r(s). Define552

Bi =

{
Pπb if i = d− 1,

D−1(PπbMi+1)P
πbD(Mi+1) if i = 1, . . . , d− 2,

(25)

and the vector553

Mi =

{
exp(βγ−1R) if i = d− 1,

exp(βγi−dR) ◦ PπbMi+1 if i = 1, . . . , d− 2,
(26)

where ◦ denotes the element-wise product. Then,554

Es,d = PsD(M1)

d−1∏
i=1

Bi. (27)

It is easy to see that each Bi is a row-stochastic matrix, i.e., all entries are non-negative and555

Bi1S = 1S .556

Next, we prove that all non-zeros entries of Bi are bounded away from 0 by a constant. This is557

necessary to apply the next result from Chatterjee and Seneta [1977]. The j-th coordinate of Mi558

satisfies559

(Mi)j = exp[βγi−dRj ]
∑
k

[Pπb ]j,k(Mi+1)k ≤ ∥ exp[βγi−dR]∥∞∥Mi+1∥∞. (28)

Separately, observe that ∥Md−1∥∞ ≤ ∥ exp(βγ−1R)∥∞. Plugging these relations in (26) gives560

∥M1∥∞ ≤
d−1∏
h=1

∥ exp[βγh−dR]∥∞ =

d−1∏
h=1

∥ exp[βγ−dR]∥γ
h

∞ = ∥ exp[βγ−dR]∥
∑d−1

h=1 γh

∞ ≤ ∥ exp[βγ−dR]∥
1

1−γ
∞ .

(29)

Similarly, for every 1 ≤ i ≤ d− 1, we have that561

∥Mi∥∞ ≤
d−1∏
h=i

∥ exp[βγ−dR]∥γ
h

∞ ≤ ∥ exp[βγ−dR]∥
1

1−γ
∞ . (30)

The jk-th entry of Bi = D−1(PπbMi+1)P
πbD(Mi+1) is562

(Bi)jk =
Pπb

jk [Mi+1]k∑|S|
ℓ=1 P

πb

jℓ [Mi+1]ℓ
≥

Pπb

jk∑|S|
ℓ=1 P

πb

jℓ [Mi+1]ℓ
≥

Pπb

jk

∥ exp[βγ−dR]∥
1

1−γ
∞

. (31)
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Hence, for non-zero Pπb

jk , the entries are bounded away from zero by the same. We can now proceed563

with applying the following result.564

Now, by [Chatterjee and Seneta, 1977, Theorem 5] (see also (14) in [Mathkar and Borkar, 2016]),565

limd→∞
∏d−1

i=1 Bi exists and is of the form 1Sµ⊤ for some probability vector µ. Furthermore, there566

is some α ∈ (0, 1) such that ε(d) :=
(∏d−1

i=1 Bi

)
− 1S µ⊤ satisfies567

∥ε(d)∥ = O(αd). (32)

Pick linearly independent vectors w2, . . . , wS such that568

µ⊤wi = 0 for i = 2, . . . , d. (33)

Since
∑S

i=2 αiwi is perpendicular to µ for any α2, . . . αS and because µ⊤ exp(βΘ) > 0, there569

exists no choice of α2, . . . , αS such that
∑S

i=2 αiwi = exp(βΘ). Hence, if we let z1 = 1S and570

zi = D(exp(βΘ))−1wi for i = 2, . . . , S, then it follows that {z1, . . . , zS} is linearly independent.571

In particular, it implies that {z1, . . . , zS} spans RS .572

Now consider an arbitrary unit norm vector z :=
∑S

i=1 cizi ∈ RS s.t. ∥z∥2 = 1. Then,573

∇θ log π
E
d,θz = ∇θ log π

E
d,θ

S∑
i=2

cizi (34)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

Es,dD(exp(βΘ))

1⊤AEs,d exp(βΘ)

S∑
i=2

cizi (35)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

Es,d

1⊤AEs,d exp(βΘ)

S∑
i=2

ciwi (36)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1 [
1Sµ

⊤ + ε(d)
]

1⊤AEs,d exp(βΘ)

S∑
i=2

ciwi (37)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

ε(d)

1⊤
AEs,d exp(βΘ)

S∑
i=2

ciwi (38)

= β
[
IA − 1A(π

E
d,θ)

⊤] D (πE
d,θ

)−1

ε(d)D(exp(βΘ))

1⊤AEs,d exp(βΘ)
(z − c11S), (39)

where (34) follows from the fact that ∇θ log π
E
d,θz1 = ∇θ log π

E
d,θ1S = 0, (35) follows from574

Lemma 4.6, (36) holds since zi = D(exp(βΘ))−1wi, (38) because µ is perpendicular wi for each i,575

while (39) follows by reusing zi = D(exp(βΘ))−1wi relation along with the fact that z1 = 1S .576
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From (39), it follows that577

∥∇θ log π
E
d,θz∥ ≤ β∥ε(d)∥

∥∥∥∥∥∥∥
[
IA − 1A(πE

d,θ)
⊤] D

(
πE
d,θ

)−1

1⊤
AEs,d exp(βΘ)

∥∥∥∥∥∥∥ ∥D(exp(βΘ))∥ ∥z − c11S∥

(40)

≤ βαd(∥IA∥+ ∥1A(πE
d,θ)

⊤∥)

∥∥∥∥∥∥∥
D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ exp(βmax
s

θ(s))∥z − c11S∥

(41)

≤ βαd(1 +
√
A)

∥∥∥∥∥∥∥
D
(
πE
d,θ

)−1

1⊤AEs,d exp(βΘ)

∥∥∥∥∥∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (42)

≤ βαd(1 +
√
A)
∥∥D−1(Es,d exp(βΘ))

∥∥ exp(βmax
s

θ(s))∥z − c11S∥ (43)

≤ βαd(1 +
√
A)

1

mins[Es,d exp(βΘ]s
exp(βmax

s
θ(s))∥z − c11S∥ (44)

≤ βαd(1 +
√
A)

exp(βmaxs θ(s))

exp(βmins θ(s))mins |M1|
∥z − c11S∥ (45)

≤ βαd(1 +
√
A)

exp(βmaxs θ(s))

exp(βmins θ(s)) exp(βmins r(s))
∥z − c11S∥ (46)

≤ βαd(1 +
√
A) exp(β[max

s
θ(s)−min

s
θ(s)−min

s
r(s)])∥z − c11S∥. (47)

Lastly, we prove that ∥z − c11S∥ is bounded independently of d. First, denote by c = (c1, . . . , cS)
⊤578

and c̃ = (0, c2, . . . , cS)
⊤. Also, denote by Z the matrix with zi as its i-th column. Now,579

∥z − c11S∥ = ∥
S∑

i=2

cizi∥ (48)

= ∥Zc̃∥ (49)
≤ ∥Z∥∥c̃∥ (50)
≤ ∥Z∥∥c∥ (51)

= ∥Z∥∥Z−1z∥ (52)

≤ ∥Z∥∥Z−1∥, (53)

where the last relation is due to z being a unit vector. All matrix norms here are l2-induced norms.580

Next, denote by W the matrix with wi in its i-th column. Recall that in (33) we only defined581

w2, . . . , wS . We now set w1 = exp(βΘ). Note that w1 is linearly independent of {w2, . . . , wS}582

because of (33) together with the fact that µ⊤w1 > 0. We can now express the relation between Z583

and W by Z = D−1(exp(βΘ))W. Substituting this in (53), we have584

∥z − c11S∥ ≤ ∥D−1(exp(βΘ))W∥∥W−1D(exp(βΘ))∥ (54)

≤ ∥W∥∥W−1∥∥D(exp(βΘ))∥∥D−1(exp(βΘ))∥. (55)

It further holds that585

∥D(exp(βΘ))∥ ≤ max
s

exp (βθ(s)) ≤ max{1, exp[βmax
s

θ(s)])}, (56)

where the last relation equals 1 if θ(s) < 0 for all s. Similarly,586

∥D−1(exp(βΘ))∥ ≤ 1

mins exp (βθ(s))
≤ 1

min{1, exp[βmins θ(s)])}
. (57)
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Furthermore, by the properties of the l2-induced norm,587

∥W∥2 ≤
√
S∥W∥1 (58)

=
√
S max

1≤i≤S
∥wi∥1 (59)

=
√
Smax{exp(βΘ), max

2≤i≤S
∥wi∥1} (60)

≤
√
Smax{1, exp[βmax

s
θ(s)], max

2≤i≤S
∥wi∥1)}. (61)

Lastly,588

∥W−1∥ =
1

σmin(W )
(62)

≤

(
S−1∏
i=1

σmax(W )

σi(W )

)
1

σmin(W )
(63)

=
(σmax(W ))

S−1∏S
i=1 σi(W )

(64)

=
∥W∥S−1

|det(W )|
. (65)

The determinant of W is a sum of products involving its entries. To upper bound (65) independently589

of d, we lower bound its denominator by upper and lower bounds on the entries [W ]i,1 that are590

independent of d, depending on their sign:591

min{1, exp[βmin
s

θ(s)])} ≤ [W ]i,1 ≤ max{1, exp[βmax
s

θ(s)])}. (66)

Using this, together with (53), (55), (56), (57), and (61), we showed that ∥z−c11S∥ is upper bounded592

by a constant independent of d. This concludes the proof.593

A.9 Bias Estimates594

Lemma A.2. For any matrix A and Â,

Âk −Ak =

k∑
h=1

Âh−1(Â−A)Ak−h.

Proof. The proof follows from first principles:595

k∑
h=1

Âh−1(Â−A)Ak−h =

k∑
h=1

Âh−1ÂAk−h −
k∑

h=1

Âh−1AAk−h (67)

=

k∑
h=1

ÂhAk−h −
k∑

h=1

Âh−1Ak−h+1 (68)

= Âk −Ak +

k−1∑
h=1

ÂhAk−h −
k∑

h=2

Âh−1Ak−h+1 (69)

= Âk −Ak. (70)

596

Henceforth, ∥ · ∥ will refer to ∥ · ∥∞, i.e. the induced infinity norm. Also, for brevity, we denote πC
d,θ597

and π̂C
d,θ by πθ and π̂θ, respectively. Similarly, we use dπθ

and dπ̂θ
to denote dπC

d,θ
and dπ̂C

d,θ
. As for598

the induced norm of the matrix P and its perturbed counterpart P̂ , which are of size S × A × S,599

we slightly abuse notation and denote ∥P − P̂∥ = maxs{∥Ps − P̂s∥}, where Ps is as defined in600

Section 2.601
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Definition A.3. Let ϵ be the maximal model mis-specification, i.e., max{∥P − P̂∥, ∥r − r̂∥} = ϵ.602

Lemma A.4. Recall the definitions of Rs, Ps, Rπb
and Pπb from Section 2, and respectively denote603

their perturbed counterparts by R̂s, P̂s, R̂πb
and P̂πb . Then, for ϵ defined in Definition A.3,604

max{∥Rs − R̂s∥, ∥Ps − P̂s∥, ∥Rπb
− R̂πb

∥, ∥Pπb − P̂πb∥} = O(ϵ). (71)

Proof. The proof follows easily from the fact that the differences above are convex combinations of605

P − P̂ and r − r̂.606

Lemma A.5. Let πθ be as in (5), and let π̂θ also be defined as in (5), but with Rs, Ps, P
πb replaced607

by their perturbed counterparts R̂s, P̂s, P̂
πb throughout. Then,608

∥πC
d,θ − π̂C

d,θ∥ = O(βdϵ). (72)

Proof. To prove the desired result, we work with (5) to bound the error between Rs, Ps, P
πb , Rπb

609

and their perturbed versions.610

First, we apply Lemma A.2 together with Lemma A.4 to obtain that ∥(Pπb)k − (P̂πb)k∥ = O(kϵ).
Next, denote by M the argument in the exponent in (5), i.e.

M := β[Cs,d + Ps(P
πb)d−1Θ].

Similarly, let M̂ be the corresponding perturbed sum that relies on P̂ and r̂. Combining the bounds611

from Lemma A.4, and using the triangle inequality, we have that ∥M̂ −M∥ = O(βdϵ).612

Eq. (5) states that the C-SoftTreeMax policy in the true environment is πθ = exp(M)/(1⊤ exp(M)).
Similarly define π̂θ using M̂ for the approximate model. Then,

π̂θ = (πθ ◦ exp(M − M̂))1⊤ exp(M)/(1⊤ exp(M̂)),

where ◦ denotes element-wise multiplication. Using the above relation, we have that ∥π̂θ − πθ∥ =613

∥πθ∥∥ exp(M−M̂)1⊤ exp(M)

1⊤ exp(M̂)
− 1∥. Using the relation |ex − 1| = O(x) as x → 0, the desired result614

follows.615

616

Theorem A.6. Let ϵ be as in Definition A.3. Further let π̂C
d,θ being the corresponding approximate617

policy as given in Lemma 4.2. Then, the policy gradient bias is bounded by618 ∥∥∥∥ ∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π̂θ

)∥∥∥∥ = O
(

1

(1− γ)2
Sβ2dϵ

)
. (73)

We first provide a proof outline for conciseness, and only after it the complete proof.619

Proof outline. First, we prove that max{∥Rs−R̂s∥, ∥Ps−P̂s∥, ∥Rπb
−R̂πb

∥, ∥Pπb−P̂πb∥} = O(ϵ).
This follows from the fact that the differences above are suitable convex combinations of either the
rows of P − P̂ or r − r̂. We use the above observation along with the definitions of πC

d,θ and π̂C
d,θ

given in (5) to show that ∥πC
d,θ − π̂C

d,θ∥ = O(βdϵ). The proof for the latter builds upon two key facts:

(a) ∥(Pπb)k − (P̂πb)k∥ ≤
∑k

h=1 ∥P̂πb∥h−1∥P̂πb −Pπb∥∥pπb∥k−h = O(kϵ) for any k ≥ 0, and (b)
|ex − 1| = O(x) as x → 0. Next, we decompose the LHS of (7) to get

∑
s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
=
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
×Xi+1(s) · · ·X4(s),

where X1(s) = dπC
d,θ

(s) ∈ R, X2(s) = (∇θ log π
C
d,θ(·|s))⊤ ∈ RS×A, X3(s) = D(πC

d,θ(·|s)) ∈620

RA×A, X4(s) = QπC
d,θ (s, ·) ∈ RA×A, and X̂1(s), . . . , X̂4(s) are similarly defined with πC

d,θ re-621

placed by π̂C
d,θ. Then, we show that, for i = 1, . . . , 4, (i) ∥Xi(s) − X̂i(s)∥ = O(ϵ) and (ii)622

max{∥Xi∥, ∥X̂i∥} is bounded by problem parameters. From this, the desired result follows.623
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Proof. We have624

∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π′

θ

)
(74)

= Es∼dπθ
,a∼πθ(·|s) [∇θ log πθ(a|s)Qπθ (s, a)]− Es∼dπ̂θ

,a∼π̂θ(·|s)
[
∇θ log π̂θ(a|s)Qπ̂θ (s, a)

]
(75)

=
∑
s,a

(
dπθ

(s)πθ(a|s)∇θ log πθ(a|s)Qπθ (s, a)− dπ̂θ
(s)π̂θ(a|s)∇θ log π̂θ(a|s)Qπ̂θ (s, a)

)
(76)

=
∑
s

(
dπθ

(s)(∇θ log πθ(·|s))⊤D(πθ(·|s))Qπθ (s, ·) (77)

− dπ̂θ
(s)(∇θ log π̂θ(·|s))⊤D(π̂θ(·|s))Qπ̂θ (s, ·)

)
(78)

=
∑
s

(
4∏

i=1

Xi(s)−
4∏

i=1

X̂i(s)

)
(79)

=
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
Xi+1(s) · · ·X4(s), (80)

where X1(s) = dπθ
(s) ∈ R, X2(s) = (∇θ log πθ(·|s))⊤ ∈ RS×A, X3(s) = D(πθ(·|s)) ∈ RA×A,625

X4(s) = Qπθ (s, ·) ∈ RA×A, and X̂1(s), . . . , X̂4(s) are similarly defined with πθ replaced by π̂θ.626

Therefore,627 ∥∥∥∥ ∂

∂θ

(
ν⊤V πθ

)
− ∂

∂θ

(
ν⊤V π′

θ

)∥∥∥∥ ≤
(
max

s
Γ(s)

)
S, (81)

where628

Γ(s) = ∥
∑
s

4∑
i=1

X̂1(s) · · · X̂i−1(s)
(
Xi(s)− X̂i(s)

)
Xi+1(s) · · ·X4(s)∥. (82)

Next, since dπθ
, dπ̂θ

, πθ, and π̂θ are all distributions, we have629

max{|X1(s)|, |X̂1(s)|, |X3(s, a)|, |X̂3(s, a)|} ≤ 1. (83)

Separately, using Lemma 4.3, we have630

∥X2∥ = ∥∇θ log πθ(a|s)∥ ≤ β(∥IA∥+ ∥1Aπ
⊤
θ ∥)∥Ps∥∥(Pπb)d−1∥. (84)

Since all rows of the above matrices have non-negative entries that add up to 1, we get631

∥Y ∥ ≤ 2β. (85)

In the rest of the proof, we bound each of ∥X1 − X̂1∥, . . . , ∥X4 − X̂4∥.632

Finally,633

∥X4∥ ≤ 1

1− γ
. (86)

Similarly, the same bounds hold for X̂1, X̂2, X̂3 and X̂4.634

From, we have635

∥X1 − X̂1∥ ≤ (1− γ)

∞∑
t=0

γt∥ν⊤(Pπθ )t − ν⊤(P π̂θ )t∥ (87)

≤ (1− γ)∥ν∥
∑
t=0

γttdϵ (88)

≤ (1− γ)dϵ

∞∑
t=0

γtt (89)

=
γdϵ

1− γ
. (90)
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The last relation follows from the fact that (1− γ)−1 =
∑∞

t=0 γ
t, which in turn implies636

γ
∂

∂γ

(
1

1− γ

)
=

∞∑
t=0

tγt. (91)

From Lemma A.5, it follows that637

∥X3 − X̂3∥ = O(βdϵ). (92)

Next, recall that from Lemma 4.3 that638

X2(s, ·) = β
[
IA − 1A(πθ)

⊤]Ps (P
πb)

d−1
.

Then,639

∥X2(s, ·)− X̂2(s, ·)∥ ≤∥β
[
IA − 1A(πθ)

⊤]Ps∥∥ (Pπb)
d−1 −

(
P̂πb

)d−1

∥ (93)

+ ∥β
[
IA − 1A(πθ)

⊤] ∥∥Ps − P̂s∥∥
(
P̂πb

)d−1

∥ (94)

+ β∥1A(πθ)
⊤ − 1A(π̂θ)

⊤∥∥P̂s

(
P̂πb

)d−1

∥. (95)

Following the same argument as in (85) and applying Lemma A.2, we have that (93) is O(βdϵ).640

Similarly, from the argument of (85), Eq. (94) is O(βϵ). Lastly, (95) is O(βdϵ) due to Lemma A.5.641

Putting the above three terms together, we have that642

∥X2(s, ·)− X̂2(s, ·)∥ = O(βdϵ). (96)

Since the state-action value function satisfies the Bellman equation, we have643

Qπθ = r + γPQπθ (97)

and644

Qπ̂θ = r̂ + γP̂Qπ̂θ . (98)
Consequently,645

∥Qπθ −Qπ̂θ∥ ≤ ∥r − r̂∥+ γ∥PQπθ − PQπ̂θ∥+ γ∥PQπ̂θ − P̂Qπ̂θ∥ (99)

≤ ϵ+ γ∥P∥∥Qπθ −Qπ̂θ∥+ γ∥P − P̂∥∥Qπ̂θ∥ (100)

≤ ϵ+ γ∥Qπθ −Qπ̂θ∥+ γ

1− γ
ϵ, (101)

which finally shows that646

∥X4 − X̂4∥ = ∥Qπθ −Qπ̂θ∥ ≤ ϵ

(1− γ)2
. (102)

647

B Experiments648

B.1 Implementation Details649

The environment engine is the highly efficient Atari-CuLE [Dalton et al., 2020], a CUDA-based650

version of Atari that runs on GPU. Similarly, we use Atari-CuLE for the GPU-based breadth-first TS651

as done in Dalal et al. [2021]: In every tree expansion, the state St is duplicated and concatenated652

with all possible actions. The resulting tensor is fed into the GPU forward model to generate the653

tensor of next states (S0
t+1, . . . , S

A−1
t+1 ). The next-state tensor is then duplicated and concatenated654

again with all possible actions, fed into the forward model, etc. This procedure is repeated until the655

final depth is reached, for which Wθ(s) is applied per state.656

We train SoftTreeMax for depths d = 1 . . . 8, with a single worker. We use five seeds for each657

experiment.658
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For the implementation, we extend Stable-Baselines3 [Raffin et al., 2019] with all parameters taken659

as default from the original PPO paper [Schulman et al., 2017]. For depths d ≥ 3, we limited the660

tree to a maximum width of 1024 nodes and pruned non-promising trajectories in terms of estimated661

weights. Since the distributed PPO baseline advances significantly faster in terms of environment662

steps, for a fair comparison, we ran all experiments for one week on the same machine and use the663

wall-clock time as the x-axis. We use Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz equipped with664

one NVIDIA Tesla V100 32GB.665

B.2 Time-Based Training Curves666

We provide the training curves in Figure 4. For brevity, we exclude a few of the depths from the plots.667

As seen, there is a clear benefit for SoftTreeMax over distributed PPO with the standard softmax668

policy. In most games, PPO with the SoftTreeMax policy shows very high sample efficiency: it669

achieves higher episodic reward although it observes much less episodes, for the same running time.670

Figure 4: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the wall-clock time.
The runs ended after one week with varying number of time-steps. The training curves correspond to
the evaluation runs in Figure 3.

B.3 Step-Based Training Curves671

In Figure 5 we also provide the same convergence plots where the x-axis is now the number of online672

interactions with the environment, thus excluding the tree expansion complexity. As seen, due to the673

complexity of the tree expansion, less steps are conducted during training (limited to one week) as674

the depth increases. In this plot, the monotone improvement of the reward with increasing tree depth675

is noticeable in most games.676
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Figure 5: Training curves: GPU SoftTreeMax (single worker) vs PPO (256 GPU workers). The
plots show average reward and standard deviation over 5 seeds. The x-axis is the number of online
interactions with the environment. The runs ended after one week with varying number of time-steps.
The training curves correspond to the evaluation runs in Figure 3.

We note that not for all games we see monotonicity. Our explanation for this phenomenon relates to677

how immediate reward contributes to performance compared to the value. Different games benefit678

differently from long-term as opposed to short-term planning. Games that require longer-term679

planning need a better value estimate. A good value estimate takes longer to obtain with larger depths,680

in which we apply the network to states that are very different from the ones observed so far in the681

buffer (recall that as in any deep RL algorithm, we train the model only on states in the buffer). If682

the model hasn’t learned a good enough value function yet, and there is no guiding dense reward683

along the trajectory, the policy becomes noisier, and can take more steps to converge – even more684

than those we run in our week-long experiment.685

For a concrete example, let us compare Breakout to Gopher. Inspecting Fig. 5, we observe that686

Breakout quickly (and monotonically) gains from large depths since it relies on the short term goal687

of simply keeping the paddle below the moving ball. In Gopher, however, for large depths (>=5),688

learning barely started even by the end of the training run. Presumably, this is because the task in689

Gopher involves multiple considerations and steps: the agent needs to move to the right spot and690

then hit the mallet the right amount of times, while balancing different locations. This task requires691

long-term planning and thus depends more strongly on the accuracy of the value function estimate.692

In that case, for depth 5 or more, we would require more train steps for the value to “kick in” and693

become beneficial beyond the gain from the reward in the tree.694

The figures above convey two key observations that occur for at least some non-zero depth: (1) The695

final performance with the tree is better than PPO (Fig. 3); and (2) the intermediate step-based results696

with the tree are better than PPO (Fig. 5). This leads to our main takeaway from this work — there697

is no reason to believe that the vanilla policy gradient algorithm should be better than a multi-step698

variant. Indeed, we show that this is not the case.699

C Further discussion700

C.1 The case of λ2(P
πb) = 0701

When Pπb is rank one, it is not only its variance that becomes 0, but also the norm of the gradient702

itself (similarly to the case of d → ∞). Note that such a situation will happen rarely, in degenerate703

MDPs. This is a local minimum for SoftTreeMax and it would cause the PG iteration to get stuck,704

and to the optimum in the (desired but impractical) case where πb is the optimal policy. However,705

a similar phenomenon was also discovered in the standard softmax with deterministic policies:706
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θ(s, a) → ∞ for one a per s. PG with softmax would suffer very slow convergence near these707

local equilibria, as observed in Mei et al. [2020a]. To see this, note that the softmax gradient is708

∇θ log πθ(a|s) = ea − πθ(·|s), where ea ∈ [0, 1]A is the vector with 0 everywhere except for the709

a-th coordinate. I.e., it will be zero for a deterministic policy. SoftTreeMax avoids these local optima710

by integrating the reward into the policy itself (but may get stuck in another, as discussed above).711
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not require this, but we encourage authors to take this into account and make a best948

faith effort.949

12. Licenses for existing assets950

Question: Are the creators or original owners of assets (e.g., code, data, models), used in951

the paper, properly credited and are the license and terms of use explicitly mentioned and952

properly respected?953

Answer: [Yes]954

Justification: [NA]955

Guidelines:956

• The answer NA means that the paper does not use existing assets.957

• The authors should cite the original paper that produced the code package or dataset.958

• The authors should state which version of the asset is used and, if possible, include a959

URL.960

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.961

• For scraped data from a particular source (e.g., website), the copyright and terms of962

service of that source should be provided.963

• If assets are released, the license, copyright information, and terms of use in the964

package should be provided. For popular datasets, paperswithcode.com/datasets965

has curated licenses for some datasets. Their licensing guide can help determine the966

license of a dataset.967

• For existing datasets that are re-packaged, both the original license and the license of968

the derived asset (if it has changed) should be provided.969
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• If this information is not available online, the authors are encouraged to reach out to970

the asset’s creators.971

13. New Assets972

Question: Are new assets introduced in the paper well documented and is the documentation973

provided alongside the assets?974

Answer: [NA]975

Justification: The paper does not release new assets.976

Guidelines:977

• The answer NA means that the paper does not release new assets.978

• Researchers should communicate the details of the dataset/code/model as part of their979

submissions via structured templates. This includes details about training, license,980

limitations, etc.981

• The paper should discuss whether and how consent was obtained from people whose982

asset is used.983

• At submission time, remember to anonymize your assets (if applicable). You can either984

create an anonymized URL or include an anonymized zip file.985

14. Crowdsourcing and Research with Human Subjects986

Question: For crowdsourcing experiments and research with human subjects, does the paper987

include the full text of instructions given to participants and screenshots, if applicable, as988

well as details about compensation (if any)?989

Answer: [NA]990

Justification: The paper does not involve crowdsourcing nor research with human subjects.991

Guidelines:992

• The answer NA means that the paper does not involve crowdsourcing nor research with993

human subjects.994

• Including this information in the supplemental material is fine, but if the main contribu-995

tion of the paper involves human subjects, then as much detail as possible should be996

included in the main paper.997

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,998

or other labor should be paid at least the minimum wage in the country of the data999

collector.1000

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1001

Subjects1002

Question: Does the paper describe potential risks incurred by study participants, whether1003

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1004

approvals (or an equivalent approval/review based on the requirements of your country or1005

institution) were obtained?1006

Answer: [NA]1007

Justification: The paper does not involve crowdsourcing nor research with human subjects.1008

Guidelines:1009

• The answer NA means that the paper does not involve crowdsourcing nor research with1010

human subjects.1011

• Depending on the country in which research is conducted, IRB approval (or equivalent)1012

may be required for any human subjects research. If you obtained IRB approval, you1013

should clearly state this in the paper.1014

• We recognize that the procedures for this may vary significantly between institutions1015

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1016

guidelines for their institution.1017

• For initial submissions, do not include any information that would break anonymity (if1018

applicable), such as the institution conducting the review.1019
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